

B. TECH. MECHANICAL ENGINEERING (Duration: 4 Years) CURRICULUM and SYLLABUS

(Applicable for Students admitted from Academic Year 2021-22)

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF MECHANICAL SCIENCES HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

HINDUSTAN INSTITUTE OF TECHNOLOGY & SCIENCE

Motto:

To Make Every Man a Success and No Man a Failure

Vision:

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

Mission:

- To create an ecosystem that promotes learning and world class research.
- To nurture creativity and innovation.
- To instill highest ethical standards and values.
- To pursue activities for the development of the Society.
- To develop national and international collaborations with institutes and industries of eminence.
- To enable graduates to become future leaders and innovators.

Value Statement:

Integrity, Innovation, Internationalization.

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

To excel in innovation and collaborative research, promoting technical and entrepreneurial skills.

MISSION

The Mechanical Engineering program continuously strives,

- **M1.** To provide a conducive academic environment with contemporary and innovative curricula imparting high quality education
- M2. To offer state of the art laboratory infrastructure to enhance fundamental research
- **M3.** To maintain an environment to work closely with industries to materialize collaborative and applied research
- **M4.** To impart technical, managerial and lifelong learning skills, embedded with ethical values and social relevance.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO'S):

- **PEO1.** Successful career and adaptability to industry: Graduates will have in-depth knowledge appropriate to the discipline of Mechanical Engineering which enables them to pursue higher studies and academic research.
- **PEO2.** Modern design tools and multi-disciplinary project execution: Graduates will attain professionalism and shall be industry adaptive through a degree structure that is relevant to industry, and responsive to changes in technology and the needs of the society with noble attitude and social responsibility.
- **PEO3.** Contribution to mechanical field and lifelong learning: Graduates will posses multi and inter disciplinary knowledge and excel in innovation and teamwork with entrepreneurial capabilities

PROGRAM OUTCOMES [PO's]

- **PO1** : Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex Mechanical engineering problems.
- **PO 2** : Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

- **PO 3** : Design/development of solutions: Design solutions for complex Mechanical engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4** : Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, 5analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO 5 : Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools that are relevant to Mechanical engineering, including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO 6** : The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Mechanical engineering practice.
- **PO 7** : Environment and sustainability: Understand the impact of the Mechanical engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8** : Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the Mechanical engineering practice.
- **PO 9** : Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10** : Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11 :** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12 :** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME (PSO's)

- **PSO 1** : Apply their acquired knowledge in the field of thermal and manufacturing sciences to provide solutions for engineering problems using current technology.
- **PSO 2** : Apply the concepts of design, analysis and implementation of mechanical systems and processes to provide solutions to the real world situations.

B.TECH – MECHANICAL ENGINEERING														
(165 - CREDIT STRUCTURE)														
	SEMESTER - I													
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	S	тсн					
1	BS	MEA4101/ ELA4101	Engineering Graphics and Computer aided Design / Professional English and soft skills	1	1	2	3	1	4					
2	BS	MAA4101	Matrices and calculus	3	0	2	4	1	5					
3	BS	PHA4101/ CYA4101	Engineering Physics / Engineering Materials	3	0	0	3	1	3					
4	РС	CSA4101/ GEA4102	Problem Solving Using C* / Sustainable Engineering Systems	2	0	2*	3/2	1	4/3					
5	PC	MEB4101	Engineering and Design	3	0	0	3	1	3					
6	BS	GEA4131	Engineering Immersion Lab	0	0	2	0.5	2	2					
7	PHA4131/ Engineering Physics Lab /													
			Total	12	1	10	17.5/ 16.5	7	23/ 22					
*Pro	ject based Le	arning												
			SEMESTER - II											
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	S	тсн					
1	BS	MAA4117	Analytical Mathematics	3	0	2	4	0	5					
2	BS	PHA4101/ CYA4101	Engineering Physics / Engineering Materials	3	0	0	3	1	3					
3	BS	MEA4101/ ELA4101	Engineering Graphics and Computer aided Design / Professional English and soft skills	1	1	2	3	1	4					
4	PC	GEA4102/ CSA4101	Sustainable Engineering Systems / Problem Solving Using C*	2	0	2*	2/3	1	3/4					
5	РС	EEB4101	Introduction to Digital Systems	3	0	0	3	1	3					
6	PC	MEB4116	Engineering Mechanics	3	1	0	4	1	4					
7	PC	MEB4117	Manufacturing Technology – I	3	0	0	3	1	3					
8	BS	PHA4131/ CYA4131	Engineering Physics Lab / Materials Chemistry Lab	0	0	2	1	0	2					
9	BS	GEA4131	Engineering Immersion Lab	0	0	2	0.5	2	2					
			Total	18	2	10	23.5/ 24.5	6	26					

SEMESTER - III													
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	с	S	тсн				
1	BS	MAA4201	Partial Differential Equations and Transforms	3	1	0	4	0	5				
2	PC	MEB4201	Engineering Thermodynamics	3	1	0	4	2	4				
3	PC	MEB4202	Fluid Mechanics and Machinery	3	0	0	3	2	3				
4	PC	MEB4203	3	0	0	3	2	3					
5	DE		Department Elective – I	3	0	0	3	0	3				
6	NE		Non Department Elective – I	2	0	0	2	0	2				
7	PC	MEB4231	Fluid Mechanics and Machinery Lab	0	0	2	1	1	2				
8	PC	MEB4232	Manufacturing Technology Lab	0	0	2	1	1	2				
9							1	0	2				
			Total	17	2	6	22	8	26				
			SEMESTER - IV										
SL. NO	COURSE	COURSE											
	CATEGORY	CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн				
1	CATEGORY BS		NAME OF THE COURSE Probability and Statistics	L 3	T 1	Р 0	c 4	S 0	ТСН 5				
1 2		CODE					-	_					
_	BS	CODE MAA4216	Probability and Statistics	3	1	0	4	0	5				
2	BS PC	CODE MAA4216 MEB4216	Probability and Statistics Thermal Engineering	3	1 0	0	4	0 2	5				
2	BS PC PC	CODE MAA4216 MEB4216 MEB4217	Probability and Statistics Thermal Engineering Strength of Materials Engineering Metrology and	3 3 3	1 0 0	0 0 0	4 3 3	0 2 2	5 3 3				
2 3 4	BS PC PC PC	CODE MAA4216 MEB4216 MEB4217 MEB4218	Probability and Statistics Thermal Engineering Strength of Materials Engineering Metrology and Measurements	3 3 3 3	1 0 0	0 0 0 0	4 3 3 3	0 2 2 2 2	5 3 3 3				
2 3 4 5	BS PC PC PC BS	CODE MAA4216 MEB4216 MEB4217 MEB4218	Probability and Statistics Thermal Engineering Strength of Materials Engineering Metrology and Measurements Professional ethics and life skills	3 3 3 3 3 2	1 0 0 0	0 0 0 0 0	4 3 3 3 3 2	0 2 2 2 2 1	5 3 3 3 2				
2 3 4 5 6	BS PC PC PC BS DE	CODE MAA4216 MEB4216 MEB4217 MEB4218	Probability and Statistics Thermal Engineering Strength of Materials Engineering Metrology and Measurements Professional ethics and life skills Department Elective-II	3 3 3 3 3 3 2 3	1 0 0 0 0 0	0 0 0 0 0 0	4 3 3 3 3 2 3	0 2 2 2 1 0	5 3 3 3 2 3				
2 3 4 5 6 7	BS PC PC PC BS DE NE	CODE MAA4216 MEB4216 MEB4217 MEB4218 GEA4216	Probability and StatisticsThermal EngineeringStrength of MaterialsEngineering Metrology andMeasurementsProfessional ethics and life skillsDepartment Elective-IINon Department Elective – II	3 3 3 3 3 2 3 2 3 2	1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	4 3 3 3 2 3 2 3 2	0 2 2 2 1 0 0	5 3 3 3 2 3 2 3 2				
2 3 4 5 6 7 8	BS PC PC PC BS DE NE PC	CODE MAA4216 MEB4216 MEB4217 MEB4218 GEA4216 MEB4241	Probability and StatisticsThermal EngineeringStrength of MaterialsEngineering Metrology and MeasurementsProfessional ethics and life skillsDepartment Elective-IINon Department Elective – IIThermal Engineering Lab I	3 3 3 3 3 2 3 2 3 2 0	1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2	4 3 3 3 2 3 2 1	0 2 2 2 1 0 0 0	5 3 3 3 2 3 2 2 2 2				
2 3 4 5 6 7 8 9	BS PC PC PC BS DE NE PC PC	CODE MAA4216 MEB4216 MEB4217 MEB4218 GEA4216 MEB4241 MEB4241	Probability and StatisticsThermal EngineeringStrength of MaterialsEngineering Metrology and MeasurementsProfessional ethics and life skillsDepartment Elective-IINon Department Elective – IIThermal Engineering Lab IStrength of Materials LabEngineering Metrology and	3 3 3 3 3 3 2 3 2 3 2 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 2 2 2	4 3 3 3 2 3 2 1 1 1	0 2 2 2 2 1 0 0 0 0 0	5 3 3 3 2 3 2 2 2 2 2				

SEMESTER - V												
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	S	тсн			
1	PC	MAA4301	Optimization Techniques	3	1	0	4	0	4			
2	PC	MEB4301	Design of Machine Elements	3	0	0	3	2	3			
3	PC	MEB4302	Mechanics of Machines	3	0	0	3	1	3			
4	PC	MEB4303	Gas Dynamics and Jet Propulsion	3	0	0	3	1	3			
5	PC	MEB4304	Mechatronics and Pneumatics	3	0	0	3	1	3			
6	DE		Department Elective-III	3	0	0	3	0	3			
7	NE		Non Department Elective-III	2	0	0	2	0	2			
8	PC	MEB4331	Dynamics Lab	0	0	2	1	0	2			
9	PC	MEB4332	Thermal Engineering Lab –II	0	0	2	1	0	2			
10	PC	MEB4333	Mechatronics and Pneumatics Lab	0	0	2	1	0	2			
11	PC	MEB4334	Design Project-III	0	0	2	1	0	2			
	Total				1	8	25	5	30			
			SEMESTER - VI									
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	С	S	тсн			
			NAME OF THE COURSE Computer Aided Design and Manufacturing	L 3	т 0	Р 0	с 3	s 2	TCH 3			
NO	CATEGORY	CODE	Computer Aided Design and									
NO 1	PC	CODE MEB4316	Computer Aided Design and Manufacturing Design of Mechanical Transmission	3	0	0	3	2	3			
NO 1 2	CATEGORY PC PC	CODE MEB4316 MEB4317	Computer Aided Design and Manufacturing Design of Mechanical Transmission System	3	0	0	3 3	2	3			
NO 1 2 3	CATEGORY PC PC PC	CODE MEB4316 MEB4317 MEB4318	Computer Aided Design and Manufacturing Design of Mechanical Transmission System Composites and Smart Materials	3 3 3	0 0 0 0	0 0 0	3 3 3	2 2 2 2	3 3 3			
NO 1 2 3 4	CATEGORY PC PC PC PC	CODE MEB4316 MEB4317 MEB4318 MEB4319	Computer Aided Design and Manufacturing Design of Mechanical Transmission System Composites and Smart Materials Nano Technology	3 3 3 3 3	0 0 0 0	0 0 0 0	3 3 3 3	2 2 2 2 2	3 3 3 3 3			
NO 1 2 3 4 5	CATEGORY PC PC PC PC BS	CODE MEB4316 MEB4317 MEB4318 MEB4319	Computer Aided Design and Manufacturing Design of Mechanical Transmission System Composites and Smart Materials Nano Technology Business Economics	3 3 3 3 3 2	0 0 0 0 0 0	0 0 0 0 0	3 3 3 3 2	2 2 2 2 2 1	3 3 3 3 3 2			
NO 1 2 3 4 5 6	CATEGORY PC PC PC BS DE	CODE MEB4316 MEB4317 MEB4318 MEB4319	Computer Aided Design and Manufacturing Design of Mechanical Transmission System Composites and Smart Materials Nano Technology Business Economics Department Elective-IV	3 3 3 3 3 2 3	0 0 0 0 0 0 0	0 0 0 0 0 0	3 3 3 3 2 3	2 2 2 2 1 0	3 3 3 3 2 3			
NO 1 2 3 4 5 6 7	CATEGORY PC PC PC PC BS DE NE	CODE MEB4316 MEB4317 MEB4318 MEB4319 GEA4304	Computer Aided Design and ManufacturingDesign of Mechanical Transmission SystemComposites and Smart MaterialsNano TechnologyBusiness EconomicsDepartment Elective-IVNon Department Elective–IVComputer Aided Design and	3 3 3 3 3 2 3 2 3 2	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	3 3 3 3 2 3 2 3 2	2 2 2 2 1 0 0	3 3 3 3 2 3 2 3 2			
NO 1 2 3 4 5 6 7 8	CATEGORY PC PC PC BS DE NE PC	CODE MEB4316 MEB4317 MEB4318 MEB4319 GEA4304 MEB4341	Computer Aided Design and Manufacturing Design of Mechanical Transmission System Composites and Smart Materials Nano Technology Business Economics Department Elective-IV Non Department Elective–IV Computer Aided Design and Manufacturing Lab	3 3 3 3 2 3 2 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 2	3 3 3 2 3 2 1	2 2 2 2 1 0 0 0	3 3 3 3 2 3 2 2 2			
NO 1 2 3 4 5 6 7 8 9	CATEGORY PC PC PC BS DE NE PC PC PC	CODE MEB4316 MEB4317 MEB4318 MEB4319 GEA4304 MEB4341 MEB4342	Computer Aided Design and ManufacturingDesign of Mechanical Transmission SystemComposites and Smart MaterialsNano TechnologyBusiness EconomicsDepartment Elective-IVNon Department Elective–IVComputer Aided Design and Manufacturing LabComposites and Smart Materials Lab	3 3 3 3 2 3 2 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 2 2	3 3 3 3 2 3 2 1 1	2 2 2 2 1 0 0 0 0	3 3 3 3 2 3 2 2 2 2			

	SEMESTER - VII												
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн				
1	PC	MEB4401	Heat and Mass Transfer	3	0	0	3	2	3				
2	PC	MEB4402	Finite Element Methods	3	0	0	3	2	3				
3	PC	MEB4403	Robotics and Automation	3	0	0	3	1	3				
4	PC	MEB4404	Additive Manufacturing Technology	3	0	0	3	2	3				
5	NE		Non Department Elective–V	2	0	0	2	0	2				
6	DE		Department Elective-V	3	0	0	3	0	3				
7	PC	MEB4431	Heat Transfer Lab	0	0	2	1	1	2				
8	РС	MEB4432	Computer Aided Simulation and Analysis Lab	0	0	2	1	1	2				
9	PC	MEB4433	Robotics and Automation Lab	0	0	2	1	1	2				
10	PC	MEB4434	Design Project-V	0	0	2	1	0	2				
11	PC	MEB4435	Internship	0	0	0	1	0	0				
			Total	17	0	8	22	10	25				
			SEMESTER - VIII										
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн				
1	1 PC MEB4441 Project & Viva - voce 0 0 16												
Total 0 0 16 8													
			Total				165						

	LI	R W	ISE						
SEM	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн
3	DE	MEC4251	Non Destructive Testing Methods	3	0	0	3		3
3	DE	MEC4252	Reverse Engineering	3	0	0	3		3
3	DE	MEC4253	Mechanical Metallurgy	3	0	0	3		3
3	DE	MEC4254	Unconventional Machining Process	3	0	0	3		3
3	DE	MEC4255	Computer Integrated Manufacturing		0	0	3		3
3	DE	MEC4256	I C Engine & Stream Turbine	3	0	0	3		3
3	DE	MEC4257	Process Planning and Cost Estimation	3	0	0	3		3
4	DE	MEC4266	Refrigeration and Air conditioning	3	0	0	3		3
4	DE	MEC4267	Power plant Engineering	3	0	0	3		3
4	DE	MEC4268	Computational Fluid Dynamics	3	0	0	3		3
4	DE	MEC4269	Heat Treatment of Metals and Alloys	3	0	0	3		3
4	DE	MEC4270	Mechanical Vibration	3	0	0	3		3
4	DE	MEC4271	Modern Concepts of Engineering Design	3	0	0	3		3
4	DE	MEC4272	Characterization of Materials	3	0	0	3		3
5	DE	MEC4351	Structure and Properties of Materials	3	0	0	3		3
5	DE	MEC4352	Engineering Economics and cost Analysis	3	0	0	3		3
5	DE	MEC4353	Tool Design	3	0	0	3		3
5	DE	MEC4354	Applied Hydraulics and Pneumatics	3	0	0	3		3
5	DE	MEC4355	Automobile Engineering	3	0	0	3		3
5	DE	MEC4356	Operations Research	3	0	0	3		3
5	DE	MEC4357	Maintenance Engineering & condition Monitoring	3	0	0	3		3
6	DE	MEC4366	Tribology in Design	3	0	0	3		3
6	DE	MEC4367	Quality and Reliability Engineering	3	0	0	3		3
6	DE	MEC4368	Productivity Management and Re-Engineering	3	0	0	3		3
6	DE	MEC4369	Polymer Science and Engineering	3	0	0	3		3
6	DE	MEC4370	Advanced IC Engine	3	0	0	3		3
6	DE	MEC4371	Creep And Fatigue Behavior of Materials	3	0	0	3		3
6	DE	MEC4372	Production Planning and Control	3	0	0	3		3
7	DE	MEC4451	Dynamics and Control	3	0	0	3		3
7	DE	MEC4452	Modal Analysis of Mechanical Systems	3	0	0	3		3
7	DE	MEC4453	New Product Design and Development	3	0	0	3		3
7	DE	MEC4454	Advanced strength of Materials	3	0	0	3		3
7	DE	MEC4455	Thermal Turbo Machines	3	0	0	3		3
7	DE	MEC4456	Power Metallurgy	3	0	0	3		3
7	DE	MEC4457	Renewable source of Energy	3	0	0	3		3
7	DE	MEC4458	Lean Manufacturing	3	0	0	3		3

LIST OF NON DEPARTMENTAL ELECTIVES OFFERED BY MECHANICAL DEPARTMENT WITH GROUPING -												
			SEMESTER WISE									
SEM	COURSE	COURSE	NAME OF THE COURSE	L	Т	Ρ	С	S	тсн			
	CATEGORY	CODE										
3	NE	MED4281	Applied Thermodynamics for Engineers	3	0	0	3		3			
3	NE	MED4282	Power developing machines for	3	0	0	3		3			
			transportation sector									
3	NE	MED4283	Modern Manufacturing Techniques	3	0	0	3		3			
3	NE	MED4292	CNC Machines and Controls	3	0	0	3		3			
			F	1								
4	NE	MED4291	Unconventional Machining Processes	3	0	0	3		3			
4	NE	MED4293	Computer Workstation Ergonomics	3	0	0	3		3			
4	NE	MED4294	Energy and safety aspects of mechanical	3	0	0	3		3			
			system for buildings		•	•						
			F	1								
5	NE	MED4381	Mechanical Measurements	3	0	0	3		3			
5	NE	MED4382	Fundamentals of Computer Integrated	3	0	0	3		3			
			Manufacturing									
5	NE	MED4383	Fundamentals of Engineering Design	3	0	0	3		3			
5	NE	MED4384	Basic Refrigeration and Air-conditioning	3	0	0	3		3			
5	NE	MED4385	3D Printing in Modern Manufacturing	3	0	0	3		3			
				I								
6	NE	MED4391	Fundamentals of Power Plant Technology	3	0	0	3		3			
6	NE	MED4392	Industrial Automation	3	0	0	3		3			
6	NE	MED4393	Mechatronics System Design	3	0	0	3		3			
6	NE	MED4394	Virtual Instrumentation	3	0	0	3		3			
6	NE	MED4395	Energy Auditing and Energy Management	3	0	0	3		3			
6	NE	MED4396	Electric and Hybrid Vehicles	3	0	0	3		3			
7	NE	MED4481	Design of Building Automation	3	0	0	3		3			
7	NE	MED4482	Industrial Safety& Maintenance	3	0	0	3		3			
			Engineering									
7	NE	MED4483	Quality Control and Reliability Engineering	3	0	0	3		3			
7	NE	MED4484	Applied hydraulics and Pneumatics	3	0	0	3		3			
7	NE	MED4485	Non-destructive Testing Methods	3	0	0	3		3			

COURSE TITLE ENGINEERING GRAPHICS AND COMPUTER AIDED DESIGN CREDITS 3 COURSE CODE MEA4101 COURSE CATEGORY BS LT-P-S 1-1-2-1 Version 1.0 Approval Details 24 ACM 30 th May 2018 LEVRL BTL-3 ASSESSMENT SCHEME Second Periodical Assessment Practical Assessment ESE So% This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems Objective 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools Course Objective Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 3. Nisualize solid objects and apply AutoCAD commands to generate solid objects. Course Outcome Negle problems 30 model commands in AutoCAD tool to generate the models. <th colspan="13">SEMESTER – I</th>	SEMESTER – I														
COURSE CODE MEA4101 CATEGORY BS L-T-P-S 1-1-2-1 Version 1.0 Approval Details 30 th May 2018 LEARNING LEVEL BTL-3 ASSESSMENT SCHEME First Periodical Assessment Second Periodical Assessment Practical Assessment ESE IS% 15% 20% 50% Description This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems Objective To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple problems involving straight lines, planes and solids. Visualize solid objects and apply AutoCAD cool to generate the models. 2. Apply the acquired kno	COURS	ETITLE	E E	NGINE	ERING	G GRA	PHICS	AND C	ΟΜΡυ	TER A	IDED D	ESIGN	CF	REDITS	3
Version 1.0 Approval Details 30 th May 2018 LEVEL BTL-3 ASSESSMENT SCHEME First Periodical Assessment Second Periodical Assessment Practical Assessment ESE 15% 15% 20% 50% Description This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems Objective 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 0. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids. 0. Visualize solid objects and apply AutoCAD commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. <th>COURS</th> <th>E COD</th> <th>E</th> <th>MEA</th> <th>4101</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>BS</th> <th></th> <th>Ŀ</th> <th>T-P-S</th> <th>1-1-2-1</th>	COURS	E COD	E	MEA	4101						BS		Ŀ	T-P-S	1-1-2-1
First Periodical Assessment Second Periodical Assessment Practical Assessment ESE 15% 15% 20% 50% Course Description This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 0. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 3. Visualize solid objects and apply AutoCAD commands to generate the models. 4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. Prerequisites: Nill CO, PO AND PSO MAPPING CO PO PO PO PO PO PO <th>Ver</th> <th>sion</th> <th></th> <th>1</th> <th>.0</th> <th></th> <th>Appro</th> <th>oval D</th> <th>etails</th> <th>30</th> <th>-</th> <th></th> <th></th> <th>_</th> <th>BTL-3</th>	Ver	sion		1	.0		Appro	oval D	etails	30	-			_	BTL-3
Assessment Assessment Practical Assessment ESE 15% 15% 20% 50% Course Description This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 1. To ounderstand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids. 3. Visualize solid objects and apply AutoCAD commands to generate the models. 4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. PPO	ASSESS	MENT	SCHE	ME											
Assessment Z0% 50% Course Description This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. Course 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems Objective 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids. 3. Visualize solid objects and apply AutoCAD commands to generate the models. 4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. Prerequisites: Nil CO, PO AND PSO MAPPING CO PO	First Periodical Second Periodical										Dracti			nt	ECE
Course Description This course broadly introduces the mechanical design using computer aided design tools and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. Course 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool Course 0. To visualize the free hand sketch and orthographic projections and to solve simple problems Objective 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids. 3. Visualize solid objects and apply AutoCAD commands to generate the models. 4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. Prerequisites: Nil CO, PO AND PSO MAPPING CO PO PO	Assessment Assessment										Practi	cal As	sessme	int	ESE
Course Description and fundamentals of free hand sketching. It prepares the students to learn the basic concepts involved in technical drawing skills and computer graphics. It also emphasis on the principles and basic understanding of projections and visualizations aspects of component designing. Course 1. To understand the basics of Engineering graphics and plane curvatures using AutoCAD tool 2. To visualize the free hand sketch and orthographic projections and to solve simple problems 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids. 3. Visualize solid objects and apply AutoCAD commands to generate the models. 4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. Prerequisites: Nil CO PO		15%	6			15% 20%									50%
AutoCAD tool Course Objective 3. To comprehend the various geometrical models and its developments 4. To understand the transformation of 2D drafting to 3D models using CAD tools 5. To generate associated views of 3D models and related geometric dimensioning and tolerencing. Upon completion of this course, the students will be able to 1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques. 2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids. 3. Visualize solid objects and apply AutoCAD commands to generate the models. 4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects. 5. Generate the various views of the geometrical solid model manually and using AutoCAD as well. Prerequisites: Nil CO. PO			and conc the	fundar epts in princip	nental volveo les ar	ls of f d in te nd ba	ree ha chnica	nd sko I draw	etching ving ski	g. It p Ils and	repare: d comp	s the s uter g	student raphics	ts to leari . It also ei	n the basic mphasis on
Course Outcome1. Apply the AutoCAD commands to generate simple drawings and understand drafting techniques.2. Apply the acquired knowledge to solve simple problems involving straight lines, planes and solids.3. Visualize solid objects and apply AutoCAD commands to generate the models.4. Recognize and use 3D model commands in AutoCAD tool to generate solid objects.5. Generate the various views of the geometrical solid model manually and using AutoCAD as well.Prerequisites: NilCOPOPOPOPOPOPOPOPOPOPSO-1PSO-2CO-1-2-3-4-5-6-7-8-9-10-11-12PSO-1PSO-2CO-1213			2. T p 3. T 4. T 5. T	o visua oroblen o com o unde o gene	D tool alize t ns prehe erstan erstan	he fre nd the d the t	e hand e variou transfo	d sketo us geor ormatio	ch and metric on of 2	orthc al moc D draf	ographi lels and ting to	c proje d its de 3D mo	ections evelopr odels u	and to so nents sing CAD t	olve simple
CO, PO AND PSO MAPPING CO PO			 A t A P V V R C 	Apply the echniq Apply the Manes a Visualiz Recogn Genera	he Aut ues. he ac and so e solic ize and te the	toCAD quired lids. l objed d use a e varid	comm d knov cts and 3D mod	nands t vledge apply del cor	to gene to sc AutoC mmane	erate s olve si CAD co ds in A	simple p mple p mmano utoCAI	drawin probler ds to g D tool 1	ngs and ms invo enerato to gene	olving str e the mod erate solid	aight lines, els. objects.
PO PO <th< th=""><th>Prerequ</th><th>isites:</th><th>Nil</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Prerequ	isites:	Nil												
CO -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 PSO-1 PSO-2 CO-1 2 1 - - 3 - <	CO, PO	AND F	PSO M	APPIN	G										
	со													PSO-1	PSO-2
CO-2 2 1 2 - 3	CO-1	2	1	-	-	3	-	-	-	-	-	-	-	-	-
	CO-2	2	1	2	-	3	-	-	-	-	-	-	-	-	-

CO-3	2	1	-	-	3	1	-	-	-	-	-	-	-	-
CO-4	2	1	-	-	3	-	-	-	-	-	1	-	-	-
CO-5	2	1	3	-	3	-	-	-	-	-	-	1	-	-
		-	1: Wea	kly re	lated,	2: Mo	derate	ely rela	ted ar	nd 3: Si	trongly	y relate	ed	
MODU	LE 1: B	ASICS	OF EN	GINEE	RING	GRAPH	HICS A	ND PL	ANE C	URVES			(3L+	3T+6P=12)
 Importance of graphics - BIS conventions and specifications - drawing sheet sizes - Lettering Dimensioning - Scales. Drafting methods - introduction to Computer Aided Drafting – Computer Hardware – Workstation – Printer and Plotter – Introduction to software for Computer Aided Design and Drafting – Exposure to Solid Modelling software – Geometrical Construction-Coordinate Systems/Basic Entities – 3D printer. Practical component: AutoCAD – Solid modelling tool - Basics. Suggested Readings: Basics of drafting and dimensioning MODULE 2: VISUALIZATION, ORTHOGRAPHIC PROJECTIONS AND FREE HAND SKETCHING (3L+3T+6P=12) 												rafting – ware for ometrical	CO-1 BTL-2	
			ZATIO	N, OR	THOGE	RAPHI	C PROJ	IECTIO	NS AN	ID FREI	e han	D SKET	CHING	
•		•	+	1 5400	Lland	aliatak	in a N	/iovali-	ation			Domroo	entation	
of Thre sketchir Objects Introdu	e Dime ng of r /Editin ction t I. Conv ioning I comp	ension multipl g Ger o Orth version – Draf ponen	al obje le view neral p nograp n to or ting of ting of	ects — vs fron princip hic pro thogra Ortho rafting	Pictor n picto les of ojectio phic v ograph , Ortho	ial Pro prial v preso ns - N iews f ic viev ograpł	ojectio iews o entatic aming rom gi rom gi vs fron nic pro	n met f obje on of views iven pi n Picto jectior	hods - cts. Dr techni as pe ictoria rial vie ns	Layou rafting ical dr r BIS - l views ews.	t of vio of sin awing First a s of ob	ews-Fr nple Ge s as p ngle pr njects, i	ree hand cometric er BIS - rojection ncluding	CO-2 BTL-2
MODUL	E 3: GI	EOME	TRICAL	MOD	ELLING	G, ISO	METRI	C AND	DEVE	lopmi		F SURF	ACES	
(3L+3T+		•												
 Principles of isometric projection and solid modelling. Isometric drawing – IsoPlanes and 3D Modelling commands. Projections of Principal Views from 3-D Models. Solid Modeling – Types of modelling - Wire frame model, Surface Model and Solid Model – Introduction to graphic software for solid modelling. Development of Surfaces Practical component: 3D modelling and surface development Suggested Readings: Surface modelling and solid modelling 												CO-3 BTL-3		
		-			-	AND	DRAFT	ING					(3L+	3T+6P=12)

·		
(open type), ve sectional view, 3D models – Techniques of using printer a Practical com Suggested Rea	f solid models of machine components like slide block, solid bearing block, g, gland, wall bracket, guide bracket, shaft bracket, jig plate, shaft support ertical shaft support etc using appropriate modelling software. 2D views and , computer aided drafting and dimensioning. Generate 2D drawing from the generate and develop the lateral surfaces of the objects. Presentation Engineering Drawings – Title Blocks – Printing/Plotting the 2D/3D drawing nd printing solid object using 3D printer. ponent:2D to 3D transformation, plotting of drawings dings: 3D modelling – view generations and commands MPLE DESIGN PROJECTS – COMPUTER AIDED DESIGN (3L+	CO-4 BTL-2 3T+6P=12)
		31+0P=12)
Frame and sha for componer modelling soft in their respec doors, fixtures to drawing pra Practical com components	ngineering models and their presentation in standard 2D form, 3D Wire- aded solids, meshed topologies for engineering analysis, tool-path generation at manufacture, geometric dimensioning and tolerencing. Use of solid- ware for creating associative models at the components and assembly levels ctive branch of engineering like building floor plans that include: windows, a such as WC, Sink, shower, slide block, etc. Applying color coding according actice. ponent: 3D solid meshed topology, geometrical dimensioning, simple dings: AutoCAD dimensioning, assembly of solid components	CO-5 BTL-3
TEXT BOOKS		
	Jeyapoovan, T. (2016). Engineering Drawing and Graphics Using Auto	CAD Vikas
1.	Publishing House Pvt Ltd., New Delhi,7 th Edition.	
REFERENCE BC	OKS	
REFERENCE BC 1.2.	OKS Warren J. Luzadder and Jon. M. Duff. (2016). Fundamentals of Engineerin Prentice Hall of India Pvt. Ltd., Eleventh Edition. Jensen, J.D. Helsel, D.R. Short. (2012). Engineering Drawing and Design, M Sixth Edition.	ng Drawing,
1.	 Warren J. Luzadder and Jon. M. Duff. (2016). Fundamentals of Engineerin Prentice Hall of India Pvt. Ltd., Eleventh Edition. Jensen, J.D. Helsel, D.R. Short. (2012). Engineering Drawing and Design, M 	ng Drawing,
1. 2.	 Warren J. Luzadder and Jon. M. Duff. (2016). Fundamentals of Engineerin Prentice Hall of India Pvt. Ltd., Eleventh Edition. Jensen, J.D. Helsel, D.R. Short. (2012). Engineering Drawing and Design, M 	ng Drawing, IcGraw-Hill,
1. 2. E BOOKS	 Warren J. Luzadder and Jon. M. Duff. (2016). Fundamentals of Engineerin Prentice Hall of India Pvt. Ltd., Eleventh Edition. Jensen, J.D. Helsel, D.R. Short. (2012). Engineering Drawing and Design, M Sixth Edition. http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graphet	ng Drawing, IcGraw-Hill, hics-j-
1. 2. E BOOKS 1.	Warren J. Luzadder and Jon. M. Duff. (2016). Fundamentals of Engineerin Prentice Hall of India Pvt. Ltd., Eleventh Edition. Jensen, J.D. Helsel, D.R. Short. (2012). Engineering Drawing and Design, M Sixth Edition. http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graph benjamin-pentex-freeebook-pdf-download.html http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graph	ng Drawing, IcGraw-Hill, hics-j-
1. 2. E BOOKS 1. 2.	Warren J. Luzadder and Jon. M. Duff. (2016). Fundamentals of Engineerin Prentice Hall of India Pvt. Ltd., Eleventh Edition. Jensen, J.D. Helsel, D.R. Short. (2012). Engineering Drawing and Design, M Sixth Edition. http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graph benjamin-pentex-freeebook-pdf-download.html http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graph	ng Drawing, IcGraw-Hill, hics-j-

COURSE TITLE	PROFESSIO	NAL ENGLISH AND S	OFT SKILLS	CREDITS	3
COURSE CODE	ELA4101	COURSE	BS	L-T-P-S	1-1-2-1

Version	1.0	Approval Details	24 ACM 30 th May 2018	LEARNING LEVEL	BTL-5
ASSESSMENT SC	HEME			•	
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	communication net skills and knowledg to communicate a situations.	een designed to mee eds. It attempts to c ge of grammar and v ccurately, appropria	levelop their profici rocabulary. This cou tely and fluently i	ency in the fo irse teaches st n professional	ur language udents how l and social
Course Objective	informative list 2. To provide an e and use it for d 3. To equip the s literary, scienti 4. To enhance th recommendati writing. 5. To equip the	If-confidence by w ening skills by an enl nvironment to Spea laily conversation, pr tudents to Read, co fic and technological ne writing skills of ons, checklists, pro learners in analysin brainstorming, mind skills.	nanced acquisition of k in English at the f esentation, group di omprehend and an texts. the students via ocess-description, f g and applying cro	of the English la formal and info iscussion and d swer question training in i etter-writing eative thinking	inguage. ormal levels lebate. s based on instructions, and report g skills and
Course Outcome	 Describe the sentences and a Responding to idioms, and p listening from general ideas. L Organize and a manner in writh situations. Analyze and tr complex passage resume. 	on of this course, the basics of English g articulate ideas using higher order Englis roverbs. Derive the general and acade earn to give instructi articulate ideas, con ten business correspo anscode data, const ges and summarize id and analytical think	rammar and voca simple sentences to sh words, vocabula contextual meani mic situations, Ide ons and make sugge cepts, and percept ondence, and speak cruct different type deas, create persona	ibulary, constr o form short pa ary, phrases, e ing through r ntify specific estions. tions in a con ing in formal a s of written e al profiles in th	aragraphs. expressions, eading and details and nprehensive and informal essays, read and form of a

topics, and transact information with an audience. Prepare students for interview questions, presentation skills. Produce complex written documents such as reports, business/scientific documents, and project proposals.

Prerequisites: Plus Two English-Intermediate Level

CO, PO AND PSO MAPPING

CO, FO AND FSO MAFFING														
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-1	PSO-2
co	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	P30-2
CO-1	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO-2 2 2 3												-		
CO-3	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO-4	-	-	-	-	-	-	2	-	-	3	2	-	-	-
CO-5	-	-	-	-	I	-	-	-	2	3	2	3	-	-
		1	: Wea	kly rel	ated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	d	
MODUI	LE 1: Fl	UNCTI	ONAL	GRAM	MAR	AND V	OCAB	ULARY	,				(6	L+6L=12)
Introduc	ction to	o comr	nunica	ition sl	≺ills –S	elf Int	roduct	ion - B	asic gr	ramma	r (tens	ses, sul	oject	
verb agr	eemer	nt) - Ba	isic vo	cabula	ry (pre	efixes ,	suffixe	es, roo	ts, phr	rasal ve	erbs ar	nd idio	ms)-	
Topic se	ntence	es, par	agrapl	h writi	ng									
Suggest	ted Act	tivities	:											
Short	conve	rsatior	ns-Situ	ationa	l Cor	nmuni	cation	-Dialo	gue \	Writing	g _ \	Writin	g short	
paragra	ph bas	ed on	envirc	nmen	t prote	ection,	societ	tal issu	ies, he	alth, c	ultural	conte	xts etc.,	

identifying topic sentences, linking pairs of sentences.

