

B. Sc. Mathematics (Duration: 3 Years) CURRICULUM and SYLLABUS

(Applicable for Students admitted from Academic Year 2022-23)

DEPARTMENT OF MATHEMATICS SCHOOL OF LIBERAL ARTS AND APPLIED SCIENCES HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

HINDUSTAN INSTITUTE OF TECHNOLOGY & SCIENCE

VISION AND MISSION

MOTTO:

To Make Every Man a Success and No Man a Failure

VISION:

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

MISSION:

- To create an ecosystem that promotes learning and world class research.
- To nurture creativity and innovation.
- To instil highest ethical standards and values.
- To pursue activities for the development of the Society.
- To develop national and international collaborations with institutes and industries of eminence.
- To enable graduates to become future leaders and innovators.

VALUE STATEMENT

• Integrity, Innovation, Internationalization

DEPARTMENT OF MATHEMATICS

VISION AND MISSION

VISION

To be a worldwide Centre for Excellence in Mathematics and scientific computing for the growth of Science and Technology.

MISSION

M1 Imparting of quality mathematics education and the inculcating of the spirit of research through innovative teaching and research methodologies.

M2 To achieve high standards of excellence in generating and propagating knowledge in Mathematics.

M3 To build a community that champions and promotes the mathematician in everyone.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The Program Educational Objectives (PEOs) for Mathematics describe accomplishments that students are expected to attain within three years after graduation.

PEO I Graduates will acquire knowledge and expertise to excel in professional career.

PEO II Graduates will obtain and apply the practical and technical skills to identify, analyze and solve the problems related to the industries.

PEO III Graduates will develop and possess professional attitude and skills to be socially responsible individual and work as team in their work place and society considering the professionals ethics, environmental factors, and contribute to the economic growth of the country.

PEO IV Graduates will utilize their expertise gained to pursue higher studies and outshine in careers like teaching, research or technologists.

PEO V Graduates will be competent to exhibit their acquired

multidisciplinary skills for the lifelong learning in their professional and personal upliftment.

PROGRAM OUTCOMES (ALIGNED WITH GRADUATE ATTRIBUTES) (PO)

On successful completion of the program, graduates will be able to:

PO I Knowledge Domain: Demonstrate an understanding of the basic concepts in mathematics, statistics, operations research and their importance in the solution of some real- world problems.

PO II Problem Analysis: Analyze and solve the well-defined problems in mathematics statistics, and operations research. Utilize the principles of scientific enquiry, thinking analytically, clearly and critically, while solving problems and making decision. Find, analyze, evaluate and apply information systematically and shall make defensible decisions.

PO III Presentation and Interpretation of Data: Demonstrate the ability to manipulate and visualize data and to compute standard statistical summaries.

PO IV Modern Tool Usage: Learn, select, and apply appropriate methods and procedures, resources and computing tool such as Excel, MATLAB, MATHEMATICA, SPSS etc with an understanding of the limitations.

PO V Ethics: Analyze relevant academic, professional and research ethical problems and commit to professional ethics and responsibilities with applicable norms of the data analysis and research practices.

PO VI Communication: Effectively communicate about their field of expertise on their activities, with their peer and society at large. Such as, being able to comprehend and write effective reports and design documentation, make effective presentations.

PO VII Project Management: Apply Knowledge and understanding of principles of mathematics and statistics effectively as an individual, and as a member or leader in diverse teams to manage projects in multidisciplinary environment.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO I Acquire knowledge in functional areas of Mathematics and apply in all the fields of learning.

PSO II Develop critical thinking, creative thinking, self-confidence for eventual success in career.

PSO III Employ mathematical ideas encompassing logical reasoning, analytical, numerical ability, theoretical skills to model real-world problems and solve them.

	B.Sc. Mathematics (120 CREDIT STRUCTURE)										
SEMESTER – I											
S. No.	COURSE CATEGOR Y	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН		
1		*****	Regional Language I (Tamil/Hindi/Telugu/Mala yalam)								
1.	CF	****	Foreign Language I (French/German/ Spanish/Korean/ Japanese/Mandarin)	3	0	0	3	1	3		
2.	CF	*****	English–I	3	0	0	3	1	3		
3.	PC	MAA 0107	Classical Algebra	3	1	0	4	1	4		
4.	PC	MAA 0110	Calculus	3	1	0	4	1	4		
5.	PC	PHA0101	Physics-I	3	0	0	3	0	3		
6.	РС	CAB0105	Python Programming and MATLAB	2	0	2	3	0	4		
7.	PC	MAA0106	Value Education	1	0	0	1	0	1		
			Total	18	2	2	21	4	22		
	L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study; TCH- Total Contact Hours										

	SEMESTER – II										
S. No.	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН		
1.	CF	****	Regional Language II (Tamil/Hindi/Telugu/Ma layalam)								
		****	Foreign Language II (French/German/ Spanish/Korean/ Japanese/Mandarin)	3	0	0	3	1	3		
2.	CF	*****	English–II	3	0	0	3	1	3		

3.	РС	MAA 0121	Trigonometry, Vector Calculus and Fourier Series	3	0	2	4	1	5		
4.	PC	MAA 0122	Differential Equations and Transforms	3	0	2	4	1	5		
5.	PC	PHA0116	Physics-II	3	0	0	3	1	3		
6.	PC	PHA0141	Physics Practical	0	0	4	2	0	4		
			Total	15	0	8	19	5	23		
L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study;											
	TCH- Total Contact Hours										

			SEMESTER – III								
S. No.	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн		
1.	PC	MAA0206	Modern Algebra	3	1	0	4	1	4		
2.	PC	MAA0207	Mathematical Analysis	3	1	0	4	1	4		
3.	PC	MAA0208	Complex Functions	3	1	0	4	1	4		
4.	PC	MAA0209	Probability and Statistics	3	1	0	4	1	4		
5.	PC	CAB0211	Object Oriented Programming Using C++	3	0	2	4	0	5		
			Total	15	4	2	20	4	21		
	L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study;										

TCH- Total Contact Hours

	SEMESTER – IV										
S. No.	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн		
1.	PC	MAA0220	Linear Algebra	3	1	0	4	1	4		
2.	PC	MAA0221	Real Analysis	3	1	0	4	1	4		
3.	PC	MAA0222	Complex Analysis	3	1	0	4	1	4		
4.	PC	MAA0223	Advanced Statistics	3	1	0	4	1	4		
5.	PC	CAB0225	Introduction to Data Science	3	1	0	4	0	4		
			Total	15	5	0	20	4	20		
	L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study; TCH- Total Contact Hours										

			SEMESTER – V								
S. No.	COURSE CATEGOR Y	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн		
1.	PC	MAA0301	Numerical Analysis	3	0	2	4	1	5		
2.	PC	MAA0306	Statics and Dynamics	3	1	0	4	1	4		
3.	PC	MAA0307	Operations Research	3	1	0	4	1	4		
4.	PC	MAA0308	Discrete Mathematics	3	1	0	4	1	4		
5.	PC	MAA0309	Three-Dimensional Analytical Solid Geometry	3	1	0	4	0	4		
			Total	15	4	2	20	4	21		
	I Lostuno T Tutoriale D Duraticale C Credite S Salf Studen										

– Tutorial; P – Practical; C – Credit; S- Self Study; - Lecture; 'I

TCH- Total Contact Hours

			SEMESTER – VI								
S. No.	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн		
1.	PC	MAA0319	Number Theory	3	1	0	4	1	4		
2.	PC	MAA0320	Graph Theory	3	1	0	4	1	4		
4.	PC	MAB0321	Project	0	0	24	12	0	24		
			Total	6	2	24	20	2	32		
	L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study;										

TCH- Total Contact Hours

SEMESTER I

COU	RSE LE	CLA	CLASSICAL ALGEBRA CREDITS 4									
COU COI	RSE DE	MAA0107	CO CAT	OURSE FEGORY		PC	L-1	F-P-S	3-	1-0-1		
Vers	sion	1.0	Aj I	pproval Details			LEAI LE	RNING VEL	B	TL-3		
			Α	SSESSME	NT	SCHEM	E					
Fir Perioe Assess	rst dical ment	Second Periodical Assessment	Se Assi P	eminar/ gnments/ Project	S Te	urprise st / Quiz	Atter	ndance]	ESE		
159	%	15%		10%		5%	5	%	50%			
Cou Descri	rse ption	To expose th	e stud	lents to the	theo	ory of equ	uations a	and serie	es			
Cou Objec	rse ctive	 To enseries To studie To studie To de transce 	and the dy int es. monst endent	eir applications of the students of the students of the state of the state all type equations of the state of the state state of the state	ion to e con andar ation	rd metho s.	nomial, ion of se e and div ds to se	Exponent eries. vergence plve both	of diffe	rent types		
Cou Outco	rse ome	Upon con 1. Analy: their a 2. Find tl 3. Obtair Test. 4. Calcul 5. Identif	npletio ze the pplicat ne con n the a ate the fy mult	on of this co concept of tion to sum vergence or absolute co e approxima tiple roots u	urse, Bin matio dive onver ate ro using	the stude omial, E on of seri ergence o gence se pots of the Horner's	ents will xponenti es. f an infin rries usin e equatio s method	be able t al, Loga nite serie ng Cauc n.	o rithmic s s. hy's anc	series and 1 Raabe's		
Prerequ	uisites:	Knowledge of	f Limi	ts and sequ	ience	è.						
			CO	, PO AND	PSO	MAPPI	NG					
со	PO-1	PO-2	P O- 3	PO-4	P 0 - 5	PO-6	PO-7	PSO- 1	PSO -2	PSO-3		

CO-1	2	1	2	-	2	-	-	1	-	-	
СО-2	2	1	2	-	2	-	-	2	1	2	
CO-3	2	-	3	-	2	-	-	-	2	2	
CO-4	2	2	1	-	2	-	-	3	2	3	
CO-5	2	2	3	-	3	-	-	2	3 1		
	1:	Weakly rela	ted, 2	: Moderate	ly re	elated an	d 3: Stro	ongly rel	ated		
MODU	LE 1: S	ummation of	Serie	s using Bin	omia	al and Ex	xponenti	al Theor	rem (9L-	+3T=12)	
Binomi applicat Self-Stu	Binomial, exponential theorems-their statements only- their immediate application to summation and approximation only. Self-Study: Proof of Binomial and Exponential Theorems MODULE 2: Logarithmic Series, Convergence and Divergence of Series										
MODU	LE 2: L	f Series	(9L+3T=12)								
Logarithmic series theorem-statement and proof-immediate application to summation and approximation only. Convergence and divergence of series – definitions, elementary results comparison tests- D'alembert's and Cauchy's tests. Self-Study: Divergence of series										О-2 ГL-3	
MODU	LE 3: A	bsolute Conv	vergei	nce of Serie	S				(9L+	-3T=12)	
Absolu Raabe's Self-St	te conver s test. udy: Ser	rgence-series	of po e term	sitive terms	-Caı	ichy's co	ondensati	on test-	C B'	20-3 TL-3	
MODU	J LE 4: T	Theory of Equ	uatior	ıs					(9L+	-3T=12)	
Roots of an equation- Relations connecting the roots and coefficients- transformations of equations-character and position of roots- Descartes's rule of signs-symmetric function of roots-Reciprocal equations. Self-Study: Reciprocal equations										О-4 ГL-3	
MODULE 5: Multiple Roots										+ 3 T= 12)	

Multipl method	e roots-Rolle's theorem - position of real roots of $f(x) = 0$ – Newton's of approximation to a root – Horner's method.	CO-5 BTL-3							
TEXT	BOOKS								
1.	T. K. Manikavasagam Pillai, T. Natarajan and K.S Ganapathy Viswanathan Printers and Publishers Private Ltd, Chennai.	(2013), Algebra,							
REFE	RENCE BOOKS								
1.	P. Kandasamy and K. Thilagavathy (2014), <i>Mathematics for B.Sc. Branch</i> I -Vol. I, S. Chand and Company Ltd, New Delhi.								
E BOO	KS								
1.	N. P. Bali (2010), Algebra, Laxmi Publications-New Delhi Edition.								
MOO	C								
1.	https://www.brainkart.com/article/Introduction-to-Binomial,-Expone Logarithmicseries_35107/2	ntial-and-							
2.	http://www.jjernigan.com/172/ConvergenceDivergenceNotes.pdf								
3.	http://home.iitk.ac.in/~psraj/mth101/lecture_notes/Lecture11-13.pdf								
4.	https://maths4uem.files.wordpress.com/2015/09/1028-infinite-series.	pdf							
5.	https://ocw.mit.edu/high-school/mathematics/exam-prep/concept-of- convergencedivergence/	series/series-							

COURSE TITLE		CALCULUS		CREDITS	4
COURSE CODE	MAA01110	COURSE CATEGORY	РС	L-T-P-S	3-1-0-1
Version	1.0	Approval Details		LEARNING LEVEL	BTL-3
		ASSESSME	ENT SCHE	ME	
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	Calculus cond integrals, exp techniques of	cepts explored in onential and logaintegration.	clude limits arithmic fur	and continuity, actions, trigonon	derivatives, definite netric functions, and
Course Objective	To orient the s functions, its g	students to get an geometrical applic	idea of curva ations, doub	atures, integration le, triple and imp	n of different types of roper integrals.
Course Outcome	Upon comple 1. Calcul 2. Demon 3. Evalua 4. Obtain 5. Evalua	etion of this course ate the radius of cu instrate an understant ation of double integra the double integra ate the Beta and Ga	, the student urvature nding of typ egral and trip ation using c amma functi	s will be able to es of integration. ble integrals. hange the order o on to solve the m	of integration. ultiple integrals.

Prerequisites: Knowledge of algebra, geometry and trigonometry

			CO,	PO ANI) PSO M	APPINO	r T			
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3
CO-1	2	2	-	2	3	-	-	1	1	-
CO-2	3	-	-	2	3	-	-	-	1	2
CO-3	2	3	-	1	3	-	-	-	3	-
CO-4	3	1	-	2	3	-	-	2	3	-

CO-5	2	3	-	3	2	-	-	3	1	-	
MODULE	1: W E 1: Cur	Veakly re vature	lated, 2:	Modera	tely relat	ted and 3	3: Strong	ly relate (91	d L+3T=12	2)	
Curvature-radius of curvature in Cartesian and polar forms-evolutes and envelopes- Pedal equations- total differentiation- Euler's theorem on homogeneous functions. Self-Study: Homogeneous functions									CO-1 BTL-3		
MODULE	2: Integ	gration						(9L+3T=	12)	
Integration of $\frac{f'(x)}{f(x)}$, $f'(x)\sqrt{f(x)}$, $\frac{px+q}{\sqrt{ax^2+bx+c}}$, $\sqrt{\frac{x-a}{x-b}}$, $\sqrt{(x-a)(x-b)}$, $\frac{1}{\sqrt{(x-a)(x-b)}}$, $\frac{1}{acosx+bsinx+c}$, $\frac{1}{acos2x+bsin2x+c}$ - Integration by parts – Bernoulli's Formula.								<u>)</u> , _	CO-2 BTL-3		
MODULE	3: Eval	uation of	double a	and tripl	e integra	ls		((9L+3T=12)		
Reduction application Self-Study	formulae s to calcu : Areas i	e- problen ulations o n polar co	ms- evalu f areas ar pordinate	uation of 1d volum s.	double es-areas	and triple in polar c	e integral oordinate	ls- es.	CO-3 BTL-3		
MODULI	E 4: Ch a	nge of va	riables i	n double	and trip	ole integr	als	(!	9L+3T=1	2)	
Change of variables in	order of a double	integratio and triple	n in dout integrals	ole integr 3.	al- Jacob	ians- Cha	inge of		CO-4 BTL-3	\$	
MODULE 5: Beta and Gamma Functions							(9L+3T= 1	12)		
Beta and Gamma integrals-their properties, relation between them- evaluation of multiple integrals using Beta and Gamma functions - Improper Integrals. Self-Study: Improper Integrals.									CO-5 BTL-3		
TEXT BO	TEXT BOOKS										