Suggested Reading:

BTL-21. An Introduction to Professional English and Soft Skills with audio CD by Dr. Bikram K. Das
et al. Published by Cambridge University Press. 20092. Professional Speaking Skills by Aruna Koneru, Oxford Press, 20153. Embark, English for Under Graduates by Steve Hart, Arvind Nair, Veena Bhambhani,
Cambridge University Press 2016.4. English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson
Publications, 2014 editionMODULE 2 - LISTENING AND SPEAKING SKILLS(6L+6L=12)Academic listening (listening to lectures different topics, audio excerpts and answering
question) - General listening (conversations, speeches: formal and informal) - Giving

instructions and suggestions- Active and Passive Voice **Suggested activities:**

Listen and repeat, Listening to audio excerpts- Listening to native speakers - TED Talks, short prepared speeches, Table topics – Speaking in different situations- MCQ's - Cloze exercises- Complete the Dialogue Suggested sources:

(Listening and Speaking Modules) – Language Lab Professional Speaking Skills by Aruna Koneru, Oxford Press CO-1

Publications, 2014 edition						
	6L+6L=12)					
Reading comprehension (academic texts and general texts)-Reading and Interpreting visual data, charts, tables and graphs Report writing- accident, industrial, survey, general reports –Direct and Indirect speech Suggested Activities: Identify the errors in sentences, grammar exercise, reading passage for identifying the contextual meaning, interpreting charts, tables and graphs, choose the right meaning of the word given Assignment on suggested reading activity – Book review Suggested sources: Essential English Grammar by Raymond Murphy, Cambridge University Press, 2016 edition Embark, English for Under Graduates by Steve Hart, Arvind Nair, Veena Bhambhani, Cambridge University Press 2016.	CO-4 BTL-4					
MODULE – 4 : BUSINESS CORRESPONDENCE	6L+6L=12)					
 Memo-Notice - Agenda – Minutes of the Meeting-Action Taken report- Report Writing-Connectives - Cause and effect Suggested activities: Drafting agenda, notice, memo, minutes of the meeting- ATR- Cause and effect exercises - Presentation in the language lab (Technical or Non-technical topic) Suggested sources: Cambridge Advanced English, Newspapers, library books, IELTS , IELTS Academic Writing 1, New Insights into IELTS, CUP 	CO-3 BTL-5					
MODULE 5 – PRESENTATION SKILLS AND INTERVIEW SKILLS (6L+						
Presentation Skills - Reading and Interpreting Advertisements—Job Application- Covering	L-12)					
Letter -Curriculum Vitae –E-mail - Project proposal –Interview skills (HR questions) – Group Discussion Suggested Activities: Presentation in the language lab (Technical or Non-technical topic) Group Discussion (Tutorial Classes) Suggested Sources: English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition Soft Skills and Employability Skills by Sabina Pillai and Agna Fernandez, Cambridge University Press, 2018.	CO-5 BTL-5					
Letter -Curriculum Vitae –E-mail - Project proposal –Interview skills (HR questions) – Group Discussion Suggested Activities: Presentation in the language lab (Technical or Non-technical topic) Group Discussion (Tutorial Classes) Suggested Sources: English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition Soft Skills and Employability Skills by Sabina Pillai and Agna Fernandez, Cambridge University Press, 2018. Education and personality development by K. Manoharan, APH Publishing Home, 2016	CO-5					
Letter -Curriculum Vitae –E-mail - Project proposal –Interview skills (HR questions) – Group Discussion Suggested Activities: Presentation in the language lab (Technical or Non-technical topic) Group Discussion (Tutorial Classes) Suggested Sources: English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition Soft Skills and Employability Skills by Sabina Pillai and Agna Fernandez, Cambridge University Press, 2018.	CO-5 BTL-5					
Letter -Curriculum Vitae –E-mail - Project proposal –Interview skills (HR questions) – Group DiscussionSuggested Activities: Presentation in the language lab (Technical or Non-technical topic) Group Discussion (Tutorial Classes)Suggested Sources: English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition Soft Skills and Employability Skills by Sabina Pillai and Agna Fernandez, Cambridge University Press, 2018. Education and personality development by K. Manoharan, APH Publishing Home, 2016TEXT BOOKS1.Dr. Bikram K. Das etal (2009), An Introduction to Professional English and Soft Skills	CO-5 BTL-5					
 Letter -Curriculum Vitae –E-mail - Project proposal –Interview skills (HR questions) – Group Discussion Suggested Activities: Presentation in the language lab (Technical or Non-technical topic) Group Discussion (Tutorial Classes) Suggested Sources: English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition Soft Skills and Employability Skills by Sabina Pillai and Agna Fernandez, Cambridge University Press, 2018. Education and personality development by K. Manoharan, APH Publishing Home, 2016 TEXT BOOKS 1. Dr. Bikram K. Das etal (2009), An Introduction to Professional English and Soft Skills CD. Published by Cambridge University Press. 2. Dolly John (2014), English for Life and the Workplace Through LSRW&T skills, b 	CO-5 BTL-5					

	University Press 2018.
2.	Embark, English for Undergraduates by Steve Hart et al, Cambridge University Press, 2016, edition
3.	Skills for the TOEFL IBT Test, Collins, 2012 edition
4.	Soft Skills for Everyone by Jeff Butterfield, Cengage Learning, 2010 edition
5.	Professional Speaking Skills by Aruna Koneru, Oxford Publications, 2015
E BOOK	(S
1	https://www.britishcouncil.in/english/courses-business
2	http://www.bbc.co.uk/learningenglish/english/features/pronunciation
3	http://www.bbc.co.uk/learningenglish/english/
4	http://www.cambridgeenglish.org/learning-english/free-resources/write-and-improve/
5	Oneshopenglish.com
6	Breakingnews.com
MOOC	
1	https://www.mooc-list.com/tags/english
2	https://www.mooc-list.com/course/adventures-writing-stanford-online
3	http://www.cambridgeenglish.org/learning-english/free-resources/mooc/

COURSE TITLE	MA	TRICES AND CALCUL	JS	CREDITS	4				
COURSE CODE	MAA4101	COURSE CATEGORY	BS	L-T-P-S	3-0-2-1				
Version	1.0	Approval Details	24 ACM 30 th May 2018	LEARNING LEVEL	BTL-1-4				
ASSESSMENT SO	CHEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	50%					
Course Description	To make the studer MATLAB	nt understand the ba	sic concepts of ma	trices and calcul	us using				
Course Objective	 To Know how to perform some simple operations on matrices To understand effectively the basic concepts of differentiation and partial differentiation and their applications. To perform integration and other operations for certain types of functions and 								
	carry out the computation fluently.4. To classify ordinary differential equations.								

CURRIC	CULUM	AND S	YLLABI	JS						B.TI	ECH – N	IECHAN	ICAL ENGI	NEERING
Course Outcon	 Apply the concept of features in Differential Calculus Illustrate the concept of Integral Calculus Apply the concept of ordinary differential equation 													
Prerequ	uisites:	NIL												
СО, РО	AND	PSO M	APPIN	G			1							
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО- 8	РО -9	РО -10	РО- 11	РО- 12	PSO-1	PSO-2
CO-1	2	2	1	-	-	-	-	-	-	-	-	-	-	-
CO-2	2	1	1	-	-	-	-	-	-	-	-	-	-	-
CO-3	2	1	1	1	-	-	-	-	-	-	-	-	-	-
CO-4	2	1	-	1 1 1							-			
		1	1: Wea	ıkly re	lated,	2: Mo	derate	ly rela	ted an	d 3: Sti	rongly	related		
MODU	LE 1:N	1ATRIC	ES										(13L+2P=1	L5)
Characteristic equation – Eigen values and Eigenvectors – Properties – Cayley Hamilton theorem (Statement only) – Verification and inverse of the matrix using Cayley Hamilton theorem- Diagonalization of matrices using similarity transformation Suggested Reading: Basics of Matrices Lab1: Eigen values and Eigenvectors, Verification and inverse using Cayley Hamilton theorem- Diagonalization								milton	CO-1 BTL-4					
MODU	.E 2: D	IFFERE	NTIAL	CALC	ULUS								(13	L+2P=15)
Methods of differentiation of functions – Product and Quotient rules – Inverse trigonometric functions – Implicit function – parametric form. Partial differentiation – Total differentiation- Taylor's series – Maxima and minima of functions of two variables Suggested Reading: Basics of Differentiation Lab2: Taylor's series – Maxima and minima of functions of two variables								CO-2 BTL-4						
MODU	E 3:IN	TEGRA		CULUS									(13	L+2P=15)

 Integration – Methods of integration – Substitution method – Integration by parts – Integration using partial fraction – Bernoulli's formula. Applications of Integral Calculus: Area, Surface and Volume. Suggested Reading: Basicsof Integrations Lab3: Applications of Integral Calculus: Area, Surface area and Volume. 	CO-3 BTL-3				
MODULE 4: ORDINARY DIFFERENTIAL EQUATIONS (13					
Second order differential equations with constant coefficients – Particular integrals – e^{ax} , $Sinax$, $Cosax$, $x^m_{,}$ e ax Cos bx, e ax Sin bx. Solutions of homogeneous differential equations with variable coefficients – Variation of parameters Suggested Reading: Basics of Differential Equations. Lab 4: Solution of Second order differential equations.	CO-4 BTL-3				

TEXT BOOKS									
1.	Grewal B.S., (2014) "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition.								
2.	Bali N. P and Manish Goyal, (2011). "A Text book of Engineering Mathematics", Laxmi Publications Pvt Ltd., Eighth Edition.								
3.	Chandrasekaran A(2010), "A Text book of Engineering Mathematics I", Dhanam Publications, Chennai.								
REFERENCE BO	REFERENCE BOOKS								
1.	Srimantha Pal and Bhunia, S.C, (2015) "Engineering Mathematics" Oxford University Press.								
2.	Weir, M.D and Joel Hass, Thomas', (2016), Calculus, Pearson India,. 12th Edition.								
3.	Advanced Engineering Mathematics With Matlab, (2011), by CRC Press, Third Edition.								
E BOOKS									
1.	http://nptel.ac.in/courses/111105035/ https://www.edx.org//introduction-engineering-mathematics-utarlingtonx-engr3								
MOOC									
1.	https://www.mooc-list.com/tags/engineering-mathematics								

COURSE TITLE	EN	GINEERING PHYSICS		CREDITS	3				
COURSE CODE	PHA4101	COURSE CATEGORY	BS	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	24th ACM - 30.5.2018	LEARNING LEVEL	BTL-3				
ASSESSMENT S	CHEME			•					
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	This course deals with fundamental principles of physics, using mathematical derivations, for first year B. Tech students; the principles and applications of elasticity, acoustics, ultrasonics, quantum physics, crystal physics, lasers and fiber optics are dealt in this course. Intended for Aeronautical, Automobile, Bio tech., Chemical, Civil and Mechanical branches								
Course Objective	 Mechanical branches. To explain stress, strain and elastic modulii and apply the concepts to solve basic problems To apply principles of acoustics to solve basic problems and use ultrasonics as an engineering tool To explain particle nature of radiation, compute Schrodinger's wave equation and 								

		4.	To ic mate To dis	dentify rials ar scuss t comp	crystand hystand hystand hystand hystand hystand he prin	eresis b ciples, v of this c	ctures based c workin ourse,	and on conc g and a the stu	ept of applica idents	ferron tions c will be	nagneti of lasers able to	c doma s and fi o	different ains. ber optics f matter	-
Course Outcor		1. 2. 3. 4. 5.	Apply ultras Apply Ident expla	y the k sonic a y math ify the in the	nowled s an en ematica e crysta ferrom	dge of gineerin al deriv al lattio agnetic	acoust ng too ations ce pla : doma	ics in o l. to solv nes, di in.	designi e quar stingu	ing acc ntum p ish dif	oustical roblem ferent	buildi s. magne	ngs and e etic mate	rials, and
-			wledge		dament	als of P	hysics	at high	ier sec	ondary	/ level			
со, рс	PO -1	PSO M PO -2	PO-	PO -4	РО- 5	РО- 6	РО -7	РО- 8	PO -9	PO -10	PO- 11	PO -12	PSO-1	PSO-2
CO-1	3	2	1	1	1	1	1	1	1	10	1	1	1	1
CO-2	3	2	1	1	3	1	1	1	1	1	1	1	1	1
CO-3	3	2	1	1	3	1	1	1	1	1	1	1	1	1
CO-4	3	2	1	1	2	1	1	1	1	1	1	1	1	1
CO-5	3	2	1	1	3	1	1	1	1	1	1	1	1	1
			1: We	eakly re	elated,	2: Mod	leratel	y relat	ed and	l 3: Str	ongly r	elated		
			ERTIES										-	(9L)
Bulk m modul and no Therm	odulu us of a n-unif al con onduct	s - Tw a wire form b iductiv	s law- E visting c - Depr ending vity - ex orbe's	couple ession	on a w of a ca ental d	ire - To intileve etermir	orsiona r - You nation	l pendi ung's m of ther	ulum - Iodulu mal co	deterr s by ca onducti	ninatio antileve ivities o	of riger - uni	gidity form I and	CO-1 BTL-3
MODULE 2: ACOUSTICS AND ULTRASONIC								I	(9L)					
Fechne for rev	er law rerbera	- Deci ation 1	ound - bel - Re time (Ja coustic	everbei neger's	ration - metho	Revert d) - ab	peratic psorpti	on time on coe	, deriv fficien	ation c t and i	of Sabin ts dete	ie's for erminat	mula tion -	CO-2 BTL-3

echo, echelon effect, resonance and noise) and their remedies Ultrasonics- Production – Magnetostriction and Piezoelectric methods – properties – applications

MODUL	3: QUANTUM PHYSICS	(9L)						
Black body radiation- Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jean's law from Planck's theory - Compton effect – Theory and experimental verification Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Extension to 3 dimension (no derivation)								
MODUL	E 4: CRYSTAL PHYSICS AND MAGNETISM	(9L)						
cubic lat number Magnet suscepti antiferro	Lattice - Unit cell - Bravais lattice - Lattice planes - Miller indices - 'd' spacing in etice - Calculation of number of atoms per unit cell - Atomic radius - coordination - Packing factor for SC, BCC, FCC and HCP structures. ic dipole moment - atomic magnetic moments- magnetic permeability and bility - Types of magnetism: diamagnetism - paramagnetism - ferromagnetism - bomagnetism- ferrimagnetism - domain structure - hysteresis - hard and soft c materials - applications.	CO-4 BTL-3						
	5: PHOTONICS AND FIBER OPTICS (9	L)						
populati laser - C Optical acceptar	e of lasers - Stimulated absorption - Spontaneous emission, stimulated emission - on inversion - pumping action - active medium - laser characteristics – Nd-YAG O_2 laser - Semiconductor laser – applications fiber - principle and propagation of light in optical fibers - Numerical aperture and nee angle - types of optical fibers - single and multimode, step index and graded pers - fiber optic communication system.	CO-5 BTL-3						
TEXT BO	OKS	L						
1.	P.Mani, (2011)"Engineering Physics", Vol.I & II, Dhanam Publications, Chennai.							
REFEREN	ICE BOOKS							
1.	Gaur R.K. and Gupta S.L., (2010) "Engineering Physics", DhanpatRai publications Delhi. 8 th Edition.	(P) Ltd., New						
2.	P.Charles, Poople and Frank J. Owens, (2007) "Introduction to Nanotechnology", W	'iley India.						
3.	Arthur Beiser, (2007)"Concepts of Modern Physics", Tata McGraw – Hill Publicatio	ns.						
4.	Rajendran V. Marikani A., (2003) "Applied Physics for engineers", Tata McGraw – company Ltd., New Delhi. 3rd edition.	Hill publishing						
E BOOKS								
1.	Dr. P. S. Aithal and Dr. H. J. Ravindra, "Textbook of Engineering Physics", 1 st e Learning Pvt. Ltd., New Delhi (2011).	dition, ACME						
2.	2. John R. Gordon, Ralph V. McGrew and Raymond A. Serway, "Physics for Scientists and Engineers" 8 th edition, Brooks/Cole Cengage learning, USA (2010).							
MOOC								
1.	https://www.coursera.org/learn/how-things-work							
2.	https://www.coursera.org/learn/quantum-physics							
3.	https://onlinecourses.nptel.ac.in/noc21_ph21							
4.	https://onlinecourses.swayam2.ac.in/aic20_sp64							

CODE CYA4101 CATEGORY BS L-T-P-S 1 Version 1.0 Approval Details 24 th ACM - 30.5.2018 LEARNING LEVEL BTL-3 ASSESSMENT SCHEME Second Periodical Assessment Second Periodical Assessment Seminar/ Assignments/ Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5% 5% 50% Course Description To make the students understand the basic concepts of Engineering Materials and their applications. 1. To make the students understand the basic of crystal structure and phase rule. 2. To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications. 4. To illustrate the applications. 5.						E	NGINE	ERING	MATE	RIALS					
CODE CYA4101 CATEGORY BS L-T-P-S 1 Version 1.0 Approval Details 24 th ACM - 30.5.2018 LEARNING LEVEL BTL-3 ASSESSMENT SCHEME Second Periodical Assessment Second Periodical Assessment Seminar/ Assignments/ Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5% 5% 5% 5% Course Description To make the students understand the basic concepts of Engineering Materials and their applications. 1. To make the students understand the basic concepts of nanomaterials, the general synthetic inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications of inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications of conducting polymers and liquid- crystals, with a good exposure on their basic terminologies. 5. To provide a knowledge on the theoretical basis of the chemical composition, properties and applications of lubricants, adhesives and explosives. Upon completion of this course, the students will be able to 1. 1. Propose and justify	COUR	SE TITL	E		(C	ommo	n to AL	L Bran	ches o	f Engin	eering)			CREDITS	3
Version 1.0 Approval Details 24 th ACM - 30.5.2018 LEVEL BTL-3 ASSESSMENT SCHEME Second Periodical Assessment Second Periodical Assessment/Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5%				CY	•		C	COURS	E			S		L-T-P-S	3-0-0- 1
First Periodical Assessment Second Periodical Assessment Seminar/ Assignments/ Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5% 5% 5% 5% Course Description To make the students understand the basic concepts of Engineering Materials and their applications. 1. To make the students understand the basics of crystal structure and phase rule. 2. To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications of conducting polymers and liquid- crystals, with a good exposure on their basic terminologies. 5. To provide a knowledge on the theoretical basis of the chemical composition, properties and applications of lubricants, adhesives and explosives. Upon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. 3. Identify an appropriate technique for nanomaterial synthesis and also select a property- guided molecular material for a given application. 4. Identify the materials which can be employed as organic conductors and liquid- crystals in electronic devices. 5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive / explosive based on its applications. 7. Identify the materials of chemistry at higher secondary level. CO	Ve	ersion			1.0		Appro	oval De	etails	24	th ACM -	30.5.20	18	-	BTL-3
Periodical Assessment Second Periodical Assessment Assignments/ Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5% 5% 5% 5% Course Description To make the students understand the basic concepts of Engineering Materials and their applications. 1. To make the students understand the basics of crystal structure and phase rule. 2. To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications of converted a knowledge on the theoretical basis of the chemical composition, properties and applications of lubricants, adhesives and explosives. Upon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. 2. State and select a suitable high-temperature material for industrial applications. 3. Identify an appropriate technique for nanomaterial synthesis and also select a property- guided molecular materials which can be employed as organic conductors and liquid- crystals in electronic devices. 5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive / explosive based on its applications. Prerequisites: Knowledge in fundamentals of chemistry at higher secondary level. </th <th>ASSES</th> <th>SMEN</th> <th>т ѕсн</th> <th>ME</th> <th></th>	ASSES	SMEN	т ѕсн	ME											
Course Description To make the students understand the basic concepts of Engineering Materials and their applications. Course Objective 1. To make the students understand the basics of crystal structure and phase rule. 2. To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications of conducting polymers and liquid- crystals, with a good exposure on their basic terminologies. 5. To provide a knowledge on the theoretical basis of the chemical composition, properties and applications of lubricants, adhesives and explosives. Upon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. 2. State and select a suitable high-temperature material for industrial applications. 3. Identify an appropriate technique for nanomaterial synthesis and also select a property- guided molecular material for a given application. 4. Identify the materials which can be employed as organic conductors and liquid- crystals in electronic devices. 5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive / explosive based on its applications. Prerequisites: Knowledge in fundamentals of chemistry at higher secondary level. CO PO	Peri	iodical					Assi	ssignments/ Surprise Test / Quiz					liz	Attendance	ESE
Description applications. Image: course objective 1. To make the students understand the basics of crystal structure and phase rule. Image: course objective 2. To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. Image: course objective 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. Image: course objective 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. Image: course objective 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. Image: course objective 4. To illustrate the applications of conducting polymers and liquid- crystals, with a good exposure on their basic terminologies. Image: course objective 5. To provide a knowledge on the theoretical basis of the chemical composition, properties and applications of lubricants, adhesives and explosives. Upon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. Image: course objective 3. Identify an appropriate technique for nanomaterial synthesis and also select a property-guided molecular material for a given application. Image: course objective based on its applications. 5. Distinguish and select a suitable organ	1	L5%		1	15%			10%			5	%		5%	50%
Course Objective 2. To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. 3. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. 4. To illustrate the applications of conducting polymers and liquid- crystals, with a good exposure on their basic terminologies. 5. To provide a knowledge on the theoretical basis of the chemical composition, properties and applications of lubricants, adhesives and explosives. Upon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. 2. State and select a suitable high-temperature material for industrial applications. 3. Identify an appropriate technique for nanomaterial synthesis and also select a property- guided molecular material for a given application. 4. Identify the materials which can be employed as organic conductors and liquid- crystals in electronic devices. 5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive / explosive based on its applications. Prerequisites: Knowledge in fundamentals of chemistry at higher secondary level. CO PO PO1 PO1															
Course OutcomeUpon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. 2. State and select a suitable high-temperature material for industrial applications. 3. Identify an appropriate technique for nanomaterial synthesis and also select a property- guided molecular material for a given application. 4. Identify the materials which can be employed as organic conductors and liquid- crystals in electronic devices. 5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive / explosive based on its applications.Prerequisites:Knowledge in fundamentals of chemistry at higher secondary level.COPO <t< td=""><td></td><td></td><td>3. 4.</td><td colspan="11"> To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. To illustrate the applications of conducting polymers and liquid- crystals, with a good </td></t<>			3. 4.	 To provide an exposure on the fundamentals of powder metallurgy and applications of inorganic materials and composites. To give a strong foundation on the basic concepts of nanomaterials, the general synthetic methods with emphasis on their applications. To illustrate the applications of conducting polymers and liquid- crystals, with a good 											
CO 1 2 3 4 5 6 7 8 9 0 1 2 PSO1 PSO2	Course Upon completion of this course, the students will be able to 1. Propose and justify suitable metals/materials for alloying. 2. State and select a suitable high-temperature material for industrial applications. 3. Identify an appropriate technique for nanomaterial synthesis and also select a property-guided molecular material for a given application. 4. Identify the materials which can be employed as organic conductors and liquid- crystals in electronic devices. 5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive / explosive based on its applications. Prerequisites: Knowledge in fundamentals of chemistry at higher secondary level.														
CO 1 2 3 4 5 6 7 8 9 0 1 2 PSO1 PSO2						PO	PO	PO	PO	PO	PO1	PO1	PO1		
CO1 3 2 1 1 1 1	со	_												PSO1	PSO2
	CO1	3	2	1	-	-	-	1	-	-	-	-	1	-	-

CO2	3	2	1	_	_	_	2	_	-	-	_	2	_	_
CO3	3	2	-	1			2					2	_	
	3	2	1	1	_		2	_				2		
CO4				1	-	-		-	-	-	-		-	-
CO5	3	2	1	-	-	-	2	-	-	-	-	2	-	-
								ately re	elated a	and 3: St	rongly r	elated		
	ULE 1:												(9)	
	•	•		••	charac	teristic	s, exar	nples	– Spac	e lattice	e, Unit	cell – t	ypes – X-ray	
	ction ar				f Gibbs	Phase	rule-	Phase	diagrar	ns: One	compo	nent sve	stem (water).	CO-1
Basic terminology - Derivation of Gibbs Phase rule- Phase diagrams: One component system (water), Two component system –- Reduced phase rule: Simple Eutectic system, examples, Phase diagram: Ag-							BTL-3							
	tem, Pl									, .		,		
MODU	JLE 2: F	POWDE		ALLUR	GY, IN	ORGAN		TERIA	LS AND	СОМРС	OSITES		(9)
Steel ·	– Comp	ositio	n, type:	s, heat-	-treatm	nent, A	brasive	es – Cla	ssificat	ion, Pro	perties,	Uses - F	Refractories –	
		· ·								-	ty glasse			CO-2
				ı - Defi	nition	– Cons	stituen	ts – Cla	assifica	tion - Fi	ber-rein	forced (Composites –	BTL-2
Types and Applications.														
Powder Metallurgy – Preparation of metal/alloy– Advantages and limitations. MODULE 3: NANOMATERIALS AND MOLECULAR SIEVES (9)))						
MODULE 3: NANOMATERIALS AND MOLECULAR SIEVES (9 Introduction – Synthesis of Nanomaterials - Bottom-up and Top-down approaches – Methods of								9)						
										-			Properties –	
					•								FE-SEM, TEM	CO-3
-	iple an													BTL-3
					•		tructur	e, clas	sificatio	on - ap	plicatio	ns – ic	on exchange,	
	ption, s	•			,									
	JLE 4: N										·	la Dali	(9 	')
-	-									-	-	-	ymorphism in als, Lyotropic	
	l Crysta	•			vioreeu		angem		variou	Juics	or Liqui		als, Lyotropic	CO 3
-					g Orgai	nic eleo	ctronic	materi	als - Ap	plicatio	ns.			CO-3 BTL-2
-	-	-											Classification,	DIL-2
					xtrinsio	: Cond	ucting	Polyme	ers, Ap	plicatior	ns - Bioc	legradal	ole Polymers,	
examples and applications. MODULE 5: LUBRICANTS, ADHESIVES AND EXPLOSIVES (9)														
Lubricants – Mechanism of Lubrication, Classification and Properties, Semi Solid Lubricants, Solid														
									•				and Chemical	CO-4
		-									•	-	n, Properties	BTL-2
and Applications). Explosives – Requisites, Classification, Precautions during storage – Rocket propellants – Requisites - Classification.														
	BOOKS	- Kequi	sites -	Classifi	cation.									

1.	P.C. Jain and Monicka Jain, (2012), Engineering Chemistry, Dhanpat Raj Publishing Company (P) Ltd, New Delhi.
2.	Puri, Sharma and Pathania,(2004), Principles of Physical Chemistry, Vishal Publishing Co. Jalandar.
REFERENCE BO	DOKS
1.	K.K. Chawala (2012), Composite materials, Springer-Verlag, New York. 3 rd edition.
2.	P. M. Ajayan, L. S. Schadler, P. V. Braun, (2003), Nanocomposite Science and Technology, Wiley- VCH Verlag GmbH Co. KGaA, Weinheim.
3.	V.V. Vasiliev and E.V. Morozov, (2001), Mechanics and Analysis of Composite Materials, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 IGB, UK.
E BOOKS	
1.	http://www.erforum.net/2016/01/engineering-chemistry-by-jain-and-jain-pdf-free-ebook.html
2.	https://abmpk.files.wordpress.com/2014/02/book_maretial-science-callister.pdf
MOOC	
1.	https://www.edx.org/course/materials-science-engineering-misisx-mse1x
2.	https://www.mooc-list.com/tags/materials-science

COURSE TITLE	PROBL	CREDITS	3								
COURSE CODE	CSA4101	COURSE CATEGORY	PC		2-0-2-1						
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4						
ASSESSMENT SCHEME											
First Periodical Assessment	Second Periodical Assessment	Practical Co	ESE								
15%	15%	20%	0	50%							
Course Description	To introduce computers and programming in C and also explore the power of computational techniques those are currently used by engineers and scientists and to develop programming skills with reasonable complexity.										
Course Objective	 To acquire the basic knowledge in computer hardware, programming languages and Problem-solving techniques. To Learn the fundamentals of C programming. To Gain knowledge in Functions, arrays and strings in C programming. To Understand the pointers, Structures and Union in C programming To Gain Knowledge on Embedded Programming 										

Upon completion of this course, the students will be able to
1. Describe the basics of digital computer and programming languages.
Course 2. Demonstrate problem solving techniques using flowchart, algorithm/pseudo cod
to solve the given problem.
3. Design and Implement C program using Control Statements and Functions.
4. Design and Implement C program using Pointers and File operations.
5. Identify the need for embedded C in real-time applications.
Prerequisites: Nil
CO, PO AND PSO MAPPING
CO PO
<u>1 2 3 4 -5 6 7 8 9 -10 11 12</u> -50-1 -50-2
CO-1 2 2 - - 2 - 2 - 1 2 2 -
CO-2 3 3 2 2 1 - 2 2 1 - 1 2 3
CO-3 3 3 2 2 2 - 1 3 3 2 1 2 3
CO-4 3 3 2 - - - - 1 - 1 2
CO-5 1 1 1 1 - 1 2 - 1 2 1 -
1: Weakly related, 2: Moderately related and 3: Strongly related
MODULE 1: INTRODUCTION TO CYBER SECURITY (6L+6L=12
Introduction – Fundamentals of digital computers - Programming languages -Programming
Paradigms – Types of Programming Languages – Language Translators – Problem Solving
Techniques: Algorithm – Flow Chart - Pseudo code. CO-1

Practical	Component:
i i acticai	component.

Practical Component:	BTL-1
Drawing Flowcharts using E- Chart & Writing pseudo code for the following problems	
(i) Greatest of three numbers, (ii) Sum of N numbers (iii) Computation of nCr	
MODULE 2: SECURITY ATTACKS, PRINCIPLES AND MANAGEMENT	(6L+6L=12)
Evolution of C. M/by Clanguage Applications of Clanguage Data Types in C. Operators	

 Evolution of C -Why C language - Applications of C language - Data Types in C – Operators and Expressions – Input and Output statements in C – Decision Statements – Loop Control Statements. Practical Component: (i) Program to illustrate arithmetic and logical operators (ii) Program to read and print data of different types (iii) Program to calculate area and volume of various geometrical shapes (iv) Program to compute biggest of three numbers (v) Program to print multiplication table (vi) Program to convert days to years, months and days (vii) Program to find sum of the digits of an integer 	CO-2 BTL-3
MODULE 3: SECURITY PLANS, POLICIES AND PROCEDURES	(6L+6L=12)
Functions – Storage Class – Arrays – Strings and standard functions - Pre-processor	
Statements.	CO-3
Practical Component:	BTL-4
(i) Program to compute Factorial, Fibonacci series and sum of n numbers using recursion	

(ii) Program to compute sum and average of N Numbers stored in an array

(
	ogram to sort the given n numbers stored in an array										
	ogram to search for the given element in an array										
	(v) Program to do word count										
(vi) Program to insert a substring in a string											
(vii) Program to concatenate and compare two strings											
	ogram using pre-processor statements	(6L+6L=12)									
MODU	MODULE 4: OVERVIEW OF SECURITY COUNTERMEASURE TOOLS										
Pointers – Dynamic Memory allocation – Structure and Union – Files.											
Practical Component:											
(i) Pro	gram to compute sum of integers stored in a 1-D array using pointers and dynamic										
memoi	y allocation	CO-4									
	 (ii) Program to read and print records of a student/payroll database using structures (iii) Program to simulate file copy 										
	ogram to illustrate sequential access file										
(v) Program to illustrate random access file											
MODULE 5: TESTING, DIGITAL FORENSICS AND NEXT GENERATION SECURITY											
		(6L+6L=12)									
	ure of embedded C program - Data Types - Operators - Statements - Functions - Keil C	CO-5									
Compil		BTL-2									
	al component: Simple programs using embedded C										
TEXT B											
1.	Jeyapoovan T, (2015), "Fundamentals of Computing and Programming in C", Vikas Pub	_									
2.	Mark Siegesmund, (2014), "Embedded C Programming", Elsevier publications, first edi	tion.									
REFERE	INCE BOOKS										
1.	Ashok Kamthane, (2017), "Computer Programming", Pearson Education, 7 th Edition.										
2.	Yashavant Kanetkar, (2016), "Let us C", BPP publication, 15th edition.										
2	S.Sathyalakshmi, S.Dinakar, (2013), "Computer Programming Practicals – Computer	Lab Manual",									
5.	3. Dhanam Publication, First Edition.										
E BOO											
1.	https://en.wikibooks.org/wiki/C_Programming										
MOOC											
1.	https://onlinecourses.nptel.ac.in/noc18-cs10/preview										
2.	http://nptel.ac.in/courses/106105085/2										
3.	https://www.udemy.com/c-programming-for-beginners/										
4.	https://www.coursera.org/specializations/c-programming										

COURSE TITLE		NABLE ENGINEERING SY n to ALL Branches of Eng	CREDITS	2					
COURSE CODE	GEA4102	COURSE CATEGORY	L-T-P-S	2-0-2-1					
Version	1.0	Approval Details	24th ACM - 30.5.2018	LEARNING LEVEL	BTL-3				
ASSESSMENT SCHEME									

First Pe Asses	eriodica sment		Second Periodical Assessment			Periodical Assignments/ Surprise Test / Ouiz					Atte	endanc	e	ESE	
1!	5%		15	%		10%	,		5%			5%		50%	
	urse iption			ourse ir mic, ar			•					-		vironmental,	
 To Understand the complex environmental, economic, and social issues results inable engineering To Become aware of concepts, analytical methods/models, and resoure evaluating and comparing sustainability implications of engineering activities To Critically evaluate existing and new methods To Develop sustainable engineering solutions by applying methods and research a specific system design To Clearly communicate results related to their research on sust engineering 												esources for ctivities and tools to			
Outo	CourseUpon completion of this course, the students will be able toCourse1. Apply the principles of sustainability with case studies.Outcome2. Describe assessing technologies and their impact on environment.Outcome3. Apply the concept of green energy in their projects at higher semesters.4. Manage natural resources and waste from various types of industries.5. Illustrate learn water technology and behavioral aspects of humans.Prerequisites: Knowledge in fundamentals of chemistry at higher secondary level.														
CO, PO	AND F	PSO N	/IAPPIN	G											
СО	РО -1	РО -2	PO -3	PO -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO- 1	PSO-2	
CO-1	-	1	1	-	-	1	3	1	3	1	-	1	-	-	
CO-2	-	3	1	-	-	1	2	1	1	1	-	2	-	-	
CO-3	-	3	2	-	-	3	1	2	2	1	-	1	-	-	
CO-4	-	1	2	-	-	1	2	1	2	3	-	2	-	-	
CO-5	-	1	1	-	-	1	2	2	2	1	-	3	-	-	
1: Weakly related, 2: Moderately related and 3: Strongly relatedMODULE 1: PRINCIPLES OF SUSTAINABLE SYSTEMS(5L)Sustainability Definitions - Principles of Sustainable Design, Sustainable Engineering - Frameworks for Applying Sustainability Principles - Summary & Activities.BTL-2															
MODUL														(5L)	
Techno												ness le	evels	CO-2	

(TRL) Asses	BTL-3							
MOD	(5L)							
Princ	ciples of Green Engineering - Frameworks for assessment of alternatives - Green	CO-3						
Engir	neering examples - Multifunctional Materials and Their Impact on Sustainability -	BTL-3						
Sumr	mary & Activities.							
MO	DULE 4 : RESOURCE MANAGEMENT TECHNOLOGIES	(5L)						
Wast	te management purpose and strategies - Recycling: open-loop versus closed-loop	CO-4						
think	ing - Recycling efficiency - Management of food waste and composting	BTL-3						
techr	nologies - E-waste stream management - Reuse and redistribution programs - LCA							
appro	pach to waste management systems - Summary and Activities.							
MOE	DULE 5 : SUSTAINABLE WATER AND WASTEWATER SYSTEMS	(5L)						
Wate	er cycle - Water conservation and protection technologies - Water treatment	CO-4						
syste	BTL-3							
Activ								
MOL	(5L)							
Colla	CO-5							
Facto	or in Sustainability Paradigm - Summary & Activities.	BTL-3						
TEXT	BOOKS							
1.	C.U. Becker, (2012), Sustainability Ethics and Sustainability Research, Springer.							
2.	J.B. Guinee et al., (2011), Life Cycle Assessment: Past, Present, and Future, Enviro 45, 90-96.	n. Sci. Technol.,						
3. Anastas, P.T., Zimmerman, J.B., (2013), Innovations in Green Chemistry and Green Engineering, Springer.								
E BO								
1. David T. Allen, David R. Shonnard, Sustainable Engineering Concepts, Design and Case Studies, Pearson Education, December 2011. (ISBN: 9780132756587)								
2. Gerald Jonker Jan Harmsen, Engineering for Sustainability 1st Edition, A Practical Guide for Sustainable Design, Elsvier 2012. (ISBN: 9780444538475).								
ΜΟΟΟ								
1. https://www.coursera.org/learn/sustainability								
2.								
3.	https://onlinecourses.nptel.ac.in/noc18_ce08/preview							

COURSE TITLE	E	NGINEERING AND DESIG	CREDITS	3	
COURSE CODE	MEB4101	COURSE CATEGORY	PC	L-T-P-S	3-0-0-1

Ver	sion	1.0 Approval Details				3 ACM, 02.202		ARNING LEVEL	B	ГL-3				
ASSESS	MENT	SCHEI	ME											
First Pe Assess		Seco Perioo Assess	dical		Assigr	ninar/ nments oject	s/	-	orise Te ' Quiz	est Att	endance	E	SE	
15	5%		159	%		1	.0%			5%		5%	5	0%
	urse iption		This course is specifically designed to give the students a clear understanding of the mechanical engineering design and its process.											of the
Course Objectiv	ve	 To excite the students on creative design and its significance To make the students aware of the process involved in design To make the student understand the interesting interaction of various segment of humanities, sciences and engineering in the evaluation of the design. To get an exposure to engineer a design To make the student aware of the IPR and trade aspects. 										gments		
Course Outcom	ne	2.	 Upon completion of this course, the students will be able to Differentiate the elements involved in good designs and to apply them in practice when called for. Apply the product oriented and user oriented aspects that make the design a success. Apply the product oriented and user oriented aspects that make the design a success Illustrate broader perspective of design covering function, cost, environmental sensitivity, safety and other factors other than engineering analysis. 										esign a esign a	
Prerequ	isites:	NIL												
CO, PO	AND P	SO M	APPIN	G										
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO-	PO-	PSO-	PSO-
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	11	12	1	2
CO-1	2	1	3	2	-	-	-	-	-	-	-	-	2	1
CO-2	-	-	2	2	-	-	-	-	-	-	-	-	2	1
CO-3	-	-	2	-	2	-	-	-	-	-	-	-	2	1
CO-4	1	2	3	-	-	-	-	-	-	-	-	-	2	1

1: Weakly related, 2: Moderately related and 3: Strongly related

-

MODULE 1- INTRODUCTION TO MECHANICAL ENGINEERING DESIGN

2

3

CO-5

-

-

-

(9)

2

-

1

Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength; How to initiate creative designs Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement; Market survey-customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs. Project: An Exercise in the process of design initiation. A simple problem is to be taken up to examine different solutions- Ceiling fan Group Presentation and discussion	CO-1 BTL-2
MODULE 2-PROCESSES IN DESIGN IN MECHANICAL SYSTEMS	(9)
Design process- Different stages in design and their significance; Defining the design space; Analbgies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design. Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing- Material selection, Design visualization- Solid modelling; Detailed 2D drawings; Tolerance; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications. Project: An exercise in the detailed design of any two products	CO-2 BTL-2
MODULE 3 – PROTOTYPE OF MECHANICAL PARTS	(9)
Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis. Engineering the design - From prototype to product. Planning; Scheduling; Supply chains; inventory; handling; manufacturing/construction operations; storage; packaging; shipping; marketing; feed-back on design Project: List out the standards organizations. Prepare a list of standard items used in any engineering specialization. Develop any design with over 50% standard items as parts	CO-3 BTL-3
MODULE 4- QUALITY ASPECTS IN MECHANICAL ENGINEERING DESIGN	(9)
Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. Project: Example: List out the design requirements(x) for designing a rocket shell of 3- meter diameter and 8-meter length. Design mineral water bottles that could be packed compactly for transportation.	CO-4 BTL-2
MODULE 5 – USER CENTRED DESIGNS IN MECHANICAL ENGINEERING	(9)
Product centered and user centered design. Product centered attributes and user centered attributes. Bringing the two closer. Example: Smart phone. Aesthetics and ergonomics. Value engineering, Concurrent engineering, Reverse engineering in design; Culture based design; Architectural designs; Motifs and cultural background; Tradition and design; Study the evolution of Wet grinders; Printed motifs; Role of	CO-5 BTL-2

colours in design. Make sharp corners and change them to smooth curves-check the											
acceptance. Design as a marketing tool; Intellectual Property rights - Trade secret;											
patent; copy-right; trademarks; product liability. Group presentation of any such											
products cover	products covering all aspects that could make or mar it.										
Project: Examin	ne the possibility of value addition for an existing product.										
TEXT BOOKS											
1	Philip Kosky, Robert Balmer, William Keat – George Wise, (2010), Explore Engineering										
1	Academic Press, Elsevier, 4 th Edition.										
REFERENCE BO	OKS										
	Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering,: An										
1	Introduction to Engineering and Design - [Part 3 - Chapters 17 to 27], ISBN13: 978-										
	0124158917 ISBN-10: 0124158919, Third Edition.										
2	Dym, C. L., Little, P. and Orwin, E. J., Engineering Design - A Project based introduction										
	Wiley, ISBN-978-1-118-32458-5										
3	Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, (1996), ISB										
_	978-94-011-3985-4 Springer, XI, 489 p.										
E BOOKS											
1	http://opim.wharton.upenn.edu/~ulrich/designbook.html										
2	http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforz										
۷	design_for_x_notes_s										

COURSE TITLE	EN	IGINEERING IMMERSIO	CREDIT	0.5							
COURSE CODE	GEA4131	COURSE CATEGORY	BS	L-T-P-S	0-0-2-2						
VERSION	1.0	APPROVAL DETAILS	24 th ACM - 30.5.2018	LEARNING LEVEL	BTL-3						
ASSESSMENT SC	HEME										
		CIA			ESE						
	80% 20%										
Course	To provide the students with hands on experience on various basic engineering										
Description	practices										
	1. To Relate th	neory and practice of ba	sic Civil and Mec	hanical Engine	eering						
Course	2. To Learn ba	sic concepts in Aeronau	tical and Automo	obile Engineer	ing						
Objective	3. To Learn ba	sic concepts in Electrica	l, Electronics, me	echatronics an	d Computer						
	Science										
	Upon comp	letion of this course, th	e students will b	e able to							
Course	1. Identify and	l use of tools, Types of j	oints used in wel	ding, carpentı	ry and plumbing						
Outcome	operations.										
Guttome	2. Explore the	parts of various IC engi	nes used in vario	us automobile	es.						
	3. Demonstrat	te the basic concepts re	ated to flow pat	tern and aircra	aft model.						

Prerequisites: NIL

CO, PC	CO, PO AND PSO MAPPING													
со	P 0 -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	PO -9	PO -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	3	2	-	2	-	1	-	-	-	-	-	-	-	-
CO-2	3	2	-	2	-	1	-	-	-	-	-	-	-	-
CO-3	3	2	-	2	-	1	-	-	-	-	-	-	-	-
					-		LICT			NITC				

SLOT X - LIST OF EXPERIMENTS

I. MECHANICAL ENGINEERING WORKSHOP

- 1. Welding: Arc welding: Butt joints
- 2. Lap joints.
- 3. Machining: Facing
- 4. Turning

II. AUTOMOBILE ENGINEERING

- 1. Dismantling and Studying of two stroke gasoline engine.
- 2. Assembling of two stroke gasoline engine.
- 3. Dismantling and Studying of four stroke gasoline engine
- 4. Assembling of four stroke gasoline engine.

III. AERONAUTICAL ENGINEERING

- 1. Study of Flow Pattern around Various Objects.
- 2. Force measurement on Aircraft Model
- 3. Determination of Young's Modulus for Aluminum Cantilever Beam
- 4. Binary Addition & Subtraction using Microprocessor

IV. CIVIL ENGINEERING

- 1. Plumbing- Basic Pipe Connection using valves, couplings and elbows.
- 2. Carpentry Sowing, Planning and making common Joints.
- 3. Bar Bending
- 4. Construction of a 50 cm height brick wall without mortar using English Bond.

SLOT Y - LIST OF EXPERIMENTS

V.ELECTRICAL ENGINEERING

- 1. Study of tools and accessories.
- 2. Study of cables.
- 3. Staircase wiring, Tube light and Fan connection.
- 4. Measurement of energy using single phase energy meter.

VI. ELECTRONICS ENGINEERING

- 1. Study of Active and Passive Components.
- 2. Study of Logic Circuits.
- 3. Making simple circuit using Electronic Components.
- 4. Measuring of parameters for signal using CRO.

VII. COMPUTER SCIENCE

- 1. Troubleshooting different parts of the computer peripherals, Monitor, Keyboard & CPU.
- 2. Installation of various operating systems, their capabilities, Windows, Unix, Linux.
- 3. Installation of commonly used software like MS Office

4. Assembling digital computer.

VIII. MECHATRONICS ENGINEERING

- 1. Study of Key Elements of Mechatronics Systems
- 2. Sensors Load Cell, Thermocouple
- 3. Actuators Linear & Rotary Actuators
- 4. Interfacing & Measurements Virtual Instrumentation

REFERENCE

- 1 Jeyapoovan T and Saravanapandian M., (2015), Engineering practices lab manual, Vikas publishing House, New Delhi, 4th Edition.
- 2 Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K.,(2008), "Elements of Workshop Technology", Vol.I ,Media promoters and publishers private limited, Mumbai.
- 3 Ibrahim Zeid,(2011) CAD/CAM Theory and Practice, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

METHOD OF ALLOCATION FOR ENGINEERING IMMERSION LAB

SLOT X : MECH, AERO, AUTO, CIVIL EXPERIMENTS

SLOT Y : EEE, ELECTRONICS, CSE, MECHATRONICS EXPERIMENTS

- EVERY CLASS OF
 - GROUP A (AERO, AUTO, MECH, MCT, CHEM, BIO, CIVIL
 - GROUP B (CSE, IT, ECE, EEE, AEROSPACE)

GETS DIVIDED INTO 4 SUB - GROUPS NAMELY a, b, c, d -- EACH CONSISTING OF 15 TO 20 STUDENTS MAX.

FOR EXAMPLE: GROUP A STUDENTS WILL OCCUPY SLOT X

- WEEK 1 : SLOT X ----
 - ✓ a MECH; b AUTO; c AERO ; d CIVIL
- WEEK 2 : SLOT X ----
 - ✓ b MECH; c AUTO; d AERO ; a CIVIL
- > THE ABOVE SCHEDULE WILL BE ON ROTATION EVERY MONTH (ONE CYLCE PER MONTH)

GROUP B STUDENTS WILL OCCUPY SLOT Y

- WEEK 1 : SLOT Y ----
 - ✓ a EEE; b ECE; c CSE; d MCT
- WEEK 2 : SLOT Y ----
 - ✓ b EEE; c ECE; d CSE ; a MCT
- > THE ABOVE SCHEDULE WILL BE ON ROTATION EVERY MONTH (ONE CYLCE PER MONTH)

COURSE TITLE		ENGINEERING PHYSICS LAB (Common to ALL branches of Engineering)					
COURSE CODE	PHA4131	COURSE CATEGORY	BS	L-T-P-S	0-0-2-0		

Ver	sion		1.	0		Approv	val De	tails		h ACM			NING VEL	BTL-3
ASSESS	MENT	SCHE	ME											
EXPER	IMENT	c	CALCUI	ATION		RESULT				VIVA		REC	ORD	ESE
3	0		10			10				20		1	L O	20%
Cou Descr	urse iption			perime trate th						-	ng pro	pertie	s of mate	rials and
Course Objective1. To train students to analyze elastic properties of materials 2. To determine thermal conductivity of a bad conductor. 3. To train students to measure viscosity of liquids. 4. To study the V-I characteristics of diode 5. To train students to apply light phenomena to analyse materials.														
Course Outcom Prerequ	Outcome3. Measure the viscosity of liquids4. Plot V-I characteristics of a diode.5. Measure thickness of thin wire and refractive index of a material													
CO, PO		-	-				<u> </u>							
со	PO -1	РО -2	РО -3	PO -4	РО -5	РО -6	РО -7	PO -8	РО -9	PO -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO-2	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO-3	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO-4	3	3	0	0	3	0	0	0	3	0	0	3	0	0
CO-5	3	3	0	0	0	0	0	0	3	0	0	3	0	0
		1	L: Wea	kly rela	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	d	
MODU										6) L)
wi 2. No	wire. CO-: 2. Non Uniform Bending – Determination of Young's Modulus. BTL-											CO-1 BTL-3		
MODUL														(3L)

4.	Viscosity – Determination of co-efficient of viscosity of a liquid by Poiseuille's	CO-2
	flow.	BTL-3
MO	DULE 3: THERMAL CONDUCTIVITY	(3 L)
5.	Lee's Disc – Determination of thermal conductivity of a bad conductor.	CO-3
	Preparation of urea-formaldehyde resin.	BTL-3
MO	DULE 4: OPTICS	(6 L)
6.	Air – Wedge – Determination of thickness of a thin wire	CO-4
7.	Spectrometer – refractive index of a prism	BTL-3
MO	DULE 5: ESTIMATION METAL ION CONTENTS IN THE SAMPLE	(6 L)
8.	Semiconductor laser – Determination of wavelength of laser using grating	CO-5
9.	Semiconductor diode – VI characteristics	BTL-3
TEX	r BOOKS	
1.	P. Mani, (2005), engineering Physics Practicals, Dhanam Publications, Chennai.	
REFI	ERENCE BOOKS	
1.	Glenn V. Lo, Jesus Urrechaga - Aituna, (2005) Introductory Physics Laboratory Manua	l, Part-I, Fall
1.	edition.	
2.	P. Kulkarni, (2015), Experiments in Engineering Physics Bachelor of Engineering and Tec	hnology.
E BO	OKS	
1.	http://www.aurora.ac.in/images/pdf/departments/humanities-and-sciences/engg-phy	/-lab-
1.	manual.pdf	
MO	DC	
1.	https://www.coursetalk.com/providers/coursera/courses/introduction-to-chemistry-1	

COURSE TITLE	MATE (Common to	CREDITS	1							
COURSE CODE	CYA4131	COURSE CATEGORY	BS	L-T-P-S	0-0-2-0					
Version	1.0	Approval Details 24 th ACM - 30.5.2018		LEARNING LEVEL	BTL-3					
ASSESSMENT SC	ASSESSMENT SCHEME									
Experimental	Calculation Result		Viva	Record	ESE					
30%	10%	10%	20%	10%	20%					
Course Description	This course imparts practical exposure on basic techniques employed for the analyses of lubricants, refractories & other engineering materials and spectrophotometric analyses for metal ions.									

			 To train the students in characterization of lubricants by viscosity measurement. To give a practical exposure for the construction of phase diagram, for partially- 											
		2.	-			phenol				liuctio	norp	nase u	lagran,	
Cou	urse	3.						-	-	edge ir	n prep	aratio	n of poly	mers (urea-
Obje	ctive		formaldehyde resin)											
		4.	4. To impart hands-on training in characterization of refractories.											
		5.	5. To equip the students with practical skill in estimation of metal ions by									tal ions by		
			spectrophotometry.											
	Upon completion of this course, the students will be able to													
		1.	Grad	le the l	lubrica	nts ba	sed or	viscos	sity					
		2.	Anal	yze the	e phas	e diagı	ram an	d inte	rpret t	he crit	ical so	lution	temperat	ture.
Со	urse	3.	Appl	y the	practi	cal kn	owledg	ge gair	ned or	n the p	orepar	ation	of polym	ners, for the
Outo	come		prep	aratio	n of ot	her sir	nilar m	nacrom	nolecu	les.				
		4.	Anal	yze the	e strer	ngth of	refrac	tories.						
		5.		-	-	-	ometr	ic met	hod f	or the	deter	rminati	ion of m	ietal ions in
			diffe	rent e	nviron	ment.								
Prerequ	isites:	Know	ledge i	n fund	lamen	tals of	chemi	stry at	highe	r secor	ndary l	evel.		
CO, PO		PSO M	-	G		I							ſ	
со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO-	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	
CO-1	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-2	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-3	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-4	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-5	3	2	1	-	-	-	2	-	-	-	-	2	-	-
		1	L: Wea	kly re	lated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: P	ROPE	RTIES	OF LUB	RICAN	ITS								(6)
	ermina			•	• •		-	vald V	iscome	eter.				CO-1
	ermina								100 0 ±					BTL-3
	ermina							a visco	meter	•				(0)
MODUL														(6)
	structio	•			•	-		مدنطح	n ac t i.	1.2+04 -	harca	51		CO-2
	ermina						acetic		n activ		narcoa	11.		BTL-3
MODUL														(6)
6. Prep	paratio	n of ur	ea-for	malde	hyde r	esin.								CO-3
														BTL-3
MODUL	.E 4: B/	ASIC PI	KOPER	TIES C	of Ref	касто	RIES							(6)

7. 8.	Determination of porosity of a refractory. Determination of apparent density of porous solids. BTL-						
MC	DULE 5: ESTIMATION METAL ION CONTENTS IN THE SAMPLE	(6)					
10. 11.	Estimation of dye content in the effluent by UV-Visible spectrophotometry. Determination of copper / iron content in the alloy by colorimetry. Estimation of sodium and potassium ions by flame photometry. Verification of Beer-Lambert's law using gold nanoparticles.	CO-5 BTL-3					
TEX	(T BOOKS	•					
1.	P.S. Raghavan, (2018), Materials Chemicals Laboratory Manual, Dhanam Publications.						
REI	ERENCE BOOKS						
1.	1. J. Mendham, R.C. Denney, J.D. Barnes and N.J.K. Thomas, Vogel's (2009), Textbook of Quantitative Chemical Analysis, Pearson Education, 6 th Edition.						
ΕB	DOKS						
1.	1. http://www.erforum.net/2016/01/engineering-chemistry-by-jain-and-jain-pdf-free- ebook.html						
MC	DOC						
1.	https://www.coursetalk.com/providers/coursera/courses/introduction-to-chemistry-1						

		SEMESTER I	I						
COURSE TITLE	ANAL	YTICAL MATHEMATI	CS	CREDITS	4				
COURSE CODE	MAA 4117	MAA 4117 COURSE CATEGORY BS L-T-P-S 3-0-2-0							
Version	1.0	Approval Details	24 th ACM - 30.5.2018	LEARNING LEVEL	BTL-3				
ASSESSMENT SC	HEME								
First Periodical Assessment	SecondSeminar/PeriodicalAssignments/AssessmentProject		Attendance	ESE					
15%	15% 10% 5% 5%								
Course Description	To make the student understand the basic analytical mathematical skills that is imperative for effective understanding of engineering subject using MATLAB.								
Course Objective	 To apply proble To Demonstra applications of networks and o 	e the fundamental ur m solving skills using te awareness and AI techniques in inte ther machine learnin the applications of AI	the problem so a fundamenta lligent agents, ex g models	lving methods o Il understandi	ng of various				
Course Outcome	 To understand the applications of AI Upon completion of this course, the students will be able to Competent to evaluate surface and volume integrals. Describe vector operations and interpret the results geometrically Solve the system of ordinary differential equations using Laplace Transform Identify the periodic function satisfying Dirichlet's conditions can be expressed as a Fourier series Illustrate complex variable theory, applications of analytic function and harmonic conjugate. 								

Prerequisites:

СО, РО	AND F	PSO M	APPIN	G	
	РО	PO	РО	РО	РО

со	РО	РО	РО	PSO-1	PSO-2									
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	P30-2
CO-1	1	2	I	-	-	1	2	I	I	-	I	-	_	-
CO-2	2	1	1	2	-	-	-	-	-	-	-	-	-	-
CO-3	2	1	1	2	-	-	-	-	-	-	-	-	-	-
CO-4	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO-5	2	1	-	-	-	-	2	-	-	-	-	-	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related	
MODULE 1:MULTIPLE INTEGRALS (1	LOL+2P)
Double integration – Cartesian and polar co-ordinates – Change of order of integration. Area as a double integral – Triple integration in Cartesian coordinates – Volume as a triple integral – Change of variables between Cartesian and polar coordinates. Suggested Reading: Line Integrals Lab: Area and Volume using double and triple integration.	CO-1 BTL-3
MODULE 2:VECTOR CALCULUS	(10L+2P)
Gradient, Divergence and Curl – Unit normal vector, Directional derivative – angle between surfaces–Solenoidal and Irrotationalvector fields, Green's theorem - Gauss divergence theorem and Stoke's theorem (without proof) – Verification and evaluation of the above theorems - Simple applications to regions such as square, rectangle, triangle, cuboids and rectangular parallelopipeds. Suggested Reading: Basics of Vectors Lab: Area using Green's theorem and Volume using Gauss divergence theorem.	CO-2 BTL-3
MODULE 3:LAPLACE TRANSFORMS	(10L+2P)
Laplace transform – Conditions of existence – Transform of elementary functions – properties– Transforms of derivatives– Initial and final value theorems – Transform of periodic functions. Inverse Laplace transforms using partial fraction and convolution theorem. Solution of linear ODE of second order with constant coefficients. Suggested Reading: Basics of Transform Lab: Finding Laplace and Inverse Laplace Transform of Elementary Functions, Solutions of Ordinary differential equations using Laplace transform	CO-3 BTL-3
MODULE 4: FOURIER SERIES (10	0L+2P)
Dirichlet's Conditions – General Fourier Series – Odd and even functions – Half range sine and cosine series –Harmonic Analysis. Suggested Reading: Basics of series Lab: Fourier series Expansion of simple functions, Harmonic Analysis	CO-3 BTL-3
	0L+2P)
Functions of a complex variable – Analytic function – Cauchy - Riemann equations (Statement only) – Properties of analytic function (Statement only) – Construction of Analytic functions by Milne – Thomson method. Suggested Reading: Complex Numbers Lab: Complex Numbers	CO-4 BTL-3
TEXT BOOKS	

1.	Kreyszig Erwin, (2016), "Advanced Engineering Mathematics ", John Wiley and Sons, New Delhi, 10th Edition.								
2.	A.P.Santhakumaran, P.Titus, (2012), Engineering Mathematics - II, NiMeric Publications, Nagercoil.								
3.	Chandrasekaran A, (2014), Engineering Mathematics- II, Dhanam Publications.								
4.	Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar Sharma, (2016), "MATLAB and its Applications in Engineering", Pearson Publication, Second Edition.								
REFERENCE BOO	OKS CONTRACT OF CONTRACT.								
1.	Sastry, S.S, (2014),—Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd,New Delhi, 4 th Edition.								
2.	Wylie, R.C. and Barrett, L.C., (2012), —Advanced Engineering Mathematics —Tata McGraw Hill Education Pvt. Ltd, New Delhi, 6th Edition.								
3.	Dean G. Duffy.,(2013), "Advanced Engineering Mathematics with MATLAB", CRC Press, Third Edition.								
E BOOKS									
1.	http:// nptel.ac.in/courses/122104017/28 https://www.khanacademy.org//double-integrals/double-integral. nptel.ac.in/courses/115101005/downloads/lectures-doc/Lecture-1.pdf nptel.ac.in/syllabus/122104017/ nptel.ac.in/courses/111105035/22 nptel.ac.in/syllabus/111103070/								
MOOC									
1.	https://www.edx.org/course/introduction-engineering-mathematics-utarlingtonx- engr3-0x								

COURSE TITLE	ENG (Common to	CREDITS	3						
COURSE CODE	CYA4101	COURSE CATEGORY	BS	L-T-P-S	3-0-0- 1				
Version	1.0	Approval Details	24 th ACM - 30.5.2018	LEARNING LEVEL	BTL-3				
ASSESSMENT S	ASSESSMENT SCHEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/	Surprise Test / Quiz	Attendance	ESE				
Assessment		Project							
15%	15%	10%	5%	5%	50%				

5	
	1. To make the students understand the basics of crystal structure and phase rule.
	2. To provide an exposure on the fundamentals of powder metallurgy and applications
	of inorganic materials and composites.
Course	3. To give a strong foundation on the basic concepts of nanomaterials, the general
Course	synthetic methods with emphasis on their applications.
Objective	4. To illustrate the applications of conducting polymers and liquid- crystals, with a
	good exposure on their basic terminologies.
	5. To provide a knowledge on the theoretical basis of the chemical composition,
	properties and applications of lubricants, adhesives and explosives.
	Upon completion of this course, the students will be able to
	1. Propose and justify suitable metals/materials for alloying.
	2. State and select a suitable high-temperature material for industrial applications.
Course	3. Identify an appropriate technique for nanomaterial synthesis and also select a
	property-guided molecular material for a given application.
Outcome	4. Identify the materials which can be employed as organic conductors and liquid-
	crystals in electronic devices.
	5. Distinguish and select a suitable organic / inorganic material as lubricant / adhesive /
	explosive based on its applications.
Prerequisites: K	Knowledge in fundamentals of chemistry at higher secondary level.

CO, P	O AND	PSO N	1APPIN	G										
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2	1	-	-	-	1	-	-	-	-	1	-	-
CO2	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO3	3	2	1	1	-	-	2	-	-	-	-	2	-	-
CO4	3	2	1	1	-	-	2	-	-	-	-	2	-	-
CO5	3	2	1	-	-	-	2	-	-	-	-	2	-	-
			1: We	akly re	lated,	2: Mod	leratel	y relate	ed and	3: Stron	gly rela	ted		
MOD	ULE 1:	CRYST	AL STR	UCTUR	E AND	PHASE	RULE							(9)
Basic o	crystal	system	is – Typ	oes, ch	aracter	istics,	examp	les – Sj	pace la	ttice, Ur	nit cell –	types –	X-ray	
diffrac	tion an	id cryst	al stru	cture.										CO-1
Basic	termin	ology -	Deriva	ation o	of Gibb	s Phas	e rule-	Phase	e diagra	ams: On	e comp	onent s	ystem	BTL-1,
(water), Two component system Reduced phase rule: Simple Eutectic system, examples,							2,3							
Phase	diagra	m: Ag-I	b syste	em, Pb	-Sn sys	tem – J	Applica	itions c	of phase	e rule.				
MODU	JLE 2 : P	OWDE	R MET	ALLUR	GY, IN	ORGAN		TERIAL	S AND	COMPO	DSITES			(9)

	position, types, heat-treatment, Abrasives – Classification, Properties, Uses -						
Refractories – Classification, Properties, Applications. Glasses – Properties, Types, Specialty glasses. Composites - Introduction - Definition – Constituents – Classification - Fiber-reinforced Composites –Types and Applications. Powder Metallurgy – Preparation of metal/alloy– Advantages and limitations.							
MODULE 3: N	ANOMATERIALS AND MOLECULAR SIEVES	(9)					
 Introduction – Synthesis of Nanomaterials - Bottom-up and Top-down approaches – Methods of preparation – Sol-gel process, Gas-phase condensation, Chemical Vapour Deposition. Properties – Optical, Electrical, Magnetic, Chemical properties (introduction only). Characterization – FE-SEM, TEM (Principle and Applications only). Zeolite Molecular sieves – composition, structure, classification - applications – ion exchange, adsorption, separation, laundry, catalysis. 							
MODULE 4: M	ATERIALS FOR ELECTRONIC APPLICATONS	(9)					
Liquid Crystals- Introduction – Characteristics – Classification- Thermotropic crystals- Polymorphism in Thermotropic Liquid Crystals – Molecular arrangement in various states of Liquid Crystals, Lyotropic Liquid Crystals- Applications. Conducting and Super conducting Organic electronic materials - Applications. Engineering plastics: Polycarbonate – Properties and uses- Conducting Polymers: Classification, Intrinsic Conducting Polymers, Extrinsic Conducting Polymers, Applications - Biodegradable Polymers, examples and applications.							
	JBRICANTS, ADHESIVES AND EXPLOSIVES	(9)					
Lubricants – Mechanism of Lubrication, Classification and Properties, Semi Solid Lubricants, Solid Lubricants, MoS ₂ and Graphite - Adhesives – Development of Adhesive strength, Physical and Chemical factors influencing adhesive action, Classification of Adhesives – Epoxy Resin (Preparation, Properties and Applications). Explosives – Requisites, Classification, Precautions during storage – Rocket propellants – Requisites - Classification.							
TEXT BOOKS							
1.	P.C. Jain and Monicka Jain, (2012), Engineering Chemistry, Dhanpat Raj Publishing Company (P) Ltd, New Delhi.	5					
2.	Puri, Sharma and Pathania, (2004), Principles of Physical Chemistry, Vishal Publish Jalandar.	iing Co.					
REFERENCE BO	DOKS						
1.	K.K. Chawala, (2012), Composite materials, Springer-Verlag, New York, 3 rd edition						
2.	2. P. M. Ajayan, L. S. Schadler, P. V. Braun, (2003), Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim.						
3. V.V. Vasiliev and E.V. Morozov, (2001), `Mechanics and Analysis of Composite Materials, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 IGB, UK.							
E BOOKS							
1.	http://www.erforum.net/2016/01/engineering-chemistry-by-jain-and-jain-pdf-free-						
2.	https://abmpk.files.wordpress.com/2014/02/book_maretial-science-callister.pd	f`					
моос							

1.	https://www.edx.org/course/materials-science-engineering-misisx-mse1x
2.	https://www.mooc-list.com/tags/materials-science

COURSE TITLE			ENGINEER	ING PHYSIC	5		(5	3		
COURSE COD	PHA	4101		BS		L-T-P	-S	3-0-0-0				
Version	1.	.0	Appro	val Details		4th ACM 0.5.2018		LEARN LEVI	_	BTL-3		
ASSESSMENT	CHEME											
First Periodica Assessment	I Sec Perio Assess		Assig	minar/ mments/ roject	Su	rprise Te / Quiz	st	Attend	ance	ESE		
15%	15	5%		10%		5%		5%		50%		
Course Description	derivatio acoustic dealt in t	This course deals with fundamental principles of physics, using mathematical derivations, for first year B. Tech students; the principles and applications of elasticity, acoustics, ultrasonics, quantum physics, crystal physics, lasers and fiber optics are dealt in this course. Intended for Aeronautical, Automobile, Bio tech., Chemical, Civil and Mechanical branches.										
Course Objective	prob 2. To a engii 3. To e: appl 4. To ic mate	olems pply prin neering t xplain pa y it to inf dentify erials and	iciples of a ool irticle natu inite poten crystal stru I hysteresis	coustics to re of radiati tial well uctures and based on c	solve b on, cor crysta oncept	asic prok npute Sc al planes of ferror	blems chrod s, de magne	and us inger's scribe etic dor	se ultra wave e differe nains.	o solve basic asonics as an equation and ent magnetic optics		
Course Outcome Prerequisites: 1 CO, PO AND P												
	PO PO-		O- PO-	PO PO	- PO	PO-	PO	PO	PSO	- I		
CO	-2 3		5 6	-7 8	-9	10	-11	-12	1	PSO-2		

CO 1	2	2			-		_						-	
CO-1	3	2	1	1	1	1	1	1	1	1	1	1	1	1
CO-2	3	2	1	1	3	1	1	1	1	1	1	1	1	1
CO-3	3	2	1	1	3	1	1	1	1	1	1	1	1	1
CO-4	3	2	1	1	2	1	1	1	1	1	1	1	1	1
CO-5	3	2	1	1	3	1	1	1	1	1	1	1	1	1
	I		1: We	akly re	elated,	2: Mod	lerate	y relate	ed and	3: Stro	ngly r	elated		
MOD	JLE 1:	PROPI	ERTIES (OF MA	TTER A		AT							(9L)
Bulk m modul and no Therm	nodulu us of a on-unif nal cor onduct	s - Tw a wire form b iductiv	s law- E visting c - Depre ending. vity - ex orbe's	ouple ession perim	on a w of a ca ental d	vire - To antileve etermin	orsiona er - Yo nation	al pendu ung's m of ther	ulum - Iodulu mal co	detern is by ca onducti	ninatio ntilevo vities	on of ri er - un of goo	igidity hiform d and	CO-1 BTL-3
MODU	LE 2: /			ND UL	TRASO	NIC								(9L)
Classification of sound - Characteristics of musical sound – intensity - loudness - Weber Fechner law - Decibel - Reverberation - Reverberation time, derivation of Sabine's formula for reverberation time (Jaeger's method) - absorption coefficient and its determination - factors affecting acoustics of building (Optimum reverberation time, loudness, focusing, echo, echelon effect, resonance and noise) and their remedies Ultrasonics- Production – Magnetostriction and Piezoelectric methods – properties – applications										ition - using,	CO-2 BTL-3			
MODU	LE 3: 0	QUAN	TUM PH	IYSICS									I	(9L)
and Ra verifica Schröc signific	ayleigh ation linger' cance	– Jean s wave of wa	on- Plan n's law f e equati ave fun ivation)	from P on – T	lanck's	theory depend	- Com ent an	pton ef d time d	fect – depen	Theory dent ec	and e	xperim ns – Ph	nental nysical	CO-3 BTL-3
MODU	LE 4: 0	CRYST	AL PHYS	SICS AI	ND MA	GNETIS	M							(9L)
MODULE 4: CRYSTAL PHYSICS AND MAGNETISM Crystal - Lattice - Unit cell - Bravais lattice - Lattice planes - Miller indices - 'd' spacing in cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - coordination number - Packing factor for SC, BCC, FCC and HCP structures. Magnetic dipole moment - atomic magnetic moments- magnetic permeability and susceptibility - Types of magnetism: diamagnetism - paramagnetism - ferromagnetism - antiferromagnetism- ferrimagnetism - domain structure - hysteresis - hard and soft magnetic materials - applications.										nation / and tism -	CO-4 BTL-3			
			DNICS A			TICS							(9L)	
													• •	
Princi	ole of	lasers	- Stimu	lated	absorp	tion - S	ponta	neous e	emissi	on, stin	nulate	d emis	sion -	CO-5

laser - C	O ₂ laser - Semiconductor laser – applications								
Optical	fiber - principle and propagation of light in optical fibers - Numerical aperture and								
acceptai	nce angle - types of optical fibers - single and multimode, step index and graded								
index fib	pers - fiber optic communication system.								
TEXT BO	OKS								
1.	P.Mani, (2011), "Engineering Physics", Vol.I & II, Dhanam Publications, Chennai.								
REFEREN	NCE BOOKS								
1.	Gaur R.K. and Gupta S.L., (2010), "Engineering Physics", , DhanpatRai publications (P) Ltd., New Delhi, 8 th edition.								
2.	P.Charles, Poople and Frank J. Owens, (2007), "Introduction to Nanotechnology", Wiley India.								
3.	Arthur Beiser, (2007), "Concepts of Modern Physics", Tata McGraw – Hill Publications.								
4.	Rajendran V. Marikani A., (2003), "Applied Physics for engineers", , Tata McGraw –Hill publishing company Ltd., New Delhi,3rd edition.								
E BOOKS									
1.	Dr. P. S. Aithal and Dr. H. J. Ravindra, "Textbook of Engineering Physics", 1 st edition, ACME								
1.	Learning Pvt. Ltd., New Delhi (2011).								
2.	John R. Gordon, Ralph V. McGrew and Raymond A. Serway, "Physics for Scientists and								
۷.	Engineers" 8 th edition, Brooks/Cole Cengage learning, USA (2010).								
MOOC									
1.	https://www.coursera.org/learn/how-things-work								
2.	https://www.coursera.org/learn/quantum-physics								
3.	https://onlinecourses.nptel.ac.in/noc21_ph21								
4.	https://onlinecourses.swayam2.ac.in/aic20_sp64								

COURSE TITLE	PROFES	SIONAL ENGLISH AND SO	FT SKILLS	CREDITS	3						
COURSE CODE	ELA4101	COURSE CATEGORY	BS	L-T-P-S	1-1-2-1						
Version	1.0	Approval Details	24 ACM 30 th May 2018	LEARNING LEVEL	BTL-5						
ASSESSMENT SCHEME											
First Periodical Assessment	Second Periodical	Seminar/	Surprise Test	Attendance	ESE						
	Assessment	Assignments/ Project	/ Quiz								
15%	Assessment 15%	10%	5%	5%	50%						

	informative listening skills by an enhanced acquisition of the English language.2. To provide an environment to Speak in English at the formal and informal levels									
	and use it for daily conversation, presentation, group discussion and debate.									
	3. To equip the students to Read, comprehend and answer questions based on									
Course	literary, scientific and technological texts.									
Objective	4. To enhance the writing skills of the students via training in instructions,									
	recommendations, checklists, process-description, letter-writing and report									
	writing.									
	5. To equip the learners in analysing and applying creative thinking skills and									
	participate in brainstorming, mind-mapping, audiovisual activities and excel in									
	employability skills.									
	Upon completion of this course, the students will be able to									
	1. Describe the basics of English grammar and vocabulary, construct simpl									
	sentences and articulate ideas using simple sentences to form short paragraphs.									
	2. Responding to higher order English words, vocabulary, phrases, expressions,									
	idioms, and proverbs. Derive the contextual meaning through reading and									
	listening from general and academic situations, Identify specific details and									
	general ideas. Learn to give instructions and make suggestions.									
Course	3. Organize and articulate ideas, concepts, and perceptions in a comprehensive									
Outcome	manner in written business correspondence, and speaking in formal and informal									
	situations.									
	4. Analyze and transcode data, construct different types of written essays, read									
	complex passages and summarize ideas, create personal profiles in the form of a									
	resume.									
	5. Induce critical and analytical thinking, participate in brainstorming on general									
	topics, and transact information with an audience. Prepare students for interview									
	questions, presentation skills. Produce complex written documents such as									
	reports, business/scientific documents, and project proposals.									
Prerequisites: Plu	us Two English-Intermediate Level									
CO, PO AND PSC) MAPPING									

со	РО	PO	РО	РО	РО	PO	РО	PO	РО	РО	РО	РО	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	
CO-1	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO-2	-	-	-	-	-	-	-	2	2	3	-	-	-	-
CO-3	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO-4	-	-	-	-	-	-	2	-	-	3	2	-	-	-
CO-5	-	-	-	-	-	-	-	-	2	3	2	3	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related	
MODULE 1: FUNCTIONAL GRAMMAR AND VOCABULARY	(6L+6L=12)
Introduction to communication skills –Self Introduction - Basic grammar (tenses, subject verb agreement) - Basic vocabulary (prefixes, suffixes, roots, phrasal verbs and idioms)- Topic sentences, paragraph writing Suggested Activities:	
Short conversations-Situational Communication-Dialogue Writing - Writing short paragraph based on environment protection, societal issues, health, cultural contexts	
etc., identifying topic sentences, linking pairs of sentences.	CO-1
Suggested Reading:	BTL-2
1. An Introduction to Professional English and Soft Skills with audio CD by Dr. Bikram K. Das et al. Published by Cambridge University Press. 2009	DIL-2
 Professional Speaking Skills by Aruna Koneru, Oxford Press, 2015 Embark, English for Under Graduates by Steve Hart, Arvind Nair, Veena Bhambhani, Cambridge University Press 2016. English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson 	
Publications, 2014 edition	
MODULE 2 – LISTENING AND SPEAKING SKILLS	(6L+6L=12)
Academic listening (listening to lectures different topics, audio excerpts and answering question) - General listening (conversations, speeches: formal and informal) - Giving instructions and suggestions- Active and Passive Voice Suggested activities: Listen and repeat, Listening to audio excerpts- Listening to native speakers - TED Talks, short prepared speeches, Table topics – Speaking in different situations- MCQ's - Cloze exercises- Complete the Dialogue Suggested sources: (Listening and Speaking Modules) – Language Lab Professional Speaking Skills by Aruna Koneru, Oxford Press English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition	CO-2 BTL-3
MODULE – 3 : FUNCTIONAL READING AND WRITING	(6L+6L=12)
Reading comprehension (academic texts and general texts)-Reading and Interpreting visual data, charts, tables and graphs Report writing- accident, industrial, survey, general reports –Direct and Indirect speech Suggested Activities: Identify the errors in sentences, grammar exercise, reading passage for identifying the contextual meaning, interpreting charts, tables and graphs, choose the right meaning of the word given Assignment on suggested reading activity – Book review Suggested sources: Essential English Grammar by Raymond Murphy, Cambridge University Press, 2016 edition Embark, English for Under Graduates by Steve Hart, Arvind Nair, Veena Bhambhani,	CO-4 BTL-4
Cambridge University Press 2016.	