1.	S. Narayanan and T. K. M. Pillai. (2011), <i>Calculus</i> Vol 1, Viswanathan Publishers, Chennai.										
2.	S. Narayanan and T.K.M. Pillai. (2010) <i>Calculus</i> Vol 2, Viswanathan Publishers, Chennai.										
REFER	ENCE BOOKS										
1.	P. Kandasamy and K. Thilagarathy (2010), <i>Mathematics for BSc</i> – Vol I and. II, S. Chand and Co. New Delhi.										
2.	Shanthi Narayanan and J. N. Kapoor, (2014) A Text Book of Calculus, S. Chand & Co. New Delhi.										
E BOOI	KS										
1.	http://www.themathpage.com										
2.	http://mathworld.wolfram.com										
MOOC											
1.	https://ocw.mit.edu/resources/res-18-006-calculus-revisited-single-variable-calculus-fall-2010/studymaterials/ 2. 3. 4.										
2.	https://www.whitman.edu/mathematics/calculus_online/chapter15.html										
3.	https://www.khanacademy.org/math/calculus-home										
4.	https://www.sac.edu/FacultyStaff/HomePages/MajidKashi/PDF/MATH_150/Bus_Calc ulus.pdf										
5.	http://www.analyzemath.com/calculus										

COURSI TITLE	E		PH	YSICS-I			CRED	ITS	3	3
COURS CODE	E PI	HA0101	CO CAT	DURSE TEGORY		PC	L-T-I	P-S	3-0-	-0-0
Version		1.0	A] I	Approval Details		LEARNING LEVEL		BTL-3		
			Α	SSESSME	NT S	CHEME				
First Periodica Assessme	l Pe nt As	Second Periodical Assessment		eminar/ gnments/ Project	Su Test	rprise t / Quiz	Attend	ance	E	SE
15%		15%		10%		5%	5%)	50	%
Course Descriptio	n To	expose t	he stude	ents to the b	asics	of Allied	Physics.			
Course Objectiv	e	 To enable the students to about the meenances of science, electricity and elasticity. To study intensively Gravitational forces, sound, optical fibers regarding. To demonstrate the standard methods about the electronics and its functions. 								
Course Outcome	2	 Upon completion of this course, the students will be able to 1. Develop an understanding on the concept of Simple Harmonic Motion, Angular Momentum, Moment of Inertia, Kinetic Energy. 2. Acquire a clear knowledge regarding law of gravitation, Kepler's law, Poisson's ratio, cantilever. 3. Apply the appropriate tests to find the transverse waves, Melde's experiment, detection of ultrasonics. 4. Apply Newton's rings in determination of wave length and refractive index of liquid. 								
Prerequisi	tes: Kno	owledge	of Physi	ical Science	е.					
			CO	, PO AND	PSO	MAPPIN	G			
СО	РО- 1	PO- 2	РО- 3	PO-4	P O- 5	PO-6	PO- 7	PSO -1	PSO -2	PSO -3
CO-1	1	-	3	-	1	-	2	2	-	1

CO-2	2	-	1	-	2	-	-	1	2 -							
CO-3	1	2	-	-	2	-	3	2	1	3						
CO-4	2	-	1	-	-	-	1	-	3	-						
CO-5	-	1	2	-	3	-	2	1	3	2						
1: Weakly related, 2: Moderately related and 3: Strongly related									ed							
MODULE	1: Mecl	hanics							()	9L)						
Simple harmonic motion, phase-equations of wave motion-compound pendulum- center of suspension-interchangeability center of oscillation and suspension.Moment of Inertia – Radius of gyration – Angular Momentum – torque – Theorems of M.I - M.I. of uniform rod, disc, circular ring, solid sphere.								CC BT	CO-1 BTL-3							
MODULE	2: Grav	vitation	and Elas	sticity						(9L)						
Law of gravitation-constant G - Kepler's laws-relation between G and g – earth's mass and density -variation of the acceleration due to gravity - orbital velocity - escape velocity. Types of moduli - Hooke's law - Stress-strain relation - Poisson's ratio relation between Y, η and K.								CC BT)-2 L-3							
MODULE	3: Soun	nd							()	9L)						
Transverse vibration o generation (SONAR &	waves f strings - piezo z NDT).	– veloo -verific o-electrio	city alor cation of c effect	ng a streto 1 aws - M - Detecti	ched elde's ion c	string-laws s experimes of ultrason	s of tra nt. Ultra ics-appli	nsverse sonics- cations	CO BT)-3 L-3						
MODULE	4: Opti	cs							(9 I	Ĺ)						
Geometrical Optics: Spherical aberration of a thin lens – Methods of reducing spherical aberration – Coma – Aplanatic surface – Astigmatism – Curvature of the field – Distortion. Interference: Introduction – Air wedge – Newton's rings – Colors of thin films. Diffraction : Plane diffraction Grating – Theory of plane transmission Grating								CO-4 BTL-3								
MODULE	5: Semi	iconduct	tor Phys	ics					(91	L)						

Semiconductors - Intrinsic and Extrinsic types - pn junction - Forward bias,	C
reverse bias characteristics - Half-wave, Full wave and Bridge Rectifier -	רס
Zener diode and its V-I characteristics.	DI

CO-5 BTL-3

TEXT BOOKS

1. V. K. Mehta (2014), *Principles of Electronics*, S. Chand and Company Ltd, New Delhi.

REFERENCE BOOKS

1. A. S. Vasudeva (2013), *Modern Engineering Physics*, S. Chand and Company Ltd, New Delhi.

E BOOKS

1. <u>Allied Physics (Paper I and II), 1/e | S Chand Publishing</u>

MOOC

1. https://nptel.ac.in/courses/115103108/

COURSE TITLE	PYTHON	PROGRAMMIN MATLAB	G AND	CREDITS	3				
COURSE CODE	CAB0105	COURSE CATEGORY	РС	L-T-P-S	2-0-2-0				
Version	1.0	Approval Details		LEARNING LEVEL	BTL-3				
ASSESSMENT SCHEME									
First Periodical Assessment	SecondSeminar/PeriodicalAssignments/AssessmentProject		Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	50%					
Course Description Course Objective	Course DescriptionIt is a discipline that helps to make better decisions in complex scenarios by the application of a set of advanced analytical methods.Course Objective1. To understand the Python Programming environment 2. Able to do simple calculations using MATLAB 3. Able to carry out simple numerical computations and analyses using MATLAB								
Course Upon completion of this course, the student should be able to: 1. Demonstrate an understanding on Basic principles of computers and file systems 2. Design Control Structures using Python programming 3. Define classes and functions 4. Acquire the knowledge of basis in MATLAB and find vectors and matrices in MATLAB. 5. Design simple algorithms to solve problems.									
Prerequisites:	Knowledge of ma	atrices and vectors							
		CO, PO AND	PSO MAPPI	NG					

СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2	PSO-3
CO-1	2	-	2	3	1	-	2	-	1	3
CO-2	2	2	-	3	-	-	2	2	2	3

CO-3	2	-	1	3	1	-	2	-	3	1			
CO-4	2	-	2	3	2	-	2	-	3	2			
CO-5	2	3	2	3	-	-	2	2	-	3			
1: Weakly related, 2: Moderately related and 3: Strongly related													
MODULE	1: Intro	duction	to Pytho	n Progra	amming			(6	(6L+6P=12)				
Relationship between computers and programs - Basic principles of computers -File systems - Using the Python interpreter -Introduction to binary computation -Input / Output									CO-1 BTL-3				
MODULE	2: Data	types an	d Contr	ol Struct	ures			(6L+6P=	12)			
Operators (unary, arithmetic, etc.) -Data types, variables, expressions, and statements -Assignment statements - Strings and string operations - Control Structures: loops and decision									CO-2 BTL-3				
MODULE	3: Modu	ılarizati	on and C	Classes					(6L+6P=12)				
Standard m Functions a	nodules nd argun	-Package nents (sig	es - Def gnature)	ining Cl	asses -D	Defining	function	s -	CO-3 BTL-3				
MODULE	4: MAT	LAB Ba	sics , Ma	trices a	nd vecto	rs in MA	ATLAB	((6L+6P=12)				
The MATLAB environment- Basics, Matrices and vectors in MATLAB and constants, operators and simple calculations - Formulas and functions- MATLAB toolboxes. Matrix and linear algebra review- Vectors and matrices in MATLAB- Matrix operations and functions in MATLAB.								es nd v- in	CO-4 BTL-3				
MODULE 5: MATLAB programming									6 L+6P= 1	12)			
Algorithms and structures- MATLAB scripts and functions (m-files) - Simple sequential algorithms - Control structures (ifthen, loops) Reading and writing data, file handling - Personalized functions- Toolbox structure - MATLAB graphic functions							s) DX	CO-5 BTL-3					
TEXT BOO	KS												

1.	Stephen J. Chapman (2012), <i>MATLAB Programming for Engineers</i> , Nelson Education Limited, USA.
2	Wesley Chun (2007), Core Python Programming, Prentice Hall, USA.
REFF	CRENCE BOOKS
1.	Rudra Pratap (2016), Getting Started with MATLAB, Oxford University Press, Jericho.
2.	R Nageshwara Raoda (2016), Core Python Programming, Dreamtech Press, New Delhi.
E BO	OKS
1.	Learn Python, Break Python: A Beginner's Guide to Programming, by Breaking Stuff Books (learnpythonbreakpython.com)
MOO	C
1.	Python 3.4.3 - Course (swayam2.ac.in)
2	Training - Courses in MATLAB, Simulink, and Stateflow - MATLAB & Simulink (mathworks.com)

COURSE TITLE		V	ALUE F	DUCAT	TION		CREDI	TS	1	
COURSE CODE	M A	AA0106	C CA	OURSE TEGOR	Y	РС	L-T-P	-S	1-0-0-	-0
Version		1.0	A	Approval Details		LEARN G LEV	NIN EL	BTL	-3	
			AS	SESSM	ENT SC	HEME				
First		Second		Seminar/ Surpr						
Periodical		'eriodica	Ass	ignment Project	s/ 1	'est / Duiz	Attenda	ince	ESE	<u>i</u>
Assessmen		1.50/					=0/		=0.07	
15%		15%		10%		5%	5%		50%)
CourseValues Education is an essential element of whole-person education which aims at fostering students' positive values and attitudes through the learning and teaching of various Key Learning Areas/subjects and the provision of relevant learning experiences.										
Course Objective	1. 2. 3. 4. 5.	 To understand value education. To know about salient values for life. To get the idea about human rights. To perceive the knowledge on environment and ecological balance. To figure out social evils. 								
Course Outcome	Up 1. 2. 3. 4. 5.	on compl Develop Demons Analysi Acquire Demons	letion of o the role strate sel s human the kno strate the	this cour of cultur f-esteem rights. wledge o social ev	se, the st re and ci and self- f enviror vils.	udents w vilization confider	vill be abl n. nce. d ecologi	e to cal balar	nce.	
Prerequisit	es: Bas	ics of Hu	ıman Ri	ghts						
			CO,	PO ANI) PSO M	IAPPIN	G			
		1						1	1	
CO	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3
CO-1	-	-	-	-	3	3	-	-	-	-
CO-2	-	3 3							-	

					•								
CO-3	-	-	-	-	3	3	-	-	-	-			
CO-4	-	-	-	-	3	3	-	-	-	-			
CO-5	-	-	-	-	3	3	-	-	-	-			
	1: W	eakly rel	ated, 2:	Modera	tely rela	ted and a	3: Strong	gly relate	ed	1			
MODULE	E 1: Valu	e Educa	tion						(3)				
Value education-its purpose and significance in the present world – Value system – The role of culture and civilization – Holistic living – balancing the outer and inner – Body, Mind and Intellectual level – Duties and responsibilities.													
MODULE	E 2: Salie	ent Value	es for Li	fe				r	(3)				
Salient values for life – Truth, commitment, honesty and integrity, forgiveness and love, empathy and ability to sacrifice, care, unity, and inclusiveness, Self-esteem and self-confidence, punctuality – Time, task and resource management – Problem solving and decision-making skills – Interpersonal and Intra personal relationship – Team work – Positive and creative thinking.													
MODULE	E 3: Hum	nan Righ	ts						(3)				
Universal National I points for citizen – T	Declarat ntegratio enlighte he role o	ion of I n – Peac ened citiz f media i	Human l ce and r zenship n value l	Rights – on-viole – Social puilding.	Human nce – D Values	Rights r.A P J and We	violation Kalam's elfare of	ns – ten the	CO- BTL	3 -3			
MODUL	E 4: Env	ironmen	t and E	cological	Balance	e			(3)				
Interdependence of all beings – living and non-living. The binding of man and nature – environment conservation and enrichment.									CO-4 BTL-3				
MODULE	MODULE 5: Social Evils												
Social Evils – Corruption, Cyber-crime, Terrorism – Alcoholism, Drug addiction – Dowry – Domestic violence – untouchability – female infanticide – atrocities against women – How to tackle themCO-5 BTL-3													

TEXT	BOOKS							
1.	Swami Vivekananda (2020), <i>Call to the Youth for Nation Building</i> , Advanta Ashrama, Calcutta.							
2.	M.G. Cithara (2015), <i>Education and Human Values</i> , A.P.H. Publishing Corporation, New Delhi.							
3.	S. K. Chakravarthy (2014), <i>Values and ethics for Organizations: Theory and Practice</i> , Oxford University Press, New Delhi.							
REFE	RENCE BOOKS							
1.	M. K. Satchidananda (2003), <i>Ethics, Education, Indian Unity and Culture</i> , Ajanta Publications, Delhi.							
2.	M. S. Das and V. K. Gupta (2000), <i>Social Values among Young adults: A changing Scenario</i> , M.D. Publications, New Delhi.							
E BO	OKS							
1.	https://www.learningclassesonline.com/2021/02/value-education-pdf.html							
2.	https://educatorsresource.in/product-category/digital-books/value-education/							
MOO	C							
1.	https://www.academia.edu/13372051/VALUE_EDUCATION_IN_MOOC							

SEMESTER II

COURS TITLE	E CA	TRIGO ALCULU	DNOME JS AND	TRY, VI FOURII	ECTOR ER SER	IES	CR	EDITS		4
COURS CODE	E MA	AA 0121	CA'	OURSE TEGOR	Y	PC	L	-T-P-S	3-()-2-1
Versior	1	1.0		pproval Details			LE.	ARNING LEVEL	B	Г L-3
			AS	SSESSM	ENT SC	HEME			-	
First Periodica Assessme	al P nt As	Second eriodical ssessmen	S Ass t I	eminar/ ignment Project	s/ Sur	prise Te / Quiz	est Att	tendance	E	SE
15%		15%		10%		5%		5%	5	0%
Course Descripti	on Stu	esigned to dy of cal	o develoj culus, Fo	o an unde ourier ser	erstandin ries and n	g of topi nultiple i	cs which ntegrals.	n are fund	lamental	to the
Course Objective	To fun	enable th ctions, ve	e studen	ts to lear culus and	n about t	he expan ansions o	sion of ti f Fourier	rigonome series.	tric, hyp	erbolic
Course Outcome	Up	on compl 1. Eval funct 2. Acqu 3. Dete field such 4. Exan relati 5. Find	etion of uate the tions. uire the b rmine an s as the di nine line ions amo Fourier	this cours expans basic known ad apply vergence e integration series of	se, the st ion of t wledge o the imp e, curl an al, surfac a given p	udents w trigonom f logarith portant q d scalar p ce integr	ill be abl etric fun um of con uantities potential. ral, volu function	e to nctions a mplex qua associate me integ	antities. ed with gral and	erbolic vector inter-
Prerequis	ites: Kn	owledge	in Vecto	or Algeb	ra, Diffe	rentiatio	n and Ir	ntegratio	n	
			CO,	PO ANI) PSO M	IAPPIN	G			
				[[[1
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3
CO-1	2	1	1	3	3	-	-	1	2	3
CO-2	2	2	-	3	2	-	-	3	2	-

CO-3	2	2	3	3	2	-	1	-	3	3
CO-4	2	2	3	3	3	-	1	3	3	2
CO-5	2	3	-	3	2	-	1	-	3	-
	1: We	eakly rel	ated, 2:	Modera	tely rela	ted and 3	3: Stron	gly relat	ed	
MODULE	2 1: Expa	nsion in	Series						(6L+6P	2=12)
Expansion of multiple cosines an hyperbolic Self-Study LAB: Exp MODULE Logarithm arithmetic LAB: Sum	in Series es of θ - id tangen function τ : Inverse ansions o C 2: Loga of comp progression mation o	$s - Expansi-Expansiints - Ex-s and inverseof cosn\theta,arithm ofplex quan-on, metholof series$	nsion of ons of c pansion terse hyp olic funct sinnθ and f Comple ntities - od of sur	cosnθ, si osnθ, si of sinθ, erbolic fr ions. d tannθ i ex Quan summati nmation	nnθ in a nnθ and cosθ ar unctions. n powers tities and on of se – metho	series of tann θ in d tan θ i of sines, d Summa rries – w d of diffe	cosines powers in powe , cosines ation of then ang prences.	and sine of sines rs of θ Series les are i	rs 5, - C(B1 (6L+6P: n C(B1	0-1 TL-3 =12) 0-2 TL-3
MODULE	E 3: Vecto	or Differ	entiatio	n					(6L+6P	=12)
Scalar and and Curl-S Self-Study LAB: Grad	vector f olenoidal z: Laplaci dient, Div	fields – 1 l and irro an Opera vergence,	Different tational ator. Curl, Irr	iation of vectors-I rotationa	vectors Laplacian l and sole	– Gradi Operato enoidal v	ent, Div r. ector fiel	ergence lds.	C BT	0-3 FL-3
MODULE	E 4: Vecto	or Integ	ration						(6L+6P=	=12)
Integration plane – Ga said theore Self-Study LAB: Solu Green's the	of vector nuss diver ems. v: Surface utions of eorem.	ors – line rgence th e Integral Problen	integral heorem – ns on Ga	– surfac Stoke's uss Dive	e integra theorem ergence '	l – Gree - verific Theorem	n's theor ation of , Stoke's	rem in th the abov theorem	e e C B I	0-4 ГL-3
MODULE	E 5: Four	ier Serie	es						(6L+6P	=12)
									C	0-5

of Interval and	Harmonic Analysis.
Self-Study: Pe	eriodic Functions
LAB: Solution	ns of Fourier Series
TEXT BOOK	IS IS
1.	P. Kandasamy and K. Thilagavathi (2010), <i>Mathematics for B.Sc. Branch I</i> , <i>Volume I</i> , <i>II and IV</i> , S. Chand and Company Ltd, New Delhi.
REFERENCE	E BOOKS
1.	P. Duraipandian and Laxmiduraipandian (2017), Vector Analysis, Emerald Publishers. Chennai.
2.	K. Manichavasagam Pillai and S.Narayanan (2009), <i>Trigonometry</i> , Viswanathan Publishers and Printers Pvt. Ltd. New Delhi
E BOOKS	
1	http://www.freebookcentre.net/maths-books-download/Calculus,-Applications-
1.	and-Theory.html
2	http://www.freebookcentre.net/maths-books-download/Fourier-Analysis-by-
۷.	Gustaf-Gripenberg.html
MOOC	
1.	http://www.nptelvideos.in/2012/11/mathematics-iii.html
2.	http://www-math.mit.edu/~djk/18_01/chapter20/section03.html
3.	https://www.whitman.edu/mathematics/calculus_online/chapter16.html
4.	http://www.mecmath.net/calc3book.pdf

COURSI TITLE	E DI	FFERE	NTIAL I TRANS	EQUATI FORMS	IONS AI	ND	CR	EDITS		4
COURS CODE	E MA	A0122	CC CAT	DURSE EGORY		PC	L	-T-P-S	3-()-2-1
Version		1.0	Ap D	proval etails				ARNING LEVEL	B	ՐL-3
			AS	SSESSM	ENT SC	HEME				
First Periodica Assessme	nt As	Second eriodical sessment	Ser Assig	minar/ gnments/ roject	Surp	rise Test Quiz	:/ Att	tendance	E	SE
15%		15%	1	10%	5%			5%	5	0%
Course Descriptio	To on and	impart k l ordinary	nowledg differer	ge on the ntial Equa	method ations us	of solving Lapla	ng Partia Ice Trans	al differen sforms.	ntial equ	ations,
Course Objective	Thi line val app	is course ear differ ue and blications	includes ential eq initial of differ	the stud uations, l value pro- cential eq	y of first Laplace oblems, uations.	order di transform qualitati	fferentia ns, nume ve anal	l equatior rical methysis of	ns, highe nods, bo solution	r order undary s, and
Course Outcome	Up 1. 2. 3. 4. 5.	on compl Solve hi Demons Demons Analyze transfor Identify	etion of gher ord strate the strate cor the cor ms. the inve	this cours ler linear solution npetency oncepts <u>rse LaPla</u>	se, the stu different of highe to solve of Lap	udents wi ial equati r order us linear PI lace tra	ill be abl ions. sing Eule DE by La nsforms	e to er's homo agrange's and in	geneous method verse I	aplace
Prerequis	ites: Kn	owledge	of ordin	ary and	Partial 1	Derivativ	ves			
			CO,	PO ANI	PSO M	IAPPIN	3			
										1
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3
CO-1	2	1	2	3	2	-	-	1	3	2
CO-2	2	1	-	3	-	-	-	1	3	-

CO-3										
1	-	2	2	3	3	-	1	-	3	-
CO-4	2	1	2	3	3	-	1	-	3	-
CO-5	2	-	2	3	3	-	1	3	-	2
	1: We	eakly re	lated, 2:	Modera	tely relat	ted and 3	8: Strong	gly relate	ed	
MODUL	E 1: Line	ear First	t Order 1	Different	ial Equa	tion		(6	L+6P=1	2)
Ordinary I than one – Equations $\emptyset_1(t)(ii)$ functions I Self-Study LAB: Solution MODULE Finding the Right Har Homogene LAB: Solution	Differentia Solvable with co $f_2(D)x +$ D=d/dt with y: Clairan ution of f C 2: High the solution of Side sous Linea ution of fi	al Equat for p, x onstant $-g_2(D)$; ith const ith const it's Equa irst orde er Orde of Seco is of th ar Differ rst secon	tions: Eq (, y– Cla coefficie $y = \emptyset_2(t)$ tant coefficient ation, er different er Lineant ond and H he form rential Econd nd different	uations of iraut's Ed ints of icients ar icients ar ntial equa Differen Higher Or where Y quation. ential equa	of First O quation – the form f_1 , g_1 , and \emptyset_1 , \emptyset_2 attions ntial Equ order with V is a tantions	Prder and - Simulta n (i) f_1 f_2 and 2 explicit uation constant function	of Degreen neous D (D)x + g g_2 are function coefficient of x –	ee Highe ifferentia $g_1(D)y =$ rational s of t. ents with Euler's	r 1 = C(B7 (6L+6P=	0-1 TL-3 =12) 0-2 TL-3
MODULE	3: Parti	al Diffe	rontial F							
			ICHLIAL	Juation	S				(6L+6P)	=12)
Partial Dif constants a Partial Dif order P.D. Self-Study LAB: Solu	ferential and arbit ferential Equation c: Solution ation of L	Equatio rary fur Equatio s in the ons of Pa agrange	ons: Form actions – ons by di- standard artial Dif 2's and S	nation of Solutions rect integ forms –L ferential 1 tandard P	s equation s of P.D gration – Lagrange Equation DE diffe	ns by eli Equatio Methods 's Linear s by direc erential ec	minating ns – Sol to solve Equatior ct integra quations	arbitrary lutions o e the firs ns. ttion	(6L+6P y f t C B7	=12) O-3 I'L-3
Partial Dif constants a Partial Dif order P.D. Self-Study LAB: Solu	ferential and arbit ferential Equation v: Solution ation of L E 4: Lap	Equation rary function Equations in the ons of Paragrange agrange	ons: Forn actions – ons by di standard artial Dif ars and S ansforms	nation of Solutions rect integ forms –L ferential 1 tandard P	s equation s of P.D gration – Lagrange Equation PDE diffe	ns by eli Equatio Methods 's Linear s by direc erential ec	minating ns – Sol to solve Equation ct integra quations	arbitrar lutions o e the firs ns. ttion	(6L+6P y f t C B7 (6L+6P	=12) O-3 FL-3 P=12)

LAB: To	find Laplace and Inverse Laplace of elementary function	
MODUI	LE 5: Fourier Transforms	6L+6P=12)
Fourier I Cosine tr theorem - LAB:To	ntegral Theorem (without proof) - Fourier transform pair - Sine and ansforms - Properties - Transforms of Simple functions - Convolution Parseval's identity. find Fourier Transform of elementary function	CO-5 BTL-3
TEXT B	OOKS	
1.	P. Kandasamy and K. Thilagavathi (2014), Mathematics for B.Sc – Volume III, S. Chand and Company Ltd, New Delhi.	Branch – I
2.	Dr. J. K. Goyal and K.P. Gupta (2015), <i>Laplace and Fourier Transforms</i> Prakash Publishers, Meerut.	, Pragati
REFERH	ENCE BOOKS	
1.	S. Narayanan and T. K. Manickavasagam Pillai (2011), <i>Calculus Vol III</i> , Viswanathan Printers and Publishers Pvt. Ltd, Chennai.	S.
2.	N. P. Bali. (2017), Differential Equations, Laxmi Publication Ltd, New I	Delhi.
E BOOK	S	
1.	https://www.math.hkust.edu.hk/~machas/differential-equations.pdf	
2.	http://www.mmcmodinagar.ac.in/econtent/physics/DifferentialEquation pplications.pdf	<u>sAndTheirA</u>
MOOC		
1.	https://nptel.ac.in/courses/111105035/	
2.	http://www.nptelvideos.in/2012/11/mathematics-iii.html	
3.	https://www.digimat.in/nptel/courses/video/111108081/L02.html	
4.	https://www.math.ust.hk/~machas/differential_equations.pdf.	
5.	https://www.ijsr.net/archive/v2i1/ijsron2013331.pdf	
6.	https://www.whitman.edu/mathematics/calculus_online/chapter17.html	

COURSE TITLE	E		РНУ	SICS-II			CRED	OITS	ĺ	3
COURSI CODE	E Pl	HA0116	CO CAT	OURSE TEGORY		PC	L-T-I	P-S	3-0	-0-1
Version		1.0	A] I	pproval Details			LEARN LEV	NING EL	вт	`L-3
			Ā	SSESSMI	ENT S	SCHEME	E			
First Periodica Assessmer	l Pe nt As	Second eriodical sessment	Se Assi t P	eminar/ gnments/ Project	Su Test	rprise t / Quiz	Attend	ance	E	SE
15%		15%		10%		5%	5%	,)	5()%
Course Descriptio	n To	expose t	he stude	ents to the b	asics	of Allied	Physics.			
Course Objective	e	 To e elast To st To st To o funct 	nable th icity. tudy inte demonst tions.	e students ensively Gra rate the st	to abo avitati tandar	out the mo onal force d metho	echanics o es, sound, ds about	of science optical f the elec	e, electri ïbers reg ctronics	city and arding. and its
Course Outcome	3	Upon co 1. Veri 2. Diffe 3. Acqu 4. Appl 5. Prov	ompletio fy Einsto erentiate aire an k y the pr e Demo	n of this co ein's photo nuclear Fis nowledge c inciples of l rgan's theor	urse, f electr ssion a on Rai LED a rems	he studer ic equation and nucles man effec and LCD	nts will be on by Milli ar Fusion t – Raman	able to ikan's ex	perimen	t
Prerequisi	tes: Kno	owledge	of Physi	ical Science	е.					
			CC	, PO AND	PSO	MAPPIN	NG			
со	РО- 1	PO- 2	РО- 3	PO-4	Р О- 5	PO-6	РО- 7	PSO -1	PSO -2	PSO- 3
CO-1	1	-	3	-	1	-	2	2	-	1
CO-2	2	-	1	-	2	-	-	1	2	-
CO-3	1	2	-	-	2	-	3	2	1	3

CO-4	2	-	1	-	-	-	1	-	3	-
CO-5	-	1	2	-	3	-	2	1	3	2
	1: W	/eakly re	elated, 2	: Moderat	ely re	lated and 3	3: Stron	gly relat	ted	
MODULE	1: Elec	trostatic	S						(9 I	L)
Coulomb's at a point Capacity of – Loss of e Types of ca Self-Study	inverse due to f a spher energy du apacitors : Gauss	square 1 a charge ical and ue to sha Theorem	aw – Ga ed spher cylindrid ring of d	auss theoren e & cylinc cal capacito charges - C	m and ler), I rs – E apacit	l its applica Principle o Energy store ors in serie	ations (In f a capa ed in a ca es and pa	ntensity acitor – apacitor arallel –	C(BT	D-1 'L-3
MODULE	2: Mod	ern phy	sics						(9L	<i>.</i>)
Wave mech calculation G. P. Thom Mosley's L of Crystal S	hanics: 1 of De F nson exj .aw and Structure	De Brog Broglie v periment importan by Laue	lie conce vave len . X-rays ice – Bra e's Powc	ept of matt gth -Study : Continuou ngg's law – ler photogra	er wa of De us and Mille aph m	ves – char e Broglie m d Character r indices – ethod.	acteristio natter wa ristic X- Determi	cs and ave by rays – nation	CO BT	D-2 TL-3
MODULE	3: Nucl	lear phy	sics						(9L)	
Nucleus – Liquid dro accelerator classificatio Self-Study	Classific op mod ss – Beta ons. ': Nuclea	cation of lel. Nu tron and ar Physic	Nuclei - uclear H Proton S s	- Nuclear S Radiations Synchrotroi	ize – and n, Ele	Charge – M their prop mentary pa	Mass and perties, rticles a	l Spin – particle nd their	C B]	0-3 『L-3
MODULE	4: Lase	er physic	S						(9L)	
Principles o Types – No Raman eff	of laser - l-YAG - ect – Ra	– Lasing - Helium man shif	action - – neon 1 t – Stoke	Populatior laser – appl es and anti-	inve icatio stokes	rsion – Me ns of lasers s lines	ta stable	e state –	C(B1	D-4 [L-3
MODULE	5: Digit	tal Elect	ronics						(9L)	

Number systems – conversion of binary into decimal – conversion of decimal to binary – binary addition and subtraction – Basic logic gates – NAND and NOR as an universal logic gates – De Morgan's theorems – Boolean algebra – applications of De Morgans theorems – Half adder and full adder circuits. **Self-Study:** Basic Logic gates

TEXT BOOKS

1.	V. K. Mehta (2014), Principles of Electronics, S. Chand and Company Ltd. New Delhi.
REFE	RENCE BOOKS
1.	R. K. Gaur, S. L. Gupta (2013), <i>Engineering Physics</i> , Dhanpat Rai Publications, 8th Edition, New DElhi.
2.	B. L. Theraja (2010), <i>Basic Electronics: Solid State</i> , S. Chand and Company Ltd, Chennai
3.	K. Thyagarajan and A. Ghatak (2010), <i>Lasers</i> , <i>Graduate Texts in Physics</i> , Springer Science+Business, Media, LLC.
E BOC	DKS
1.	Allied Physics (Paper I and II), 1/e S Chand Publishing
MOO	C
1.	https://nptel.ac.in/courses/115103108/

COURSE TITLE	РНҮ	SICS PRACTIC	AL	CREDITS	2
COURSE CODE	PHA0141	COURSE CATEGORY	РС	L-T-P-S	0-0-4-0
Version	1.0	Approval Details		LEARNING LEVEL	BTL-3
		ASSESSME	NT SCHEM	Ε	
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	Basic Exper Constant, Ki Double Slit E	iments in Electi rchhoff's Laws, I xperiment, Electr	ricity and M Magnetic Fie omagnetic Ind	Iagnetism:SondIdofaCurrentduction,Ohm's I	ometer, RC Time t, Lenses, Young's Law.
Course Objective	To learn the	models and experi	ment in phys	ics practical.	
	1				

Prerequisites: Higher Allied Practical – Physics.