MODULE – 4 : BUSINESS CORRESPONDENCE	(6L+6L=12)		
Memo-Notice - Agenda – Minutes of the Meeting-Action Taken report-Report Writing- Connectives - Cause and effect Suggested activities: Drafting agenda, notice, memo, minutes of the meeting- ATR- Cause and effect exercises - Presentation in the language lab (Technical or Non-technical topic) Suggested sources: Cambridge Advanced English, Newspapers, library books, IELTS , IELTS Academic Writing 1, New Insights into IELTS, CUP	CO-3 BTL-5		
MODULE 5 – PRESENTATION SKILLS AND INTERVIEW SKILLS (6L	+6L=12)		
Presentation Skills - Reading and Interpreting Advertisements—Job Application- Covering Letter -Curriculum Vitae –E-mail - Project proposal –Interview skills (HR questions) – Group Discussion Suggested Activities: Presentation in the language lab (Technical or Non-technical topic) Group Discussion (Tutorial Classes) Suggested Sources: English for Life and the Workplace Through LSRW&T skills, by Dolly John, Pearson Publications, 2014 edition Soft Skills and Employability Skills by Sabina Pillai and Agna Fernandez, Cambridge University Press, 2018. Education and personality development by K. Manoharan, APH Publishing Home, 2016	CO-5 BTL-5		
TEXT BOOKS			
 Dr. Bikram K. Das etal (2009), An Introduction to Professional English and Soft Sk CD. Published by Cambridge University Press. 	ills with audio		
2. Dolly John (2014), English for Life and the Workplace Through LSRW&T skills Publications.	s, by, Pearson		
REFERENCE BOOKS			
1. Soft Skills & Employability Skills by Sabina Pillai and Agna Fernandez published University Press 2018.	by Cambridge		
2. Embark, English for Undergraduates by Steve Hart et al, Cambridge University edition	y Press, 2016,		
3. Skills for the TOEFL IBT Test, Collins, 2012 edition			
4. Soft Skills for Everyone by Jeff Butterfield, Cengage Learning, 2010 edition			
5. Professional Speaking Skills by Aruna Koneru, Oxford Publications, 2015			
E BOOKS			

1	https://www.britishcouncil.in/english/courses-business
2	http://www.bbc.co.uk/learningenglish/english/features/pronunciation
3	http://www.bbc.co.uk/learningenglish/english/
4	http://www.cambridgeenglish.org/learning-english/free-resources/write-and-improve/
5	Oneshopenglish.com
6	Breakingnews.com
MOOC	
1	https://www.mooc-list.com/tags/english
2	https://www.mooc-list.com/course/adventures-writing-stanford-online
3	http://www.cambridgeenglish.org/learning-english/free-resources/mooc/

COURSE TITLE	ENGINEERIN	IG GRAPHICS AND COM DESIGN	CREDITS	3	
COURSE CODE	MEA4101	COURSE CATEGORY	L-T-P-S	1-1-2-1	
Version	1.0	Approval Details	24 ACM 30 th May 2018	LEARNING LEVEL	BTL-3
ASSESSMENT SC	HEME				

First Periodica	al Assessment	Second Periodical Assessment	Practical Assessment	ESE					
15	5%	15%	20%	50%					
Course Description	This course broadly introduces the mechanical design using computer aided des tools and fundamentals of free hand sketching. It prepares the students to learn basic concepts involved in technical drawing skills and computer graphics. It a emphasis on the principles and basic understanding of projections and visualizati aspects of component designing.								
Course Objective	AutoCAD to 2. To visualize problems 3. To compreh 4. To understa	ol the free hand sketch and end the various geometr nd the transformation of associated views of 3D	eering graphics and plane curva d orthographic projections and to s rical models and its developments f 2D drafting to 3D models using CA models and related geometric d	solve simple AD tools					

			TLLAD											GINEEKING
	urse come		Appl draft Appl plan Visua Recc obje Gene	y the ing teo y the es and alize so ognize cts.	Auto(chniqu acquir solids blid ob and u che va	CAD co les. ed kno jects a use 3E rious v	omma owledg nd app) mod	nds to ge to s bly Aut el cor	gene olve s oCAD nmano	imple comm ds in .	imple proble ands to AutoC/	drawi ms inv o gene AD too	volving st rate the r of to gen	understand raight lines, models. nerate solid y and using
Prerequ	isites:	Nil												
CO, PO		SO M	ΔΡΡΙΝ	G										
-	PO	PO	PO	PO	РО	РО	PO	РО	РО	PO	РО	РО	PSO-	
со	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	PSO-2
CO-1	2	1	-	-	3	-	-	-	-	-	-	-	-	-
CO-2	2	1	2	-	3	-	-	-	-	-	-	-	-	-
CO-3	2	1	-	-	3	1	-	-	-	-	-	-	-	-
CO-4	2	1	-	-	3	-	-	-	-	-	1	-	-	-
CO-5	2	1	3	-	3	-	-	-	-	-	•	1	-	-
		1	L: Wea	kly re	ated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: B	ASICS	OF EN	GINEE	RING	GRAPH		ND PLA	NE CU	JRVES			(3L+3T	+6P=12)
– Din Comput Comput Construc Practica	MODULE 1: BASICS OF ENGINEERING GRAPHICS AND PLANE CURVES(3L+3TImportance of graphics - BIS conventions and specifications - drawing sheet sizes - Lettering-Dimensioning - Scales. Drafting methods - introduction to Computer Aided Drafting -Computer Hardware - Workstation - Printer and Plotter - Introduction to software forComputer Aided Design and Drafting - Exposure to Solid Modelling software - GeometricalConstruction-Coordinate Systems/Basic Entities - 3D printer.Practical component: AutoCAD - Solid modelling tool - Basics.Suggested Readings: Basics of drafting and dimensioning								CO-1 BTL-2					
			ZATIO	N, ORI	HOGF	RAPHIC	C PROJ	ECTIO	NS AN	D FREE	HAN	O SKET	CHING	
•	-			1	114 - 1	alice -								
of Three sketchir Objects, Introduc method	ODULE 2: VISUALIZATION, ORTHOGRAPHIC PROJECTIONS AND FREE HAND SKETCHING L+3T+6P=12) sualization concepts and Free Hand sketching: Visualization principles — Representation Three Dimensional objects — Pictorial Projection methods - Layout of views- Free hand etching of multiple views from pictorial views of objects. Drafting of simple Geometric bjects/Editing General principles of presentation of technical drawings as per BIS - troduction to Orthographic projections - Naming views as per BIS - First angle projection ethod. Conversion to orthographic views from given pictorial views of objects, including mensioning – Drafting of Orthographic views from Pictorial views.										CO-2 BTL-2			

Practical component: 2D drafting, Orthographic projections

Suggested Readings: AutoCAD tool – Commands for sketching , Projections	
MODULE 3: GEOMETRICAL MODELLING, ISOMETRIC AND DEVELOPMENT OF SURFACES	
(3L+3T+6P=12)	
Principles of isometric projection and solid modelling. Isometric drawing – IsoPlanes and	3D
Modelling commands. Projections of Principal Views from 3-D Models. Solid Modeling	g —
Types of modelling - Wire frame model, Surface Model and Solid Model – Introduction	to CO-3
graphic software for solid modelling. Development of Surfaces	BTL-3
Practical component: 3D modelling and surface development	
Suggested Readings: Surface modelling and solid modelling	
MODULE 4: COMPUTER AIDED DESIGN AND DRAFTING	(3L+3T+6P=12)
Preparation of solid models of machine components like slide block, solid bearing blo	ck,
bushed bearing, gland, wall bracket, guide bracket, shaft bracket, jig plate, shaft supp	ort
(open type), vertical shaft support etc using appropriate modelling software. 2D views a	ind
sectional view, computer aided drafting and dimensioning. Generate 2D drawing from t	the
3D models – generate and develop the lateral surfaces of the objects. Presentat	ion CO-4
Techniques of Engineering Drawings – Title Blocks – Printing/Plotting the 2D/3D draw	BTI-2
using printer and printing solid object using 3D printer.	
Practical component: 2D to 3D transformation, plotting of drawings	
Suggested Readings: 3D modelling – view generations and commands	
MODULE 5: SIMPLE DESIGN PROJECTS – COMPUTER AIDED DESIGN	ł
	(3L+3T+6P=12)
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components	re- ion lid- rels ws, CO-5 ing BTL-3
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components Suggested Readings: AutoCAD dimensioning, assembly of solid components	re- ion lid- rels ws, CO-5 ing BTL-3
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components Suggested Readings: AutoCAD dimensioning, assembly of solid components TEXT BOOKS	re- ion lid- rels ws, CO-5 ing BTL-3 ple
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components Suggested Readings: AutoCAD dimensioning, assembly of solid components	re- ion lid- rels ws, CO-5 ing BTL-3 ple
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components Suggested Readings: AutoCAD dimensioning, assembly of solid components TEXT BOOKS Jeyapoovan, T. (2016). Engineering Drawing and Graphics Using A	re- ion lid- rels ws, CO-5 ing BTL-3 ple
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components Suggested Readings: AutoCAD dimensioning, assembly of solid components TEXT BOOKS 1. Jeyapoovan, T. (2016). Engineering Drawing and Graphics Using A Publishing House Pvt Ltd., New Delhi, 7 th Edition.	re- ion lid- rels ws, CO-5 ing BTL-3 ple
Creation of engineering models and their presentation in standard 2D form, 3D Wi Frame and shaded solids, meshed topologies for engineering analysis, tool-path generat for component manufacture, geometric dimensioning and tolerencing. Use of so modelling software for creating associative models at the components and assembly lev in their respective branch of engineering like building floor plans that include: window doors, fixtures such as WC, Sink, shower, slide block, etc. Applying color coding accord to drawing practice. Practical component: 3D solid meshed topology, geometrical dimensioning, sim components Suggested Readings: AutoCAD dimensioning, assembly of solid components TEXT BOOKS 1. Jeyapoovan, T. (2016). Engineering Drawing and Graphics Using A Publishing House Pvt Ltd., New Delhi, 7 th Edition. REFERENCE BOOKS 1. Warren J. Luzadder and Jon. M. Duff. (2016), Fundamentals of Engin	re- ion lid- rels ws, CO-5 ing BTL-3 ple AutoCAD, Vikas

1.	http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graphics-j-
1.	benjamin-pentex-freeebook-pdf-download.html
2.	http://keralatechnologicaluniversity.blogspot.in/2015/06/engineering-graphics-p-i-
۷.	varghese.html
МООС	
1.	http://nptel.ac.in/courses/112103019/
2.	http://nptel.ac.in/courses/105104148/

COURSE TITLE		NABLE ENGINEER				CREDITS	2																
COURSE CODE	GEA4102	COURSE CATEG	ORY	PC		PC		L-T-P-S	2-0-2-1														
Version	1.0	Approval Deta	ils	24th ACM - 30.5.2018																		LEARNING LEVEL	BTL-3
ASSESSMENT SC	ASSESSMENT SCHEME																						
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz		-		•				Attendance						A						ESE
15%	15%	10%		5%		5%	50%																
Course Description	The course introduces concepts and method for determining the net environmental, economic, and social impacts of an engineering technology or process																						
Course Objective	sustainable 2. To Become evaluating a 3. To Critically 4. To Develop research a s	aware of concept nd comparing sust evaluate existing a sustainable engin pecific system des communicate re	ots, ar tainabi and ne eering ign	alytical me lity implicat w methods solutions l	thod ions by ap	s/models, an of engineerin oplying metho	d resources for g activities ods and tools to																
engineeringUpon completion of this course, the students will be able to1. Apply the principles of sustainability with case studies.2. Describe assessing technologies and their impact on environment.Outcome3. Apply the concept of green energy in their projects at higher semesters.4. Manage natural resources and waste from various types of industries.5. Illustrate learn water technology and behavioral aspects of humans.																							
Prerequisites: K	nowledge in fund	amentals of chemi	stry at	higher seco	onda	ry level.																	
CO, PO AND PSC	D MAPPING																						

	PO	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО		• •	
CO	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	PS	0-1	PSO-2
CO-1	-	1	1	-	-	1	3	1	3	1	-	1		-	-
CO-2	-	3	1	-	-	1	2	1	1	1	-	2	-		-
CO-3	-	3	2	-	-	3	1	2	2	1	-	1		-	-
CO-4	-	1	2	-	-	1	2	1	2	3	-	2		-	-
CO-5	-	1	1	-	-	1	2	2	2	1	-	3		-	-
1: Weakly related, 2: Moderately related and 3: Strongly related									ed						
MODULE 1 : PRINCIPLES OF SUSTAINABLE SYSTEMS										(5L)					
Sustai	nability	Defini	itions ·	- Princ	iples c	of Sust	ainabl	e Desi	gn, Su	staina	ole En	gineeri	ing -		CO-1
Frame	works fo	or App	lying S	Sustain	ability	Princi	ples - S	Summa	ary & A	Activiti	es.				BTL-2
MODU	LE 2:1	ECHN	OLOG	Y DEVE	LOPM	IENT A		ECYCL	E ASS	ESSME	NT				(5L)
Techn	ology a	is a pa	art of	anthr	opogei	nic en	vironn	nent -	Techr	nology	readi	ness le	evels		CO-2
(TRL) -	- techn	ical m	etrics	- Eme	rging,	conve	rging,	disrup	tive te	echnolo	ogies -	Life C	Cycle		BTL-3
Assess	ment (L	.CA) m	ethod	ology -	Sumn	nary &	Activi	ties.							
MODULE 3 : GREEN ENGINEERING										(5L)					
Princi	oles of	Green	Engin	eering	- Frar	newor	ks for	assess	ment	of alte	ernativ	es - G	reen		CO-3
-	ering e	-		ultifur	octiona	l Mate	erials a	and Th	eir Im	pact o	n Sust	ainabil	lity -		BTL-3
Summ	ary & A	ctivitie	es.												
	JLE 4 :													1	(5L)
	manag	•	• •			•		•	•	•			•		CO-4
	ng - R		0			0						•	Ŭ		BTL-3
	ologies -				-						n prog	rams -	LCA		
	ach to w				-			-							(51)
								-	-	-	Nator	troate	nont		(5L) CO-4
	· cycle ns Meti					•			-						BTL-3
Activit			// 0350	23311101		water	mana	ageme			gies-st	iiiiiai	yœ		DIE-3
	JLE 6 : E	BEHAV	IORAL			ID FEE	DBACI	٢S							(5L)
Collab	orative	Decisi	on Ma	iking -	Role c	of Com	munit	y and	Social	Netwo	orking	- Huma	an	(CO-5
Factor	in Susta	ainabil	ity Par	adigm	- Sum	mary 8	& Activ	vities.						E	BTL-3
TEXT	BOOKS														
1.	C.U. Be	ecker, ((2012),	, Susta	inabili [.]	ty Ethi	cs and	Sustai	nabilit	y Rese	arch, S	Springe	er.		
2.	J.B. Gu 45, 90-9		t al., (2	2011),	Life Cy	cle As	sessm	ent: Pa	ist, Pre	esent,	and Fu	ture, E	Inviro	on. Sci	. Technol <i>.,</i>
 Anastas, P.T., Zimmerman, J.B., (2013), Innovations in Green Chemistry and Gree Springer. 							en En	gineering,							
E BOC															

1	David T. Allen, David R. Shonnard, Sustainable Engineering Concepts, Design and Case						
1.	Studies, Pearson Education, December 2011. (ISBN: 9780132756587)						
2	Gerald Jonker Jan Harmsen, Engineering for Sustainability 1st Edition, A Practical Guide for						
2.	Sustainable Design, Elsvier 2012. (ISBN: 9780444538475).						
MOC	DC C						
1.	https://www.coursera.org/learn/sustainability						
2.	https://www.academiccourses.com/Certificate/Sustainability-Studies/India/						
3.	https://onlinecourses.nptel.ac.in/noc18_ce08/preview						
4.	https://www.coursera.org/learn/ecosystem-services						

COURSE TITLE	PRO	DBLEM SOLVING USING	С	CREDITS	3		
COURSE CODE	CSA4101	COURSE CATEGORY	РС	L-T-P-S	2-0-2-1		
Version	1.0	Approval Details	BTL-4				
		ASSESSMENT	SCHEME				
First Periodical Assessment	Second Periodical Assessment	Practical Com	ponent		ESE		
15%	15%	20%			50%		
Course Description Course Objective	computational to develop program 1. To acquire the Problem-solv 2. To learn the 3. To gain know 4. To understam	computers and progra techniques that is curr nming skills with reason he basic knowledge in o ving techniques. fundamentals of C prog vledge in Functions, arra nd the pointers, Structur vledge on Embedded Pr	ently used by able complexity computer hardv ramming. ays and strings i res and Union ir	engineers and <u>/.</u> vare, programm n C programmir	ning languages and		
S. To gain Knowledge on Embedded ProgrammingUpon completion of this course, the students will be able to1. Describe the basics of digital computer and programming languages.2. Demonstrate problem solving techniques using flowchart, algorithm/pseudo code to solve the given problem.3. Design and Implement C program using Control Statements and Functions.4. Design and Implement C program using Pointers and File operations.5. Identify the need for embedded C in real-time applications.							
CO, PO AND PS	SO MAPPING						

со	PO -	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO -	PO-	PO	PSO	PSO
CO-1	1 2	2	3	4	5	6 2	7	8 2	9	10	11 1	-12 2	-1 2	-2
											-			
CO-2	3	3	3	2	2	1	-	2	2	1	-	1	2	3
CO-3	3	3	3	2	2	2	-	1	3	3	2	1	2	3
CO-4	3	3	3	2	-	-	-	-	-	-	1	-	1	2
CO-5	1	1	1	-	1	2	-	1	-	-	-	2	1	-
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODULE 1: INTRODUCTION TO CYBER SECURITY										(6L+6	6L=12)			
 Introduction – Fundamentals of digital computers - Programming languages - Programming Paradigms – Types of Programming Languages – Language Translators – Problem Solving Techniques: Algorithm – Flow Chart - Pseudo code. Practical Component: Drawing Flowcharts using E- Chart & Writing pseudo code for the following problems (i) Greatest of three numbers (ii) Sum of N numbers (iii) Computation of nCr 									CO-1 BTL-1					
MODU	LE 2: SE	CURITY	ΆΤΤΑΟ	CKS, PRI	NCIPLE	S AND	MANAG	GEMEN	Г					
•	•											T		
 (6L+6L=12) Evolution of C -Why C language - Applications of C language - Data Types in C – Operators and Expressions – Input and Output statements in C – Decision Statements – Loop Control Statements. Practical Component: (i) Program to illustrate arithmetic and logical operators (ii) Program to read and print data of different types (iii) Program to calculate area and volume of various geometrical shapes (iv) Program to compute biggest of three numbers (v) Program to print multiplication table (vi) Program to convert days to years, months and days (vii) Program to find sum of the digits of an integer 											CO-2 BTL-3			
MODU				-								T	(6L+6	5L=12)
Statem Practic (i) Pro recursic (ii) Pro (iii) Pro	al Com gram t	ponent o comp o comp o sort t	:: oute Fa ute sum he give	actorial, and av n n num	Fibona erage c ibers st	acci ser of N Nui ored in	ries and mbers s an arra	d sum tored ir	of n n	umbers			CO-3 BTL-4	
	gram to			-	CICILEI		undy							

	agram to incart a substring in a string	
	ogram to insert a substring in a string	
	ogram to concatenate and compare two strings	
	rogram using pre-processor statements	(
	LE 4: OVERVIEW OF SECURITY COUNTERMEASURE TOOLS	(6L+6L=12)
	rs – Dynamic Memory allocation – Structure and Union – Files.	
Practi	cal Component:	
(i) Pro	gram to compute sum of integers stored in a 1-D array using pointers and	
dynam	ic memory allocation	CO-4
(ii) Pro	gram to read and print records of a student/payroll database using structures	BTL-3
(iii) Pro	ogram to simulate file copy	
(iv) Pro	ogram to illustrate sequential access file	
(v) Pro	gram to illustrate random access file	
MODU	LE 5: TESTING, DIGITAL FORENSICS AND NEXT GENERATION SECURITY	(6L+6L=12)
Struct	ure of embedded C program - Data Types - Operators - Statements - Functions -	60 F
Keil C (Compiler.	CO-5
Practic	al component: Simple programs using embedded C	BTL-2
TEXT B	OOKS	
1.	Jeyapoovan T, (2015), "Fundamentals of Computing and Programming in C' house.	', Vikas Publishing
2.	Mark Siegesmund, (2014), "Embedded C Programming", Elsevier publications, fi	rst edition.
REFER	ENCE BOOKS	
1.	Ashok Kamthane, (2017), "Computer Programming", Pearson Education, 7 th Ec	lition.
2.	Yashavant Kanetkar, (2016), "Let us C", BPP publication, 15th edition.	
3.	S.Sathyalakshmi, S.Dinakar, (2013), "Computer Programming Practicals – Comp	outer Lab Manual",
5.	Dhanam Publication, First Edition.	
E BOOH	Ś	
1.	https://en.wikibooks.org/wiki/C_Programming	
моос		
1.	https://onlinecourses.nptel.ac.in/noc18-cs10/preview	
2.	http://nptel.ac.in/courses/106105085/2	
3.	https://www.udemy.com/c-programming-for-beginners/	

COURSE TITLE	INTRO	DUCTION TO DIGITAL SYS	CREDITS	3	
COURSE CODE	EEB4101	COURSE CATEGORY	РС	L-T-P-S	3-0-0-1

Ver	rsion		1.0	D		Approv	val Deta	ails		3 ACM, 02.202	1	LEARN LEVE			BTL-3
ASSES	SMEN	т ѕсн	ME								·		·		
Perio	irst odical ssment	: .	Second Periodical AssessmentSeminar/ Seminar/Surprise Test / QuizAttendanceESE											ESE	
1	5%		159	%		10% 5% 5% 50							50%		
	urse ription		An introduction to digital system design, with an emphasis on practical design techniques and circuit implementation.												
Course1. To Utilize binary and hexadecimal numbers.Objective2. To Solve problems involving digital codes, operations, and number systems3. To analyze and design combinational logic circuits															
Outo	urse come	1. <i>1</i> 2. (3. <i>1</i> 4.	Assess Choose Apply t Describ contro	basic o appro he con be and bller	peratic priate s cepts o apply	on in di sensors If signa concep	gital sy s and d I proce ots of r	stems isplay u ssing a nicroco	and ins units. nd con ontrolle	verting ers, pro	its. eleme gramn	nable lo	-		er and PID
Prereq	uisites	: Nil													
СО, РС	O AND	PSO N	ΛΑΡΡΙΝ	IG											
со	РО -1	РО -2	РО- 3	РО- 4	РО- 5	РО- 6	РО- 7	РО- 8	РО- 9	PO - 10	РО- 11	PO- 12	PSO	-1	PSO-2
CO-1	3	3	2	2	2	-	-	-	-	-	-	-	-		-
CO-2	3	3	2	2	3	-	-	-	-	-	-	-	-		1
CO-3	3	3	2	2	3	-	-	-	-	-	-	-	-		1
CO-4	3	3	2	2	3	-	-	-	-	-	-	-	-		1
CO-5	3	3	3	2	3	-	-	-	-	-	-	-	-		-
						-	loderat	ely rel	ated a	nd 3: St	rongly	related			
MODU	JLE 1 -	Intro	ductior	n to Dig	ital Sy	stems								(9)	

Analog& Digital signals - Need for digital instruments – Elements of digital instruments –	
Number systems: - Binary, Hexadecimal - Logic gates - Boolean algebra (Identities and Properties) - Digital controllers (ON-OFF).	
Properties) - Digital controllers (ON-OFF). Practical Component:	
Lab: - (To be done in Simulation environment)	CO-1
1. Logic gates simulation	BTL-3
2. Boolean Identities and Property verification	
3. Digital controller design	
Suggested Reading: Basics of number systems, All digital systems in consumer and industrial	
electronics.	
MODULE 2 –Sensors and Displays	(12)
Sensors and Transducers –Classification, Potentiometer, Strain Gauge, Piezoelectric Sensor,	
Linear Variable Differential Transformer, Resistance temperature detectors (RTD),	
Thermocouples, Tactile transducers - Displays: - Light Emitting Diode (including OLED)	
displays.	
Practical Component: - (To be done in Simulation environment)	
1. Simulation of Sensor characteristics- potentiometer	CO-2
2. Simulation of Sensor Characteristics-Strain Gauge	BTL-4
3. Simulation of Sensor characteristics-LVDT	
4. Simulation of Sensor characteristics-RTD	
5. Simulation of Sensor Characteristics-Thermocouple	
Suggested Reading: Primary sensing elements, introduction to displays.	
MODULE – 3 : Signal Conditioning Circuits	(9)
	(9)
D.C. Bridge- Unbalanced, Push-Pull configuration, Operational amplifiers- Inverting, Non- Inverting, Instrumentation Amplifier, Active filters: - Low pass, High pass - Analog to Digital	
inverting, instrumentation Ampliner, Active inters Low pass, righ pass - Analog to Digital	
Converter – Successive Approximation, Digital to Analog Converter - Weighted Resistor	
Converter – Successive Approximation, Digital to Analog Converter - Weighted Resistor. Practical Component: - (<i>To be done in Simulation environment</i>)	
Converter – Successive Approximation, Digital to Analog Converter - Weighted Resistor. Practical Component: - (<i>To be done in Simulation environment</i>) 1. Simulation of DC bridges	CO-3
Practical Component:- (To be done in Simulation environment)1. Simulation of DC bridges	CO-3 BTL-4
Practical Component: - (To be done in Simulation environment)	
 Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 	
 Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. 	
 Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 	BTL-4
Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers	
 Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. 	BTL-4
 Practical Component: - (<i>To be done in Simulation environment</i>) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, 	BTL-4
 Practical Component: - (<i>To be done in Simulation environment</i>) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, 	BTL-4
Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, Analogue Input/Output, Display. Introduction to Programmable Logic Controller (PLC) and PID (Proportional + Integral + Derivative) Controller. Practical Component: - (To be done in Simulation environment)	BTL-4
Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, Analogue Input/Output, Display. Introduction to Programmable Logic Controller (PLC) and PID (Proportional + Integral + Derivative) Controller. Practical Component: - (To be done in Simulation environment) 1. PLC Ladder logic simulation.	BTL-4 (9) CO-4
Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, Analogue Input/Output, Display. Introduction to Programmable Logic Controller (PLC) and PID (Proportional + Integral + Derivative) Controller. Practical Component: - (To be done in Simulation environment) 1. PLC Ladder logic simulation. 2. Proportional controller simulation.	BTL-4 (9)
Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, Analogue Input/Output, Display. Introduction to Programmable Logic Controller (PLC) and PID (Proportional + Integral + Derivative) Controller. Practical Component: - (To be done in Simulation environment) 1. PLC Ladder logic simulation. 2. Proportional controller simulation. 3. Proportional + Integral controller simulation.	BTL-4 (9) CO-4
Practical Component: - (To be done in Simulation environment) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, Analogue Input/Output, Display. Introduction to Programmable Logic Controller (PLC) and PID (Proportional + Integral + Derivative) Controller. Practical Component: - (To be done in Simulation environment) 1. PLC Ladder logic simulation. 2. Proportional - Integral controller simulation. 3. Proportional + Integral controller simulation. 4. Proportional + Integral controller simulation.	BTL-4 (9) CO-4
 Practical Component: - (<i>To be done in Simulation environment</i>) 1. Simulation of DC bridges 2. Operational amplifier applications 3. Active filter simulation 4. ADC- DAC simulation. Suggested Reading: Basic network theorems. MODULE – 4 :Introduction to Micro controllers Introduction: Memory types, peripheral devices- Microcontroller (8 bit), Architecture, Graphics Processing Unit (GPU) - Applications: -Interfacing of Digital Input/Output, Analogue Input/Output, Display. Introduction to Programmable Logic Controller (PLC) and PID (Proportional + Integral + Derivative) Controller. Practical Component: - (<i>To be done in Simulation environment</i>) 1. PLC Ladder logic simulation. 2. Proportional + Integral controller simulation. 	BTL-4 (9) CO-4

MODUL	E 5 – Consumer Electronics and Communication System	(6)							
Consur	ner Electronics: Television, Mobile Phones, Air conditioners, Refrigerators, Washing								
	e. (Block diagram approach only.)	CO-5							
	unication System: Satellite communication, Global Positioning Systems, Global	BTL-3							
	System for Mobile. (Block diagram approach only.)								
	ted Reading: Consumer Electronics User Manuals.								
TEXT BO									
1.	Thomas I. Floyd (2018), Digital Fundamentals, Pearson, 11th edition.								
2.	Ramakant A. Gayakwad (2017), Op-amps and Linear Integrated Circuits, Prentice Hall	,4 th edition.							
REFEREN	ICE BOOKS								
1.	David A. Bell(2018) , Electronic Instrumentation and Measurements, Oxford University Press.								
2.	SepehrNaimi, SarmadNaimi, Muhammad Ali Mazidi (2017), The 8051 Microcontroller And								
	Embedded Systems Using Assembly And C, Pearson, Second edition.								
3.	Frank D. Petruzella (2016), Programmable Logic Controllers, McGraw-Hill Education.								
E BOOKS									
1.	http://www.ee.iitm.ac.in/~giri/pdfs/EE4140/textbook.pdf								
2.	https://electronics.howstuffworks.com/home-audio-video-channel.htm								
MOOC									
1.	http://nptel.ac.in/courses/106108099/Digital%20Systems.pdf								
2.	http://nptel.ac.in/courses/112103174/pdf/mod2.pdf								
3.	http://www.nptel.ac.in/courses/Webcourse-contents/IISc-								
5.	BANG/Microprocessors%20and%20Microcontrollers/pdf/Teacher_Slides/mod3/M3L	6.pdf							
4.	http://nptel.ac.in/courses/108105063/pdf/L-09(SS)(IA&C)%20((EE)NPTEL).pdf								
5.	http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/microcontrollers/micro)/ui/							
5.	Course_home2_5.html								

COURSE TITLE	EN	GINEERING MECHANIC	S	CREDITS	4
COURSE CODE	MEB4116	COURSE CATEGORY	РС	L-T-P-S	3-1-0-1
Varsian	1.0	Annewal Dataila	23 ACM,	LEARNING	
Version	1.0	Approval Details	06.02.2021	LEVEL	BTL-3
ASSESSMENT SO	CHEME				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%		•			
12/0	15%	10%	5%	5%	50%

	1. To know the basics of statics
Course	2. To understand the concepts of friction and its applications
Objective	3. To acquire the knowledge on properties of solids and surfaces
Objective	4. To understand the concepts of dynamics
	5. To understand momentum and impulse
	Upon completion of this course, the students will be able to
	1. Recall all the basic laws and principles of mechanics.
Course	2. Analyze the problems related to machine structures and friction.
Outcome	3. Apply concepts of geometrical properties such as centroid, center of gravity and
Outcome	moment of inertia.
	4. Solve engineering problems on Statics in case of equilibrium conditions.
	5. Solve problems on dynamics, momentum and impulse.
Prerequisites: N	IL

CO, PO AND PSO MAPPING

со	РО	РО	РО	РО	PO	РО	РО	PO	РО	PO -	PO	РО	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	10	-11	-12	P30-1	P30-2
CO-1	3	2	3	2	-	-	-	-	1	-	-	1	-	-
CO-2	3	-	-	-	-	-	-	-	2	-	-	1	-	-
CO-3	3	2	3	3	-	-	-	-	1	-	-	-	-	-
CO-4	3	-	3	-	-	-	-	-	2	-	-	-	-	-
CO-5	3	2	3	3	-	-	-	-	1	-	-	1	-	_

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: INTRODUCTION TO MECHANICS AND FORCE SYSTEM	12
Statics: Fundamental concepts, Units & dimensions, Laws of mechanics, System of forces – parallelogram, triangle and polygon law of forces – resultant of a force system – - resultant of a concurrent, coplanar and parallel force system – resolution and composition of forces - Lami's theorem – transmissibility of forces - moment of a force – physical significance of moment - Varignon's theorem – resolution of a force into force and couple – equivalent system of forces – Equilibrium of rigid body in two dimensions - Problems. Suggested Reading: Forces in space – addition of concurrent forces in space – equilibrium of a particle in space	CO1 BTL2
MODULE 2: FRICTION	12

-	of lifting machines - law of lifting machine – efficiency - Problems. A Reading: Mechanical advantages – velocity ratio and their relationship.	
	3: PROPERTIES OF SURFACES AND SOLIDS	12
perpendio - Polar M thin disc Moment	es of planar surfaces – Centroid and second moment of area - Parallel and cular axis theorem – Centroid and Moment of Inertia of composite plane figure oment of Inertia – Radius of gyration - Mass moment of inertia of cylinder and (No derivations required) - Product of inertia – principal axes and Principal of Inertia - Theorems of Pappus and Guldinus – Problems. ed Reading : Determination of Centroids of Volumes by Integration ons).	CO3 BTL3
•	4: BASICS OF DYNAMICS	12
Equations velocity, gravity – projection – linear m Suggeste	n – kinematics and kinetics – displacements, velocity and acceleration- s of motion - Types of motion – Rectilinear motion of a particle with uniform uniform acceleration, varying acceleration – motion curves – motion under relative motion – curvilinear motion of a particle – projectiles – angle of n – range – time of flight and maximum height. Newton's second law of motion nomentum – D Alembert's principle, Dynamics equilibrium - Problems. Ed Reading: Work energy equation of particles – law of conservation of energy – of work and energy.	CO4 BTL3
MODULE	5: IMPULSE MOMENTUM AND IMPACT OF ELASTIC BODIES	12
Impulsive principle Definition momentu direct cen collision p	5: IMPULSE MOMENTUM AND IMPACT OF ELASTIC BODIES force – Impulse – linear impulse and momentum – Equations of momentum – impulse and momentum – impulsive motion – conservation of momentum. a – Time of compression, restitution, collision – law of conservation of am – Co-efficient of restitution – types of impact – collision of elastic bodies by atral impact and oblique impact – Problems – MATLAB©, basics, Application in problems, simple programming.	12 CO5 BTL3
Impulsive principle Definition momentu direct cen collision p	force – Impulse – linear impulse and momentum – Equations of momentum – impulse and momentum – impulsive motion – conservation of momentum. a – Time of compression, restitution, collision – law of conservation of am – Co-efficient of restitution – types of impact – collision of elastic bodies by antral impact and oblique impact – Problems – MATLAB©, basics, Application in problems, simple programming. and Reading: Collision of small body with a massive body – loss of kinetic energy.	CO5
Impulsive principle Definition momentu direct cen collision p Suggeste	force – Impulse – linear impulse and momentum – Equations of momentum – impulse and momentum – impulsive motion – conservation of momentum. a – Time of compression, restitution, collision – law of conservation of am – Co-efficient of restitution – types of impact – collision of elastic bodies by antral impact and oblique impact – Problems – MATLAB©, basics, Application in problems, simple programming. and Reading: Collision of small body with a massive body – loss of kinetic energy.	CO5 BTL3
Impulsive principle Definition momentu direct cen collision p <i>Suggeste</i> TEXT BOO 1	force – Impulse – linear impulse and momentum – Equations of momentum – impulse and momentum – impulsive motion – conservation of momentum. – Time of compression, restitution, collision – law of conservation of m – Co-efficient of restitution – types of impact – collision of elastic bodies by htral impact and oblique impact – Problems – MATLAB©, basics, Application in problems, simple programming. ed Reading: Collision of small body with a massive body – loss of kinetic energy. OKS Beer, F. P and Johnston Jr. E.R., (2017), Vector Mechanics for Engineers (In SI and Dynamics , Tata McGraw-Hill Publishing company, New Delhi, 11thEdition.	CO5 BTL3
Impulsive principle Definition momentu direct cen collision p <i>Suggeste</i> TEXT BOO 1 2 REFERENC 1	force – Impulse – linear impulse and momentum – Equations of momentum – impulse and momentum – impulsive motion – conservation of momentum. – Time of compression, restitution, collision – law of conservation of m – Co-efficient of restitution – types of impact – collision of elastic bodies by htral impact and oblique impact – Problems – MATLAB©, basics, Application in problems, simple programming. ed Reading: Collision of small body with a massive body – loss of kinetic energy. OKS Beer, F. P and Johnston Jr. E.R., (2017), Vector Mechanics for Engineers (In SI and Dynamics , Tata McGraw-Hill Publishing company, New Delhi, 11thEdition. Timoshenko S. & Young D. H., (2015), Engineering Mechanics, Mc-GrawHill. CE BOOKS Bhavikatti, S. S and Rajashekarappa, K.G.,(2016), Engineering Mechanic International (P) Limited Publishers.	CO5 BTL3 Units): Statics cs, New Age
Impulsive principle Definition momentu direct cen collision p <i>Suggeste</i> TEXT BOO 1 2 REFERENC	force – Impulse – linear impulse and momentum – Equations of momentum – impulse and momentum – impulsive motion – conservation of momentum. n – Time of compression, restitution, collision – law of conservation of m – Co-efficient of restitution – types of impact – collision of elastic bodies by ntral impact and oblique impact – Problems – MATLAB©, basics, Application in problems, simple programming. ed Reading: Collision of small body with a massive body – loss of kinetic energy. OKS Beer, F. P and Johnston Jr. E.R., (2017), Vector Mechanics for Engineers (In SI and Dynamics , Tata McGraw-Hill Publishing company, New Delhi, 11thEdition. Timoshenko S. & Young D. H., (2015), Engineering Mechanics, Mc-GrawHill. CE BOOKS Bhavikatti, S. S and Rajashekarappa, K.G.,(2016), Engineering Mechanic	CO5 BTL3 Units): Statics cs, New Age