CO, PO AND PSO MAPPING

СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO-2	PSO- 3
CO-1	2	1	-	-	3	2	-	1	2	-
CO-2	3	3	1	-	2	2	-	3	-	-
CO-3	3	-	-	-	-	2	1	-	2	1

CO-4	3	2	1	-	-	2	2	1	-	
CO-5	2	-	-	-	1	2	3	2	-	
	1: W	eakly rel	ated, 2:	Moderat	tely relat	ted and a	3: Strong	gly relate	ed	
				List of I	Experim	ents				
				((12P)					
 Momer Young Young Young Freque Freque Therm Refrac (i-d) cu Wave Spectrom 	nt of inert 's modulu 's modulu ency of A. al conductive index urve - solid lengths of eter	ia – Tors is - Unife is - Non- C - Sone tivity - L c of a soli d prism - of spectra	ional per orm bend Uniform ometer ee's disc id prism Spectror ral lines 1 lines	ndulum m ing - Opt bending method. - Spectro neter – Gratin – Gratin	nethod ic lever r - Pin and meter ting - I ng - M	method l microso Normal inimum	cope incidenc deviatio	ee - on -	BTL-	3
 9. Wave Spectrom 10. Air W 11. Chara 12. Verifi TEXT B(eter Vedge Exp cteristics cation of	eriment of Pn Jur truth tabl	- Newton action did es of log	a's rings r ode ic gates.	nethod.					
 9. Wave Spectrom 10. Air W 11. Chara 12. Verifi TEXT BO 1.	eter Vedge Exp cteristics cation of DOKS M. N. S <i>Practical</i>	eriment of Pn Jur truth tabl	- Newton action did es of log , S. Bala , Sultan (i's rings r ode ic gates. subrama	nethod. nian and Sons, Ne	R. Ren	ganathan	(2017),	A Text b	ook
 9. Wave Spectrom 10. Air W 11. Chara 12. Verifi TEXT BO 1. REFERE	eter Vedge Exp cteristics cation of DOKS M. N. S <i>Practical</i>	eriment of Pn Jur truth tabl	- Newton action did es of log , S. Bala , Sultan (i's rings r ode ic gates. subrama Chand &	nethod. nian and Sons, Ne	R. Ren ew Delhi	ganathan	(2017),	A Text b	ook

SEMESTER III

COURSE TITLE		MODERN ALGEBRA					CREDITS		4			
COURSE CODE	MA	MAA0206		COURSE CATEGORY		C	L-T-P-S		3-1-0-1			
Version		1.0		Approval Details		L	LEARNING LEVEL		BTL-3			
ASSESSMENT SCHEME												
First	S	Second		Seminar/		pris						
Periodica	l Pe	riodical	Assi	Assignments/		st / A	Attendand	ce	ESE			
Assessmen	t Ass	sessment	P	roject	Qu	iz						
15%		15%		10%	% 5% 5%			50%				
Course Description	n and	and numbers.										
Course Objective	Focu mod	Focuses on the concepts of algebraic structures which is one of the pillars of modern Mathematics and emphasis on their properties and applications.										
Course Outcome		 Upon completion of this course, the students will be able to Compare the properties and extend group structure to finite permutation groups. Evaluate subgroups and its types. Evaluate the concepts of homomorphism, isomorphism and automorphism. Demonstrate ring from groups. Obtain ideals and quotients from rings. 										
Prerequisites: Knowledge of basic Algebra.												
CO, PO AND PSO MAPPING												
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PS 0- 2	PSO-3		
CO-1	3	2	2	-	2	-	-	2	-	3		
CO-2	2	-	3	-	-	-	-	3	3	-		
---	--	-----------------------	------------------------	-----------------------	------------------------	-------------------	-----------	------------	----------	---------------------------	--	--
CO-3	1	2	-	-	2	-	-	3	-	2		
CO-4	2	2	2	-	3	-	-	3	-	3		
CO-5	2	2	-	-	-	-	-	-	-			
	1: W	eakly re	lated, 2:	Modera	tely rela	ted and a	3: Strong	gly relat	ed			
MODULE		(9L+	3T=12)									
Sets – mappings – Relations and binary operations – Groups: Abelian group, Symmetric group -Definitions and Examples – Basic properties. CO-1 BTL-3 BTL-3												
MODULE 2: Subgroups and Normal Subgroups (9L+3T=12)												
Subgroups - Fermat theo Groups. Self-Study:	Subgroups - Cyclic subgroup - Index of a group - Order of an element - Fermat theorem - A, Counting Principle - Normal Subgroups and Quotient Groups.CO-2 BTL-3Self-Study: Quotient GroupsBTL-3											
MODULE	3: Autor	norphisi	ns					(9L+3T=12)				
Homomorpl Inner autom	nisms (A orphism	pplicatio – Cayley	ons 1 and 's theore	d 2 are c em, perm	omitted) utation g	-Automo roups.	rphisms	-	C BT	0-3 TL-3		
MODULE	4: Ring	S							(9L-	+ 3 T= 1 2)		
Definition a ring – Field	ind Exan –Integra	nples –S l domain	ome Spe - Homo	cial Clas morphisr	sses of R ns of Rin	ings– Co gs.	ommutati	ive	CO B1	D-4 TL-3		
MODULE 5: Ideals and Quotient Rings										+3T=12)		
Ideals and Quotient Rings – More Ideals and Quotient Rings – Maximal ideal - The field of Quotients of an Integral Domain.										D-5 1L-3		
TEXT BOO	OKS							1				

1.	I.N. Herstein (2006), Topics in Algebra, John Wiley and Sons, New York.
REFI	ERENCE BOOKS
1.	Surjeet Singh and Qazi Zameeruddin (2013), <i>Modern Algebra</i> , Vikas Publishing house, Ahmedabed.
2.	A. R. Vasishtha (2019), Modern Algebra, Krishna Prakashan Mandir, Meerut, India.
E BC	OOKS
1.	https://www.dymocks.com.au/book/advanced-modern-algebra-by-joseph-j-rotman- 9781470411763
MOC	OC
1.	https://www.classcentral.com/course/swayam-modern-algebra-14201
2.	https://nptel.ac.in/courses/111/106/111106113/
3.	https://nptel.ac.in/courses/106/104/106104149/

COURSI TITLE	E	MATH	[EMAT]	ICAL AI	NALYSI	S	CREDI	ſS	4				
COURS CODE	E MA	Image: AA0207COURSE CATEGORYPCL-T-P-S3-1-0-1ApprovalLEARNING											
Version		1.0		pproval Details			LEARNING LEVEL BTL-3						
			AS	SSESSM	ENT SC	HEME							
First Periodica Assessme	l Po nt As	Second eriodical sessmen	So Assi t I	eminar/ ignments Project	s/ Sui S/ T Q	prise est / puiz	Attenda	ince	ESI	E			
15%		15%		10%	5	5%	5%		50%	6			
Course Descriptio	n Thi	This course covers the fundamentals of mathematical analysis.											
Course Objectiv	1. e 2.	 To present a deeper and rigorous understanding of fundamental concepts like continuity, Connectivity, derivative, monotonic functions with properties and Riemann - integral. 											
Course Outcome	Upo	on complete 1. Demo comp 2. Deter 3. Evalu 4. Obta 5. Deter integ	etion of to constrate pactness, rmine mo late alge in proper rmine to rability of	this cours the un and conr onotonic bra of de ties of m he Rier of abound	se, the stu derstandinectedness functions rivatives conotonic nann ir led funct	idents with ng of ss. using so the function the grabilition.	ill be able continuit ome meth ns. ty and	e to y, unifo ods. the R	orm con iemann-S	tinuity, Stieltjes			
Prerequis	ites: Kno	owledge	in Mapp	oings and	l Proper	ties of R	eal Num	bers					
			СО,	PO ANI) PSO M	IAPPIN	G						
							1						
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3			
CO-1	2	-	2	-	3	-	-	-	3	-			

CO-2	-	2	-	-	-	-	-	2	-	3					
CO-3	0-3 2 - 2 - 3 - 3 2														
CO-4	CO-4 2 2 - - 1 - - 3 CO-5 2 - 3 - 2 - 3 -														
CO-5	2	-	3	-	2	-	3	-	3	-					
	1: Weakly related, 2: Moderately related and 3: Strongly re MODULE 1: Topological Mappings														
MODULE	MODULE 1: Topological Mappings														
Examples of closed sets Bolzano's f Self-Study	Examples of continuous functions –continuity and inverse images of open or closed sets –functions continuous on compact sets –Topological mappings – Bolzano's theorem. Self-Study: Topological mappings														
MODULE	AODULE 2: Monotonic Functions (9L+3T=12)														
Connected Uniform co monotonic Self-Study	ness –co ontinuity functions : Uniforr	emponent and com s. n continu	ts of a apact sets	metric s –fixed p	pace – point theo	Uniform orem for	continu contracti	iity - ons –	CO BT	2 L-3					
MODULE	3: Deriv	vatives							(9L+3T=12)						
Definition of derivative –Derivative and continuity –Algebra of derivatives – the chain rule–one sided derivatives and infinite derivatives –functions with non-zero derivatives –zero derivatives and local extrema –Rolle's theorem –The mean value theorem for derivatives – Taylor's formula with remainder. Self-Study: Rolle's theorem)-3 L-3					
MODULE	MODULE 4: Functions of bounded variation														
		-12)													

MOD	ULE 5: The Riemann- Stieltjes integral	(9L+3T=12)
Introd linear Stieltj	uction –Notation –The definition of Riemann –Stieltjes integral – properties –Integration by parts –change of variable in a Riemann – es integral –Reduction to a Riemann integral.	CO-5 BTL-3
TEXT	T BOOKS	
1.	M. Apostol (2005), Mathematical Analysis, Narosa Publishing Compar	ny, Chennai.
REFF	CRENCE BOOKS	
1.	R.R.Goldberg (2009), Methods of Real Analysis, NY, John Wiley, New	v York.
2.	G.F.Simmons (2011), Introduction to Topology and Modern Analysis New York	s, McGraw – Hill,
3.	G. Birkhoff and MacLane (2017), A survey of Modern Algebra, Macr NewYork.	nillian, 3 rd Edition,
4.	J.N.Sharma and A.R.Vasistha (2017), <i>Real Analysis</i> , Krishna Prakas Uttar Pradesh.	shan Media (Ltd),
E BC	OKS	
1.	Mathematical Analysis, Second Edition (ru.ac.bd)	
MOO	C	
1.	https://www.whitman.edu/Documents/Academics/Mathematics/grady.p	<u>df</u>
2.	https://nptel.ac.in/courses/122/101/122101003/	
3.	https://www.math.ucdavis.edu/~emsilvia/math127/chapter7.pdf	
4.	https://nptel.ac.in/courses/111/106/111106053/	

COURSE TITLE	2	CON	MPLEX	FUNCT	IONS		CREDIT	'S	4	ł
COURSI CODE	E M.	AA0208	C CA	COURSE CATEGOR Y		PC	L-T-P-S		3-1-0-1	
Version		1.0	A] I	Approval Details			LEARN LEV	NING EL	BTL-3	
			E							
First Periodica Assessmer	Second eriodical ssessmer t	Assi 1 / 1	eminar/ ignments Project	Sur e T Q	rpris est / Attendance uiz			E	SE	
15%		15%		10%	5	%	5%)	50	%
Course Descriptio	n To	To expose the students about Complex analysis								
Course Objective	To of	To equip the students with the understanding of the fundamental concepts of complex functions, analyticity, power series and complex integration.								
Course Outcome	 Upon completion of this course, the students will be able to Obtain the cross ratio using bilinear transformation. Calculate a function for its analyticity and find it serie development. Determine power series and elementary functions. Obtain the relationship between conformal mapping and harmonic functions. Compute contour integrals directly and by the fundamental 									series monic nental
Prerequisit	es: Kno	wledge	of Calcu	lus and	its type	S				
CO, PO AND PSO MAPPING										
СО	PO-1	PO- PO- PO- PO- PO- PSO 2 3 PO-4 5 6 PO-7 PSO								PSO -3
CO-1	2	-	2	2	2	-	-	2	-	3

CO-2	-	3	-	3	-	-	-	1	2	-
CO-3	2	2	3	-	3	-	-	3	2	-
CO-4	2	-	3	2	2	-	3	-	3	2
CO-5	2	2	-	3	-	-	3	3	1	-
1: Weakly	related, 2	2: Mode	erately	related a	and 3: S	trongly	related			
MODULE		(9L+3T=12)								
Complex no value -Argu =1/z. Fixed transformati projection. Self-Study:	CC BT)-1 L-3								
MODULE		(9L+3T	=12)							
Complex F Analytical differentiab Riemann eq Self-Study:	unctions function ility –su uation in Entire F	Limit define officient polar c unction	of a fu ed in a condit oordinat	nction – a region ions fo æs –Defi	continui –nece r differ nition o	ty –diffe ssary c rentiabili f entire f	erentiabi ondition ity –Ca function.	lity – s for uchy-	CC BT)-2 L-3
MODULE	3: Powe	r Series	and El	ementar	y Funct	ions			(9L+3T=	=12)
Absolute co power serie series) Elen Hyperbolic Self-Study	CC BT)-3 L-3								
MODULE		(9L+3T:	=12)							
Definition a	and deter	rminatic	on. Conf	formal M	Iapping	: Isogon	al mapp	ing –	cO-4 g – BTL-3	

Conforma mappings,	Mapping-Mapping $z \Box f(z)$, where f is analytic, particularly the $w=e^{z}$, $w=z^{2}$, $w=\sin z$, $w=\cos z$, $w=z+1/z$.	
MODUL	E 5: Complex Integration	(9L+3T=12)
Simply an of f(z) fro Theorem Statement theorem.	d multiply connected regions in the complex plane. Integration m definition along a curve joining z_1 and z_2 . Proof of Cauchy's (using Goursat's lemma for a simply connected region). of Cauchy's integral formula for higher derivatives -Morera's	CO-5 BTL-3
TEXT BO	OOKS	
1.	P. Duraipandian and Laxmi Duraipandian (2006), <i>Complex An</i> Publishers, Chennai.	nalysis, Emerald
REFERE	NCE BOOKS	
1	Churchill (2008), Complex Variable and Applications, Tata	McGraw Hill
1.	Publishing Company Ltd. New Delhi.	
	Swaminarayan (2005), Theory of functions of Complex Variable	e, S. Chand and
2.	Company, Meerut, India.	
_	Tyagi B.S (2004), Functions of Complex Variable, 17th E	dition, Pragati
3.	Prakasham Publishing Company Ltd, Meerut, New Delhi.	
E BOC	oks	
1.	UG_B.Sc. Mathematics_113 63 COMPLEX ANALYSIS_8718.	<u>pdf</u>
MOOC		
1.	https://nptel.ac.in/courses/111/103/111103070/	
2.	https://nptel.ac.in/courses/111/107/111107056/	
3.	https://nptel.ac.in/courses/122/103/122103012/	

COURSI TITLE	E P	PROBABILITY AND STATISTICS CREDITS										
COURSI CODE	E M	AA0209	C CA	OURSE TEGOR Y	F	PC	L-T-I	P-S	3-1-0-1			
Version		1.0		pproval Details			LEARN LEV	NING EL	BT	L-3		
			AS	SESSM	ENT SO	CHEM	E					
First Periodica Assessmer	l Pe nt As	Second Periodical AssessmenSeminar/ Assignments / ProjectSurpris e Test / Quiz						ance	E	SE		
15%		15% 10% 5% 5% 5										
Course Descriptio	n To	To expose the students about Complex analysis										
Course Objective		 To a Ana disp Ana and 	understa llyze st persion a llyze sta cumula	nd basic atistical and locati atistical a tive frequ	theoreti data u on. data gra uency di	cal and using 1 uphicall ustributi	l applied p measures ly using f ions.	rinciples of cen requenc	s of statis tral tenc y distrib	tics. lency, utions		
Course Outcome	Up	on comp 1. Dev sam 2. App 3. Pro 4. Der prol 5. App	eletion o relop an ples. oly the b ve Baye ive the pability oly the n	f this cou n unders asic prob s theoren mean, v distributi nethods c	urse, the standing pability t n and co variance ons. of sampl	studen ; of th for simpompute and n ing	ts will be ne concep ple proble the condit noment g	able to ot of p ms in rea ional pro enerating	opulation al time. obabilitie g functio	n and es. on for		
Prerequisit	es: Kno	es: Knowledge of Calculus and its types										
			CO ,	PO AND	PSO N	IAPPI	NG					
СО	РО- 1	PO- 2	РО- 3	PO-4	РО- 5	РО- 6	PO-7	PSO -1	PSO -2	PSO -3		

CO-1	2	-	2	3	2	2	-	2	-	3		
CO-2	-	3	-	3	-	2	-	1	2	-		
CO-3	3	2	3	3	3	2	2	3	2	-		
CO-4	3	-	3	3	2	2	2	-	3	2		
CO-5	3	2	-	3	-	2	2	3	1	-		
1: Weakly	1: Weakly related, 2: Moderately related and 3: Strongly related											
MODULE	1: Meas	ures of	Central	Tenden	су				(9L+3T	=12)		
Introduction and betwee Distribution Central Ter Median, Mo Self-Study:	C BT	0 L-3										
MODULE		(9L+3T=12)										
Measures of Standard E Deviation, Coefficient) Skewness an Self-Study:	ation, Mean Gini ırts –	CC BT	0-2 L-3									
MODULE	3: Proba	ability T	Theory					((9L+3T=12)			
Elementary axioms and Theorem of Random Va	C(BT)-3 L-3										
MODULE		(9L+3T=12)										
Probability Properties Binomial, F variance, r	bles – ions – mean, - Joint	CC BT)-4 L-3									

distribution Self-Study	functions of random variable. : Joint distribution functions of random variable.								
MODULE	MODULE 5: SAMPLING								
Principal st SRSWOR distribution error – Sta Definitions	Principal steps in sample survey – Methods of sampling – SRSWR – SRSWOR – Stratified Sampling – Multistage Sampling – Sampling distribution of sample mean and sample proportion – Mean and standard error – Standard normal, chi-square, Student's t and F distributions – Definitions and important properties (mean and variance).								
TEXT BO	OKS								
1.	A.M. Gun, M.K. Gupta, and B. Dasgupta (2016), <i>Fundamenta</i> . Volume I, World Press.	ls of Statistics,							
REFEREN	ICE BOOKS								
1.	Derek Rowntree (2018), Statistics Without Tears: An Introdu Mathematicians, Penguin.	ction for Non-							
E BOOKS									
1.	https://onlinestatbook.com/Online_Statistics_Education.pdf								
MOOC									
1.	https://www.coursera.org/specializations/business-statistics-analy	vsis							
2.	https://nptel.ac.in/courses/110/107/110107114/								

COURS	E P	OBJI ROGRA	ECT OF	RIENTE G USIN	D G C++		CREDI	TS	4					
COURS CODE	E CA	B0211	CA CA	OURSE TEGOR	L-T-P	-S	3-0-2-0							
Versior	1	1.0		pproval Details			LEARN G LEV	NIN EL	BTL-3					
			AS	SESSM	ENT SC	HEME	E							
First Periodics Assessme	al P int As	Second eriodical ssessmen	t S Ass	eminar/ ignment Project	s/ Su (rprise est / Juiz	Attenda	ince	ESF					
15%		15%		10%		5%	5%		50%	D				
Course Descriptio	on To	To develop applications for a range of problems using object-oriented programming techniques.												
Course Objective		 To study the principles of data abstraction, inheritance and polymorphism. To enable the students to understand the principles of virtual functions and polymorphism. To demonstrate exception handling mechanisms. 												
Course Outcome Prerequisi	Up	on succes 1. Ident conce 2. Deve overl 3. Build 4. Imple mech 5. Solve (STL	sful con ify and epts usin elop ap oading r l re-usab ement nanisms. e real tin .).	ipletion of implen ig classes plication nechanis ole code to exception ne proble gram	of this co nent the s. s using ms. using Inh n hand em using	urse, the simple friend eritance lling, s template	e student s e Object- l function and Runt streaming es and Sta	should b Oriented ons, co ime Pol and undard T	e able to d program onstructors ymorphis file ha cemplate I	mming s and m. undling Library				
			СО,	PO ANI) PSO M	IAPPIN	G							
CO	PO-1	PO-2	PO-3	РО- 4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3				
CO-1	2	-	2	-	-	-	-	2	2	-				

CO-2	-	3	2	-	3	-	-	-	2	3	ſ
CO-3	2	-	2	-	3	-	3	3	-	3	Ī
CO-4	-	3	2	-	-	-	3	-	3	1	
CO-5	2	-	2	-	3	-	3	3	-	3	Ī
	1: W	eakly re	lated, 2:	Modera	tely relat	ted and 3	3: Strong	gly relat	ed		Ī
MODUL	E 1: Intr	oduction	n to C++	and OC)P				(6L+6P	=12)	
Object-Ori C++ Funda – Default Dynamic Objects- A functions– LAB: (i) Se (ii) Pe (iii) Pe (iii) Sv (U (iv) Ch det (v) H objects-	ng – ings ters, llass nber ence oyee y of	CO-1 BTL-	1 3								
MODULE	2 2: Fund	ctions an	d Comp	ile-Time	e Polymo	rphism			(6L+6	P=12)	
Working Member Constructo overloadin Compile ti Overloadir function/Fr LAB: (i) (ii) (ii)	with Frie Function rs with g- Destrime and ng- Over riend fun Add two Calculat types. Find ave overload	end func as -Con Default ructors. Runtime cloading ction. complea e the are erage of ling.	etions an astructors Argume Polymon e - Funct of Unar x number ea of diff variable	d Friend - Pa ents- Co rphism- tion Ove ty and I rs using the cerent sha	d Classes trameteriz py Cons Types erloading Binary O friend fur apes usin different	s – Stat zed Cor tructors- of Polyr - Rules perators nction. g various types us	ic Data nstructors Constru norphisn of Oper as Men s constru ing func	and s - lector n - rator nber	CO-2 BTL-	2 -3	

(iv) Overload unary arithmetic operators using member a function.	nd friend
(v) Overload binary arithmetic operators using member a function.	nd friend
MODULE 3: Inheritance and Run Time Polymorphism	(6L+6P=12)
 Inheritance- Types of Inheritance – Single, Multilevel, Hiera Multiple, Hybrid, Multipath and Virtual base class - Ac Overridden Function - Constructors and Destructors in derived Understanding Runtime polymorphism - Memory Management of Pointers to objects, Virtual Functions (concept of VTABLE), pure functions, Abstract Class. LAB: (i) Manipulate employee/account/student information using Inheritance types. (ii) Implement constructors and destructors in derived classes. (iii) Read and display book details using pointers to objects. 	archical, ccessing classes. perators, e virtual Various NS.
MODULE 4: Exception Handling, Streams and Files	(6L+6P=12)
 MODULE 4: Exception Handling, Streams and Files Understanding of working and implementation of Exception I Streams- Unformatted and formatted console I/O opera Manipulators, User-Defined Manipulators - Implementation Writing and Reading Objects. LAB: (i) Handle arithmetic and array index out of bounds excepti (ii) Read and display the given text using unforma operations. Create a user-defined manipulator function (iii) Write details of n number of books to a file, then display the same. (iv) Handle two files simultaneously to copy/append the cone file to another 	(6L+6P=12) Handling. ations – of Files, ions. CO-4 atted I/O BTL-3 ion. read and content of
 MODULE 4: Exception Handling, Streams and Files Understanding of working and implementation of Exception I Streams- Unformatted and formatted console I/O opera Manipulators, User-Defined Manipulators - Implementation Writing and Reading Objects. LAB: (i) Handle arithmetic and array index out of bounds excepti (ii) Read and display the given text using unforma operations. Create a user-defined manipulator function (iii) Write details of n number of books to a file, then display the same. (iv) Handle two files simultaneously to copy/append the cone file to another MODULE 5: Templates and Standard Template Library 	(6L+6P=12) Handling. ations – of Files, CO-4 atted I/O BTL-3 ion. read and content of (9L+6P)

Contain	ers, Algorithms and Iterators -Implementation of Sequence and
Associa	tive containers for different Algorithms using Iterator.
LAB:	
(i) S	Sort n numbers using function template.
(ii) l	Perform stack operations using class template.
(iii) l	Perform queue operations using containers in STL.
(iv) l	Perform searching and sorting using algorithms in STL.
TEXT I	BOOKS
1.	K. R. Venugopal and Rajkumar Buyya (2017), <i>Mastering</i> C ++, McGraw Hill Education, 2 nd Edition.
2.	Herbert Schildt (2017), C++: The Complete Reference, McGraw Hill Education, 4 th Edition.
REFER	ENCE BOOKS
1.	Bjarne Stroustrup (2013), <i>The</i> C ++ <i>Programming Language</i> , Addison-Wesley Professional, 4 th Edition.
2.	Nell Dale and Chips Weems (2015), <i>Programming and Problem Solving with</i> $C++$, Jones and Bartlett Learning, 5 th Edition.
3	Nicolai M. Josuttis (2012), <i>The</i> C ++ <i>Standard Library: A Tutorial and Reference</i> , Addison Wesley, 2 nd Edition.
E BOO	KS
1.	http://fac.ksu.edu.sa/sites/default/files/ObjectOrientedProgramminginC4thEdition.pd
MOOC	
1.	https://www.edx.org/course/introduction-c-microsoft-dev210x-5
2.	https://www.coursera.org/learn/c-plus-plus-a#syllabu

SEMESTER IV

COURSE TITLE		LINF	CAR AL	GEBRA		CREDITS	5	4					
COURSE CODE	MA	A0220	CA'	OURSE FEGORY	Y F	РС	L-T-P-;	S	3-1-()-1			
Version		1.0 Approval Details				LEARNING LEVEL		BTL-3					
	·	ASSESSMENT SCHEME											
First Periodical Assessmen	t As	Second eriodical ssessmen	t S Ass	eminar/ ignments Project	s/ Sui S/ e T Q	pris est / uiz	Attendar	nce	ES	E			
15%		15%		10%	5	%	5%		50%	/o			
Course Description	n To	To make the student understand the basic concepts of functional analysis											
Course Objective	To trai	To develop understanding in the domain of matrix theory, vector spaces, linear transformations as well as the principles underlying the subject.											
Course Outcome	Up	 Anal Evalu Evalu Learn Appl vector Dem trans 	letion of yze the b uate the the n the corr y the Corr ors in an onstrate formatio	this cour pasic conc types of n acepts of b bram-Schu inner pro- competer n Linear	se, the st cepts of a natrices. base and midt pro duct spa- nce with transforr	udents natrice dimer ocess ce. the ba nation	s will be ables. Asion of vector constructions constructions of the solution o	le to tor spac t an or f Matrix	e thonorma theory an	ıl set of nd linear			
Prerequisite	s: Basic	s Knowl	edge of 1	natrices									
			CO,	PO AND	PSO M	IAPPI	NG						
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-	6 PO-7	PSO- 1	PSO-2	PSO- 3			

										-			
CO-1	2	2	2	1	-	-	-	2	-	3			
СО-2	2	2	2	1	2	-	-	1	3	-			
CO-3	2	2	3	1	2	-	-	-	3	-			
CO-4	2	3	1	1	3	-	-	-	3	-			
CO-5	3	3 - 2											
	1: W	eakly rel	ated, 2:	Modera	tely relat	ted and 3	3: Strong	gly rel	ated				
MODULE 1	:Matric	 es	,		v			<u>)</u>	9L+3T=12	1			
Introduction Matrices –Tr Symmetric M Self-Study:	of / -	CO-1 BTL-3											
MODULE 2	2: Conju	gate and	Rank of	f Matric	es				(9L+3T=12)				
Hermitian a Matrices – Vectors of a Self-Study:	ary stic	CO- BTI	-2 3										
MODULE 3	B:Vector	Spaces							(9L+3T=12)				
Elementary – Isomorphi Independence Self-Study:	iism near	CO BTI	-3 ,-3										
MODULE 4		(9L+3T=	:12)										
Dual Spaces – Annihilator of a subspace - Inner Product Spaces – Norm of a Vector –Orthogonal Vectors - Orthogonal Complement of a subspace – Orthonormal set. Self-Study: Orthogonal set										-4 ,-3			

MOD	ULE 5: Linear Transformations	(9L+3T=12)				
Algeb Range Matrie	ora of Linear Transformations – Regular, Singular Transformations – e of T – Rank of T - Characteristic Roots – Characteristic Vectors – ces.	CO-5 BTL-3				
TEX	Г BOOKS					
1.	R.Balakrishnan and M. Ramabadran (2005), <i>Modern Algebra</i> , Vik Pvt. Ltd, New Delhi.	as Publishing House				
2.	I.N. Herstein (2006), <i>Topics in Algebra</i> , John Wiley and Sons, New Y	York.				
REF	ERENCE BOOKS					
1.	Surjeet Singh and Qazi Zameeruddin (2004), <i>Modern Algebra</i> , Vikas Hill, New Delhi.	Publishing house				
2.	A.R.Vasishtha (2015), Modern Algebra, Krishna Prakashan Mandir, M	Meerut.				
E BC	DOKS					
1.	https://bookauthority.org/books/best-abstract-algebra-ebooks					
MOO	C					
1.	https://nptel.ac.in/courses/111/106/111106135/					
2.	https://nptel.ac.in/courses/111/101/111101115/					
3.	https://nptel.ac.in/courses/111/108/111108066/					
4	https://nptel.ac.in/courses/115/105/115105097/					

COURSE TITLE			REAL	L ANAL	YSIS		CRED	ITS	4				
COUR COD	SE E	MAA020	7 C.	COURS ATEGO	E RY	РС	L-T	-P-S	3-1-0-1				
Versi	on	1.0		Approval Details			LEARNING LEVEL		BTL-3				
		ASSESSMENT SCHEME											
First Periodical Assessment		Second Periodical Assessment		Seminar ssignmer Project	r/ S nts/	urprise Test / Quiz	ise / Attenda z		ESE				
15%	, D	15%		10%		5%	59	%	50%				
Course This course covers the fundamentals of mathematical analysis. Description This course covers the fundamentals of mathematical analysis.													
Course ObjectiveAimed at exposing there a number systems that underpin the development of real analysis and in understanding various physical phenomena.										pment			
COUR OUTCO	SE MES	Upon con 1. E 2. D 3. O	mpletion valuate r erive set btain ele	of this c eal and c theory. ments of	ourse, th omplex r points se	e student number sy et topolog	s will be ystems. gy.	able to					
		4. D 5. A	emonstra pply skil	ate cover ls in find	ing and c ling the li	ompactne	ess. continui	ty in met	tric space	es.			
Prerequis	ites: Ba	sics of rea	al and co	omplex r	numbers								
			CO,	PO ANI) PSO M	IAPPIN	G						
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3			
CO-1	2	-	2	-	1	-	-	2	3	3			
СО-2	2	2	-	-	2	-	-	2	-	-			
СО-3	2	-	2	-	-	-	2	-	3	3			

3

-

2

-

2

-

3

2

CO-4

2

-

			-	-						
CO-5	2	2	3	•	2	-	-	3	3	2
1: Weakly related, 2: Moderately related and 3: Strongly rela									ed	
MODUL	E 1: The	e Real an	d Comp	lex Num	ber Syst	ems		()	9L+3T=1	2)
Introduction -the field axioms, the order axioms –integers –the unique Factorization theorem for integers –Rational numbers –Irrational numbers – Upper bounds, maximum Elements, least upper bound –the completeness axiom –some properties of the supremum –properties of the integers deduced from the completeness axiom- The Archimedean property of the real number system –Rational numbers with finite decimal representation of real numbers –absolute values and the triangle inequality –the Cauchy- Schwarz inequality –plus and minus infinity and the extended real number system. Self-Study: –Rational numbers –Irrational numbers									CO BTI	-1 ,-3
MODULI	E 2: Basi	c Notion	s of a Se	t Theory	v			(9	9L+3T=1	2)
Notations functions - inverse -c -countable -set algeb Self-Study	Notations –ordered pairs –Cartesian product of two sets – Relations and functions –further terminology concerning functions –one–one functions and inverse –composite functions –sequences –similar sets-finite and infinite sets –countable and uncountable sets –uncountability of the real number system –set algebra –countable collection of countable sets. Self-Study: Composite functions								CO BTI	-2 2-3
MODULI	E 3: Ele n	nents of	Point Se	t Topolo	ogy			(9	DL+3T=1	2)
Elements in <i>Rⁿ</i> . Th Bolzano –	of point s e structu Weierstr	set topolo re of ope rass theor	ogy: Euc en sets in rem –the	lidean sp <i>Rⁿ–</i> clo Cantor i	bace $R^n -$ sed sets a ntersection	open ball and adhe on Theore	s and op rent poin em.	en sets ts–The	CO BTI	-3 2-3
MODULI	E 4: Cov	ering an	d Comp	actness				(9 I	L+3T=12)
Covering –Lindal of covering theorem –the Heine Borel covering theorem – Compactness in \mathbb{R}^n –Metric Spaces –point set topology in metric spaces – compact subsets of a metric space –Boundary of a set. Self-Study: Boundary of a set.									CO BTI	-4 2-3
MODULI	E 5: Lim	its and C	Continui	ty in Me	tric Spac	ces		(9	9L+3T=1	2)