Г

E BOOKS	
1	https://sites.google.com//popularebookfreetop659/-pdf-engineering-mechanics-statics
2	www.springer.com > Home > Engineering > Mechanics
3	https://www.amazon.in/Text-Book-Engineering-Mechanics/dp/9381069123
4	https://www.topfreebooks.org/free-engineering-ebooks-online-mechanical-engineering/`
5	https://www.studynama.com//453-Engineering-mechanics-pdf-lecture-notes-ebook-
6	https://themech.in/mechanical/mechanical-engineering-complete-ebooks-free-download/
7	www.faadooengineers.com/threads/17024-Engineering-mechanics-Pdf-Free-Download
8	https://www.pdfdrive.net/engineering-mechanics-books.html
моос	
1	https://swayam.gov.in/courses/public
	https://www.iitm.ac.in/content/nptel-open-online-course-noc-0
2	https://sites.google.com/view/nptelmits/departments/mechanical-engineering
3	nptel.ac.in/courses/122104015/
4	nptel.ac.in/courses/112103108/
5	nptel.ac.in/courses/112103109/
6	freevideolectures.com > Mechanical > IIT Guwahati
7	freevideolectures.com > Mechanical > IIT Kanpur
8	https://swayam.gov.in/courses/public

COURSE TITLE	MAN	IUFACTURING TECHNOLO	MANUFACTURING TECHNOLOGY-I CREDITS 3											
COURSE CODE	MEB4117	COURSE CATEGORY	L-T-P-S	3-0-0-1										
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4									
ASSESSMENT SCHEME														
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE										
15%	15%	10%	5%	5% 50%										
Course Description	used to manufa	roduces the basics on the acture any engineering pa ons of using the manufact ime.	irts(for both met	als and plastics).It also gives									
Course Objective	industry. 2. To understa 3. To compret principle of		and the significa ses performed o	nce of the sam n the metals a	e. nd the working									
Objective	principle of		-											

CORRIG		AND S	YLLAB	US						В. І	ECH -	WECHA		GINEERING	
		5.		nanism arn ab		e form	ning an	d shap	oing pr	ocesse	s for p	lastics.			
Outo	 Course Upon completion of this course, the students will be able to Differentiate the type of metal casting process and should able to demonstrate casting process Apply the knowledge of required fabrication process for their own design project Demonstrate the bulk deformation process like rolling, forging and extrusion Apply the knowledge of sheet metal forming for their own design project Demonstrate the forming and shaping of the plastic 														
СО, РО		PSO M	APPIN	IG											
со	РО -1	РО -2	PSO-1 PSO-2												
CO-1	-	-	-	-	1	-	-	-	-	-	-	-	-	-	
CO-2	-	-	-	-	-	-	-	-	-	2	-	-	-	-	
CO-3	-	-	-	-	-	1	-	-	-	-	-	-	-	-	
CO-4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO-5	-	-	3	-	-	-	-	-	-	-	-	-	-	-	
		:	1: Wea	akly re	lated,	2: Mo	derate	ly rela	ted ar	nd 3: St	rongly	relate	ed		
MODU	LE 1: N	/IETAL	CASTI	NG PR	OCESS	SES								(10)	
Sand c Types c machin Special - Press Inspect Sugges and pro	of Mou es - T casting ure di ion me s ted Re	Iding s ypes g proce e cast ethods pading	and - I of mo esses - ing - <i>: Taxc</i>	Proper ulding Shell, Centri	ties - C mach invest fugal c of the	Core m ines - ment casting	aking Melti casting g - CO	- Meth ng fur g - Cera 2 proc	ods of naces amic m cess -	Sand f - Wo nould - Sand	testing rking Lost V Castin	- Mou orincip Vax pro g defe	Iding le of ocess ects -	CO-1 BTL-4	
MODUL	.E 2: F/	ABRIC	ATION	PROC	ESS									(10)	
charact and sp Percuss Electros process welding process Adhesiv	and practices in metal casting process														

develop further and support the green manufacturing trend	
	(10)
MODULE 3: BULK DEFORMATION PROCESSES	(10)
Hot working and cold working of metals - Forging processes - Open and close die forging - Characteristics of the process - Types of Forging Machines - Typical forging operations - Rolling of metals - Flat strip rolling - Types of Rolling mills - Shape rolling operations - Tube piercing - Defects in rolled parts - Principles of Extrusion - Types of Extrusion - Hot and Cold extrusion -Principle of rod and wire drawing - Equipments used Suggested Reading: Advanced techniques in bulk deformation process, Significant	CO-3 BTL-4
Variables in a Deformation Process	
MODULE 4: SHEET METAL FORMING PROCESSES	(8)
Sheet metal characteristics - Typical shearing operations, bending and drawing operations - Stretch forming operations - Formability of sheet metal - Test methods - Working principle and application of special forming processes - Hydro forming - Rubber pad forming - Metal spinning - Explosive forming - Magnetic pulse forming - Peen forming - Super plastic forming - Process characteristics Suggested Reading: Forming of fan for vacuum cleaners, An Approach for Modeling Sheet Metal Forming for Process Controller Design	CO-4 BTL-4
MODULE 5: FORMING AND SHAPING OF PLASTICS	(7)
Types of plastics - Characteristics of forming and shaping processes - Moulding of Thermoplastics Working principles and typical applications of - Injection moulding - Plunger and screw machines Blow moulding - Rotational moulding - Film blowing - Extrusion - Typical industrial applications Thermoforming - Processing of Thermosets - Working principles and typical applications Compression moulding - Transfer moulding - Bonding of Thermoplastics - Fusion and solvent methods - Induction and Ultrasonic methods. Suggested Reading: Agile new plastics change shape with heat, Research on eco- friendly plastics for manufacturing process	CO-5 BTL-4
TEXT BOOKS	
1 Hajra Choudhury, (2010), Elements of Workshop Technology, Vol. I and II, M Pvt Ltd., Mumbai.	edia Promotors
2 Serope Kalpak jain, Steven R.Schmid, (2013), Manufacturing Engineering a Pearson Education, Inc. 7th Edition.	nd Technology,
REFERENCE BOOKS	
1 P.N. Rao, (2010), Manufacturing Technology, Tata McGraw-Hill Publishing Lim	ited.
2 B.S. Magendran Parashar & R.K. Mittal, (2011), Elements of Manufactu Prentice Hall of India.	ring Processes,
3 P.C. Sharma, (2010), A Text book of production technology, S. Chand and Com	ipany.
4 R.K. Rajput, (2016), A Textbook of Manufacturing Technology, Laxmi Public edition.	cations, Second

Г

E BOOKS	
1	https://books.google.co.in/books/about/Manufacturing_Technology.html?id=fSHZ
	AgAAQBAJ&redir_esc=y
2	https://books.google.co.in/books?id=6wFuw6wufTMC&printsec=frontcover
2	&redir_esc=y#v=onepage&q&f=false- R.K.Rajput
	https://books.google.co.in/books?id=COpTAAAAMAAJ&q=manufacturing+technology
3	&dq=manufacturing+technology&hl=en&sa=X&ved=0ahUKEwiqqa6SltDZAhVLvrwKH
	fikBFwQ6AEILDAB- David L. Goetsch
MOOC	
1	https://www.coursera.org/learn/advanced-manufacturing-process-
	analysis?siteID=.GqSdLGGurk-ihvgV6WIX0vV4OvPhJzUQ&utm_content=10&utm_
	medium=partner s&utm_source=linkshare&utm_campaign=*GqSdLGGurk
2	https://www.coursera.org/learn/manufacturing-process-fusion-360?siteID=. GqSdLGGurk-
	raM8i73q9gPGjzghYEJbgQ &utm_content=10&utm_medium= partners&utm_
	source=linkshare&utm_campaign=*GqSdLGGurk
3	https://www.fun-mooc.fr/courses/course v1:ENSCachan+20014+session02/about
4	https://www.edx.org/course/fundamentals-manufacturing-processes-mitx-2008 x-
	?source=aw&awc=6798_1520081220_4c266c011b90221d93f594ab6136cb0
	a&utm_source=aw&utm_medium=affiliate_partner&utm_content=text-
	link&utm_term=425997_CoToNet,%20Unip.%20Lda

COURSE TITLE		NEERING PHYSICS LAB to ALL branches of Eng	ineering)	CREDITS	1						
COURSE CODE	PHA4131	L-T-P-S	0-0-2-0								
Version	1.0	Approval Details	24th ACM - 30.5.2018	LEARNING LEVEL	BTL-3						
ASSESSMENT SCHEME											
EXPERIMENT	CALCULATION	RESULT	RECORD	ESE							
30	10	10	10	20%							
Course Description		tal methods to determir use of modern tools in	0 01	roperties of mater	ials and						
Course Objective	 demonstrate the use of modern tools in engineering To train students to analyze elastic properties of materials To determine thermal conductivity of a bad conductor. To train students to measure viscosity of liquids. To study the V-I characteristics of diode To train students to apply light phenomena to analyse materials. 										

	Upon completion of this course, the students will be able to													
		1.	•	-				of mate						
Course	_	2.				• •		ity of ba		ductor				
Outco		3.			ne visco			•		uuctor				
Outco	ne						•							
		4.			racter			e and re	ofra ati	inda	wofa	matari	ial	
									enactiv	ve mue		mater	Idl	
Prereq	Prerequisites: Physics practical at higher secondary level													
СО, РС	PO AND PSO MAPPING													
со	PO	РО	РО	РО	РО	РО	РО	PO-	РО	РО	РО	РО	PSO-	PSO-2
CO	-1	-2	-3	-4	-5	-6	-7	8	-9	-10	-11	-12	1	F30-2
CO-1	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO-2	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO-3	3	3	0	0	0	0	0	0	3	0	0	3	0	0
CO-4	3	3	0	0	3	0	0	0	3	0	0	3	0	0
CO-5	3	3	0	0	0	0	0	0	3	0	0	3	0	0
		1	: Wea	kly rel	ated, 2	2: Moo	derate	ly relat	ed and	l 3: Str	ongly	related	ł	
MODU	JLE 1: P	PROPE	RTIES	OF MA	TTER-	SOLID)						(9	L)
1. T	orsiona	l Pend	ulum	– Dete	ermina	ition c	of rigid	lity mo	dulus (of the	mate	rial of	а	
W	/ire.													CO-1
2. N	Non Uni	form B	endin	g – De	termin	ation	of You	ng's Mo	odulus					BTL-3
3. l	Jniform	Bendi	ng – D	eterm	inatior	n of Yo	ung's	Modulu	IS.					
	LE 2: PF													(3L)
4. V	iscosity	– Det	ermin	ation	of co-e	efficier	nt of v	iscosity	of a l	iquid	by Poi	seuille'	s	CO-2
fl	ow.													BTL-3
MODU	LE 3: TH	IERMA		IDUCT	IVITY									(3 L)
	ee's Di							nductiv	vity of	a ba	nd cor	nducto	r.	CO-3
Р	reparat	ion of	urea-f	ormalo	dehyde	e resin	•							BTL-3
	LE 4: O													(6 L)
	vir – We	-						thin wi	re					CO-4
7. S	pectror	neter -	- refra	ctive i	ndex o	f a pris	sm							BTL-3
MODU	LE 5: E	STIMA		METAL		ONTE	NTS IN	I THE S	AMPLE				(6	5 L)
8. 9	Semicon	ducto	r laser	– Dete	ermina	tion o	f wave	length	of lase	r using	gratir	ng		CO-5
9. 5	Semicon	ducto	r diode	e – VI c	haract	teristic	S							BTL-3
TEXT B	OOKS													
1. F	P. Mani,	(2005)), Engi	neerin	g Phys	ics Pra	cticals	, Dhana	am Puk	olicatio	ns, Ch	ennai.		
REFER	ENCE BO	DOKS												

MO	OC https://www.coursetalk.com/providers/coursera/courses/introduction-to-chemistry-1									
1.	manual.pdf									
	http://www.aurora.ac.in/images/pdf/departments/humanities-and-sciences/engg-phy-lab-									
E BO	E BOOKS									
2.	P. Kulkarni, (2015), Experiments in Engineering Physics Bachelor of Engineering and Technology.									
1 .	Edition.									
1	Glenn V. Lo, Jesus Urrechaga, (2005), - Aituna, Introductory Physics Laboratory Manual, Part-I, Fall									

COURSE TITLE		ATERIALS CHEMISTRY LA	CREDITS	1							
COURSE CODE	CYA4131		BS	L-T-P-S	0-0-2-0						
Version	1.0	1.0Approval Details24th ACM -LEARNING30.5.2018LEVEL		BTL-3							
ASSESSMENT SCHEME											
EXPERIMENTAL	CALCULATION	RESULT	VIVA	RECORD	ESE						
30%	10%	10%	20%	10%	20%						
Course Description	This course imparts practical exposure on basic techniques employed for the analyses of lubricants, refractories & other engineering materials and spectrophotometric analyses for metal ions.										
Course Objective	 To train the students in characterization of lubricants by viscosity measurement. To give a practical exposure for the construction of phase diagram, for partially- miscible liquids (phenol-water system) To provide the students practical knowledge in preparation of polymers (urea- formaldehyde resin) To impart hands-on training in characterization of refractories. To equip the students with practical skill in estimation of metal ions by 										
Course Outcome Prerequisites: Know	outcome spectrophotometry. Upon completion of this course, the students will be able to 1. Grade the lubricants based on viscosity 2. Analyze the phase diagram and interpret the critical solution temperature. 3. Apply the practical knowledge gained on the preparation of polymers, for the preparation of other similar macromolecules. 4. Analyze the strength of refractories. 5. Apply the spectrophotometric method for the determination of metal ions in different environment.										

CO, PC	AND PS	O MAF	PPING											
	CO PO-1	PO P								PSO-				
co		-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	PSO-2
CO-1	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-2	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-3	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-4	3	2	1	-	-	-	2	-	-	-	-	2	-	-
CO-5	3	2	1	-	-	-	2	-	-	_	-	2	-	-
		1:	Weakl	y relat	ed, 2:	Mode	rately	relate	d and	3: Stro	ngly r	elated		
MODULE 1: PROPERTIES OF LUBRICANTS (6)												5)		
1. Determination of viscosity of polymer using Ostwald Viscometer.													CO-1	
 Determination of Viscosity Index of lubricants. Determination of viscosity of oil using Red-Wood Viscometer 												BTL-3		
3. Determination of viscosity of oil using Red-Wood Viscometer. MODULE 2: PHASE DIAGRAM IN LIQUID SYSTEM													(6)	
4. Construction of phenol-water phase diagram.												CO-2		
5. Determination of adsorption isotherm for acetic acid on activated charcoal.												BTL-3		
MODU	.E 3: PRE	PARAT	TION P	OLYM	ER RES	SIN								(6)
6. Preparation of urea-formaldehyde resin.											CO-3			
													BTL-3	
MODU	.E 4: BAS	IC PRC	PERTI	ES OF	REFRA	CTOR	IES							(6)
	erminatio	•				•	19 .1	_						CO-4
	erminatio		••		•	·								BTL-3
	E 5: EST												(8)
	mation o erminatio										netry.			CO-5
	mation o									-				BTL-3
12. Ver	fication	of Beei	r-Lamb	ert's l	aw usi	ng golo	d nano	partic	es.					
TEXT B														
ļļ	P.S. Ragh		2018),	Mate	rials Cł	nemica	als Lab	orator	y Man	ual, Dh	anam	Public	ations.	
REFERENCE BOOKS														
	1. J. Mendham, R.C. Denney, J.D. Barnes and N.J.K. Thomas, (2009), Vogel's Textbook of Quantitative Chemical Analysis, Pearson Education. 6 th Edition.												ktbook of	
E BOOK			ennedi	Analy	515, FE		Luucal	011. 0	Luitit	511.				
1.	1. http://www.erforum.net/2016/01/engineering-chemistry-by-jain-and-jain-pdf-free-													
MOOC	book.htr	nı												
	nttps://w	ww.co	urseta	lk con	n/nrov	iders/	OURSE	ra/cou	rses/ir	ntrodu	ction-t	o-chei	mistry-1	
<u> </u>					101		.50130	,	1 2 2 3 / 11		50011		пэсгу т	

COURS	SE TIT	LE		ENGINEERING IMMERSION LAB								CREDIT 0.5			
COURS	SE CO	DE	GEA	4131	СС	COURSE CATEGORY				BS	L-	Г-Р-S		0-0-2-2	
VE	RSIO	N		1.0	AP	APPROVAL DETAILS				ACM -		ARNIN(LEVEL	BTL-3		
ASSES	SMEN	NT SC	HEME					Į_			Į				
					CI	Α						ESE			
					809	%						20%			
Со	urse		To provide the students with hands on experience on various basic engineer										engineering		
Desci	riptio	n	practices												
Course Objective			 The course should enable the students to To Relate theory and practice of basic Civil and Mechanical Engineering To Learn basic concepts in Aeronautical and Automobile Engineering To Learn basic concepts in Electrical, Electronics, mechatronics and Computer Science 												
Course Upon completion of this course, the students will be able to Outcome 1. Identify and use of tools, Types of joints used in welding, carpentry and pluo operations. 2. Explore the parts of various IC engines used in various automobiles. 3. Demonstrate the basic concepts related to flow pattern and aircraft mode Prerequisites: NIL															
CO, PC		7 420	MAPP	ING		[[[
со	Р О -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO- 1	PSO-2	
CO-1	3	2	-	2	-	1	-	-	-	-	-	-	-	_	
CO-2	3	2	_	2	-	1	-	-	-	-	-	-	-	-	
CO-3	3	2	-	2	-	1	-	-	-	-	-	-	-	-	
					9	SLOT X	- LIST C	OF EXP	ERIME	INTS	L				
SLOT X - LIST OF EXPERIMENTS I. MECHANICAL ENGINEERING WORKSHOP 1. Welding: Arc welding: Butt joints 2. Lap joints. 3. Machining: Facing 4. Turning II. AUTOMOBILE ENGINEERING 1. Dismantling and Studying of two stroke gasoline engine. 2. Assembling of two stroke gasoline engine. 3. Dismantling and Studying of four stroke gasoline engine 4. Assembling of four stroke gasoline engine. 1. Dismantling and Studying of four stroke gasoline engine 1. Dismantling and Studying of four stroke gasoline engine 1. Dismantling and Studying of four stroke gasoline engine 1. Dismantling and Studying of four stroke gasoline engine 1. Dismantling and Studying of four stroke gasoline engine 1. Assembling of four stroke gasoline engine.															

- 2. Force measurement on Aircraft Model
- 3. Determination of Young's Modulus for Aluminum Cantilever Beam
- 4. Binary Addition & Subtraction using Microprocessor

IV. CIVIL ENGINEERING

- 1. Plumbing- Basic Pipe Connection using valves, couplings and elbows.
- 2. Carpentry Sowing, Planning and making common Joints.
- 3. Bar Bending
- 4. Construction of a 50 cm height brick wall without mortar using English Bond.

SLOT Y - LIST OF EXPERIMENTS

V.ELECTRICAL ENGINEERING

- 1. Study of tools and accessories.
- 2. Study of cables.
- 3. Staircase wiring, Tube light and Fan connection.
- 4. Measurement of energy using single phase energy meter.

VI. ELECTRONICS ENGINEERING

- 1. Study of Active and Passive Components.
- 2. Study of Logic Circuits.
- 3. Making simple circuit using Electronic Components.
- 4. Measuring of parameters for signal using CRO.

VII. COMPUTER SCIENCE

- 1. Troubleshooting different parts of the computer peripherals, Monitor, Keyboard & CPU.
- 2. Installation of various operating systems, their capabilities, Windows, Unix, Linux.
- 3. Installation of commonly used software like MS Office
- 4. Assembling digital computer.

VIII. MECHATRONICS ENGINEERING

- 1. Study of Key Elements of Mechatronics Systems
- 2. Sensors Load Cell, Thermocouple
- 3. Actuators Linear & Rotary Actuators
- 4. Interfacing & Measurements Virtual Instrumentation

REFERENCE

- 1 Jeyapoovan T and Saravanapandian M.,(2015), Engineering practices lab manual, Vikas publishing House, New Delhi, 4th Edition.
- 2 Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., (2008), "Elements of Workshop Technology", Vol. I, Media promoters and publishers private limited, Mumbai.
- 3 Ibrahim Zeid, (2011), CAD/CAM Theory and Practice, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

METHOD OF ALLOCATION FOR ENGINEERING IMMERSION LAB

SLOT X : MECH, AERO, AUTO, CIVIL EXPERIMENTS

SLOT Y : EEE, ELECTRONICS, CSE, MECHATRONICS EXPERIMENTS

- EVERY CLASS OF
 - GROUP A (AERO, AUTO, MECH, MCT, CHEM, BIO, CIVIL
 - GROUP B (CSE, IT, ECE, EEE, AEROSPACE)

GETS DIVIDED INTO 4 SUB - GROUPS NAMELY a, b, c, d -- EACH CONSISTING OF 15 TO 20 STUDENTS

MAX.

- FOR EXAMPLE: GROUP A STUDENTS WILL OCCUPY SLOT X
 - WEEK 1 : SLOT X ----
 - ✓ a MECH; b AUTO; c AERO ; d CIVIL
 - WEEK 2 : SLOT X ----
 - ✓ b MECH; c AUTO; d AERO ; a CIVIL
- > THE ABOVE SCHEDULE WILL BE ON ROTATION EVERY MONTH (ONE CYLCE PER MONTH)
- **GROUP B STUDENTS WILL OCCUPY SLOT Y**
 - WEEK 1 : SLOT Y ----
 - ✓ a EEE; b ECE; c CSE; d MCT
 - WEEK 2 : SLOT Y ----
 - ✓ b EEE; c ECE; d CSE; a MCT
- > THE ABOVE SCHEDULE WILL BE ON ROTATION EVERY MONTH (ONE CYLCE PER MONTH)

SEMESTER III

COURS	E TITLE	E	Р	ARTIA			ial ec		ONS AI	ND		CRED	TS	4
COURS	E COD	E	MAA	1201	CC	URSE	CATE	GORY		BS		L-T-P	-S	3-1-0-0
Ver	sion		1.0	D	4	pprov	al Det	ails		th ACM .5.2018		LEARN LEVE		BTL-4
ASSESS	MENT	SCHE	ME											
First Pe Assess	riodica sment		Seco Perioo Assess	dical		Assigr	Seminar/ ssignments/ Project		-	orise Te ' Quiz	est /	Attenda	ance	ESE
15	5%		159	%		1	.0%			5%		5%		50%
Cou Descr	urse iption		To make the student understand the basic concepts of partial differential equations and transforms and its applications											
	 To present the main results in the context of partial differential equations and study numerical methods for the approximation of their solution To introduce the wave equation including time and position dependence to mathematically model the way thermal energy moves through the plate To understand the concept of Fourier transform To understand the concept of Z-transform and its properties 											ence		
	urse come	1. 2. 3. 4. 5.	form equ clas clas solv tech	nulate ations sify an sify an re prot	and s d solve d solve olems s	olve so e the V e two o relate	ome o Vave a dimens d to e	f the p ind He sional nginee	ohysica at equ heat e ering a	ations quation pplicat	lems ns tions	involvir	g Fouri	al differential er Transform
Prerequ	isites:	NIL								-				
CO, PO	AND P	SO M	APPIN	G										
со	РО -1	PO -2	PO -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	PO -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	2	1	1	1	1	-	-	-	-	-	-	1	-	-
CO-2	2	1	1	1	1	-	-	-	-	-	-	1	-	-
CO-3	2	1	1	1	1	-	-	-	-	-	-	1	-	-
CO-4	2	1	1	1	1	-	-	-	-	-	-	1	-	-
CO-5	2	1	1	1	1	-	-	-	-	-	-	1	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related	
MODULE 1: PARTIAL DIFFERENTIALEQUATIONS (9)	L+3T=12)
Formation of partial differential equations by elimination of arbitrary constants, arbitrary functions - Solution of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second order with constant coefficients. Suggested Reading: Partial Differentiation	CO-1 BTL-4
MODULE 2: ONE DIMENSIONAL WAVE AND HEAT FLOW EQUATION	(9L+3T=12)
Classification of second order linear partial differential equations - Solutions of one dimensional wave equation (without proof) - One dimensional heat flow equation (without proof) and application in string and rod problems. Suggested Reading: Partial Differential Equations, Half range sine series.	CO-2 BTL-4
MODULE 3: TWO DIMENSIONAL HEAT FLOW EQUATION	(9L+3T=12)
Steady state solution of two dimensional heat equations and applications in finite plates and infinite plates problems. Suggested Reading: Partial Differential Equations, Half range sine series.	CO-3 BTL-4
MODULE 4: FOURIERTRANSFORM	(9L+3T=12)
Fourier Integral Theorem (without proof) - Fourier transform pair - Sine and Cosine transforms - Properties - Transforms of Simple functions - Convolution theorem - Parseval's identity. Suggested Reading: Basic integration .	CO-3 BTL-3
MODULE 5: Z-TRANSFORM AND DIFFERENCE EQUATIONS (9	L+3T=12)
Z-Transform - Elementary Properties - Inverse Z-Transform - Convolution theorem - Formation of Difference equations - Solution of difference equations using Z-Transform Suggested Reading: Basic calculus	CO-4 BTL-4
TEXT BOOKS	
1. Grewal. B.S., (2012), "Higher Engineering Mathematics", Khanna Publisher Edition.	s, Delhi. 42nd
2. Chandrasekaran A, (2015), "A Text Book of Transforms and Partial Different Dhanam Publication.	ial Equations",
REFERENCE BOOKS	
1. BalLN.P and Manish Goyal,(2007), "A Textbook of Engineering Mathema Publications Pvt Ltd, 7th Edition.	atics", Laxmi
2. Datta.K.B., (2013), "Mathematical Methods of Science and Engineering", Cer India Pvt Ltd, Delhi.	ngage Learning
3. Veerarajan. T., (2012), "Transforms and Partial Differential Equations", Tata Education Pvt. Ltd., New Delhi, Second reprint.	a McGraw Hill
E BOOKS	

1.	nptel.ac.in/courses/122107037/
2.	nptel.ac.in/courses/122107037/22
MOOC	
1.	https:f/www.mooc-list.com/tags/laplace-transforms
2.	https://www.edx.org/course/introduction-differential-equations-bux-math226-1x-1

COURSE TITLE	ENGINEERING THERMODYNAMICSCREDITS4												
COURSE CODE	MEB4201	COURSE CATEGORY	РС	L-T-P-S	3-1-0-2								
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4								
ASSESSMENT S	ASSESSMENT SCHEME												
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE								
15%	15% 10% 5% 5% 50%												
Course Description	To provide an appreciation of energy conversion processes in the context of engineering applications and to introduce the laws of thermodynamics.												
Course Objective	 transformati To Demonst solving probl To Differenti To Do basic a 	ate ideal and real gases an analysis of the properties of	cesses. tible heat, Latent nd to demonstrat of gas mixtures	heat and use s									
 5. To Demonstrate the various psychrometric processes Upon completion of this course, the students will be able to 1. Analyze and solve first law problems in a methodical fashion with respect to closed and open systems 2. Validate the concepts of degradation of energy and its effect in practical applications 3. Analyze and evaluate the performance of vapour power cycles and to describe binary vapour cycles. 4. Evaluate the thermodynamic relations and properties of gas mixtures. 5. Evaluate the properties of air and water vapour mixtures using psychrometric chart 													

CO, PO AND PSO MAPPING

со	PO -1	PO -2	РО- 3	РО- 4	РО -5	РО -6	PO -7	PO -8	РО -9	PO -10	PO -11	PO- 12	PSO-	1 PSO-2
CO-1	-1	2	2	-	-5	-0	-/	-0	-5	-10	-11	-	_	_
CO-2	1	2	2	-	-	-	-	-	-	-	-	-	_	
CO-3	1	-	2	-	-	-	1	-	-	-	-	-	-	-
CO-4	1	1	-	-	2	-	-	-	-	-	-	2	_	-
CO-5	1	-	2	-	-	-	2	-	-	-	-	2	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODULE 1: BASIC CONCEPTS & FIRST LAW OF THERMODYNAMICS											(9L+3T=12)			
Thermodynamic systems, concepts of continuum, basic definitions, heat and work, zeroth law, First law, SFEE, First Law for closed and open systems. Suggested Reading : IC engine Indicator diagram and problems associated MEP, IP, BP. Solving SFEE applications using Matlab© MODULE 2: SECOND LAW OF THERMODYNAMICS											CO-1 BTL-3			
														(9L+3T=12)
Second law of thermodynamics Statements, reversibility, causes of irreversibility, Carnot cycle, reversed Carnot cycles. Thermodynamic Temperature Scale, entropy, Clausius inequality, Entropy change in isothermal and adiabatic processes. Isentropic processes. Suggested Reading: Concepts of Exergy, Solving combined heat engines and refrigerator problems using Matlab ©										s.	CO-2 BTL-4 (9L+3T=12)			
MODULE 3: PROPERTIES OF PURE SUBSTANCE Properties of pure substances, PVT surface, Steam tables, calculation of properties, Carnot cycle for steam and ideal efficiency. Rankine cycle with dry, saturated and superheated steam. Reheat and Regenerative cycles. Binary vapour power cycles (descriptive treatment only) Suggested Reading: Binary vapour cycles and combined cycles. Simulation of Rankine cycle with reheat and regeneration using Matlab©										and ycles	CO-3 BTL-4			
MODU	LE 4: 0	GAS M	IXTUR	ES AND	THER	MODY	NAMI	C RELA	TIONS				I	(9L+3T=12)
Ideal and real gases, Avagadro's law, compressibility. Dalton's and Amagat's law, properties of gas mixtures, Maxwell relations, Clausius Clapeyron equations, Joule Thomson Coefficient. Suggested Reading : Ideal and real gases, Plotting compressibility chart using Matlab©										Joule	CO-4 BTL-4			
MODULE 5: PSYCHROMETRY											(9L+3T=12)			
Psychrometry and psychrometric charts, property calculations of air vapour mixtures. Psychrometric processes - Adiabatic mixing, evaporative cooling. Suggested Reading : Air water vapour mixture property calculation and plotting using Matlab©.												CO-5 BTL-3		
TEXT B	OOKS													

1	Cengel & Boles. (2017), Thermodynamics: an Engineering Approach, McGraw Hill, 8th Edition.
2	Nag, P.K., (2017), Engineering Thermodynamics Tata McGraw-Hill Publishing Company Limited
	New Delhi, 6th Edition,
REFEREN	CE BOOKS
1	Moran and Shapairo, (2015), Principles of Engineering Thermodynamics, Wiley, 8th Edition.
2	Rajput R K (2016), "A text book of Engineering Thermodynamics", S. Chand publishers.
3	Stephen J Chapman, (2012), Matlab programing for Engineers, Cengage publishers, 4th edition.
E BOOKS	
1	http://engineeringstudymaterial.net/ebook/schaum-outline-of-thermodynamics-for-engineers/
2	http://engineeringstudymaterial.net/ebook/basics-and-applied-thermodynamics/
2	http://www.freebookcentre.net/physics-books-download/Thermodynamics-Fundamentals-and-
3	Its-Application-in-Science.html
MOOC	
1	http://nptel.ac.in/courses/112103016/
2	http://nptel.ac.in/courses/112106133/
3	http://nptel.ac.in/courses/112104113/
4	http://nptel.ac.in/courses/112105123/

COURSE TITLE	FLUID I	MECHANICS AND MACH	IINERY	CREDITS	3									
COURSE CODE	MEB4202	COURSE CATEGORY	РС	L-T-P-S	3-0-0-2									
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3									
ASSESSMENT SC	ASSESSMENT SCHEME													
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE									
15%	15%	10%	5%	50%										
Course Description	It contains laws	rs basic knowledge on f and principles of fluid ydraulic machinery.	· · ·	-										
Course Objective	 To identify v To understand To evaluate 	nd the basic principles o arious types of flows nd boundary layer conce the performance of hyd nd the functioning and c	epts and flow the raulic turbines	rough pipes										

			Upor	n comp	letion	of thi	s cours	se, the	stude	nts wil	l be ab	le to		
		1.	Ident	ify the	effect	t of flu	id proj	perties	on a f	low sy	stem.			
		2.	Ident	ify typ	e of flu	uid flo	w patt	erns, b	ounda	ary lay	er and	descri	be continu	ity
			equa	tion.										
C οι	ırse	3.	Analy	/ze a v	ariety	of pra	ctical f	luid flo	w and	l meas	uring	devices	s and utilize	e Fluid
Outc	ome		Mech	nanics	princip	oles in	design	۱.			-			
		4.	Selec	t and a	analyze	e an ap	propr	iate tu	rbine	with re	eferen	ce to g	iven situat	ion in
			powe	er plan	ts.									
		5.	Estim	ate pe	erform	ance p	arame	eters o	f a give	en Cen	trifuga	al and I	Reciprocat	ing pump.
Prereau	Prerequisites: Nil													
				_										
CO, PO											1		1	T
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12		
CO-1	3	3	1	-	2	-	-	2	-	-	-	2	1	-
CO-2	3	3	-	1	2	-	-	-	1	-	-	2	1	-
CO-3	3	3	-	2	2	-	-	1	-	2	-	2	1	-
CO-4	3	3	1	-	2	-	-	-	-	1	-	2	1	-
CO-5	3	3	-	-	2	-	-	1	-	1	-	2	1	-
		1	l: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	trongly	relate	ed	
MODUI	.E 1: E	BASIC	CONCI	EPTSAI	ND PR	OPERT	IES							(9)
Fluid–D	efinitio	on, dis	tinctio	n betv	veen s	olid ar	d fluic	l-Units	and d	imens	ions-P	ropert	ies of	
fluids- d	ensity	, speci	fic we	ight, s	pecific	volun	ne, spe	ecific g	ravity,	temp	eratur	e, visc	osity,	
compre	ssibility	y, vapo	our pre	essure,	capill	ary an	d surfa	ice ten	sion -	Fluid s	statics	conce	ept of	60 1
fluid sta	atic pi	ressure	e, abs	olute	and g	gauge	press	ures -	press	sure n	neasur	ement	ts by	CO-1 BTL-3
manom	eters a	nd pre	essure	gauge	s.									BIL-3
Suggest	ed Red	ading:	Hydro	ostatic	force	s on a	subm	erged	plane	and a	curved	surfa	ces –	
centre o	f press	ure —s	tabilit	y of flo	ating (and su	bmerg	ed boo	lies.					
MODUL	E 2: FL	UID KI	NEMA	TICSA	ND FL	UID DI	(NAMI	CS						(9)
Fluid K	inema	tics-Fl	ow vi	sualiza	ition-li	nes o	f flov	v-types	of	flow-v	elocity	field	and	
acceleration-continuity equation (one and three dimensional differential forms)-										rms)-				
Equation of streamline-stream function-velocity potential function-circulation-flow net-										net–				
fluid dynamics-equations of motion - Euler's equation along a streamline - Bernoulli's										CO-2				
equation – applications - Venturi meter, Orifice meter, Pitot tube- dimensional analysis-									lysis-	BTL-2				
Buckingham's π theorem-applications- similarity laws and models.														
Suggested Reading: Ideal fluid flow- Uniform flow, source flow- sink flow and free														
vortex flow														
MODUL	MODULE 3: INCOMPRESSIBLE FLUID FLOW										(9)			