Conv seque funct vecto	ergent sequences in a metric space –Cauchy sequences –Completeness ences –complete metric Spaces. Limit of a function –Continuous ions –continuity of composite functions. Continuous complex valued and r valued functions.	CO-5 BTL-3
TEX	T BOOKS	
1.	T.M.Apostol (2011), <i>Mathematical Analysis</i> , Narosa Publishing Compa Chennai.	any,2 nd Edition,
REF	ERENCE BOOKS	
1	R.R. Goldberg (2010), Methods of Real Analysis, John Wiley, New York	ζ.
2.	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, N New York.	AcGraw – Hill,
3	J.N.Sharma and A.R.Vasistha (2019), <i>Real Analysis</i> , Krishna Prakasha New Delhi.	an Media Ltd.
E BO	DOKS	
1.	http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherber 0%9CIntroduction%20to%20Real%20Analysis.pdf	rt,%20%E2%8
2.	http://bayanbox.ir/view/6039605503262807876/Problems-In-Real-Anal Workbook-With-Solutions-Aliprantis.pdf	<u>ysis-A-</u>
MOO	DC	
1.	https://nptel.ac.in/courses/111/105/111105069/#	
2	https://nptel.ac.in/courses/111/106/111106053/	
3.	https://www.digimat.in/nptel/courses/video/111105098/	
4.	https://nptel.ac.in/courses/111/101/111101134/	

COURSE TITLE		COMPLEX ANALYSIS				0	CREDITS	5	4				
COURSE CODE	E MA	A0222	CO CATI	URSE EGORY	P	С	L-T-P-S	5	3-1-0-	-1			
Version		1.0	Ap) De	proval etails		Ι	LEARNII LEVEI	NG	BTL-3				
ASSESSMENT SCHEME													
First Periodica	l S Pe	becond riodical	Ser Assig	ninar/ nments/	Surp Tes	orise at /	Attendan	ice	ESE				
Assessmer	nt Ass	sessment	Pr	oject	Qu	iz							
15%		15%	1	.0%	5%	6	5%		50%	•			
Course Descriptio	n Thi	This course covers the fundamentals of complex analysis.											
Course Objective	To and	To familiarize the students with fundamental theorems, singularity, residues in complex functions, integrations of complex functions, meromorphic functions and their applications.											
Course Outcome	Upo	on complete 1. Apple 2. Complete 3. Apple 4. Find 5. Deter	etion of t y the inter- pute Tay y residue the calcu- mine me	his cours egral valu lor's serie theorem lus of res eromorph	e, the stu e using (es and La to comp sidues. ic functio	idents w Cauchy's aurent's ute integ ons.	ill be able s theorem series. grals.	e to 					
Prerequisit	es: Kno	wledge 1	n Calcu	lus and 1	ts types								
CO, PO A	ND PSC) MAPP	ING			[1				
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3			
CO-1	2	-	2	2	1	-	-	1	-	3			
CO-2	2	3	-	2	-	-	-	-	2	-			
CO-3	-	3	3	2	3	-	-	3	-	3			
CO-4	2	-	3	2	2	-	-	3	3	-			

CO-5	2	2	-	2	-	-	-	1		3	-		
	gly re	elated											
MODULE	1: Integ	gral The	orems						(91	L+3T=12	2)		
Results based on Cauchy's theorem (I)-Zeros-Cauchy's Inequality – Liouville's theorem –Fundamental theorem of algebra –Maximum modulus theorem –Gauss mean value theorem –Gauss mean value theorem for a harmonic function on a circle. Self-Study: Gauss mean value theorem										CO-1 BTL-3			
MODULE	2: Tayle	or's Seri	es & Lai	arent's S	beries				(9	L+3T=1	2)		
Results bas Self-Study	Results based on Cauchy's theorem (II)-Taylor's series –Laurent's series. Self-Study: Taylor's series												
MODULE	3: Sing	ularities	and Res	idues					(9L+3T=12)				
Isolated s singularity)	ingularit –Residu	ies (Re 1es –Resi	movable due theo	Singu rem.	larity, p	oole an	d esser	ntial		CO-3 BTL-	3 3		
MODULE	4: Real	Definite	Integral	ls					(9	L+3T=1	2)		
MODULE 4: Real Definite Integrals Evaluation using the calculus of residues – Integration on the unit circle – Integral with $-\infty$ and $+\infty$ as lower and upper limits with the following integrals: i) P(x) /Q(x) where the degree of Q(x) exceeds that of P(x) at least 2. ii) (sin ax).f(x), (cos ax).f(x), where a>0 and f(z) \rightarrow 0 as $z\rightarrow\infty$ and f(z) does not have a pole on the real axis. iii) f(x) where f(z) has a finite number of poles on the real axis. Self-Study: Definite Integrals								e – ing f(z)		CO-4 BTL-	3		
MODULE 5: Meromorphic Functions										PL+3T=1	2)		
Theorem o argument-F meromorph	n numbe Rouche's hic in the	er of zer theoren extendec	os minu n– Theo l plane is	s numbe brem that a ration	er of pole at a fun al functio	es –Prind Action w	ciple of hich is			CO-5 BTL-	3		

TEXT BOOKS											
1.	 P. Durai Pandian and Laxmi Durai Pandian (2016), <i>Complex analysis</i>, Emerald Publishers. 										
REFE	RENCE BOOKS										
1.	Churchill (2016), <i>Complex Variable and Applications</i> , Tata Mc-Gra Company Ltd, New Delhi.	w Hill Publishing									
2.	Swaminarayan (2008), <i>Theory of functions of Complex Variable</i> , S.Chand and Company. New Delhi.										
3.	Tyagi B. S. (2009), <i>Functions of Complex Variable</i> , Pragati Praka Company Ltd, Meerut.	asham Publishing									
E BOC	DKS										
1.	Mathematical Analysis, Second Edition (ru.ac.bd)										
MOOC											
1.	https://nptel.ac.in/courses/111/103/111103070/										
2	https://nptel.ac.in/courses/111/106/111106094/										
3	https://nptel.ac.in/courses/122/103/122103012/										

COURSE TITLE	E	ADV	ANCED	STATIS	STICS	0	CREDITS	5	4		
COURSI CODE	E MA	A0223	CO CAT	URSE EGORY	P	С	L-T-P-S	6	3-1-0-	-1	
Version		1.0	Ap D	proval etails		Ι	LEARNII LEVEI	NG	BTL	-3	
			AS	SSESSM	ENT SC	HEME					
First	S	Second	Ser	ninar/	Surp	orise					
Periodica	l Pe	riodical	Assig	nments/	Tes	st /	Attendar	ice	ESE	2	
Assessmen	nt Ass	sessment	Pr	oject	Qu	iz					
15%		15%	1	0%	5%	6	5%		50%	•	
Course Descriptio	on	 Identify areas where ethical issues may arise in statistics. Demonstrate preparedness to provide guidance in statistical design and analysis. 									
Course Objective	9	 Understand basic theoretical and applied principles of statistics needed to enter the job force. Communicate key statistical concepts to non-statisticians. Gain proficiency in using statistical software for data analysis 									
Course Outcome	Upo	on comple 1. 2. 3. 4. 5.	etion of t Under Constr Analyz Apply design	his cours stand the ructed ind ze the for the basic sample f	e, the stu basics of lex numb recasting cs of non- framewor	idents w f statistic pers -parame rks and c	ill be able cal inferent tric tests i carry out	e to nce n real tin surveys	ne proble	ems	
Prerequisit	tes: Kno	wledge i	n Calcu	lus and i	ts types						
		1	CO,	PO ANI) PSO M	IAPPIN	G		1		
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3	
CO-1	2	-	2	3	1	-	2	1	-	3	
CO-2	2	3	-	3	-	-	2	-	2	-	
CO-3	-	3	3	3	3	-	2	3	-	3	

CO-4	2	-	3	3	2	-	2	3	3	-		
CO-5	2	2	-	3	-	-	2	1	3	-		
1: Weakly related, 2: Moderately related and 3: Strongly MODULE1: Statistical Inference Point Estimation – Properties of a good estimator – Basic principles of Ordinary Least Square, Maximum Likelihood Method, Method of Moments – Interval estimation – Confidence level and Confidence interval – Testing of hypothesis – Null and Alternative hypotheses – Type I and Type II errors – Power of a test – p-Value Self-Study: Testing of Hypotheses MODULE 2: Index Numbers							gly rel (9 of of cval and	related (9L+3T=12) CO-1 BTL-3				
MODULE		(9L+3T=12	2)									
Statistics in Practice –Economic Statistics in India – Role of Central Statistics Office – Price Indices – Consumer Price Index – Price Indices in India – Deflating a Series – Selection of Items – Selection of a Base Period – Quality Changes – Quantity Indexes Self-Study: Price Indices									CO-2 BTL-	2 3		
MODULE	3: Fore	casting						((9L+3T=12)			
Components of a Time Series: Trend Component – Cyclical Component – Seasonal Component – Irregular Component – Smoothing Methods: Moving Averages – Weighted Moving Averages – Exponential Smoothing Averages – Trend Projection – Trend and Seasonal Components: Multiplicative Model – Calculating Seasonal Indexes – Deseasonalising the Time Series – Using Depersonalized Time Series to Identify Trend – Seasonal Adjustments – Models Based on Monthly Data – Cyclical Component.							Component –ig Methods:il SmoothingComponents:components:onalising theify Trend –– Cyclical		3 .3			
MODULE	4: Non-	Paramet	tric Meth	nods					(9L+3T=	=12)		
Sign Test: About a M Rank Corre	Small-S edian – N elation.	ample C Mann Wl	ase – La nitney-W	rge-Sam ilcoxon '	ple Case Test – K	e – Hypo ruskal-W	othesis T Vallis Tes	est t –	CO-2 BTL-	1 -3		

MODU	JLE 5: Sample Survey (9	9L+3T=12)						
Termind Samplin Error – Total – Randon Proport Mean – Sample Self-Sta	CO-5 BTL-3							
TEXT	BOOKS							
1	David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeff	rey D. Camm, and						
1.	James J. Cochran (2019), Statistics for Business and Economics, Cengage, 13th							
2.	2. A.M. Gun, M.K. Gupta and B. Dasgupta (2016), <i>Fundamentals of Statistics</i> , Ve							
_	I, World Press.							
3.	A.M. Gun, M.K. Gupta, and B. Dasgupta (2016), Fundamentals of	Statistics, Volume						
	II, World Press.							
REFE	RENCE BOOKS							
	Lind, Marchal, and Wathen (2017), Basic Statistics for Business a	and Economics, 7 th						
1.	Edition, McGraw Hill Education.							
E BOO	DKS							
1.	https://www.coursera.org/specializations/business-statistics-analysi	<u>s</u>						
2.	https://www.coursera.org/specializations/social-science							
3.	https://nptel.ac.in/courses/110/107/110107114/							
MOOC								
1.	https://www.coursera.org/courses'?query=statistics							
2	https://www.edx.org/learn/statistics							
3	https://www.udemy.com/topic/statistics/							

COURSE TITLE		INTRO	INTRODUCTION TO DATA SCIENCE						4			
COURSE CODE	CAB	80225	CO CAT	URSE EGORY	PC		L-T-P-S		3-1-0-	0		
Version		1.0	Ap D	proval etails		L G	EARNIN LEVEL	,	BTL-	3		
			AS	SSESSM	ENT SC	HEME						
First Periodical Assessment	S Per Asse	SecondSeminar/SurprisPeriodicalAssignments/e Test /AssessmentProjectQuiz						e	ESE			
15%		15% 10% 5% 5% 50%										
Course Description	Fund	Fundamental coursework on the standards and practices for collecting, organizing, managing, exploring, and using data.										
Course Objective	 To use applied statistical knowledge to analyze data, derive data summaries, build predictive models, and make scientific inference. To interpret modeling results and communicate their findings to both a general and a technical audience. 											
Course Outcome	Upor 1. D 2. D 3. E 4. D 5. A c	n comple Develop r Demonstr Execute st Develop t Apply da ontexts a	tion of the elevant p ate skill is atistical he ability ta science nd will c	is course programm in data m analyses 7 to build ce conce	, the stud ning abili anageme with pro and asse pts and cate these	lents wil ties ent. fessiona ess data- method e solutio	ll be able l statistica based mo s to solv ns effecti	to al softwa dels. e probler vely	re ns in re	al-world		
Prerequisite	s: Basic	s of forc	es									
			СО,	PO ANI) PSO M	IAPPIN	G					
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3		
CO-1	2	-	2	2	3	-	2	2	-	3		

		•					•						
CO-2	-	2	-	3	1	-	2	1	2	-			
CO-3	1	2	-	3	-	-	2	3	2	3			
CO-4	-	3	2	2	3	-	2	-	3	-			
CO-5	2	3	-	2	1	-	2	2	-	3			
	1: W	eakly rel	lated, 2:	Modera	tely relat	ted and 3	3: Strong	gly relate	ed				
MODULE	1: Intro	duction (to Data S	Science					(9L+3T=12)				
Introduction to Data Science – Evolution of Data Science – Data Science Roles – Stages in a Data Science Project – Applications of Data Science in various fields – Data Security Issues									CO-1 BTL-3				
MODULE		(9L+37	(°=12)										
Data Collection Strategies – Data Pre-Processing Overview – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization									CO-2 BTL-3				
MODULE 3	3: Explo	ratory D	ata Ana	lytics					(9L+3T	=12)			
Descriptive Kurtosis – E ANOVA.	Statistic Box Plots	cs – M s – Pivot	ean, Sta Table –	andard I Heat Ma	Deviatior p – Corr	n, Skewn elation S	ness and tatistics -	d -	CO-3 BTL-3				
MODULE	4: Mode	l Develo	pment						(9L+3	Γ=12)			
Simple and Multiple Regression – Model Evaluation using Visualization – Residual Plot – Distribution Plot – Polynomial Regression and Pipelines – Measures for In -sample Evaluation – Prediction and Decision Making.									CO-4 BTL-:	3			
MODULE 5	5: Model	Evalua	tion					•	(9L+31	[=12]			
Generalization –	on Erro Overfitt	r – Ou ing – Un	t-of-Sam der Fittir	ple Eva	luation odel Sele	Metrics ection – I	– Cros Prediction	s n	CO-5 BTL-3	3			

by usi Search	ing Ridge Regression – Testing Multiple Parameters by using Grid n.
TEXT	T BOOKS
1.	David Dietrich, Barry Heller and Beibei Yang (2013), <i>Data Science and Big data Analytics</i> : <i>Discovering, Analyzing, Visualizing and Presenting Data</i> , Indianapolis, IN: Wiley
2.	Jojo Moolayil (2016), Smarter Decisions: The Intersection of IoT and Data Science, PACKT.
REFF	ERENCE BOOKS
1.	Cathy O'Neil and Rachel Schutt (2013), <i>Doing Data Science</i> , O'Reilly Media.
2.	Pethuru Raj and Ganesh Chandra Deka (2014), Handbook of Research on Cloud Infrastructures for Big Data Analytics, IGI Global, United States.
E BO	OKS
1.	(PDF) The Field Guide to Data Science (researchgate.net)
MOO	C
1.	Introduction to Data Science Coursera
2.	A Crash Course in Data Science Coursera

SEMESTER V

COURSE TITLE	NUME	RICAL ANAL	YSIS	CREDITS	4					
COURSE CODE	MAA0301	COURSE CATEGOR Y	РС	L-T-P-S	3-0-2-1					
Version	1.0	Approval Details		LEARNING LEVEL	BTL-3					
		ASSESSI	MENT SCH	IEME						
First Periodical Assessmen t	Second Periodical AssessmenSeminar/ AssignmentsSurpris e Test / QuizAttendanceESIt									
15%	15%	15% 10% 5% 5% 50%								
Course Descriptio n	To make the student understand the basic concepts of numerical analysis									
Course Objective	 To find di To relate a To recall a To explain To find pr 	fferent numerica algebraic and dif skills in solving n the forward dif edictor corrector	Il technique ferential eq problem usi ference pro r problems.	s uations ng numerical tech blems	niques					
 S. To find predictor corrector problems. Upon completion of this course, the students will be able to Compute the solutions of algebraic and transcendental equations numerically Determine the solutions of system of equations using direct and indirect methods Apply the linear interpolation methods for equal and unequal intervals. Evaluate differentiation and integration numerically Compute the solutions of ordinary differential equations numerically numerical solution of ordinary differential equations. 										
Prerequisites	s: Basics of Ma	athematics								
CO, PO AN	D PSO MAPP	ING								

СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3
CO-1	2	-	2	3	-	-	1	-	-	3
CO-2	2	-	2	3	-	-	1	-	-	3
CO-3	2	-	2	3	-	-	1	-	-	3
CO-4	2	-	2	3	-	-	1	-	-	3
CO-5	2	-	2	3	-	-	1	-	-	3
1: Weakly related, 2: Moderately related and 3: Strongly rel										1
MODULE	ICAL	ANA	LYSIS							
(6L+6P=12	2)									
Introduction to numerical analysis – The solution of algebraic and transcendental equations – Bisection method – Iteration method – Regula-Falsi method- Newton- Raphson method. Self-Study: Transcendental equations LAB: Bisection method - Newton- Raphson method. MODULE 2: LINEAR SYSTEM OF EQUATIONS										P=12)
Linear Sys Jordan met method. Self-Study LAB: Gaus	stem of thod– Ite : Linear s ss Elimin	Equatior erative n system of ation me	ns– Gaus nethods – f equatio thod –Ga	ss elimin – Jacobi ns nuss-Jord	nation m method an metho	ethod – – Gaus od.	Gauss- s-Seidal		CO-2 BTL-3	
MODULE	3:FINI	re diff	ERENC	ES					(6L+6I	P=12)
Finite differences –Interpolation - Introduction – Gregory-Newton interpolation formulae – Interpolation with unequal intervals – Lagrange's interpolation formula. Self-Study: Interpolation LAB: Trapezoidal rule -Simpson's one third rule – Simpson's three- eighth rule.									CO-3 BTL-3	
MODULE	E 4:NUM	TEGRA	TION	(6L+6]	P=12)					

Nume compu formu three Self-S LAB:	rical differentiation and integration – Newton's formulae to ute the derivative – Numerical integration – A general quadrature la – Trapezoidal rule -Simpson's one third rule – Simpson's eighth rule. htudy: Numerical Differentiation Trapezoidal rule -Simpson's one third rule	CO-4 BTL-3							
MOI	MODULE 5:NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION (6L+6P=12)								
Nume metho Metho Self-S LAB:	rical solution of ordinary differential equation – Taylor series od –Euler's method – Runge-Kutta methods – Adam's Moulton od – Milne's Predictor corrector method. Atudy: Ordinary Differential Equations Euler's method – Runge-Kutta methods	CO-5 BTL-3							
TEXT	T BOOKS								
1.	P. Kandasamy, K.Thilagavathy, K. Gunavathy (2013), <i>Numerical Methods</i> , S. Chand & company limited, 2 nd Revised Edition New Delhi.								
2.	S.S Sastry (2012), Introductory Methods of Numerical Analysis, Limited, New Delhi.	PHI Learning Private							
REFE	CRENCE BOOKS								
1.	Kalyan Mukherjee (2011), <i>Numerical Analysis</i> , New Central Boo India.	ok Agency(P) Limited,							
2.	S.Baskar, S.Ganesh (2020), Introduction to Numerical An Published.	alysis, Independently							
E BO	OKS								
1.	http://www.ikiu.ac.ir/public-files/profiles/items/090ad_141059990	<u>)6.pdf</u>							
2.	https://www.e-booksdirectory.com/listing.php?category=407								
MOO	С								
1.	https://www.coursera.org/courses?query=numerical%20analysis								

2.	https://www.classcentral.com/course/intro-to-numerical-analysis-13684
3.	https://onlinecourses.swayam2.ac.in/cec20_ma11/preview

COURSE TITLE		STATI	CS ANE) DYNAI	CI	REDITS		4			
COURSE CODE	MAA	A0306	CO CAT	URSE EGORY	PC	2	L-T-P-S		3-1-0-	-1	
Version		1.0	Ap D	proval etails		L	EARNIN LEVEL	G	BTL-	.3	
			AS	SSESSM	ENT SC	HEME					
First Periodical Assessment	S Per t Ass	SecondSeminar/SurprPeriodicalAssignments/e TestAssessmentProjectQuiz				oris st / A iz	ttendanc	æ	ESE	2	
15%		15%	1	10%	5%	ó	5%		50%)	
Course Descriptior	Lear inva	Learn the conditions under which an object or a structure subjected to time- invariant (static) forces is in equilibrium.									
Course Objective	1	 To enable the students to realize the nature of forces and resultant forces when more than one force acts on a particle. To know about the conditions of equilibrium of couples and coplanar forces. 									
Course Outcome	Upor	1. Ar 1. Ar 2. Ob 3. Ev 4. Sk 5. Di and	tion of the nalyze the otain reso valuate pa etch the fferentia d acceler	is course e various plution an arallel for Path of a te betwe ration	e, the stud law of fo id compo rces mon projectil en Radia	lents will prees. prents of prent and e al and t	l be able forces. couple. ransverse	to compor	nents of	velocity	
Prerequisite	s: Basic	s of forc	es								
CO, PO AN	ID PSO	MAPPI	NG								
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3	
CO-1	2	-	2	-	3	-	-	2	-	3	
CO-2	-	2	-	-	1	-	-	1	2	-	

CO-3	1	2	-	-	-	-	-	3	2	3			
CO-4	-	3	2	-	3	-	1	-	3	-			
CO-5	2	3	-	-	1	-	1	2	-	3			
	1: W	eakly rel	ated, 2:	Modera	tely rela	ted and 3	3: Strong	gly relate	ed				
MODULE	1:Law o	f Forces							(9L+3T	'= 12)			
Forces actin Triangle law Self-Study:	ng at a p r-Polygor Forces	ooint – F 1 Law of	Parallelog Forces-	gram law Lame's T	r-triangle Theorem.	law –C	onverse	of	f CO-1 BTL-3				
MODULE 2	2:Resolu	tion and	Compo	nents of	Forces				(9L+3	Γ=12)			
Resolution of forces- Components of a force- Resultant of any number of Coplanar forces acting at a point- Conditions of equilibrium. Parallel Forces and Moments –Resultant of two parallel forces (Like and unlike)- Conditions of equilibrium of three coplanar forces- Moment of a force- Geometrical Representation-Sign of the moment- Unit of moment – Varignon's Theorem on couples-Equilibrium of two couples- Equivalence of two couples. Self-Study: Moments									CO-2 BTL-	2 3			
MODULE 3	3: Forces	s Acting	on a Rig	id Body					(9L+3T=12)				
Moment of acting on a Reduction o necessary & of action of	a force a rigid bod f a syste sufficier the result	bout a p ly – Theo m of cop nt conditi cant.	ooint- Va orem on blanar fo ons of ec	rignon's three coj rces to a juilibriur	Theorem planar fo single fo n only –	n - Copla rces in e orce and Equation	anar forc quilibriu a couple to the li	es m. e - ne	CO-3 BTL-	3 3			
MODULE	4: Proje	ctiles							(9L+3T	=12)			
Path of a pr on an inclir range. Self-Study:	ojectile-(ned plan Projectil	Greatest e throug es	height-ti h the po	me of fli bint of p	ight – Ra projectior	ange -ran 1-Maxim	nge um		CO-4 BTL-	l 3			
MOD	ULE 5: Central Orbits	(9L+3T=12)											
---------------------------	--	-------------------------											
Radia veloci coordi	l and transverse components of velocity and acceleration – a real ty of central orbits -Differential equation of central orbit in polar inates only.	CO-5 BTL-3											
	A V Dharmanadam (2016) Statics S Viswanathan Printers and	Publishing Pyt Ltd											
1.	Chennai.	r donishing 1 ve., Etd.											
2.	M.K. Venkataraman (2016), Dynamics, 11th Ed. Agasthiar Publication	ons, Trichy											
REFF	CRENCE BOOKS												
1	P. Duraipandian and Laxmi Duraipandian (2005), Mechanics, S.Cha	nd and Company Ltd.											
1.	New Delhi.												
2.	P. P. Gupta (2008), <i>Statics</i> , Kedal Nath Ram Nath, Meerut.												
E BO	OKS												
1.	https://www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=st												
2.	https://www.r-statistics.com/2009/10/free-statistics-e-books-for-down	nload/											
MOO	C												
1.	https://nptel.ac.in/courses/112/105/112105164/												
2.	https://nptel.ac.in/courses/122/102/122102004/												
3.	https://www.khanacademy.org/science/ap-physics-1												

TITLE		OPERATIO RESEARC	NS H		CREDIT	ſS	4				
COURSE CODE	MAA0307	COURS CATEGO	E RY	PC	L-T-P	- -S	3-1-0)-1			
Version	1.0	Approv Details	al		LEARN LEVE	ING EL	BTL	-3			
		ASSESS	MENT SC	HEME		I					
First Periodical Assessment	Second Periodical Assessment	Semina Assignme Project	c/ Su nts/ T	rprise est / Duiz	Attenda	ince	ESI	E			
15%	15%	10%		5%	5%		50%	⁄0			
Course Description	To expose th	expose the students to the basics of descriptive statistics.									
Course Objective	To familiariz effective deci	familiarize students with the basic concepts, models and techniques for fective decision making, model formulation and applications									
Ū	Upon cor	mpletion of thi	s course, th	ne studen	ts will be	able to					
Course Outcome	Upon con 1. Demonstructure various f 2. Obtain th 3. Find the 4. Determin 5. Calculate	mpletion of thi trate the basic fields. he solution of LF solution of LF ne an understa e the optimum	s course, th concepts LPP by sin P using Bi nding of du solution o	ne studen and appl pplex me g M Two Jality in J f transpo	tts will be ication of thod. o phase m LPP. rtation pr	able to f operati nethod. oblems.	ons resea	arch in			
Course Outcome Prerequisite	Upon con 1. Demonst various f 2. Obtain th 3. Find the 4. Determin 5. Calculate	mpletion of thi trate the basic fields. he solution of 1 solution of LF ne an understa e the optimum f algebra	s course, th concepts LPP by sin P using Bi nding of du solution o	ne studen and appl nplex me g M Two nality in 1 f transpo	its will be ication of thod. o phase m LPP. rtation pr	able to f operati nethod. oblems.	ons resea	arch in			
Course Outcome Prerequisite CO, PO AN	Upon con 1. Demonst various f 2. Obtain th 3. Find the 4. Determin 5. Calculate es: Knowledge of D PSO MAPPI	mpletion of thi trate the basic fields. he solution of 1 solution of LF ne an understa e the optimum f algebra NG	s course, th concepts LPP by sin P using Bi nding of du solution o	ne studen and appl nplex me g M Two nality in 1 f transpo	ts will be ication of thod. o phase m LPP. rtation pr	able to f operati nethod. oblems.	ons rese:	arch in			
Course Outcome Prerequisite CO, PO AN CO	Upon con 1. Demonst various f 2. Obtain th 3. Find the 4. Determin 5. Calculate es: Knowledge of D PSO MAPPI PO-1 PO-2	mpletion of thi trate the basic fields. he solution of 1 solution of LF ne an understa e the optimum f algebra NG PO-3 PO-4	S course, the concepts LPP by sint P using Binding of du solution of the solut	ne studen and appl nplex me g M Two nality in 1 f transpo PO-6	ts will be ication of thod. o phase m LPP. rtation pr PO-7	able to f operati nethod. oblems. PSO-1	ons rese: PSO-2	arch in			
Course Outcome Prerequisite CO, PO AN CO	Upon con 1. Demonstructure various f 2. Obtain th 3. Find the 4. Determin 5. Calculate s: Knowledge of D PSO MAPPI PO-1 PO-2 2 -	mpletion of thi trate the basic fields. he solution of 1 solution of LF ne an understa e the optimum f algebra NG PO-3 PO-4 2 3	s course, th concepts LPP by sin P using Binding of du solution o PO-5 2	e studen and appl nplex me g M Two nality in 1 f transpo PO-6	ts will be ication of thod. o phase m LPP. rtation pr PO-7	able to f operati nethod. oblems. PSO-1 2	ons resea PSO-2	PSO-3			
Course Outcome Prerequisite CO, PO AN CO CO-1 CO-2	Upon con 1. Demonstructure various f 2. Obtain th 3. Find the 4. Determin 5. Calculate cs: Knowledge of D PSO MAPPIT PO-1 PO-2 2 - 3	mpletion of thi trate the basic fields. he solution of 1 solution of LF ne an understa e the optimum f algebra NG PO-3 PO-4 2 3 - 3	s course, th concepts LPP by sin P using Binding of du solution o PO-5 2 -	e studen and appl plex me g M Two iality in 1 f transpo PO-6 -	tts will be ication of thod. o phase m LPP. rtation pr PO-7 - 3	able to f operati nethod. oblems. PSO-1 2 1	ons resea PSO-2 - 3	PSO-3 3			
Course Outcome Prerequisite CO, PO AN CO CO-1 CO-2 CO-3	Upon con 1. Demonstructure various f 2. Obtain th 3. Find the 4. Determin 5. Calculate S: Knowledge of D PSO MAPPI PO-1 PO-2 2 - 3 2 - 3	mpletion of thi trate the basic fields. he solution of 1 solution of LF ne an understa e the optimum f algebra NG PO-3 PO-4 2 3 - 3 3 3	s course, the concepts ILPP by sinding of due solution of the	e studen and appl plex me g M Two pality in 1 f transpo PO-6 - -	tts will be ication of thod. o phase m LPP. rtation pr PO-7 - 3 3 3	able to f operati nethod. oblems. PSO-1 2 1 -	ons resea PSO-2 - 3 3	PSO-3 3 -			

CO-5	2	-	2	3	3	-	3	-	2	1
	1: We	eakly rel	ated, 2:	Moderat	tely relat	ed and 3	3: Strong	gly rela	ted	•
MODULI	E 1: Basi	ics of Op	erations	Researc	ch & For	mulatio	n of L.P.	Р	(9L+31	C=12)
Basics of O.R – Definition of O.R – Characteristics of O.R – Scientific methods in O.R –Necessary of O.R in Industry – O.R and Decision Making – Scope of O.R in Modern Management–Uses and limitations of O.R. Linear Programming Problem – Formulation of L.P.P. Self-Study: Basics of O.R										-1 -3
MODULE	2: Line	ar Progr	amming	g Probler	n -Simpl	ex meth	od		(9L+3T	'= 12)
Graphical s Self-Study		CO- BTL	-2 3							
MODULE	2 3: Big-1	M & Two	o-Phase	Method					(9L+3T=	=12)
Charne's I method – F	Penality Problems	Method	(or) Big	g – M N	Iethod –	- Two P	hase Sir	nplex	CO BTL	-3 ,-3
MODULI	E 4: Du a	ality In I	P.P						(9L+37	Γ =12)
Duality in Problems.	Duality in L.P.P – Concept of duality – Duality and Simplex Method – Problems.									
MODULI	E 5: Tra i	nsportat	ion Mod	el					(9L+37	Γ =12)
The transp	NC-	CO	-							
VAM- opti Self-Study	ortation mum sol : Optimu	Problems lutions – um soluti	s – Basic unbalanc ons.	c reasible ced Trans		n problen	is.		BTL	5 ,-3

1.	Kantiswarup, P. K. Gupta and Man Mohan (2008), <i>Operations Research</i> , S. Chand and Sons Education Publications, New Delhi.
2.	S. Dharani Venkata Krishnan. (2014), <i>Operations Research Principles and Problems</i> , Keerthi publishing house PVT Ltd. Chennai.
REFE	RENCE BOOKS
1.	Prem Kumar Gupta and D. S. Hira (2014) <i>Operations Research</i> , S. Chand & Company Ltd. New Delhi.
E BOC	DKS
1.	https://nptel.ac.in
2.	http://ebooks.lpude.in.operation research
MOOO	
1.	https://nptel.ac.in/courses/111/102/111102012/
2.	https://nptel.ac.in/courses/111/104/111104027/

COURSE TITLE	2	DISCR	ETE MA	ATHEM	ATICS	CH	REDITS		4				
COURSI CODE	E MA	A0308	CO CAT	URSE EGORY	PC	,	L-T-P-S		3-1-0-	1			
Version		1.0	Ap D	proval etails		L	EARNIN LEVEL	G	BTL-3				
		ASSESSMENT SCHEME											
First Periodica Assessmer	l Pe nt As	Second Periodical Assessmen tSeminar/ Assignments/ ProjectSurpris e Test / QuizAttenda							ESE				
15%		15%	1	0%	5%	•	5%		50%				
Course Descriptio	n To	To make the student understand the basic concepts of Insurance											
Course Objective	1.	1. Prepare students to develop mathematical foundations to understand, create mathematical arguments and focuses on the Formal languages, Automata, Lattices, Boolean Algebra and Graphs											
Course Outcome	Up	 complete Analy Demonstration Deter Analy types Acquir 	etion of yze the r onstrate rmine fo yze abou ire the k	this cours nathemat an unders rmal lang it partiall	se, the stu ical logic standing guages an y ordered e of basis	idents w cal opera of relati id autom d sets, F s in grap	vill be able ations. ons and fe nata. Boolean a ohs	e to unctions. Igebra, la	attices an	d their			
Prerequisit	es: Kno	wledge o	of functi	ons and	relations	6							
CO, PO A	ND PS() MAPP	ING										
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO-2	PSO- 3			
CO-1	-	3	1	-	1	-	-	2	-	3			
CO-2	2	2	-	-	2	-	-	1	3	-			
CO-3	2	-	3	-	-	-	1	1	3	2			