Viscous flow - Navier-Stoke's equation (Statement only) - Shear stress, pressure gradient relationship - laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's) - Hydraulic CO-3 and energy gradient - flow through pipes - Darcy -weisback's equation - piperoughness-frictionfactor-Moody's diagram-minorlosses- GO-3 flowthroughpipesinseriesand in parallel - power transmission - Boundary layer flows, boundary layer thickness, boundary layer separation - drag and lift coefficients. SUGUE 4: Suggested Reading: derive continuity and momentum equation for incompressible fluid flow (9) Hydro turbine: Definition and classification - exchange of energy - Euler's equation for turbo machines - Construction of velocity vector diagrams - Head and specific work - components of energy transfer - degree of reaction. Pelton turbine - Francis turbine-Propeller turbine - Kapian turbine - working principles - velocity triangles - work done - specific speed - efficiencies -performance curve for turbines. CO-4 BTL-2 Suggested Reading: draft tube for reaction turbine (9) Pumps: definition and classifications - Centrifugal pump: classifications, working principle, velocity triangles, specific speed, efficiency and performance curves - Reciprocating pump: classification, works saved by air vessels and performance curves - cavitation in pumps - rotary pumps: working principles of gear and vane pumps Suggested Reading: diffusers for centrifugal pump and cavitation in diffusers, Plot H-Q Characteristics curve for the centrifugal for different RPM using MATLAB@ BTL-3 Suggeste										
Hydro turbine: Definition and classification - exchange of energy - Euler's equation for turbo machines - Construction of velocity vector diagrams - Head and specific work - components of energy transfer - degree of reaction. Pelton turbine- Francis turbine- Propeller turbine - Kaplan turbine - working principles - velocity triangles - work done - specific speed - efficiencies -performance curve for turbines. Suggested Reading: draft tube for reaction turbine CO-4 BTL-2 MODULE 5: HYDRAULIC PUMPS (9) Pumps: definition and classifications - Centrifugal pump: classifications, working principle, velocity triangles, specific speed, efficiency and performance curves - Reciprocating pump: classification, working principle, indicator diagram, work saved by air vessels and performance curves - cavitation in pumps - rotary pumps: working principles of gear and vane pumps Suggested Reading: diffusers for centrifugal pump and cavitation in diffusers, Plot H-Q Characteristics curve for the centrifugal for different RPM using MATLAB© 1 Streeter, V.L., and Wylie, E.B., (2010) "Fluid Mechanics", McGraw-Hill, New Delhi. 2 Kumar, K.L. (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd. 3 Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20 th edition. 2 White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. 3 Ramamirtham,S., (2014), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. 3 Ramamirtham,S., (2014), "Fluid Mechanics and Hydraul	gradient circular tu and ene piperough flowthrou boundary Suggested	relationship - laminar flow between parallel plates - Laminar flow through ubes (Hagen poiseulle's) - Hydraulic ergy gradient - flow through pipes - Darcy -weisback's equation - nness-frictionfactor-Moody'sdiagram-minorlosses- ughpipesinseriesand in parallel - power transmission - Boundary layer flows, layer thickness, boundary layer separation - drag and lift coefficients.								
turbo machines - Construction of velocity vector diagrams - Head and specific work - components of energy transfer - degree of reaction. Pelton turbine- Francis turbine- Propeller turbine - Kaplan turbine - working principles - velocity triangles - work done - specific speed - efficiencies - performance curve for turbines. CO-4 BTL-2 Suggested Reading: draft tube for reaction turbine (9) Pumps: definition and classifications - Centrifugal pump: classifications, working principle, velocity triangles, specific speed, efficiency and performance curves - Reciprocating pump: classification, working principle, indicator diagram, work saved by air vessels and performance curves - cavitation in pumps - rotary pumps: working principles of gear and vane pumps CO-5 BTL-3 Suggested Reading: diffusers for centrifugal pump and cavitation in diffusers, Plot H-Q Characteristics curve for the centrifugal for different RPM using MATLAB© CO-5 BTL-3 1 Streeter, V.L., and Wylie, E.B., (2010) "Fluid Mechanics", McGraw-Hill, New Delhi. CO-4 BTC 2 Kumar, K.L., (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd. Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20 th edition. 2 White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, Sth Edition, New Delhi. 2 White, F.M., (2010), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9 th edition. 2 White, F.M., (2010), "Fluid Mechanics and Hydraulics and Flui	MODULE	4: HYDRAULIC TURBINES	(9)							
Pumps: definition and classifications - Centrifugal pump: classifications, working principle, velocity triangles, specific speed, efficiency and performance curves - Reciprocating pump: classification, working principle, indicator diagram, work saved by air vessels and performance curves - cavitation in pumps - rotary pumps: working principles of gear and vane pumps CO-5 Suggested Reading: diffusers for centrifugal pump and cavitation in diffusers, Plot H-Q Characteristics curve for the centrifugal for different RPM using MATLAB© TEXT BOOC 1 Streeter, V.L., and Wylie, E.B., (2010) "Fluid Mechanics", McGraw-Hill, New Delhi. 2 Kumar, K.L., (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd. 3 Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20 th edition. 2 White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. 3 Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9 th edition. 4 Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, New Delhi, 3 rd edition.	turbo ma compone Propeller specific sp	chines - Construction of velocity vector diagrams - Head and specific work - nts of energy transfer - degree of reaction. Pelton turbine- Francis turbine- turbine - Kaplan turbine - working principles - velocity triangles - work done - peed - efficiencies -performance curve for turbines.								
principle, velocity triangles, specific speed, efficiency and performance curves - CO-5 Reciprocating pump: classification, working principle, indicator diagram, work saved by air vessels and performance curves - cavitation in pumps - rotary pumps: working principles of gear and vane pumps Suggested Reading: diffusers for centrifugal pump and cavitation in diffusers, Plot H-Q Characteristics curve for the centrifugal for different RPM using MATLAB© TEXT BOOKS 1 Streeter, V.L., and Wylie, E.B., (2010) "Fluid Mechanics", McGraw-Hill, New Delhi. 2 Kumar, K.L., (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd. 3 Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20 th edition. 2 White, F.M., (2016), Fundamentals of Aerodynamics. New York, NY: McGraw-Hill, 6 th edition. 2 White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. 3 Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9 th edition. 4 Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw- Hill, New Delhi, 3 rd edition.	MODULE	5: HYDRAULIC PUMPS	(9)							
1Streeter, V.L., and Wylie, E.B., (2010) "Fluid Mechanics", McGraw-Hill, New Delhi.2Kumar, K.L., (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd.3Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20 th edition. REFERENCE BOOKS 1Anderson, John D.(2016), Fundamentals of Aerodynamics New York, NY: McGraw-Hill, 6 th edition.2White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi.3Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9 th edition.4Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw- Hill, New Delhi, 3 rd edition.	principle, Reciproca air vessel principles Suggeste	Pumps:definition and classifications - Centrifugal pump: classifications, working principle, velocity triangles, specific speed, efficiency and performance curves - Reciprocating pump: classification, working principle, indicator diagram, work saved by air vessels and performance curves - cavitation in pumps - rotary pumps: working principles of gear and vane pumpsCO-5 BTL-3Suggested Reading:diffusers for centrifugal pump and cavitation in diffusers, Plot H-QH-Q								
 Kumar, K.L., (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd. Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20th edition. REFERENCE BOOKS Anderson, John D.(2016), Fundamentals of Aerodynamics. New York, NY: McGraw-Hill, 6th edition. White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9th edition. Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, New Delhi, 3rd edition. 	TEXT BOC	DKS								
 Modi, P.N., and Seth, S.M., (2013) "Hydraulics and Fluid Mechanics including Hydraulic Machine", Standard Book House, New Delhi, 20th edition. REFERENCE BOOKS Anderson, John D.(2016), Fundamentals of Aerodynamics. New York, NY: McGraw-Hill, 6th edition. White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9th edition. Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, New Delhi, 3rd edition. 	1	Streeter, V.L., and Wylie, E.B., (2010) "Fluid Mechanics", McGraw-Hill, New Del	hi.							
Machine", Standard Book House, New Delhi, 20th edition.REFERENCE BOOKS1Anderson, John D.(2016), Fundamentals of Aerodynamics. New York, NY: McGraw-Hill, 6th edition.2White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi.3Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9th edition.4Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, New Delhi, 3rd edition.	2	Kumar, K.L., (2015) "Engineering Fluid Mechanics", S Chand & Company (P)Ltd.								
 Anderson, John D.(2016), Fundamentals of Aerodynamics. New York, NY: McGraw-Hill, 6th edition. White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi. Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9th edition. Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, New Delhi, 3rd edition. 	3		ding Hydraulic							
edition.2White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi.3Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9 th edition.4Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, New Delhi, 3 rd edition.	REFERENC	CE BOOKS								
 Ramamirtham,S., (2014), "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, 9th edition. Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw- Hill, New Delhi, 3rd edition. 	1		1cGraw-Hill, 6 th							
 and Sons, 9th edition. Som,S.K., and Biswas,G. (2011), "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw- Hill, New Delhi, 3rd edition. 	2	White, F.M., (2010), "Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Del	hi.							
McGraw- Hill, New Delhi, 3 rd edition.	3		", Dhanpat Rai							
E BOOKS	4		lachines", Tata							
	E BOOKS									

1	https://books.google.co.in/books/about/Fluid_Mechanics.html?id=K5-rK6HUoo8C - Streeter, V.L.
2	https://books.google.co.in/books/about/Engineering_Fluid_Mechanics.html?id=qZaf 8XVAPGQC - K L Kumar
3	https://books.google.co.in/books?id=FzQz6A6SnyoC - R K Bansal
4	https://books.google.co.in/books/about/Fluid_Mechanics.html?id=egk8SQAACAAJ-White F M
5	https://books.google.co.in/books/about/INTRO_TO_FLUID_MECH_FLUID_ MACHINES.html?
MOOC	
1	https://www.mooc-list.com/course/introduction-%C3%A0-la-m%C3%A9canique-des-fluides-
2	http://nptel.ac.in/courses/112105182/
3	http://nptel.ac.in/courses/112105183/
4	http://nptel.ac.in/courses/112105171/1
5	http://nptel.ac.in/courses/112104117/
6	https://swayam.gov.in/

COURSE TITLE	MANU	JFACTURING TECHNOLO	DGY-II	CREDITS	3									
COURSE CODE	MEB4203	COURSE CATEGORY	PC	L-T-P-S	3-0-0-2									
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3									
ASSESSMENT SC	ASSESSMENT SCHEME													
First Periodical Assessment	Second Periodical Assessment	Attendance	ESE											
15%	15%	10%	5%	5%	50%									
Course Description	manufacturing	technology deals with processes. It provides a machines, their appli	a means of asse	essing the suita	able machining									
Course Objective	 To acquire knowledge on concepts of metal cutting. To acquire knowledge manufacturing sciences to provide solutions for engineering problems using current technology. To acquire knowledge on the concepts of design. To acquire knowledge on analysis and implementation of mechanical systems. 													
	5. To acquire k	nowledge on technique	s for CNC part pr	ogram.										

	Upon completion of this course, the students will be able to 1. Select the metal cutting processes involved in the manufacture														
		1.												parts and	
		2				-				hogon:			ing. applicatior	1C	
Соц	ırse				•								purpose La		
Outc														g machines	
0.10	•				•					•	-	-	milling mad	-	
		5.			•				•	•		•	ifferent jol		
				•		-	-	-					•	ogramming	
						of com		-							
Prerequisites: MANUFACTURING TECHNOLOGY –I															
CO, PO	CO, PO AND PSO MAPPING														
60	PO														
CO	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	PSO-1	PSO-2	
CO-1	2	2	1	-	1	2	2	2	-	-	-	-	-	-	
CO-2	2	2	-	1	2	-	1	-	1	-	-	-	-	-	
CO-3	2	2	-	2	2	-	-	1	-	2	-	2	-	-	
CO-4	2	2	1	-	2	-	1	-	-	1	-	2	-	-	
CO-5	2	2	-	-	2	-	-	1	-	1	-	2	-	-	
		1	: Wea	kly re	ated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed		
MODU	JLE 1:	THEOF	RY OF	META	L CUT	ΓING							08		
Introdu						•			•			-			
formati		-			-		-		terials	, tool	wear	r, tool	life,	CO-1	
surface Sugges		•	•						cuttir	ng tvn	e of c	oolant	s and	BTL-3	
their pr		-			nu nu	muci		meta	cutti	16, UP		oorant	5 and		
MODU			E LAT	HE AN	D SPE	CIAL P	URPO	SE LAT	HES				10)	
Centre	e lath	e, coi	nstruc	tional	featu	ires, c	utting	tools	, vari	ous c	perati	ions,	taper		
turnin	-		thread	d cutti	ng me	thods,	speci	al atta	chmer	nts, ma	chinir	ng time	e and		
power														CO-2	
Capsta													-	BTL-3	
spindle	: cutti	ng off	, Swiss	s type,	autor	natic s	crew	type -	multi	spindle	e; cutt	ing off	, bar		
type.			. T		ا مرد ا	- اہ میں م									
Suggested Reading: Tool layout and cam design for automats MODULE 3: MILLING, RECIPROCATING & HOLE MAKING MACHINES											10				
Milling												hino 1			
shaper			-		•			•		-				CO-3	
Sugge	-				-					-		J, 11		BTL-3	
MODU	LE 4: /	ABRAS	IVE G	RINDI	NG, BR	OACH	ING A	ND GE	AR CL	JTTING	ì		. 1	.0	

grinding lapping, Sawing construc forming, Suggeste wise me	e processes: grinding wheel - specifications and selection, types of g process-cylindrical grinding, surface grinding, center less grinding - honing, super finishing, polishing and buffing, abrasive jet grinding machine: hack saw, band saw, circular saw; broaching machines: broach ction push, pull, surface and continuous broaching machines, gear cutting: generation, shaping, hobbing. ed Reading: Thread grinding, thread milling and thread rolling – process- rits and limitations E 5: CNC MACHINE TOOLS AND PART PROGRAMMING	CO-4 BTL-3 07
special f - compu Suggeste circuit el	cal control (NC) machine tools - CNC: types, constructional details, features. Part programming fundamentals - manual programming uter assisted part programming- APT language. ed Reading: Drives, Feedback devices, Interpolator systems, Control loop lements in point to point and contouring system,	CO-5 BTL-3
TEXT BOC		
1.	Rao, P. N. (2013), Manufacturing Technology: Metal Cutting and Machir McGraw-Hill, New Delhi.	ne Tools, Tata
REFERENC	CE BOOKS	
1.	Hajra Choudhary, S. K, (2010), Elements of Work Shop Technology - Vol. II, Me & Publishers Pvt. Ltd., Mumbai.	edia Promoters
2.	Rajput R.K, (2016), A Text Book of Manufacturing Technology, Lakshmi I Edition.	Publications, II
3.	Sharma P.C, (2010), A Text Book of Production Engineering, S. Chand and Co. L	td.
E BOOKS		
1.	https://www.mooc-list.com/tags/manufacturing	
MOOC		
1.	https://www.openlearning.com/courses/manufacturing-technology-course-m	000
2.	https://www.mooc-list.com/course/fundamentals-manufacturing-processes-e	dx

COURSE TITLE	FLUID N	IECHANICS AND MACHIN	ERY LAB	CREDITS	1					
COURSE CODE	MEB4231	COURSE CATEGORY	PC	L-T-P-S	0-0-2-1					
Version	1.0	Approval Dotails	pproval Details 23 ACM, LEARNING							
version	1.0	Approval Details	06.02.2021 LEVEL BT							
ASSESSMENT SCHEME										
	CIA		ESE							
	80%			20%						
	The Fluid Mec	hanics laboratory is desigr	ned to examine	the properties o	f fluids and to					
Course	conduct exper	iments to investigating t	the fundamenta	lls of fluid stati	ics as well as					
Description	kinematics and kinetics of fluid flow to enhance the hands-on experience of our									
	students. The	laboratory is also equip	ped to conduct	experiments o	n pumps and					

 To calibrate venturimeter, orifice meter and pitot tube. To calculate the head loss due to friction in the pipe for pumping power requirement. To Conduct experiment to measure the friction factor of the given pipe to calculate the hydraulic resistance To identify the type of turbine with known specific speed To conduct experiment to measure the performance of the various centrifugal pump and positive displacement pump 											
pump and positive displacement pump Upon completion of this course, the students will be able to 1. Calibrate venture-meter, orifice meter and pitot tube. 2. Calculate the head loss due to friction in the pipe for pumping power requirement. Outcome 3. Measure the friction factor of the given pipe to calculate the hydraulic resistance 4. Identify the type of turbine with known specific speed and parameters. 5. Measure the performance of the various centrifugal pump and positive displacement pumps.											
	РО -6	РО -7	РО- 8	РО -9	РО -10	РО -11	РО -12	PSO-1	PSO-2		
3 3	-	-	-	1	-	-	3	3	3		
3 3	-	-	-	1	-	-	3	3	3		
2 2 - 3 3 1 -					-	3	3	3			
3 3	-	-	-	1	-	-	3	3	3		
3 3	-	-	-	1	-	-	3	3	3		
	culate the ment. iduct expendent ify the ty duct expendent if the type if the type	culate the head ment. iduct experiment tify the type of t duct experiment iduct experiment <	Provide the set of the set o	Pulate the head loss due to ment.aduct experiment to measure the hydraulic resistance tify the type of turbine with k duct experiment to measure and positive displacement purpletion of this course, the seventure-meter, orifice meters are the head loss due to ment.The the friction factor of the give the type of turbine with knowe the performance of the ment pumps.O-POPOPOPOPO-4-5-6-733-33-33-33-	Provide the set of the set o	Provide the head loss due to friction in ment. Iduct experiment to measure the friction in the hydraulic resistance the hydraulic resistance the perform and positive displacement pump to propletion of this course, the students will be venture-meter, orifice meter and pitot the table head loss due to friction in ment. The the friction factor of the given pipe to call the type of turbine with known specific spectrum to the performance of the various of the type of turbine with known specific spectrum pumps.	Provide the head loss due to friction in the priment. Induct experiment to measure the friction factors in the hydraulic resistance tify the type of turbine with known specific speed duct experiment to measure the performance and positive displacement pump completion of this course, the students will be able the venture-meter, orifice meter and pitot tube. The the head loss due to friction in the priment. The the friction factor of the given pipe to calculate the type of turbine with known specific speed and the type of the type of turbine with known specific speed and the type of turbine tur	Pulate the head loss due to friction in the pipe froment.Iduct experiment to measure the friction factor of the type of turbine with known specific speed duct experiment to measure the performance of the nd positive displacement pumpImage: Description of this course, the students will be able to the type of turbine with known specific speed and positive displacement pumpImage: Description of this course, the students will be able to the type of turbine with known specific speed and partImage: Description of the given pipe to calculate the head loss due to friction in the pipe for ment.Image: Description factor of the given pipe to calculate the head the type of turbine with known specific speed and part te the performance of the various centrifugal present pumps.Image: Description factor of the given pipe to calculate the head to be the type of turbine with known specific speed and part te the performance of the various centrifugal present pumps.Image: Description factor of the given pipe to calculate the head to be the type of turbine with known specific speed and part te the performance of the various centrifugal present pumps.Image: Description factor of the specific speed and part te the performance of the various centrifugal present pumps.Image: Description factor of the specific speed and part to the specific speed specific speed and part to the specific speed specific speed and part to the specific speed and part to the specific speed specific specific speed	ulate the head loss due to friction in the pipe for pumple ment. duct experiment to measure the friction factor of the giver tify the type of turbine with known specific speed duct experiment to measure the performance of the various of nd positive displacement pump ompletion of this course, the students will be able to te venture-meter, orifice meter and pitot tube. te the head loss due to friction in the pipe for pumpir ment. e the friction factor of the given pipe to calculate the hydraulic restriction factor of the given pipe to calculate the hydraulic restriction the performance of the various centrifugal pump and ement pumps. Or PO PO		

1: Weakly related, 2: Moderately related and 3: Strongly related

List of Experiments (Any 10 Experiments)

- 1 Determination of the Coefficient of discharge of given Orifice meter
- 2 Determination of the Coefficient of discharge of given Venturi meter.
- 3 Calculation of the rate of flow using Rota meter.
- 4 Determination of friction factor for a given set of pipes.
- 5 Conducting experiments to find the laminar to turbulent transition for a flow in a pipe.

	-											
6	Performing an experiment and drawing the cl	haracte	ristic curves of submergible pump									
7	Conducting an experiment and drawing the ch	aracter	istic curves of centrifugal pump									
8	Conducting an experiment and drawing the ch	aracter	istic curves of reciprocating pump.									
9	Conducting an experiment and drawing the ch	aracter	istic curves of Gear Oil pump.									
10	Performing an experiment and drawing the cl	haractei	ristic curves of Jet pump									
11	Conducting an experiment and drawing the ch	aracter	istic curves of Francis turbine.									
12	Conducting anexperiment and drawing the characteristic curves of Kaplan turbine.											
13	Performing an experiment and drawing the characteristic curves of Turgo Impulse Wheel											
14	Plot system curve and H-Q Characteristic curve for given piping system with pump for different											
	speed using Matlab®											
	LIST OF EQUIPMENTS (For	[,] a batch	n of 30 students)									
1.	Orifice meter setup	8	Reciprocating pump setup									
2.	Venturi meter setup	9	Gear oil pump setup									
3.	Rotameter setup	10	Jet pump									
4.	Reynolds Apparatus	11	Pelton wheel setup									
5.	Pipe Flow analysis setup	12	Francis turbine setup									
6.	submergible pump setup	13	Kaplan turbine setup									
7.	Centrifugal pump	14	Turbo Impulse Wheel									
	·											

COURSE TITLE	MANUFA	ACTURING TECHNOLOG	Y LAB	CREDITS	1
COURSE CODE	MEB4232	COURSE CATEGORY	РС	L-T-P-S	0-0-2-1
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4
ASSESSMENT S	CHEME		•	•	
	CIA			ES	E
	80 %			20	%
Course Description	process. The lat	•	n widely used	d in the mar	re of the manufacturing nufacturing industry. So
Course Objective	 To get Know problems usi To get Know To get Know 	ledge on concepts of mo vledge manufacturing ing current technology. ledge on the concepts o ledge on analysis and in ledge on the CNC hardw	sciences to p of design. nplementatior	n of mechanic	al systems.

CORR			SYLLA	BO2						B.TEC		LHANICA	AL ENGINE	ERING
	urse come uisites	1. 2. 3. 4. 5. s: MAN	Seleo Desc Mac Desc Illust	ct the r ribe th hining ribe th trate th	right to ne App in mill ne met ne CNC	ool, ma licatio ing an hods a chardy	achinir ns of n d drilli and ap ware a	ng cond nechan ng and plicatio	students ition and ics of met grinding o ns of vari elop CNC	relevan tal cutti operatio ous ma	it measing ng ons chining			
со, ро) AND	PSO N	ΛΑΡΡΙ	NG										
со	РО	РО	РО	РО	РО	РО	РО	PO-	PO-9	PO -	PO-	PO-	PSO-	PSO-2
0	-1	-2	-3	-4	-5	-6	-7	8	PO-9	10	11	12	1	P30-2
CO-1	3	2	2	2	2	-	-	-	-	-	-	2	-	-
CO-2	3	2	2	2	2	-	-	-	-	-	-	2	-	-
CO-3	3	2	2	2	2	-	-	-	-	-	-	2	-	-
CO-4	3	2	-	-	2	-	-	-	-	-	-	2	-	-
CO-5	3	2	-	-	2	-	-	-	-	-	-	2	-	-
			1: V	Veakly	relate	ed, 2: N	Moder	ately re	elated an	d 3: Str	ongly re	elated		
1						LI	ST OF	EXPER	IMENTS					
1	. Two	o or M	ore M	etal Cu	itting E	Experir	nents	(Examp	ole: Shear	Angle I	Measure	ement,	Cutting Fo	orce
2	. Me	easurei	ment,	Cutting	g Tem	peratu	re Me	asurem	ent <i>,</i> Tool	Wear N	Aeasure	ement, l	ife Meas	urement
3	. Me	easure	ment o	of tool	life us	ing Ma	atlab©							
4	. On	e or M	ore Ex	ercise	s in Mi	lling N	/lachin	es (Exa	mple: Mil	ling Pol	ygon Sı	urfaces,	Gear mill	ing,
5	. Key	way m	illing,	Helica	l Groo	ve mill	ing et	c.)						

- 6. Two or More Exercises in Grinding / Abrasive machining (Example: Surface Grinding,
- 7. Cylindrical Grinding, Centreless Grinding, Lapping, Honing etc.)
- 8. Two or More Exercises in Machining Components for Assembly of different fits. (Example:

MATLAB ASSIGNMENTS

- 1. Glass Tube Manufacturing Process
- 2. Compensator Design for a Set of Plant Models
- 3. Fault Diagnosis of Centrifugal Pumps using Steady State Experiments
- 4. Robust Tuning of Mass-Spring-Damper System
- 5. Modeling a Kanban Production System
- 6. Generalized Extreme Value Distribution
- 7. Test Real-Time Application

LIST OF EQUIPMENTS (For a batch of 30 students)

- 1. Centre Lathes 5 Surface Grinding Machine
 - 2. Turret and Capstan Lathe 6 Tool Dynamometer
 - 3. Horizontal Milling Machine 7 Gear Hobbing Machine

4. Vertical Milling Machine 8 CNC Lathe (Trainer or Industrial Type)

5.Centre Lathes 5 Surface Grinding Machine

6.Turret and Capstan Lathe 6 Tool Dynamometer

7. Horizontal Milling Machine 7 Gear Hobbing Machine

COUR	SE TIT	LE			D	ESIGN	PROJE	CTI				CRED	ITS		1	
COUR	RSE CO	DE	MEB	4233	C	OURSE	CATE	GORY		РС		L-T-P	-S	(0-0-2-0	
Ve	ersion		1	.0		Approv	/al Det	ails		3 ACM 02.202	-	LEARN LEVE			BTL-6	
ASSES	SMEN	T SCI	HEME		-											
		CI	٩							ES	SE					
		809	%			20%										
	ourse criptio	n	produc	ts. Eng selec	ineeri	ng dra	wing a	nd CA	D, desi	ign me	ethods,	, matei	rial prop	perti	nechanical es, failure ufacturing	
	ourse jective	3 To foster innovation in design of products processes or systems												e products ns		
	ourse tcome		 Des acc Des 	sign an Juired i scribe r	n completion of this course, the students will be able to gn and fabricate a mini device/ machine/ equipment using the knowledge ired in the previous semesters. ribe making a product is achieved for solving practical problem. are a technical drawing, technical report and technical presentation skill.									_		
Prereq	uisites	s: Nil														
CO, PC	D AND	PSO	MAPPIN	NG		-						-				
со	РО -1	РО -2	PO -3	PO -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	РО- 12	PSO-	1	PSO-2	
CO-1	2	1	2	-	3	-	-	2	1	2	2	3	1		2	
CO-2	2	1	-	-	3	3 2 1 2									2	
CO-3	1	2	2	2 - 3 1 2 2 1 2 2 3 1 2												
	1: Weakly related, 2: Moderately related and 3: Strongly related															

	NOTE									
•	The students in convenient groups of not more than 4 members have to to small item for design and fabrication. Every project work shall have a guid the member of the faculty of the institution.									
•	The item chosen may be small machine elements (Example-screw jack, or machine vice, cam and follower, governor etc), attachment to machine tooling (jigs, fixtures etc), small gear box, automotive appliances, age implements, simple heat exchangers, small pumps, hydraulic /pneumatice etc.	ne tools, ricultural								
•	The students are required to design and fabricate the chosen item and demonstrate its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication.									
	ASSESSMENT (%)									
	Continuous Assessment 80									
	Viva-voce 20									
	Total 100									
	100									

SEMESTER IV

COURS	E TITLE			PR	OBAB		AND ST	TATIST	ICS		C		S		4
COURS	E COD	E	MAA 4216 COURSE CATEGORY BS L-T-											3	8-1-0-0
Ver	sion		1.0)	А	pprov	al Deta	ails		h ACM		LEARN LEVE	_	E	3TL-1-4
ASSESS	MENT	SCHE	ME		·										
First Pe Assess			Seco Perioc Assess	dical		Assigr	ninar/ nments oject	s/	-	orise Te ' Quiz	est /	Attenda	ance		ESE
15	5%		159	%		1	.0%			5%		5%			50%
Cou Descri		ar	To make the student understand the foundations of probabilistic and statistical nalysis mostly used in varied applications in engineering and science												
Cou Obje		1. 2. 3. 4. 5.	 To identify the standard distribution variables. To understand the discrete and continuous random variables To understand the types of hypothesis testing 												
Cou Outo		1. 2. 3. 4. 5.	Desc impr distr explo perfo popu	ribe th ove th ibutior ore the orm te ulation	e con ne abi ns e rando est of paran	cept o lity to om exp hypo neter	undei perime	nts sp as w	and or the i ecified ell as	ne dime mporta l by tw calcul	ension ance o o dimo ate c	al rand of disc ensiona onfider	rete a al rand	nd co om v	e ontinuous ariables I for the
Prerequ	isites:	NIL													
CO, PO	AND P	SO M	APPIN	G											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	PO -10	PO -11	PO -12	PSO)-1	PSO-2
CO-1	2	1	-	-	-	-	-	-	-	-	-	-	-		-
CO-2	2	-	-	-	-	-	-	-	-	-	-	-	-		-
CO-3	2	-	-	-	-	-	-	-	-	-	-	-	-		-
CO-4	2	-	-	-	-	-	-	-	-	-	-	-	-		-
CO-5	2	-	-	-	-	-	-	-	-	-	-	-	-		-
		1	L: Wea	kly rel	ated, 2	2: Mo	derate	ly rela	ted an	d 3: St	rongly	/ relate	d		

MODULE 1: PRO	DBABILITY AND RANDOM VARIABLES (S	9L+3T=12)
	bability- Bayes' Theorem -Random variables – Moments – Moment	CO-1
generating funct		BTL-1,2,3
	ling: Basic Probability NDARD DISTRIBUTIONS (9)	L+3T=12)
		CO-2
	on, Geometric, Uniform, Exponential, Gamma and Normal distributions ling: Discrete and Continuous Functions	
		BTL-1,2,3
		9L+3T=12)
	on – Marginal and conditional distribution – Co-variance – Correlation	CO-3
and Regression	ling: Random Variables	BTL-1,2,3
		L+3T=12)
	outions – Testing of Hypothesis –Small samples– t Test, F Test and Chi-	/
	arge samples – Single mean – Difference in means – single proportion and	CO-4
difference in pro		BTL-1,2,3,4
Suggested Read	ing: Sampling Problems	
MODULE 5:DES	SIGN OF EXPERIMENTS (9	L+3T=12)
Analysis of vari	ance- One Way Classification-Completely Randomized block design-	CO-5
	ication – Randomized block design – Latin Square design	BTL-1,2,3,4
	ling: Analysis of variance	, , = ,
TEXT BOOKS		
1.	A. Chandrasekaran, G.Kavitha, (2014), "Probability, Statistics, Random Pro Queuing Theory", Dhanam Publications.	ocesses and
2.	Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar Sharma, (2016), "I Applications in Engineering", Pearson Publication, Second Edition.	MATLAB and its
REFERENCE BOC	DKS	
1.	Devore. J.L., (2012), "Probability and Statistics for Engineering and the Second	ciences",
1.	Cengage Learning, New Delhi, 8th Edition.	
2.	Cengage Learning, New Delhi, 8th Edition. Dean G. Duffy., (2013), "Advanced Engineering Mathematics with Press, Third Edition.	MATLAB", CRC
	Dean G. Duffy., (2013), "Advanced Engineering Mathematics with	MATLAB", CRC
2.	Dean G. Duffy., (2013), "Advanced Engineering Mathematics with	
2.	Dean G. Duffy., (2013), "Advanced Engineering Mathematics with Press, Third Edition. http://nptel.ac.in/courses/IIT-MADRAS/Principles_of_Communication1 1_5.pdf	
2. E BOOKS 1.	Dean G. Duffy., (2013), "Advanced Engineering Mathematics with Press, Third Edition. http://nptel.ac.in/courses/IIT-MADRAS/Principles_of_Communication1	
2. E BOOKS	Dean G. Duffy., (2013), "Advanced Engineering Mathematics with Press, Third Edition. http://nptel.ac.in/courses/IIT-MADRAS/Principles_of_Communication1 1_5.pdf	L/Pdfs/

COURSE TITLE		THERMAL ENGINEERING	ì	CREDITS	3
COURSE CODE	MEB4216	COURSE CATEGORY	PC	L-T-P-S	3-0-0-2
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4
ASSESSMENT SC	HEME				

	Periodi essmer		Perio	cond odical sment	Ass		minar/ ents/ P		-	rise Te Quiz	est 4	Attenda	ance	ESE	
1	15%		1!	5%		:	10%			5%		5%		50%	
	ourse criptio		various an insi machir compre	Thermal Engineering deals with the applications of the laws of Thermodynamics to various advanced energy system in engineering applications. The course will provide an insight to various thermal cycles applied for petrol, diesel and aircraft engines. The machineries such as IC engines, hybrid vehicles, steam nozzles & turbines, air compressors and refrigeration systems are analyzed in detail and enable the student to solve more advanced problems.											
	ourse jective		 To m To m To th To gi To control for the second s	 To understand the features of Gas power cycles and efficiency enhancement methods. To understand the working principles of steam nozzles and turbine and to analyze the performance. To understand the working principles of air compressors, selection, design for given application. 											
Out		: Engi	Up 1. Der veh 2. Ide 3. Ana tur 4. Ana to I 5. Eva do abs	on con monstr nicles ntify, F alyze d bines alyze t Demor aluate t basic o sorptio g Therr	npletio rate th Relate, ifferer he per ostrate calcula n syste	Analy: Analy: nt type forma variou rforma tions c ems.	erstand ze and s of st nce of is type ince of	Evalua eam n single s of rot refrige	te the ozzles and m ary co eration	us com perfor and to nultista mpres syster	nponer mance b asses age rec sors ms (usi	nts of I e of the s the p ciproca	gas pow performan ting com erent ref	s and Hybri er cycles nce of stear oressors an rigerants), t d to describ	m nd
	PO	PO	PO	PO	РО	PO	РО	PO	PO	РО	PO	PO-			
со	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	PSO-1	PSO-2	•
CO-1	3	3	2	1	2	-	-	1	1	1	-	-	3	-	

-

-

1

-

-

-

-

-

-

-

-

-

2

-

2

2

-

2

2

2

2

-

-

-

1

1

1

-

2

-

CO-2

CO-3

CO-4

3

-

3

3

3

-

-

-

-

-

-

3

CO-5	3	3	2	1	2	2	2	-	1	1		-	-		3	-
	1: Weakly related, 2: Moderately related and 3: Strongly related															
MODULE	1: (CONV	ENTIO	NAL AN	ND HYB		EHICLE	S								9
Conventio	nal	vehic	les: Cla	assifica	tion -	Comp	onents	. Actua	al and	theor	etica	al p	-V dia	gran	າ.	
Ignition Sy	Ignition Systems, Diesel pump and injector system, MPFI, CRDI Knocking in SI and C															
Engines. Lubrication and Cooling systems:																
Hybrid V	ehio	cles:	Comp	onents	, hybri	d trac	ction, l	nybrid	drive-	train	topo	olog	gies, E	nerg	y	CO 1
Storage:	Bat	tery :	storage	e, Fue	l Cell,	Supe	r Cap	acitor	and I	=lywh	eel	bas	ed er	nergy	1,	CO-1 BTL-3
Hybridizat	tion	of dif	ferent	energ	y stora	ge dev	vices. N	/latchir	ng the	electr	ic m	nach	ine ar	id th	e	DIL-3
internal c	omł	oustio	n engii	ne.												
Suggested	d Re	ading	: Desig	gn of a	Hybrid	Elect	ric Veh	icle (H	EV) <i>,</i> De	esign o	of a	Bat	tery El	ectri	с	
Vehicle (B	EV)	. Gene	eration	of Hea	at balar	nce sh	eet for	4 stro	ke eng	ines u	sing	g Ma	atlab©			
MODULE	2: G	ias po	OWER	CYCLES												9
Carnot, C)tto	, Dies	el, Dua	al cycle	s, diffe	rence	betwe	een ide	al and	real	cycl	es;	Gas tu	irbin	e	
cycles, m	eth	ods o	of imp	roving	perfor	manc	e - int	er-coo	ling, r	eheat	: an	d r	egene	rativ	e	CO-2
cycles.																BTL-4
Suggeste	d R	eading	g: Simu	ulation	of Otto	o, Dies	el and	Dual c	ycles u	ising N	Matl	ab@).			
MODULE	3: S	TEAM	NOZZ	LES AN	ID STE	AM TU	IRBINE	S								9
Converge	nt	and c	conver	gent-di	vergen	it noz	zles -	Isentr	opic fl	ow -	Effe	ect	of Fri	ctior	n.	
General fl	ow	analy	sis. Cri	tical pr	essure	ratio a	and ma	aximun	n mass	flow.						CO-3
General p	orin	ciple o	of Imp	ulse ar	nd Rea	ction ⁻	Turbine	es, Cor	npoun	ding o	of st	ean	n turb	ines	-	BTL-4
Stage effi	cier	ncy, O	verall	efficier	ncy and	l re-he	eat fac	tor. M	ulti-Sta	age Tu	ırbir	nes	(descr	iptiv	e	
treatment	t on	ly) Su	ggeste	d Read	ling: vi	sit to s	steam	oower	statior	١,						
MODULE															9	
Classificat	tion	and v	workin	g princ	iple. V	/ork o	f comp	ressio	n with	and	with	nout	clear	ance	e.	
Volumetri	ic e	fficien	cy, Iso	therma	al effici	ency a	and ise	ntropi	c effici	ency	of re	ecip	rocati	ng ai	ir	CO-4
compress	ors.	Mult	istage	air co	mpres	sors, I	Rotary	comp	ressors	6 (Des	scrip	otive	e treat	mer	it	BTL-4
only).																
Suggested	d Re	ading	: Simu	ulation	of Air o	compr	essor ι	using N	latlab	©.						
MODULE	5: F	REFRIC	GERAT	ION AN		CONE	DITION	ING								9
Vapour (Con	npress	ion R	efriger	ation	cycle	– ide	al and	l actu	ial cy	cles	, p	erforn	nanc	e	
calculatio				•	•		•	•	•							
Summer					-			-				her.	Conce	ept c	of	CO-5
RSHF, GSH			• •	•				-								BTL-4
Suggeste		-	-				-	condit	ioning	, Simu	Ilatio	on c	of VCR	Cycl	e	
	and cooling load calculations using Matlab©.															
TEXT BOO	KS															

1.	Rajput. R. K., (2010), "Thermal Engineering" S.Chand Publishers.
2.	Domkundwar. And Kothandaraman.C.P., (2016), "A course in thermal Engineering "Dhanpat Rai & Co , Fifth Edition.
REFERENCE BO	DOKS
1.	Domkundwar and Arora, (2014), "Refrigeration and Air Conditioning," Dhanpat Rai & Co.
2.	Ganesan V. (2017), "Internal Combustion Engines", Tata Mcgraw-Hill, Third Edition.
3.	Sarkar, B.K, (2017),"Thermal Engineering" Tata McGraw-Hill Publishers.
4.	Rudramoorthy, R, (2017), "Thermal Engineering", Tata McGraw-Hill, New Delhi.
E BOOKS	
1.	https://books.google.co.in/books?id=YLNGv0bVay0C&dq=thermal+engineering
2.	https://books.google.co.in/books/about/Thermal_Engineering.html?id=65gxCX2dC84C
моос	
1.	http://www.nptelvideos.in/2012/12/refrigeration-and-airconditioning.html
2.	http://nptel.ac.in/courses/112105128/
3.	http://www.nptelvideos.com/mechanical/
4.	http://nptel.ac.in/courses/112106133/

COURSE TITLE		STRENGTH OF MATERIAL	.S	CREDITS	3						
COURSE CODE	MEB4217	COURSE CATEGORY	PC	L-T-P-S	3-0-0-2						
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4						
ASSESSMENT SC	ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE							
15%	15%	10% 5%		5%	50%						
Course Description	emphasis on th	Understand the basic concepts and techniques, both theoretical and experimental, with emphasis on the application of these to the solution of suitable problems in engineering. Provide a firm foundation for more advanced study.									
Course Objective	external lo 2. To Assess twisting b	 To Gain knowledge of simple stresses, strains and deformations components due to external loads. To Assess stresses and deformations through mathematical models of beams, twisting bars or combination of both. 									