	1			1	1	1	1	1	1					
CO-4	-	2	3	-	3	-	-	-	3	-				
CO-5	2	3	-	-	3	-	1	3	-	3				
	1: Weakly related, 2: Moderately related and 3: Strongly related													
MODULI	MODULE1: Mathematical logic													
Connectives, well-formed formulas, Tautology, Equivalence of formulas, Tautological-implications, Duality law, Normal forms, Predicates, Variables, Quantifiers, Free and bound Variables. Theory of inference for predicate calculus. Self-Study: Tautology														
MODULE	22: Rela	tions an	d Functi	ions										
Composition of relations, Composition of functions, Inverse functions, one-to- one, onto, one-to-one& onto functions, Hashing functions, Permutation function, Growth of functions. Algebra -structures: Semi groups, Free semi groups, Monoids. Self-Study: Functions										CO-2 BTL-3				
MODULE	23: Forn	nal Lang	juages ar	nd Autor	mata				(9L+3T=12)					
Regular ex state auton Self-Study	xpression nata, Con r: Formal	ns, Types ntext free Languag	s of gran and sens ges	nmar, R sitive gra	egular g mmars.	rammar	and finit	te	CO-3 BTL-3					
MODULI	E 4: Latt	ices and	Boolean	Algebra	a			1	(9L+3'	Γ=12)				
Partial orde Theorems, Self-Study		CO-4 BTL-3												
MODULI	E 5: Graj	phs							(9L+3	T=12)				
Directed a Matrix rep trees - theo	nd undir presentation prems, and	rected g on, -Eul d applica	raphs, P er paths, ations.	aths, Re , Hamilt	eachabilit onian pa	y, Conn ths, Tree	ectednes es, Binar	s, y	CO-5 BTL-	3				

TEXT	T BOOKS
	J. P Tremblay and R.P Manohar (2017), Discrete Mathematical Structures with
1.	Applications to Computer Science, Mc. Graw Hill.
REFF	CRENCE BOOKS
1.	Oscar Levin (2016), Discrete Mathematics, Northern Colorado.
E BC	OKS
1.	mth202.pdf (iitk.ac.in)
MOO	C
1.	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
	https://nptel.ac.in/courses/106/106/106106094/
2.	https://nptel.ac.in/courses/111/107/111107058/

COURS TITLE	E	THRI ANAI	EE-DI LYTIC	MENSI CAL SC	IONAL DLID GI	ΓRY	CREDITS	4					
COURS CODE	E	MAA	0309		COUR CATE Y	SE GOR	РС	L-T-P-S	3-1-0-0				
Version		1.0			Approv Details	val		LEARNIN G LEVEL	BTL-3				
Firs Period Assessr	FirstSecondSeminar/Surp risePeriodicalPeriodicalAssignmentsTest /AssessmentAssessment/ ProjectQuiz				Attendance	e E	SE						
15%	0	15% 10% 5% 5% 50%)%			
Cour Descrip	rse otion	To er Analy	To enable students to deepen the knowledge in various concepts o Analytical Solid Geometry.										
Cour Objec	rse tive	 To understand the basic concepts of three-dimensional object like Plan To understand the concepts of three-dimensional object like Straig lines To understand the concepts of three-dimensional object like Sphere To understand concepts of three-dimensional object like Cone To an arraying the concept of three dimensional object like Cone 											
Cour Outco	rse ome	Upon 1. Obt 2. Det 3. Fin 4. De repress 5. Cla	completain equation equatication equation equation equation equation equation equati	etion of uation of the shi tion of condit cone ag the ri	this cou of Plane ortest dis Sphere ion for ght circu	rse, the stance b the gen llar cyli	students etween s eral equ nder and	will be able straight lines lation of the enveloping	to e second d cylinder	egree to			
Prerequ	isites:]	Basics o	of Ana	lytical	Solid Ge	eometry	y						
				CO, P	O AND	PSO M	APPIN	G					
СО	РО- 1	PO- 2	PO -3	PO- 4	PO-5	PO- 6	PO-7	PSO-1	PSO-2	PSO-3			
CO-1	2	-	-	1	2	-	-	3	3	-			
CO-2	2	2 - 1 2 - 3 3							-				
CO-3	2	-	-	1	-	-	-	3	3	-			
CO-4	2	3	-	1	-	-	-	3	3	-			

CO-5	2	-	3	3	3	-					
	1: \	Weakly	relate	ed, 2: M	oderate	ly relat	ed and 3:	Strongly	related		
MODUI	LE 1: P	PLANE							(9L-	⊦3T=12)	
General Angle be plane thr	a CO BT	CO-1 BTL-3									
MODUI	(9L+37	Γ=12)									
Symmetri plane – 1 the short	a CO f BT)-2 'L-3									
MODUI	LE 3: S	PHER	E						(9L+3	T=12)	
Equation of a sph through a	e CO BT)-3 'L-3									
MODUI	LE 4: C	CONE							(9L+3	T=12)	
Equation Equation equation Envelopi	of a of a co of the ng con	cone w one with second e - Tang	rith a n its ve degree gency o	given ertex at e to rep of a pla	vertex a the origi resent a ne to a co	nd a gi in - Con cone - one.	ven guidi dition for Right circ	ng curve the genera ular cone	- 11 CO - BT)-4 'L-3	
MODUI	LE5: (CYLIN	DER						(9L+3	T=12)	
Equation of a cylinder with a given generator and a given guiding curve - Right circular cylinder - Enveloping cylinder – Enveloping cylinder as a limiting form of an enveloping cone.)-5 'L-3	
TEXT B	OOKS	5							·		
1.	1. T. K. ManickaVachagom Pillay (2011), Analytical Geometry (Three Dimensions), S. Viswanathan Printers and Publishers Pvt. Ltd. Chennai.										
REFER	ENCE	BOOK	S								
1.	1. P. R. Vittal (2014), <i>Coordinate Geometry</i> . Margham Publishers, Chennai, Reprint										
2.	P. Du Emera	raipand ald Publ	ian and ishers	l Laksh , Chenn	mi Dura ai.	ipandia	n (2011), A	Analytical	Geometry –	- <i>3D</i> ,	
E BOOH	S										

1.	https://www.amazon.in/Textbook-Analytical-Geometry-Three- Dimensions/dp/812240300X
2.	https://ebook.mediadata.website/a-textbook-of-analytical-geometry-of-three- dimensions-2nd.pdf
MOOC	
1.	https://www.doubtnut.com/iit-solutions/chapter-three-dimensional-geometry topic-plane-1
2.	https://edurev.in/studytube/Introduction-to-Three-Dimensional-GeometryClass- /e4532cc8-3146-40cd-8e56-d79c03d3c7f7_v

SEMESTER VI

COURSE TITLE		NU	MBER	THEOR	Y	C	REDITS		4				
COURSE CODE	MAA	.0319	CO CATE	L-T-P-S		3-1-0-1							
Version		1.0	App De	oroval tails		L	EARNIN LEVEL	IG	BTL-3				
First Periodical Assessment	SecondSeminar/SurprisePeriodicalAssignments/Test /AssessmentProjectQuiz						ESE	2					
15%	1	15%	1	0%	5%	, D	5%		50%	•			
Course Description	To st prope	tudy of the that	he integ set them	ers, thei apart fro	r additiv om other	re and r rings.	nultiplica	tive stru	ctures an	nd their			
Course Objective	To ei defin	To enhance the knowledge in the basic concepts of number theory, fundamental definitions, theorems											
Course Outcome	U	 Jpon com Acqu Anal Desc Dem Prov 	pletion of the kernel of the kernel yze and a ribe the formation of the the onstrate of the	of this con nowledg apply the fundamen an unders as theore	urse, the e of basis concepts ntal theor standing m.	students s in num s of divi rem of A on the th	will be a ber theory sibility an arithmetic neory of c	ble to y. d primes ongruend	ce.				
Prerequisite	es: Knov	wledge of	f elemen	ts numb	er theor	у							
CO, PO AN	ND PSO	MAPPI	NG										
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO-2	PSO- 3			
CO-1	2	2	2	-	2	-	-	2	3	3			
CO-2	2	3	3	-	3	-	-	2	2	3			
CO-3	2	2	2	-	2	-	-	3	3	3			

CO-4	2	3	3	-	3	-	1	3	3	3		
CO-5	2	2	3	-	3	-	1	3	3	3		
	gly relate	related										
MODULE		(9L+3T	' =12)									
Peano's Axi Number The Self-Study:	urly	CO-1 BTL-3										
MODULE	2: Divisi	bility Th	eory in I	Integers					(9L+3 ⁻	Γ=12)		
Divisibility Euclidean A Equation ax Self-Study:	 ne	CO-2 BTL-3										
MODULE	3: Prime	es and th	eir Distr	ributions	5				(9L+3T	=12)		
Primes and The sieve o Self-Study:	their Dis f Eratost Primes	stribution henes - T	s - The f he Gull (fundame Conjectu	ntal Thec re.	orem of A	Arithmeti	c -	- CO-3 BTL-3			
MODULE	4: The 7	Fheory o	f Congr	uence					(9L+3T	=12)		
The Theory Divisibility modulus- Po	ial ne	CO-4 BTL-3										
MODULE	5: Ferm	at's The	orem						(9L+3T	=12)		
Fermat's Th Wilson's the	- CO-5 BTL-3											
TEXT BOO	OKS											

1.	David M. Burton (2000), <i>Elementary Number theory</i> - Brown Publishers, Dubuque, Lawa.								
2.	Neville Robinns, (2017), <i>Beginning Number Theory</i> , Narosa Publication House Pvt. Ltd,								
	2 nd Edition, Delhi.								
REFE	ERENCE BOOKS								
1.	Ivan Nivan and H (2001), An Introduction to theory of Numbers, Zuckerman, Wiley.								
2.	S.Kumaravelu and Susheela Kumaravelu(2002), Elements of Number Theory, Raja								
	Sankar offset Printers.								
E BO	OOKS								
1.	https://www.e-booksdirectory.com/listing.php?category=138								
2.	https://www.kobo.com/us/en/ebooks/number-theory								
MOO	C								
1.	https://nptel.ac.in/courses/111/103/111103020/								
2.	https://nptel.ac.in/courses/111/101/111101137/								

COURSE TITLE	E		GRAPH	[THEO]		CREDITS		4				
COURSI CODE	E MA	MAA0320		COURSE CATEGORY		PC	L-T-P-S		3-1-0-1			
Version		1.0		Approval Details			LEARN LEVE	ING EL	BTL-3			
			ASSESSMENT SCHEME									
First Periodica Assessme	l Po nt As	Second eriodical sessmen	So Assi t I	eminar/ ignments Proiect	s/ Sur	prise est /	Attenda	ttendance		ESE		
15%		15%	-	10%	5	5%	5%		50%			
Course Descriptio	n To	To make the student understand the basic concepts of Graph Theory										
Course Objective	e	 To introduce students with the fundamental concepts in Graph Theory. To translate real life situations to diagrammatic representations. 										
Course Outcome	Upo	 Upon completion of this course, the students will be able to Demonstrate an understanding on basics concepts of graph theory. Develop problem solving skills and thereby solve real life problems. Analyze the nature of acyclic connected graphs. Determine a minimal spanning tree for a given weighted graph. Develop an understanding on planar graphs and coloring. 										
Prerequisit	tes: Kno	wledge o	of mathe	matical	proof tee	chnique	and basi	c linear	algebra.			
			СО,	PO ANI) PSO M	IAPPIN	G					
		1		1		1	1		1			
СО	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	PSO- 3		
CO-1	0-1 2		2	-	3	-	-	-	2	3		
CO-2	CO-2 2		2	2	-	-	-	3	-	3		
CO-3	2	-	2	2	3	-	-	-	3	3		
CO-4	2	-	1	2	-	-	3	-	2	2		

CO-5	2	-	3	2	1	-	3	-	2	-		
1: Weakly related, 2: Moderately related and 3: Strongly related												
MODULE 1: Basic Concepts										(9L+3T=12)		
Definition of graph and examples – incidence and degree – subgraphs – complement of a graph – intersection graphs and line graphs – isomorphism – operation on graphs. Self-Study: Graphs								bhs – hism	CO-1 BTL-3			
MODULE	2: Conn	nectivity	of a Gra	ph					(9L+3T=12)			
Paths and cycles – connectedness and connectivity – components of a graph – cut points and bridges – blocks – Menger's theorem – matrices related to a graph. Self-Study: Paths & Cycles								graph l to a	CO-2 BTL-3			
MODULE	MODULE 3: Trees and Properties									(9L+3T=12)		
Trees – characteristics of trees – center of a tree – spanning tree in graph – minimum spanning tree algorithm – diameter of graph – average distance of graph. Self-Study: Trees								nph – ce of	CO-3 BTL-3			
MODULE 4: Various Graphs									(9L+3T=12)			
Eulerian graphs – Konigsberg bridge problem – Hamiltonian graphs – chordal graph – weighted graph – Cayley graph, hypercube network and their properties.							hs – and	CO-4 BTL-3				
MODULE 5: Planarity and Colourability									(9L+3T=12)			
Planarity – colourability – chromatic number – five colour theorem – four colour problem – matching – independent sets and coverings – perfect graphs. Self-Study: Planarity								four erfect	CO-5 BTL-3			
TEXT BOOKS												

1.	Junming Xu (2001), Topological Structure and Analysis of Interconnection Networks,									
	Suwer Academic Publishers, The Netherlands.									
2.	Douglas B. West (2010), Introduction to Graph Theory, Prentice Hall of India, Second									
	dition.									
REFERENCE BOOKS										
1.	Arumugam and Ramachandran (2017), Invitation to Graph Theory, New gamma									
	publishing house, Palayamkottai.									
2.	Narsingh Deo (2016), Graph Theory with Applications to Engineering & Computer									
	Science, Dover publications, New York.									
E BOOKS										
1.	https://b-ok.asia/book/3289235/25da6f									
MOO	C									
1.	https://www.coursera.org/learn/graphs									
2.	2. <u>https://www.coursera.org/specializations/data-structures-algorithms</u>									

COURSE TITLE		PROJECT						CREDITS		12	
COURSE CODE		MAB03	21	COURSE CATEGORY			PC	L-T-P-S	0	0-0-24-0	
Version		1.0		A	oprov	al Details		LEARNIN LEVEL	G	BTL-3	
				A	ASSESSMENT SCHEME						
C	ΙΑ			80%)			ESE		20%	
Course Outcome		 Upon completion of the project, the students will be able to 1. Identify the problem and work for the real life needs of the society 2. Derive practical solutions to the societal problem 3. Apply the importance of Engineering concepts and its relevant application 									
CO, PO) AND I	PSO MA	PPIN	IG							
СО	PO-1	PO-2	P 0 -3	P O- 4	P O- 5	PO-6	PO-7	PSO-1	PSO-2	PSO-3	
CO-1	3	-	-	3	2	2	3	3	3	3	
CO-2	3	2	-	3	2	2	3	3	3	3	
CO-3	3	-	-	3	3 - 2		3	3	3	3	
	1: Weakly related, 2: Moderately related and 3: Strongly related										
	PROJECT										
In this project, each individual is expected to design and develop practical solutions to real life problems related to Industry and Information Technology research. Software usage should be followed during the development. The theoretical knowledge gained from the subject in the current and previous semesters should be applied to develop effective solutions to various applications. At the end of the project the individual should submit a complete report of the project work carried out. Assessment is made as follows											
Review / Exam					Weightage Rubrics						
First Review					10)%	Presentation(5%)+Viva-Voce(5%)				
Second Review					20)%	Presentation(10%)+Viva-Voce(10%)				
Third Review & Demo					35	5%	Presentation(10%)+Viva- Voce(10%)+Demo(15%)				
Report					15	5%	Report to be submitted in soft binding				
Final Viva-Voce					20)%	Presentation(10%)+Viva-Voce(10%)				
TOTAL					10	0%	100%				