Upon completion of this course, the students will be able to										
1. Demonstrate the basic principles of structural elasticity, including statically										
determinate and indeterminate systems, and the factors which affect their strength										
and stiffness.										
2. Illustrate an understanding of the relationships between loads, member forces and										
deformations and material stresses and strains.										
3. Identify the contemporary analytical, experimental and computational tools needed										
to solve the engineering problems.										
4. Analyze and design structural members subjected to tension, compression, torsion,										
bending and combined stresses using the fundamental concepts of stress, strain and										
elastic behaviour of materials.										
5. Independent judgment required to interpret the results of the engineering problems.										

Prerequisites: Applied Mathematics

CO, PO AND PSO MAPPING

со	РО	РО	PO-	PO-	РО	РО	PO	РО	РО	РО	РО	PO-	PSO-1	PSO-2
co	-1	-2	3	4	-5	-6	-7	-8	-9	-10	-11	12	P30-1	P30-2
CO-1	1	2	2	-	-	-	-	-	-	-	-	-	-	-
CO-2	1	2	2	-	-	-	-	-	-	-	-	-	-	-
CO-3	1	-	2	-	-	-	1	-	-	-	-	-	-	-
CO-4	1	1	-	-	2	-	-	-	-	-	-	2	-	-
CO-5	1	-	2	-	-	-	2	-	-	-	-	2	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: STRESS, STRAIN AND DEFORMATION OF SOLIDS	9
Rigid and Deformable bodies - Strength, Stiffness and Stability - Stresses; Tensile,	
Compressive and Shear - Deformation of simple and compound bars under axial load -	
Thermal stress - Elastic constants - Strain energy and unit strain energy - Strain energy in	CO-1
uniaxial load.	BTL-3
Suggested Reading: Statically determinate – indeterminate, Stress on inclined planes	
under axial loading.	
MODULE 2: BEAMS - LOADS AND STRESSES	9
Types of beams: Supports and Loads - Shear force and Bending Moment in beams -	
Cantilever, simply supported and Overhanging beams - Stresses in beams - Theory of	
simple bending - Stress variation along the length and in the beam section - Effect of	CO-2
shape of beam section on stress induced - Shear stresses in beams.	BTL-3
Suggested Reading: Shear force – bending moment – continuous beam, bending of	
unsymmetrical beams - composite.	
MODULE 3: TORSION	9

Analysis of to	orsion of circular bars - Shear stress distribution - Bars of Solid and hollow					
circular section	on - Stepped shaft - Twist and torsion stiffness - Compound shafts - Fixed and					
simply suppo	rted shafts - Application to close-coiled helical springs - Maximum shear					
stress in spri	CO-3					
under axial lo	pads - Design of helical coil springs - stresses in helical coil springs under	BTL-3				
torsion loads						
Suggested Re	eading: Torsion – rectangular shaft – thin walled shaft, strain energy due to					
torsion.						
MODULE 4: B	EAM DEFLECTION	9				
Elastic curve	of Neutral axis of the beam under normal loads - Evaluation of beam					
deflection an	d slope: Double integration method, Macaulay Method, and Moment-area					
Method -Colu	umns - End conditions - Equivalent length of a column - Euler equation -	CO-4				
Slenderness r	atio - Rankine formula for columns	BTL-3				
Suggested Reading : Instability – failure mode - Necking – tensile member – plastic						
buckling – Stu						
MODULE 5: ANALYSIS OF STRESSES IN TWO DIMENSIONS						
Biaxial state	of stresses - Thin cylindrical and spherical shells - Deformation in thin					
	d spherical shells - Biaxial stresses at a point - Stresses on inclined plane -					
-	es and stresses - Mohr's circle for biaxial stresses - Maximum shear stress -	CO-5				
	in bending and torsion.	BTL-3				
•••	eading: Mohr's circle – plane stress – plane strain - Fracture – ductile					
	rittle specimen.					
TEXT BOOKS						
1	Popov E.P,(2015), " Mechanics of Materials ", Pearson Education India; Secon	d edition.				
2	Beer F. P. and Johnston R, (2015),"Mechanics of Materials", McGraw-Hill Bo					
	Edition.	,				
3	Stephen Timoshenko, (2017),"Theory of Elasticity", McGraw Hill Education, Th	nird edition.				
REFERENCE B						
1	Nash W.A, (2013), "Theory and problems in Strength of Materials", Schaum McGrawHill Book Co, New York.	Outline Series,				
2						
3	Rattan SS, (2017), "Strength of Materials", McGraw Hill Education., Third Edit	ion.				
4	U. C. Jindal, (2017), "Strength of Materials", Pearson Education, Second edition	on.				
5	Hibbeler,R.C,(2016), "Mechanics of materials" Pearson Education, 10 th editio	n.				
E BOOKS	·					

1	https://goo.gl/ArHdiY - Popov E.P
2	https://goo.gl/EgypX3 - Beer F. P. and Johnston R
3	https://goo.gl/VroJEj - R K Bansal
4	https://goo.gl/bqvIA8 - Rattan S S
МООС	
1	https://goo.gl/ICHuKR
2	http://nptel.ac.in/courses/112107147/
3	http://nptel.ac.in/courses/112107146/
4	http://nptel.ac.in/courses/112101095/
5	http://nptel.ac.in/courses/112106141/
6	http://nptel.ac.in/courses/105105108/

COURSE TITLE	ENGINEERING	METROLOGY AND ME	CREDITS	3				
COURSE CODE	MEB4218	COURSE CATEGORY	L-T-P-S	3-0-0-2				
Version	1.0	Approval Details	LEARNING LEVEL	BTL-3				
ASSESSMENT SC	ASSESSMENT SCHEME							
First Periodical Assessment	Second Periodical Assessment	ESE						
15%	15%	10%	5%	5%	50%			
Course Description Course Objective	 manufacturing p measuring instruction components. 1. To get know 2. To get know 3. To get know 4. To get know 	trology deals with the approcesses. It provides a r uments, their calibration ledge on concepts of me ledge on linear and angui ledge on form measured ledge on uses of laser as	neans of assessin a, and the quality easurements ular measurements ments technique	ng the suitabilit control of mar nts techniques s y techniques	y of nufactured			
 5. To get knowledge on techniques for measurements of physical quantities Upon completion of this course, the students will be able to 1. Apply the basic concepts of metrology in various measurements. 2. Demonstrate with linear and angular measurements techniques. 3. Formulate and define the form measurements techniques. 4. Use laser assisted metrology techniques. 5. Recognize the techniques for measurements of physical quantities. 								
Prerequisites: En	gineering Physics							

CO, PO	AND P	SO M	APPIN	G										
	РО	РО	РО	РО	РО	РО	PO	PO	PO	РО	РО	РО	DCO 4	DCO 0
СО	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	PSO-1	PSO-2
CO-1	2	2	-	ŀ	•	2	2	2	-	-	-	-	-	-
CO-2	2	-	-	-	2	-	-	-	-	-	-	-	-	-
CO-3	2	-	-	2	2	-	-	-	-	2	-	2	-	-
CO-4	2	2	-	-	2	-	-	-	-	-	-	2	-	-
CO-5	2	2	-	-	2	-	-	-	-	-	-	2	-	-
	1: Weakly related, 2: Moderately related and 3: Strongly related													
MODULE 1: CONCEPT OF MEASUREMENT									9					
General	conce	ept–Ge	enerali	zed n	neasur	ement	t syste	em-Un	its an	d stai	ndards	-meas	uring	
instrume	ents- s	sensitiv	vity, re	eadabi	lity, ra	ange o	of acc	uracy,	precis	ion-sta	atic ar	nd dyn	iamic	
response	e- re	peatal	bility-s	ystem	atic	and	rando	om e	rrors-c	orrect	ion,	calibra	ation,	CO-1
intercha	ngeab	ility.												BTL-3
Practica	-													
Suggeste	ed Rea	dings:	limits	, fits, t	oleran	ces, M	lanufa	cturing	g cost a	and tol	erance	25		
MODUL	E 2: LII	NEAR /	AND A	NGUL	AR ME	ASURI	EMEN.	Г						9
Definitio	on of	Met	rology	- Lir	iear i	neasu	ring	instrur	nents:	Vern	ier, N	Aicrom	neter,	
internal					-							-		
limit ga	auges-	Comp	arator	s: Me	chanic	al, pn	eumat	ic and	electr	rical ty	pes, a	pplicat	ions.	CO-2
Angular	meas	ureme	ents: S	Sine b	ar, op	tical I	bevel	protra	ctor,	angle	Deckk	or – ⁻	Taper	BTL-3
measure	ement	S												
Practica	-				-									
Suggeste		-			•	of exp	perime	ental d	ata, Re	gressi	on ana	lysis		
MODUL														9
Measur									-		-			
measure		_									-			<u></u>
Gleason	-		-				easur	ement	s-surta	ice fin	ish, si	traight	ness,	CO-3
flatness														BTL-3
Practica	-							•	r	•				
Suggeste									exper	iments				
MODUL	e 4: LA	SER A	ND AD	VANC	es in i	VIETRO	JLOGY							9

Precision i linear, ang machine (computer a Practical co Suggested	CO-4 BTL-3					
MODULE 5	: MEASUREMENT OF POWER, FLOW AND TEMPERATURE RELATED PROPERTIES	9				
Force, Torque, Power - Mechanical, Pneumatic, Hydraulic and Electrical type. Flow measurement:-Venturi, Orifice, Rotometer, Pitottube. Temperature: Bimetallic strip, Thermometers, Thermocouples, Electrical resistance Thermister. Practical component: Physical quantity measurement						
	Practical component: Physical quantity measurementBTL-3Suggested Readings: Errors in temperature measurement, testing quality assurance					
	ing Matlab©					
TEXT BOOK						
1.	Richard S Figliola, Donald E Beasley, (2014), Theory and Design for Measurements, Wiley India, 6th Edition.	or Mechanical				
REFERENCE	BOOKS					
1.	Graham T. Smith, (2016), Machine Tool Metrology: An Industrial Handboo Edition.	ok, Kindle First				
2.	2. N V Raghavendra and Krishnamurthy, (2013), Engineering Metrology and Measurement, Oxford University Press.					
E BOOKS						
1.	https://www.bbau.ac.in/dept/UIET/Study%20MAterials%20for%20EME-403.	pdf				
MOOC						
1.	https://www.mooc-list.com/course/internet-measurements-hands-introduct	tion-fun				
2.	https://www.classcentral.com/course/swayam-engineering-metrology-1403	7				

COURSE TITLE	PROFE	SSIONAL ETHICS AND LIF	E SKILLS	CREDITS	2		
COURSE CODE	GEA4216	COURSE CATEGORY	L-T-P-S	2-0-0-1			
Version	1.0	Approval Details	24th ACM - 30.5.2018	LEARNING LEVEL	BTL-3		
ASSESSMENT SC	CHEME			<u>.</u>			
First Periodica	l Assessment	Second Periodical Assessment	ssessment	ESE			
15	%	15%	20	%	50%		
Course Description	Students will understand the Ethical theory and its roles and its responsibilities of individual, employee, Corporate responsibilities towards stack holders with friendly approach.						

	1. To understand business ethics, levels, myths, use and train oneself to be ethical.										
	2. To improve the Knowledge on Ethical principles, reasoning, roles &										
	responsibilities.										
Course	3. To understand stake holder theory, Individual and corporate responsibilities										
Objective	towards stake holders.										
_	4. To understand corporate responsibilities towards Product Safety & Reliability and environment friendly approach.										
	5. To understand the Employee & Corporate on responsibilities on aspects of										
	contracts, equal opportunity, Affirmative action, sexual harassment etc.,.										
	Upon completion of this course, the students will be able to										
	1. An understanding of business ethics, levels, myths, use and train oneself to be										
	ethical.										
	2. Knowledge on Ethical principles, reasoning, roles & responsibilities.										
Course	3. An understanding of stake holder theory, Individual and corporate										
Outcome	responsibilities towards stake holders.										
outcome	4. Understanding on Corporate responsibilities towards Product Safety & Reliability										
	and environment friendly approach.										
	5. Understanding between the Employee & Corporate on responsibilities on										
	aspects of contracts, equal opportunity, Affirmative action, sexual harassment										
	etc.,										
Prerequisites: N	lil										
CO, PO AND PS	O MAPPING										

-														
со	РО	РО	РО	PSO-1	PSO-2									
-1	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	P30-2
CO-1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO-2	-	-	2	-	3	-	-	-	-	-	-	-	-	-
CO-3	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO-4	-	-	-	-	3	-	-	-	-	-	1	-	-	-
CO-5	-	-	3	-	-	-	-	-	-	-	-	1	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1 - HUMAN VALUES	MODULE 1 - HUMAN VALUES (6)									
Definition of ethics-Morals values and ethics – integrity-Work ethics- Service learning-										
Civic virtue-Respect for others-Caring-Sharing-Honesty-Courage-Valuing time-										
Cooperation-Commitment-Empathy-Self-confidence-Character-Spirituality-Introduction CO1,BTL2										
to Yoga and meditation for professional excellence and stress management.										
Suggested Reading: Case study of Discovery failure										
MODULE 2 - ENGINEERING ETHICS (6										

Senses of 'Engineering Ethics' - Variety of moral issues - Types of inquiry - Moral C02,BTL2 dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and C02,BTL2 Customs and Religion - Uses of Ethical Theories. Suggested Reading: Study the Bhopal gas tragedy C02,BTL2 MOULE 3- SAFETY, RESPONSIBILITES AND RIGHTS (6) Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual C03,BTL3 Property Rights (IPR) - Discrimination. Suggested Reading: Chernobyl explosion, Nuclear and thermal power plant issues (6) Definition, Relevance, Types of values, changing concepts of values-aims and values or value education - basic etiquette-morals and values in life-dealing with people. (6) Personal values - Self - Strengths (self-confidence, self-assessment, self-reliance, self-discipline, determination, self-restraint, contentment, humility, sympathy and compassion, gratitude, forgiveness) Weaknesses (6) Suggested Reading: Personal value and professional value of Engineers on societies perception (6) Tetriburght (Editor), Units of society; Communities - ancient and modern - Agents of change - Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility C05,BTL2 Subramanian R., Professional ethics, Oxford
Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing CO3,BTL3 Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of CO3,BTL3 Property Rights (IPR) – Discrimination. Suggested Reading: Chernobyl explosion, Nuclear and thermal power plant issues CO3,BTL3 MODULE 4 - LIFE SKILLS (6) Definition, Relevance, Types of values, changing concepts of values-aims and values of value education- basic etiquette-morals and values in life-dealing with people. Personal values – Self – Strengths (self-confidence, self-assessment, self-reliance, self-discipline, determination, self-restraint, contentment, humility, sympathy and compassion, gratitude, forgiveness) Weaknesses CO4,BTL2 Suggested Reading: Influences - Peer pressure, familial and societal expectations, media MODULE 5 - SOCIETIES IN PROGRESS (6) Definition of society; Units of society; Communities – ancient and modern – Agents of change – Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility CO5,BTL2 Suggested Reading: Personal value and professional value of Engineers on societies perception Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy 1 Subramanian R., Professional ethics, Oxford University press Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) 3 3 Warwick Fox (Editor), Ethics and
Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination. CO3,BTL3 Suggested Reading: Chernobyl explosion, Nuclear and thermal power plant issues (6) Definition, Relevance, Types of values, changing concepts of values-aims and values of value education- basic etiquette-morals and values in life-dealing with people. Personal values - Self - Strengths (self-confidence, self-assessment, self-reliance, self- discipline, determination, self-restraint, contentment, humility, sympathy and compassion, gratitude, forgiveness) Weaknesses CO4,BTL2 Suggested Reading: Influences - Peer pressure, familial and societal expectations, media MODULE 5 - SOCIETIES IN PROGRESS (6) Definition of society; Units of society; Communities - ancient and modern - Agents of change - Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility CO5,BTL2 Suggested Reading: Personal value and professional value of Engineers on societies perception C05,BTL2 TEXT BOOKS I Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) Manoharan P.K. (2012) Value Education, APH Publishing Corporation, New Delhi. 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) RuchikaN
Definition, Relevance, Types of values, changing concepts of values-aims and values of value education- basic etiquette-morals and values in life-dealing with people. Personal values – Self – Strengths (self-confidence, self-assessment, self-reliance, self-discipline, determination, self-restraint, contentment, humility, sympathy and compassion, gratitude, forgiveness) Weaknesses CC4,BTL2 Suggested Reading: Influences - Peer pressure, familial and societal expectations, media MODULE 5 - SOCIETIES IN PROGRESS (6) Definition of society; Units of society; Communities – ancient and modern – Agents of change – Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility CO5,BTL2 Suggested Reading: Personal value and professional value of Engineers on societies perception CO5,BTL2 1 Subramanian R., Professional ethics, Oxford University press REFERENCE BOOKS 1 Subramanian R., Professional ethics, Oxford University press REFERENCE BOOKS Imity Therapy 2 Andrew Belsey (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethica Issues in Journalism and the Media (Professional Ethics) 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K(2012) Education an
of value education- basic etiquette-morals and values in life-dealing with people. Personal values – Self – Strengths (self-confidence, self-assessment, self-reliance, self-discipline, determination, self-restraint, contentment, humility, sympathy and compassion, gratitude, forgiveness) Weaknesses CO4,BTL2 Suggested Reading: Influences - Peer pressure, familial and societal expectations, media MODULE 5 - SOCIETIES IN PROGRESS (6) Definition of society; Units of society; Communities – ancient and modern – Agents of change – Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility CO5,BTL2 Suggested Reading: Personal value and professional value of Engineers on societies perception CO5,BTL2 1 Subramanian R., Professional ethics, Oxford University press CO1,BTL2 2 Andrew Belsey (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy Co1,DTL2 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 5 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New De
Definition of society; Units of society; Communities – ancient and modern – Agents of change – Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility CO5,BTL2 Suggested Reading: Personal value and professional value of Engineers on societies perception CO5,BTL2 TEXT BOOKS Subramanian R., Professional ethics, Oxford University press REFERENCE BOOKS Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. BUOKS 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
charge – Sense of survival, security, desire for comfort and ease sense of belonging, social consciousness and responsibility CO5,BTL2 Suggested Reading: Personal value and professional value of Engineers on societies percention CO5,BTL2 TEXTEORS Texter BOOKS 1 Subramanian R., Professional ethics, Oxford University press Couple and family Therapy 1 Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy Couple and the Media (Professional Ethics) 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) Manoharan P.K.,(2012) Value Education, APH Publishing Corporation, New Delhi. 5 Delhi. Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
1 Subramanian R., Professional ethics, Oxford University press REFERICE BOOKS 1 Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
REFERENCE BOOKS 1 Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
1 Megan J. Murphy (Editor), Lorna Hecker (Editor), Ethics and Professional Issues in Couple and Family Therapy 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
1 Family Therapy 2 Andrew Belsey (Editor), Ruth Chadwick (Editor), Ethical Issues in Journalism and the Media (Professional Ethics) 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
 2 (Professional Ethics) 3 Warwick Fox (Editor), Ethics and the Built Environment (Professional Ethics) 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. 5 Delhi. E BOOKS 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
 4 RuchikaNath, (2012) Value Education, APH Publishing Corporation, New Delhi. 5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. E BOKS 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
5 Manoharan P.K.,(2012) Education and Personality Development, APH Publishing Corporation, New Delhi. E BOOKS 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
5 Delhi. E BOOKS 1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
1 https://www.bkconnection.com/static/Business_Ethics_EXCERPT.pdf
2 https://healthaan.com/on/husinass.athics.ahaal
2 https://bookboon.com/en/business-ethics-ebook
MOOC

1

https://www.mooc-list.com/course/global-impact-business-ethics-coursera

COURSE	TITLE			THE	RMA	. ENG	INEER	ING L	AB -I			CR	EDITS	1
COURSE	CODE	Ν	ЛЕВ42	241	•	COUR	SE CA	regoi	RY	Р	С	L-1	T-P-S	0-0-2-0
Versi	on		1.0			Appr	oval [Detail	S	23 A 06.02	CM, .2021		ARNIN LEVEL	BTL-4
ASSESSM	ENT SC	HEME												
			C	CIA								E	SE	
			8	0%								2	0%	
Cours Descrip		To ga like bl	•				-		•			•		apparatus
	 Course Objective 1. To understand the basic concepts and utilization of heat for accomplishing specific work 2. To understand the operational details of refrigeration units and its performance features 3. To learn the basic principle of air conditioning. 													
Cour: Outco		 Ev Ca Co Co 	aluate Iculat onduct emons frigera	e the p e the c e xper trate t ator	erfori cop of rimen the pe	mance the re t on re erform	e and e efriger ecipro ance o	efficie ration cating of wal	ncy of and A ; air cc k in cc	/C pla ompre ooler a	ower nt ssor ai ind co	nd ref oling 1	rigeratio tower an	n system d LPG
Prerequisi	ites: The	ermody	namio	CS										
CO, PO A	ND PSO	MAPP	ING											
со	PO - 1	РО- 2	Р О- З	Р О- 4	РО -5	Р О- 6	Р О- 7	P O- 8	PO -9	Р О- 10	Р О- 11	Р О- 12	PSO-1	PSO-2
CO-1	3	3	1	1	3	2	2	1	2	1	-	3	3	-
CO-2	3	3	1	1	3	2	2	1	2	1	-	3	3	-
CO-3	3	3 1 1 3 2 2 1 2 1									-	3	3	-
CO-4	D-4 3 3 1 1 3 2 2 1 2 1 - 3 3										-			
CO-5 3 3 1 1 3 2 2 1 2 1 - 3 3 -														
		1: We	akly r	elated	, 2: M	lodera	tely r	elated	and	3: Stro	ongly r	elate	d	
					LIS	ST OF	EXPE	RIMEN	ITS					

1	Performance characteristics of a c	onstant	speed air blower.									
2	Verification of fan laws and static	efficienc	y of air blower.									
3	C.O.P. of a Refrigeration plant.											
4	Performance test on A/C plant.											
5	Performance test on single/two coding.	Performance test on single/two stage reciprocating air compressor with Matlab© coding. BTL-4										
6	Capillary optimization for a Refrige	Capillary optimization for a Refrigeration System using Matlab© and Simulink©.										
7	Performance analysis of Walk-in co	ooler										
8	Performance test on a Cooling Tov	ver										
9	Performance analysis of a Solar Fla	at Plate C	Collector									
10	Performance test on a LPG Refrige	rator										
11	11 Performance test on Vertical Axis wind turbine											
	LIST OF EQUIPME	NTS (Fo	r a batch of 30 students)									
1.	1.Air Blower7Single/two stage reciprocating air compressor											
2	Cooling Tower 8 Vanour Compression Refrigeration test rig											

2.	Cooling Tower	8	Vapour Compression Refrigeration test rig
3.	Solar Flat Plate Collector	9	Vapour compression Air Conditioning test rig
4.	Refrigeration unit with Capillary optimization	10	Axial-fan with vertical axis wind turbine
5	LPG Refrigerator		
6	Walk-in cooler		

COURSE TITLE	STRENGT	I OF MATERIALS LABO	RATORY	CREDITS	1				
COURSE CODE	MEB4242	COURSE CATEGORY	PC	L-T-P-S	0-0-2-0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4				
ASSESSMENT SO	CHEME			•					
	CIA		ESE						
	80%		20%						
Course Description	To understand t	he properties of mater	ials and metals	and how to	measure the same				
	1. To gain know	wledge on different me	tals used in me	chanical app	lications.				
Course	2. To understand the importance of strength of different components like springs,								
Objective	beams etc								
	3. To understa	nd the heat treatment	process which	alters the pro	operties of materials.				

	Course OutcomeUpon completion of this course, the students will be able to1. Conduct experiments to find out different properties of metals and alloys2. Compare the properties of metals before and after the heat treatment.3. Conduct experiment to measure the deflection of a beam4. Measure the strain using rosette strain gauge5. Conduct experiments to calculate the strength of different components like springs beams etc.													
Prere	quisites	: NIL												
CO, I	PO AND	PSO N	ΛΑΡΡΙΓ	NG										
со	PO PO- PSO-1 PSO-2 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 12 PSO-1 PSO-2													
CO-1	. 2	-	2	-	2	-	-	-	2	-	-	2	-	-
CO-2	2 -	-	-	-	2	-	-	-	-	-	2	2	-	-
CO-3	2	-	-	-	2	-	-	-	-	-	2	2	-	-
	1: Weakly related, 2: Moderately related and 3: Strongly related													
						LIS	ST OF E	EXPERI	MENT	S				
1	Tensio	n test	on a m	ild ste	el rod									
2	Double	shea	r test o	n Milc	l steel	and Al	umini	um roc	ls					
3	Torsio	n test (on milo	d steel	rod									
4	Impact	test c	on met	al spec	imen									
5	Hardne	ess tes	t on m	etals -	Brine	l and F	Rockw	ell Har	dness	Numbe	er			
6	Deflect	ion te	st on b	eams										
7	Compr	ession	test o	n helio	al spri	ngs								
8	Strain	Measu	iremer	it usin	g Rose	tte str	ain gai	uge						
9	Effect	of har	dening	- Impr	oveme	ent in h	nardne	ss and	impac	t resis	tance o	of steels	s.	
10	Tempe	-	•				Prope	rties C	òmpai	rison				
			Unha Quei		•		hd							
		р. С.			•		ed spe	cimen						
11	Micro	-	Exami			1, 2, 1								
			Hard		•									
			Hard			-		-						
		C.	Defle	ection	test o			1ATLAI ASSIG		тс				
	1. Solvi	ngaH	eat Tra	ansfer	Proble						nt Pro	oerties		
		-	neous l					•		Pende				
		-			•		•			with N	lonuni	form H	eat Flux	
			bution											
			duled C											
(6. Nonl	inear	State E	stimat	ion of	a Deg	rading	Batter	ry Syst	em				

	 Single Hydraulic Cylinder Simulation Two Cylinder Model with Load Constraints
	LIST OF EQUIPMENTS (For a batch of 30 students)
1.	Universal Tensile Testing machine with double shear attachment-40Ton Capacity-1 No
2	Torsion Testing Machine (60 NM Capacity) - 1 No
3	Impact Testing Machine (300 J Capacity) - 1 No
4	Brinell Hardness Testing Machine - 1 No
5	Rockwell Hardness Testing Machine - 1 No
6	Spring Testing Machine for tensile and compressive loads (2500 N) - 1 No
7	Metallurgical Microscopes - 3 Nos
8	Muffle Furnace (800 ⁰ C) - 1 No
9	MATLAB© – 30 No

COURSE TITLE	ENGINEERING I		ID MEA	SUREMENTS LAB	CREDITS	1						
COURSE CODE	MEB4243	COURSE CATE	GORY	PC	L-T-P-S	0-0-2-0						
Version	1.0	Approval De	etails	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4						
ASSESSMENT SC	HEME											
	CIA		ESE									
	80%				20%							
Course Description	on measurement science. It provides a means of assessing the suitability of measuring											
Course Objective	 To acquire kr To acquire kr To acquire kr To acquire kr To acquire 	nowledge on cal nowledge on cal nowledge on cal knowledge on	culatior culatior culatior	of Vernier / Micro of the taper angle of pitch, thread an of force and torqu rement of Displace	ngle using prof Ie	ile projector						
Wheatstone Bridge) Upon completion of this course, the students will be able to 1. Calibrate Vernier / Micrometer / Dial Gauge. 2. Calculate taper angle. 3. Calculate pitch, thread angle using profile projector. 4. Calculate force and torque. 5. Measure Displacement (Strain Gauge / LVDT/ Wheatstone Bridge).												
Prerequisites: En	gineering Physics											
CO, PO AND PSC) MAPPING											

со	PO -1	PO -2	PO -3	PO -4	PO -5	PO -6	РО- 7	PO -8	РО -9	PO- 10	PO -11	PO-12	PSO -1	PSO-2
CO-1		2	-	2		-	-	-	2		-	2	-	-
CO-2	2	2	-	2	-	-	-	-	2	-	-	2	-	-
CO-3	2	2	-	-	2	-	-	-	2	-	-	2	-	-
CO-4	2	2	-	2	2	-	-	-	2	-	-	2	-	-
CO-5	2	2	-	2	-	-	-	-	2	-	-	2	-	-
			1: W	eakly	relate	d, 2: N	loderat	tely re	lated a	and 3: S	trongly	related		
						LI	ST OF E	XPER	MENT	S				
1	Calibra	ition o	f Verni	ier / M	icrom	eter / I	Dial Ga	uge						
2	Checking Dimensions of part using slip gauges													
3	Measurement of Gear Tooth Dimensions													
4	Measur	Measurement of Taper Angle using sine bar /Tool Makers microscope												
5	Measurement of Straightness and flatness													
6	Measurement of Thread parameters													
7	Checking the limits of dimensional tolerances using comparators (Mechanical / Pneumatic /													
	Electrical)													
8	Measurement of Temperature using Thermocouple / Pyrometer													
9	Measur	remen	t of Dis	splacer	ment (Strain	Gauge	/ LVD1	/ Whe	atstone	e Bridge	e)		
10	Measu	remer	nt of Fo	orce										
11	Measu	remer	nt of To	orque										
12	Measur	emen	t of Vil	oratior	n / Sho	ck								
13	Measu	remer	nt of Co	oordin	ates fo	or the g	given co	ompor	ient us	ing coo	rdinate	measuring	machine	2
•				LIS	T OF E	QUIPN	VENTS	(For a	batch	of 30 st	udents	5)		
1.	Microm	neter		-	5									
2	Vernier	Heigh	t Gaug	ge -	2									
3	Vernie	r Dept	h Gaug	ge -	2									
4	Slip Ga	uge Se	et	-	1									
5	Gear T	ooth V	ernier/	-	1									
6	Sine Ba	ar		-	2									
7	Bevel F	Protrac	ctor	-	1									
8	Floatin	g Carr	iage N	licrom	eter -	1								
9	Profile	Projec	ctor	-	1									
10	Mecha	nical /	'Electr	ical / F	neum	atic								
11	Compa	rator												
12	Tempe	rature	Meas	uring S	etup									
13	Displac	cemen	t Meas	suring	Setup									
14	Force N	leasur	ring Se	tup										

15	Torque Measuring Setup
16	Vibration / Shock Measuring
17	Coordinate Measuring Machine
18	Autocollimator
19	Coordinate Measuring Machine
20	Tool makers Microscope
21	Dial gauge Calibration

COUR	SE TIT	LE	DESIGN PROJECT II									CREDI	TS		1
COUR	DURSE CODE MEB4244 COURSE CATEGORY			РС		L-T-P	-S		0-0-2-0						
Version			1	.0		Approval Detail		ails		3 ACM, 02.202		LEARNING LEVEL		BTL-6	
ASSES	SMEN	T SCH	IEME										L. L		
CIA												ESE			
			80%						20%						
	ourse criptio	n	Strategies and methods of designing, manufacturing, and testing of mechanical products. Engineering drawing and CAD, design methods, material properties, failure modes, selection methodology, fundamental GD&T, and selected manufacturing processes.												
Course Objective			 To Provide opportunity for the students to implement their skills acquired in the previous semesters to practical problems. To understand the engineering aspects of design with reference to simple products To foster innovation in design of products, processes or systems To develop a design that add value to products and solve technical problems To develop skills in doing literature survey, technical presentation and report preparation. 												
Course Outcome Prerequisites: Ni			 Destance accontract Destance 	sign ar quired i scribe t	nd fab in the j the ma	ricate previou king a	a mini us sem produc	i devic esters. ct is ac	e/ ma	l for sol	equip ving pi	ment u ractical	using th problem esentati	n.	nowledge skill.
CO, PO AND PSO MAPPING															
со	РО -1	PO -2	_	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	PO - 10	PO -11	PO- 12	PSO-	1	PSO-2
CO-1	2	1	2	-	3	-	-	2	1	2	2	3	1		2
CO-2	2	1	-	-	3	-	-	-	-	-	-	2	1		2
CO-3	1	2	2	-	3	1	2	2	1	2	2	3	1		2

1: Weakly related, 2: Moderately related and 3: Strongly related NOTE The students in convenient groups of not more than 4 members have to take one ٠ small item for design and fabrication. Every project work shall have a guide who is the member of the faculty of the institution. The item chosen may be small machine elements (Example-screw jack, coupling, • machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic /pneumatic devices etc. The students are required to design and fabricate the chosen item and demonstrate • its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication. BTL-6 • The item chosen may be small machine elements (Example-screw jack, coupling, machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic /pneumatic devices etc. ASSESSMENT (%) **Continuous Assessment** 80 Viva-voce 20 Total 100

CO-3

CO-4

CO-5

_

2

2

_

1

3

MODULE 1: INTRODUCTION TO OPTIMIZATION

-

-

-

SEMESTER V														
COURS	E TITLE	:	OPTIMIZATION TECHNIQUES									CREDITS		4
COURSE CODE		E	MAA 4	301	СО	COURSE CATEGORY			PC			L-T-P-S		3-1-0-0
Version			1.0		Approval Details			3 ACM, 02.202		LEARNING LEVEL		BTL-4		
ASSESS	MENT	SCHEI	ME								·		·	
First Periodical Assessment			Seco Period ssessn	ical	Assi	Sem gnmer	inar/ nts/ Pr	oject	-	Surprise Test / Quiz		Attend	ance	ESE
15%			15%	6		1	0%			5%		5%		50%
	urse iption	th	To make the student develop a knowledge in the field of optimization techniques their basic concepts, principles of linear and integer programming, assignment and transportation problems											
	urse ctive	2. 3. 4.	 To understand the concept of optimization To formulate linear programming model To understand the concept of integer programming To understand the assignment and transportation problem To understand the concept of network analysis 											
Cou Outo	2. 3. 4.	 Upon completion of this course, the students will be able to Formulate mathematical model Cast engineering maxima/minima problems into optimization framework. Solve the integer programming problems Solve the assignment and transportation problems Analyze the designs of networks 												
Prerequ	Prerequisites: NIL													
CO, PO AND PSO MAPPING														
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO- 1	PSO-2
CO-1	1	-	1	-	1	1	-	-	-	-	-	-	-	-
CO-2	2	-	1	-	-	1	-	-	-	-	-	-	-	-

1

1

-

-

-

-

1

1

1

_

-

-

-

-

-

1: Weakly related, 2: Moderately related and 3: Strongly related

_

-

-

-

-

-

-

-

-

-

-

-

-

-

-

_

-

-

(9L+3T=12)

	tion to operations research – objective – scope of OR – Limitations of OR –						
Introduct Introduct method. Suggested	CO-1 BTL-2						
MODULE 2: LINEAR PROGRAMMMING PROBLEM							
Solving LPP using simple method – Big-M method – Two phase method – conversion of primal to dual. Suggested Reading: System of equations							
MODULE	3: INTEGER PROGRAMMING	(9L+3T=12)					
Branch ar	programming – Cutting plane method – Gomory's Mixed integer method – nd Bound method d Reading: System of equations	CO-3 BTL-4					
MODULE	4: ASSIGNMENT AND TRANSPORTATION PROBLEM	(9L+3T=12)					
Hungaria feasible s Transport Suggeste	CO-4 BTL-4						
MODULE 5: PERT AND CPM							
PERT pro	diagram – Representation – Labeling – CPM – PERT probabilities of CPM – babilities of project duration. d Reading: Basics of graphs	CO-5 BTL-4					
TEXT BOC)KS						
1.	Chandrasekaran A,(2017), "A Text book of Operation Research", Dhanan Chennai.	n Publications,					
DECEDEN	CE BOOKS						
REFEREN							
1.	Hamdy A. Taha, (2010), "Operations Research: An Introduction", Prentice Hall.						
	Hamdy A. Taha,(2010), "Operations Research: An Introduction", Prentice Hall. <u>D S Hira & Prem Kumar Gupta</u> ,(2012) "Introduction to Operations Resear Publishing, (9th Edition).	rch", S. Chand					
1.	D S Hira & Prem Kumar Gupta, (2012) "Introduction to Operations Resear	rch", S. Chand					
1. 2.	D S Hira & Prem Kumar Gupta, (2012) "Introduction to Operations Resear	rch", S. Chand					
1. 2. E BOOKS	<u>D S Hira & Prem Kumar Gupta</u> ,(2012) "Introduction to Operations Reseau Publishing, (9th Edition).	rch", S. Chand					
1. 2. E BOOKS 1.	D S Hira & Prem Kumar Gupta,(2012) "Introduction to Operations Resear Publishing, (9th Edition). http://nptel.ac.in/courses/112106134/1	rch", S. Chand					

COURSE TITLE	DESI	GN OF MACHINE ELEME	CREDITS	3						
COURSE CODE	MEB4301	COURSE CATEGORY	L-T-P-S	3-0-0-2						
Version 1.0		Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4					
ASSESSMENT SCHEME										
First PeriodicalSecondAssessmentPeriodical		Seminar/ Assignments/	Surprise Test / Quiz	Attendance	ESE					

	Assessment	Project										
15%	15%	10% 5% 5%										
Course Description	failure theories	The course focuses on the fundamentals and principles of basic mechanical elements, failure theories and design criteria, and structures of basic mechanical systems. The goal of the course is to learn how to design simple mechanical elements and systems.										
Course Objective	simple comp 2. To understan knowledge fo against failur 3. To determine 4. To determine fluctuating lo 5. To determine for size of we 6. To determin	e forces on transmission e the endurance streng	esign data hand of failure and component and shaft and design gth and design d riveted joints ew and bolted	book. develop an abi d determine the n of transmissio of component and formulate	lity to apply its resisting areas n shaft s subjected to design solution							
Course Outcome	 Analyze an overhauling, Design bolte Analyze and joints with re Analyze and custom softe Select apprese 	opriate flywheel and sp atalogue data.	ws with respe ect to static and pinned, welded amic shear and l /drodynamic be	ect to torque d dynamic axial d, brazed, solde bending loads. earings using de	loads. red, and glued sign charts and							

Prerequisites: Engineering Physics

CO, PO AND PSO MAPPING

-														
со	РО	РО	РО	PSO-	PSO-2									
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	P30-2
CO-1	2	2	1	2	-	2	-	-	-	-	-	1	-	-
CO-2	2	2	-	-	-	2	-	-	1	1	-	2	-	-
CO-3	3	1	-	-	-	-	-	-	1	1	-	2	-	-
CO-4	2	3	1	1	-	2	-	-	-	-	-	3	-	-
CO-5	3	1	1	1	-	3	-	-	-	-	-	2	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related	
MODULE 1: INTRODUCTION TO THE DESIGN PROCESS	(9)
Factor influencing machine design, selection of materials based on mechanical properties - Direct, Bending and torsion stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - Design of curved beams - crane hook and 'C' frame Factor of safety - theories of failure - stress concentration - fatigue strength and the S-N diagram - Soderberg, Goodman and Gerber relations. Suggested Readings: International standards for fits and tolerances	CO-1 BTL-4
MODULE 2: DESIGN OF SHAFTS AND COUPLINGS	(9)
Design of solid and hollow shafts based on strength, rigidity and critical speed - Design of keys and key ways - Design of rigid and flexible couplings - Introduction to gear and shock absorbing couplings - design of knuckle joints. Suggested Readings: Study on cotter joints	CO-2 BTL-4
MODULE 3: DESIGN OF FASTENERS AND WELDED JOINTS	(9)
Threaded fasteners - Design of bolted joints including eccentric loading - Design of welded joints for pressure vessels and structures - theory of bonded joints. Suggested Readings: Study of welding on dissimilar materials	CO-3 BTL-4
MODULE 4: DESIGN OF SPRINGS AND LEVERS	(9)
Design of helical, leaf, disc and torsion springs under constant loads and varying loads - Concentric torsion springs - Belleville springs - Design of Levers Suggested Readings: Study of composite leaf spring	CO-4 BTL-4
MODULE 5: DESIGN OF BEARINGS AND FLYWHEELS	(9)
Design of bearings - sliding contact and rolling contact types Cubic mean load - Design of journal bearings - McKee's equation - Lubrication in journal bearings - calculation of bearing dimensions Design of flywheels involving stresses in rim and arm. Suggested Readings: Study on hydrodynamic gas bearing and its applications	CO-5 BTL-4
TEXT BOOKS	
1 Juvinall R. C., Marshek K.M., (2012), Fundamentals of Machine component Wiley & Sons, Fifth Edition,.	Design - Johr
2 Bhandari, V.B., (2010) Design of Machine Elements, Tata McGraw-Hill Publis Ltd.	shing Company
REFERENCE BOOKS	

Norton R.L, (2004), Design of Machinery, McGraw-Hill Book co,
Orthwein W, (2013), Machine Component Design, Jaico Publishing Co.
https://books.google.co.in/books?isbn=1118987683
https://www.google.co.in/search?tbo=p&tbm=bks&q=isbn:1259083519
https://books.google.co.in/books?isbn=007742171X
https://books.google.co.in/books?isbn=8172247737
http://nptel.ac.in/courses/112106137/
http://nptel.ac.in/courses/112105125/
http://www.nptelvideos.in/2012/12/design-of-machine-elements.html
http://nptel.ac.in/courses/112106137/

COURSE TITLE	N	MECHANICS OF MACHINES CREDITS 3								
COURSE CODE	MEB4302	COURSE CATEGORY	PC	L-T-P-S	3-0-0-1					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4					
ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE						
15%	15%	10%	5%	5%	50%					
	Kinematics of mechanisms, vector method of analysis of plane mechanisms. Static and dynamic analysis of machines, inertia forces, gyroscopic forces, Static and dynamic balancing, balancing machines. Dynamics and balancing of reciprocating engines. Flywheels. Kinematics and dynamics of cam mechanisms. Elements of mechanical vibrations.									
Course Description	and dynamic dynamic balan engines. Flywł	analysis of machines, cing, balancing machin neels. Kinematics and	inertia forces, g es. Dynamics ar	gyroscopic force and balancing of	es, Static and reciprocating					

- 2. To expose the different types of frictional elements.
- 3. To demonstrate ability to construct various follower motion diagrams and understand the advantages and disadvantages of each type of motion; and to be able to design cam profiles for any given follower displacement using graphical methods.
 - 4. To understand the balancing of rotating machinery, gyroscopic couple and its effects.
 - 5. To comprehend the mechanical vibrations; including concepts of natural frequency, damping and resonance.

Cours	e Outco	ome	 Aı ar Aı sc Aı Aı Ex 	oply th nd iner oply th olid obj nalyze valuate	e theo tia and e conc ects ar the eff the ef	ory of i l analy ept of nd app fect of fect of	ze the frictior ly Autc speed f gyrose	nism, t velocit n in ma oCAD co and to cope o	the cor y and a ochine ommai rque ir n Auto	ncepts acceler compo nds to n gears mobile	of mo rations onents genera and g es, ship	bility, o in mec and me ate the ear trai os and a	degrees o chanisms. echanisms models. ns. ns. airplanes. amped vib	s. Visual	lize
Prereq	uisites:	Nil													
со, рс) AND P	SO M	APPING	6											
со	CO PO										PSO-1	PSO	-2		
CO-1	2	1	-	3	-	2	2	-	1	2	-	-	-	-	
CO-2	2	1	-	3	3	2	2	-	1	2	-	-	-	-	
CO-3	1	2	-	- 2 - 1 2 - 1 2 ·						-	-				
CO-4	1	2	-	- 3 1 2								-	-		
CO-5 1 2 - 2 3 2 1 - 1 2									-	-					
		:	1: Wea	kly rel	ated, 2	2: Mod	erately	y relat	ed and	3: Str	ongly r	elated			
MODU	ILE 1: K	INEMA		F LINK	AGE N	1ECHA	NISMS							9	
Kinema Graphi	atic lin atic ana cal met ations in	lysis o hod –	f simpl Veloci	e mec ity and	hanisn I accel	ns – De eratio	etermi n poly	nation gons. <i>S</i>	of vel Sugges	ocity a	ind acc	celerati	on –	CO-1 BTL-2	
MODU	LE 2: FR	ΙΟΙΤΟΙ	N												9
of tens transm	n in scre sions – ission - , Friction	Effect – Ope	of cer n and	ntrifug crosse	al and ed bel	initial t drive	tensio e. Sug	on – C	onditio	on for	maxin	num po	ower	CO-2 BTL-4	
MODU	le 3: Ge	ARINO	G AND	CAMS											9
gear tra cams – offsets	Toothed gearing – Nomenclature of spur and helical gears – Gear trains: Simple, compound gear trains and epicyclic gear trains - Determination of speed and torque - Cams – Types of cams – Design of profiles – Knife edged, flat faced and roller ended followers with and without poffsets for various types of follower motions. <i>Suggested Reading:</i> Helical, Bevel, Worm, Rack and Pinion gears (Basics only), Differentials														
MODU	LE 4: B/	ALANC		ND GYI	ROSCO	PIC CC	OUPLE								9
								-							

First Periodical AssessmentPeriodical Periodical AssessmentAssignments/ ProjectSurprise Test / QuizAttendance15%15%10%5%5%						ESE			
ASSESSMEN		EME Second	Seminar/	Surprise Test					
Version		1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4			
COURSE C	ODE	MEB4303	COURSE CATEGORY	PC	L-T-P-S	3-0-0-1			
COURSE T	TLE		NAMICS AND JET PROPU		CREDITS	3			
1.	•	attan.pdf. Theorie	m/file/d/0B5dLUIZfysmo s of Machinen Snippe	et view –	ubIU/editories	of Machine -			
моос	1.11								
2.		,	1achines: A Text- e.com/file/d/0B5dLUIZf	-	0	udents Thomas			
1.	https	://books.google.co	om/books/about/Theor	y_of_Machines_	3_e.html?id=y	q0ucr			
E BOOKS	<u> </u>			_ ·	·				
4.		•	, "Kinematics and Linkag	ge Design", Prent	tice Hall, 9 th ed	ition.			
3. Robert L. Norton,(2012), "Kinematics and Dynamics of Machinery", McGraw-Hill Education - Europe, 2nd Edition.									
2.	Ben	Benson H. Tongue, (2007), "Principles of Vibrations", Oxford University Press, 2nd Edition,							
1. William L. Cleghorn,and Nikolai Dechev (2014), "Mechanisms of Machines", Oxford University Press, 2nd Edition.									
REFERENCE									
3.	Khur	mi, R.S.,(2015),"Th	neory of Machines", Cha	and Publications	14th Edition.				
2.	Ratta	an, S.S,(2014) "The	eory of Machines", Tata	McGraw-Hill, 4 th	Edition.				
1.			University Press, 4 th Edit						
		J. Uicker. Jr, Gord	on R. Pennock, and Jose	eph E. Shiglev,(20)14) "Theory o	f Machines and			
TEXT BOOKS		FFT Analysis using	I WATLAD ©						
			ree rotor systems. Su	iggested Readii	ng : Vibration	BTL-3			
Types of Da	mping	- Damped vibration	on critical speeds of sim	ple shaft – Torsi	onal systems;	CO-5			
Single degr	ee of f	freedom - Free vi	bration - Equations of	motion - natura	l frequency -				
MODULE 5: SINGLE DEGREE FREE VIBRATION									
Automobiles, ships and airplanes. <i>Suggested Reading</i> : Balancing machines-Field balancing of discs and rotors.									
	•			-		BTL-4			
Static and dynamic balancing – Single and several masses rotating in same and different planes – Gyroscopic forces and Torques - Gyroscopic stabilization - Gyroscopic effects in CO-4									

Course v Description e	This course describes the applications of the laws of Thermodynamics to jet and rocket propulsion in engineering applications. The course will provide an insight to various types of compressible flows involved in gas turbines and jet propulsion. The effect of shock in different flows are analyzed in detail and enable the student to solve more advanced problems								nsight to Ision. The			
Course Objective	 To understand the fundamental concepts of Compressible and Incompressible fluid flow. To understand the flow through variable area duct with and without friction. To understand the flow through constant area duct with and without friction. To understand the flow through variable area duct with and without friction. To understand the flow through variable area duct with and without shock waves. To understand the principles of flow through nozzles and to design a system for jet and rocket propulsion application and specification. 											
2 Course 3 Outcome 4 5	Course Upon completion of this course, the students will be able to 1. Illustrate the basic fundamental concepts of compressible fluid flow, jet propulsion and rocket propulsion phenomena. 2. Describe the subsonic, sonic and supersonic isentropic flows through nozzles and diffusers for air, gases and vapour. 3. Apply the concepts to one dimensional flow in constant area ducts with friction									nozzles and vith friction tropic flow		
Prerequisites: Engine	•	nermo	aynar	nics, i	nerma	ii Engli	heerin	g				
CO O - PO-2 1	РО	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	PO -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1 3 3	2	1	2	2	2	1	1	1	-	-	3	-
CO-2 3 3	2	1	2	2	2	-	1	1	-	-	3	-
CO-3 3 3	2	1	2	2	2	-	1	1	-	-	3	-
CO-4 3 3	2	1	2	2	2	-	1	1	-	-	3	-
1	1: Weak	ly rela	ted, 2	: Mode	erately	relate	ed and	l 3: Str	ongly	related	1	
MODULE 1: COMPR	ESSIBLE	FLOW	- FUN	IDAME	INTAL	5						9

Energy and momentum equations for compressible fluid flows, various regimes of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on	CO-1
compressibility	BTL-3
Suggested Reading: Infinitesimal pressure waves (sound waves), Non-steep pressure	DIE-3
waves with finite amplitude, Steep pressure waves (shock waves), and Expansion waves.	
MODULE 2: FLOW THROUGH VARIABLE AREA DUCTS	9
Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser	
flows, area ratio as a function of Mach number, mass flow rate through nozzles and	
diffusers, effect of friction in flow through nozzles.	CO-2
Suggested Reading: Comparison of isentropic and adiabatic processes for expansion and	BTL-4
compression processes	
· · ·	0
MODULE 3: FLOW THROUGH CONSTANT AREA DUCTS	9
Flow in constant area ducts with friction (Fanno flow) - Fanno curves and Fanno flow	
equation, variation of flow properties, variation of Mach number with duct length.	60 3
Flow in constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and	CO-3
Rayleigh flow equation, variation of flow properties, maximum heat transfer.	BTL-4
Isothermal flow with friction in constant area ducts	
Suggested Reading: Variation of flow properties for isothermal flow with friction MODULE 4: NORMAL SHOCK	9
	9
Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock,	
Prandtl - Meyer equation, impossibility of shock in subsonic flows, flow in convergent	
and divergent nozzle with shock, normal shock in Fanno and Rayleigh flows, flow with	CO-4
oblique shock (elementary treatment only)	BTL-4
Suggested Reading: Wind tunnel and Supersonic wind tunnel used for observing flow	
and shocks; Plot the variations of flow properties from entry to exit of a diffuser / nozzle	
undergoing normal shock waves using MATLAB©	
MODULE 5: JET PROPULSION	9
Aircraft propulsion, types of jet engines, energy flow through jet engines, study of turbojet engine components-diffuser, compressor, combustion chamber, turbine and exhaust systems, performance of turbojet engines, thrust, thrust power, propulsive and overall efficiencies, thrust augmentation in turbojet engine, ram jet and pulse jet engines.	CO-5
Rocket propulsion, rocket engines thrust equation, effective jet velocity specific impulse, rocket engine performance, solid and liquid propellants, comparison of different propulsive systems Suggested Reading : Air breathing engines, Emerging trends like Scramjet, Difference	BTL-4
between turbojet engines, ramjet engines, pulsejet engines and scramjet engines.	
TEXT BOOKS	

1	Ethirajan Rathakrishnan, (2017), Gas Dynamics, PHI Learing Private Limited, Delhi, Sixth Edition,
2	Forrest E Ames, (2018) An Introduction to Compressible Flow, Momentum Press.
3	S. M. Yahya, (2012), Fundamentals of Compressible Flow: With Aircraft and Rocket Propulsion, New Age Science, Fourth Edition.
REFERENC	E BOOKS
1	Frank M White, (2012), Viscous Fluid Flow, Tata McGraw Hill Education Private Limited, New Dehli, Third Edition.
2	H. Cohen, G.F.C. Rogers, Paul Straznicky, H.I.H. Saravanamuttoo, Andrew Nix, (2017) Gas Turbine Theory, Prentice Education Limited.
3	Frank M White, (2010), Fluid Mechanics, Tata McGraw-Hill New Delhi, 5th Edition.
4	I.G. Currie, (2013) Fundamental Mechanics of Fluids, USA, Fourth Edition.
E BOOKS	
	https://books.google.co.in/books?id=-zTOBQAAQBAJ&printsec=frontcover&dq=
	compressible +flow&hl=en& sa=X&ved=0ah UKEwiBsr GzrMrZAhUKtl 8KHUvbD YUQ6
1	AEIPz AI#v=onepage&q= compressible% 20flow&f=false Patrick H Oosthuizen, William E.
	Carscallen
	https://books.google.co.in/books?id=GVjiDQAAQBAJ&printsec=frontcover &dq =Ethirajan
2	+Rathakrishna n&hl=en&sa=X&ved=0ahUKEwjK9 qbhrcrZAhU HN48KHaGMB UIQ6AEIK
	jAE#v=onep age&q=Ethirajan%20 Rathakrishnan&f=false Ethirajan Rathakrishnan
	https://books.google.co.in/books?id=nCeSQAAACAAJ&dq=compressible
3	+flow+yahya&hl=en&sa=X&ved=0ahUKEwjZi9_crsrZAhUFpY8KHewV BHwQ6AEIHzAC
	S.M.Yahya
	https://books.google.co.in/books?id=Op7mBQAAQBAJ&printsec=front cover&d q=yahya
4	+fourth+e dition,+Fundamental+of+compressible+ flow&hl=en &sa=X&ved =OahUKEwi
	B3JmxsMrZAhUFsY8KHQm MBTU4FBDoAQg1MAY#v=onepage&q&f=false V. Babu
	https://books.google.co.in/books?id=hvEmDwAAQBAJ&dq=yahya+ fourth+edition ,+Fund
5	am ental+of+compressible+flow&hl=en&sa= X&ved= OahUKEw iOldeurs rZAhUdS 48KHd8TBU kQ6AEIPDAH H. Cohen, G.F.C. Rogers, Paul Straznicky, H.I.H.
	Saravanamuttoo, Andrew Nix
	https://books.google.co.in/books?id=vTlJnAEACAAJ&dq= Compressi ble+Flow&hl= en&sa
6	=X&ved=0a hUKEwj_uTXssrZAhX EMY8KHZYEDTQ4FBDoAQgzMAY Shih-I Pai
MOOC	
1	http://nptel.ac.in/courses/112106056/
2	http://nptel.ac.in/courses/112103021/
3	http://nptel.ac.in/courses/112106166/
4	http://nptel.ac.in/courses/101106040/
5	http://nptel.ac.in/courses/101106044/
6	http://nptel.ac.in/courses/101101002/
7	http://nptel.ac.in/courses/101104019/
8	http://nptel.ac.in/courses/101103004/
9	http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load

	&courseId=11396
10	https://www.mooc-list.com/course/hypersonics-shock-waves-scramjets-edx
11	https://www.my-mooc.com/en/mooc/hypersonics-shock-waves-scramjets-uqx-
	hypers301x-2/

COURSE TITLE	MEC	HATRONICS & PNEUMA	TICS	CREDITS	3						
COURSE CODE	MEB4304	COURSE CATEGORY	PC	L-T-P-S	3-0-0-1						
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3						
ASSESSMENT SC	ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE						
15%	15%	10%	5%	5%	50%						
Course Description Course Objective	Computer Syste 1. To Impart kn systems	he interdisciplinary appli ms for the Control of Me owledge about the eler d the emerging field of a	echanical and Elec ments and techni	tronic Systems.							
Course Outcome	2. To understand the emerging field of automation. Upon completion of this course, the students will be able to 1. Identify an appropriate sensor for certain tasks 2. Describe various actuation systems existing in industries. Design the Building blocks of Mechanical, Electrical, Fluid and Thermal Systems.										

Prerequisites: Basic Electrical and Electronics Engineering

СО, РС	CO, PO AND PSO MAPPING														
со	РО	РО	PO-	PO-	РО	РО	РО	РО	РО	РО	РО	PO-	PSO-1	PSO-2	
0	-1	-2	3	4	-5	-6	-7	-8	-9	-10	-11	12	F30-1		
CO-1	1	2	2	-	-	-	-	-	-	-	-	-	-	-	
CO-2	1	2	2	-	-	-	-	-	-	-	-	-	-	-	
CO-3	1	-	2	-	-	-	1	-	-	-	-	-	-	-	
CO-4	1	1	-	-	2	-	-	-	-	-	-	2	-	-	
CO-5	1	-	2	-	-	-	2	-	-	-	-	2	-	-	

1: Weakly related, 2: Moderately related and 3: Strongly related	
MODULE 1: MECHATRONICS, SENSORS AND TRANSDUCERS	9
Introduction to Mechatronics Systems – Measurement Systems – Control Systems –	
Microprocessor based Controllers.	
Sensors and Transducers-Performance Terminology-Sensors for Displacement, Position	CO-1
and Proximity; Velocity, Motion, Force, Fluid Pressure, Liquid Flow, Liquid Level,	BTL-3
Temperature, Light Sensors – Selection of Sensors	DIE-S
Suggested Reading: Detailed design and development of strain gauge, load cell and	
accelerometers	
MODULE 2: PNEUMATICS AND ACTUATION SYSTEMS	9
Pneumatic Components: Air supply unit and distribution unit, Control valves, Linear and	
rotary actuators - applications - Speed control circuits, synchronizing circuit, Electro	
Pneumatic circuits, Pneumatic and Electro Pneumatic Sequential circuit design for	
simple applications using cascade method.	CO-2
Electrical Actuation Systems – Mechanical Switches – Solid State Switches – Solenoids –	BTL-3
D.C Motors – A.C Motors – Stepper Motors.	
Suggested Reading: Learning Pneumosim software and designing virtual pneumatic	
circuits using the software.	
MODULE 3: SYSTEM MODELS AND CONTROLLERS	9
Building blocks of Mechanical, Electrical, Fluid and Thermal Systems, Rotational-	
Translational Systems, Electromechanical Systems – Hydraulic – Mechanical Systems.	
Continuous and discrete process Controllers–Control Mode–Two–Step mode–	
Proportional	CO-3
Mode–Derivative Mode–Integral Mode–PID Controllers–Digital Controllers–Velocity	BTL-3
Control–Adaptive Control – Digital Logic Control – Micro Processors Control.	
Suggested Reading: Learning Matlab© control toolbox and designing a PID controller for	
actuating robot arm.	
MODULE 4: PROGRAMMING LOGIC CONTROLLERS	9
Programmable Logic Controllers-Basic Structure-Input/Output Processing Programming-	
Mnemonics–Timers, Internal relays and counters–Shift Registers–Master and Jump	CO-4
Controls–Data Handling –Analogs Input / Output – Selection of a PLC Problem.	BTL-3
Suggested Reading: PLC for temperature control inside a room	
MODULE 5: DESIGN OF MECHATRONICS SYSTEM	9
Stages in designing Mechatronics Systems–Traditional and Mechatronic Design-Possible	
Design Solutions Case Studies of Mechatronics Systems, Pick and place robot-automatic	CO-5
Car Park Systems– Engine Management Systems.	BTL-3
Suggested Reading: Case study of household washing machine and refrigerator.	
TEXT BOOKS	
1 W. Bolton, (2016) "Mechatronics", Pearson Education, 4 th Edition.	
REFERENCE BOOKS	

1	S. K. Singh, R. Purohit, (2016),"Industrial Engineering, Robotics and Mechatronics", Made Easy Publications.
2	T. Thakur,(2016) " Mechatronics", Oxford University Press.
3	I. L. Krivits, G. V. Krejnin, (2016) "Pneumatic Actuating Systems for Automatic Equipment"
	Taylor and Francis.
4	W. Bolton, (2010),"Mechatronics: Electronic Control Systems for Mechanical and Electrical
	Engineering" Pearson Education. 4th Edition.
E BOOKS	
	https://books.google.co.in/books?id=3h5Hb9l0xYC&printsec=frontcover&dq=mechatronics
1	+in+action hl=en&sa=X&ved=0ahUKEwjRkoGBtNTZAhWBRo8KHQsHC x0Q6AEIJjAA#v=onep
	age&q=mechatron ics%20in%20action&f=false – D. Bradley, D. W. Russel
	https://books.google.co.in/books?id=LAlkDAAAQBAJ&printsec=frontcover&dq= m
2	echatronics+in+a tion&hl=en&sa=X&ved=0ahUKEwjRkoGBtNTZAhW BRo8K HQsHCx0Q6A
	EIKzAB #v=onepage&q=me chatronics%20in%20action&f=false - Peter Hehenberger
2	https://engineeringstudymaterial.net/ebook/essentials-of-mechatronics-by-john/ - John
3	Billingsley
1	https://engineeringstudymaterial.net/ebook/mechatronics-introduction-by-robert/ - Robert
4	H. Bishop
MOOC	
1	http://nptel.ac.in/courses/112105047/
2	http://nptel.ac.in/courses/112102011/
3	http://nptel.ac.in/courses/112102011/
4	http://nptel.ac.in/courses/112105046/

COURSE TITLE		DYNAMICS LAB		CREDITS	1
COURSE CODE	MEB4331	COURSE CATEGORY	РС	L-T-P-S	0-0-2-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4
ASSESSMENT	SCHEME			•	
	CIA			ESE	
	80%			20%	
	Dynamics laborato	ry deals with the			

	by families laboratory deals with the practical study on balancing of rotating and
Course	reciprocating masses, working principle of different types of governors. It also discusses the
Description	different types of vibration and its characteristics, jump phenomenon in CAMS and whirling
	of shaft.

				_										
Cou Objec		2. To 3. To 4. To	acquir acquir acquir acquir	e know e know e know	ledge o ledge o ledge o	n balan n CAMS n Gove		rotatin	g and re		ating m	asses		
	 Course Develop the concept of various measurement methods Describe about the laws governing the dynamics of machines such as Balancing of Rotating and Reciprocating Mass Illustrate Jump phenomenon in Cams Identify and measure sensitivity, effort in governors Differentiate the types of vibrations and its applications 													
-				nechani	cs, Stre	ngth of	materi	als, Me	chanics	of mac	hines			
CO, PO AND PSO MAPPING														
со	РО- 1	РО- 2	PO-											PSO -2
CO-1	2	2												-
CO-2	2										-	-		
CO-3	2	2	2	-	-	-	2	-	-	2	-	-	-	-
CO-4	2	2	2	-	2	-	2	-	-	-	-	-	-	-
CO-5	2	2	2	-	2	-	2	-	-	2	-	-	-	-
			1: Wea	kly rela	ted, 2:	Modera	ately re	lated a	nd 3: St	rongly	related			
		1					EXPER							
1				Deterr	ninatio	n of se	nsitivity	, effor	t, etc.	for Wa	att, Por	ter, Pro	oell, H	artnell
2	2	gover Cam		of jum	phenc	menon	and dr	awing p	orofile c	of the ca	ım			
3							of laws					c couple	e	
4							f critica	l speed	of shaf	t.				
5			-		cating I									
7			-		g masse oment		ia by os	cillatio	n meth	od for c	onnecti	ing rod	and flyv	wheel
8							-						ient of	
		degre	e of fre	edom s	system									-
9							cients f		-	freedo	m susp	ension	system	
1		1				-	atio - vi			d nond	ulum	and flue	wheel	vcto m
1	T		rminatio Nomen			a rrequ	iencies		mpoun	u pend	uium a	and fly\	wheel s	ystem
12	2		sverse v			Beam.	Detern	ninatior	n of na	itural fi	requent	cy and	deflect	ion of
				LIST O		MENT	S (For a	batch o	of 30 st	udents)				
	•	Care	analura	r .										

CO-2

2	Motorised gyroscope
3	Governor apparatus - Watt, Porter, Proell and Hartnell governors
4	Whirling of shaft apparatus.
5	Dynamic balancing machine
6	Static and dynamic balancing machine
7	Vibrating table
8	Vibration test facilities apparatus

COURSE TITLE THERMAL ENGINEERING LAB-II CREDITS											ITS	1		
COURSE CODEMEB4332COURSE CATEGORYPCL-T-P-S										0-0-2	2-0			
V	ersion)		1.0		Арр	roval D	etails		ACM, 2.2021	LEARN LEVE	_	BTL	-4
ASSESSMENT SCHEME														
CIA											ES	E		
80%											20	%		
CourseTo impart experimental knowledge on the performance and operationsDescriptionproperties, performance of I.C. Engines and steam generators											tions o	f fuel		
Course1. To learn about IC engines, lubricants and fuelsObjective2. To understand the Various dynamometers used for testing IC engines,3. To learn Operating boilers and understand the turbines and power generation										n				
	 Upon completion of this course, the students will be able to Conduct experiments on fuels and lubricants and understand its properties. Analyze the heat balance of an IC engine and understand the significance of the performance, combustion and emission parameters. Measure the friction power and indicated horse power in an engine Identify the quality of steam based on the dryness fraction Plot the performance and energy balance of the steam generator and steam turbine 													of the
Prerequisites: Thermodynamics														
CO, PO AND PSO MAPPING														
со	Р О- 1	РО- 2	РО- 3	РО- 4	РО -5	РО- 6	РО- 7	РО- 8	РО- 9	PO - 10	РО- 11	PO- 12	PSO -1	PS O-2
CO-1	3	3	1	1	3	2	2	1	2	1	-	3	3	-

-

-

	CO-3	3	3	1	1	3	2	2	1	2	1	-	3	3	-
	CO-4	3	3	1	1	3	2	2	1	2	1	-	3	3	-
-	CO-5	3	3	1	1	3	2	2	1	2	1	-	3	3	-
-			1	1: Wea	kly rela	ited, 2	: Mode	rately r	elated	and 3: 9	Strongly	related		1	
-							LIST O	F EXPE	RIMENT	S					
	1	Conduc engine	cting ar	ı exper	iment a	and dr	awing	the valv	ve timir	ng diagr	am for	a diesel			
	 2 Conducting an experiment and drawing the port timing diagram for a gasoline engine 3 Conducting a performance test on 4-stroke diesel engine and plotting its performance characteristics curves. 4 Conducting heat balance test on 4-stroke diesel engine and plotting it on a pie 														
	4	•						diesel	engine	and plo	otting it o	on a pie			
	5	 5 Conducting a Morse test on multi-cylinder gasoline engine and estimating the indicated power of each engine. 6 Determination of frictional power of a diesel engine by conducting a retardation 													
	7 Determination of viscosity of the fuel by using Redwood Viscometer. 8 Determination of flash point and fire point of the fuel.														
														ВП) L-4
	9 Emission analysis of exhaust of an IC engine using gas analyser 10 Combustion analysis of the diesel engine and plotting the pressure Vs crank angle at various load conditions 11 Determination of dryness fraction of the steam using calorimeter and														
	12	Conduc generat	0	experi	ment o	n perf	ormano	e and e	energy b	balance	test on a	a steam			
	13	Conduc turbine	-	experi	ment o	n perf	ormano	e and e	energy k	balance	test on a	a steam			
	14	Plot the condition	•			teristi	c curve	s for giv	ven a giv	ven fue	l at vario	ous load			
					LIST OF	EQUI	PMENT	S (For a	batch	of 30 st	udents)				
	Re	d Wood '	Viscom	eter											
	Ар	paratus	for Flasl	n and F	ire Poin	ıt									
	I.C	Engine -	2 strok	e and 4	stroke	mode									
	4-s	troke die	esel eng	ine wit	h mech	anical	Loadin	g							
	4-s	troke die	esel eng	ine wit	h hydra	ulic Lo	ading								
	4-s	troke die	esel eng	ine wit	h electr	ical Lo	ading								
Γ	Мι	ulti-cylino	der gaso	oline en	igine										
	Sin	gle cylin	der Pet	rol Engi	ne										

Combustion analysis setup for CI Engine

Emission gas analyser

Data Acquisition system with any one of the above engines

Steam Boiler with turbine and calorimeter setup

COURS	E TITLI	E	N	ЛЕСНА	TRON		ND PNI	EUMA	LICS LA	AB	С	REDIT	S	1		
COURS	E COD	E	MEB4	333	CO	URSE	CATEG	РС		L-T-P	-S	0-0-2-0				
Ver	sion		1.0	1	A	pprov	val Details 23 ACM, 06.02.2021				LEARN LEVE	_	BTL-4			
ASSESS	MENT	SCHE	ME								.		!			
	Cont	inuou	s Asse	ssmen	t						ESE					
		8	0 %				20%									
		TI	ne mai	n purp	ose of	this	laborat	ory is	to mal	ke the	studer	nts awa	are of th	e pneumatic		
Cou	urse	sy	stem	comp	onents	s. Th	e pne	umatio	c syst	em h	as be	en w	idely ι	ised in the		
Descr	iption	m	anufac	turing	indus	try. S	o engi	neerin	g stud	lents r	nust g	et exp	osure t	o pneumatic		
		sy	stems.													
	1. To study single-acting and double-acting cylinder and direction control valve.															
Course2. To select the proper cylinder and direction control valve.																
Obje	ctive	3.		-		atic circuit. e working of the control valve.										
		4.														
	urse come	1. 2. 3. 4. 5.	Con Ope Solv Des	struct erate e ve real cribe s	pneun lectro time p teppei	natic o pneur proble r moto	is cours circuits matic c ms usii or cont <u>ents to</u>	for dif ircuits ng soft rol usi	ferent wares ng PLC	indust	rial ap	plicati				
Prerequ	isites:	Engin	eering	Physic	S											
CO, PO		PSO M	APPIN	G												
60	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО				
СО	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	PSO-1	L PSO-2		
CO-1	3	2	2	2	2	-	-	-	-	-	-	2	-	-		
CO-2	3	2	2	2	2	-	-	-	-	-	-	2	-	-		
CO-3	3	2	2	2	2 2						-	-				
CO-4	3	2	-	-	2	<u> </u>								-		
CO-5	3	2	-	-	2	-	-	-	-	-	-	2	-	-		
		:	1: Wea	kly rel	ated, 2	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	d			

LIST OF EXPERIMENTS
1. Design and testing of pneumatic circuits for different applications
2. Design of circuits with logic sequence using Electro pneumatic trainer kits.
3. Simulation of basic Hydraulic, Pneumatic and Electric circuits using software.
4. Circuits with multiple cylinder sequences in Electro pneumatic using PLC.
5. Servo controller interfacing for open loop
6. Servo controller interfacing for closed loop
7. Stepper motor interfacing with 8051 Micro controller
8. (i)full step resolution (ii) half step resolution
9. Modelling and analysis of basic electrical, hydraulic and pneumatic systems using LAB VIEW
10. Computerized data logging system with control for process variables like pressure flow and Temperature.
MATLAB ASSIGNMENTS
1. Pneumatic Motor Circuit
2. Pneumatic Actuation Circuit
3. Pneumatic Actuator with Humidity
4. Robust Control of an Active Suspension
5. Friction Modeling: MATLAB File Modeling of Static SISO System
LIST OF EQUIPMENTS (For a batch of 30 students)
1. Basic Pneumatic Trainer Kit with manual and electrical
2. Basic Pneumatic Trainer Kit with PLC control
3. HYDROSIM & PNEUMOSIM Software /Automation
4. 8051 - Microcontroller kit with stepper motor and drive
5. LABVIEW software
6. LAB VIEW software with Sensors to measure Pressure,
7. Flow rate, direction, speed, velocity and force.

COURSE TITLE		DESIGN PROJECT III		CREDITS	1						
COURSE CODE	MEB4334	COURSE CATEGORY	L-T-P-S	0-0-2-0							
Version	1.0	Approval Dataila	23 ACM,	LEARNING	BTL-6						
version	1.0	Approval Details	06.02.2021	LEVEL	DIL-0						
ASSESSMENT SCHEME											
C	IA	ESE									
8	0%	20%									
Course Description											

Course Objective	 To provide opportunity for the students to implement their skills acquired in the previous semesters to practical problems. To understand the engineering aspects of design with reference to simple products To foster innovation in design of products, processes or systems To develop design that add value to products and solve technical problems To develop skills in doing literature survey, technical presentation and report preparation.
Course Outcome	 Upon completion of this course, the students will be able to Design and fabricate a mini device/ machine/ equipment using the knowledge acquired in the previous semesters. Describe how the product is achieved for solving practical problem. Prepare a technical drawing, technical report and technical presentation skill.

Prerequisites: Nil

СО, РС	CO, PO AND PSO MAPPING													
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO-	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	130-1	130-2
CO-1	2	1	2	-	3	-	-	2	1	2	2	3	1	2
CO-2	2	1	-	-	3	-	-	-	-	-	-	2	1	2
CO-3	1	2	2	-	3	1	2	2	1	2	2	3	1	2
			1: We	eakly r	elated	, 2: Mc	derate	ely rela	ted ar	nd 3: S [.]	trongly	/ relate	ed	
							N	OTE						

- The students in convenient groups of not more than 4 members have to take one small item for design and fabrication. Every project work shall have a guide who is the member of the faculty of the institution.
- The item chosen may be small machine elements (Example-screw jack, coupling, machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic /pneumatic devices etc.
- The students are required to design and fabricate the chosen item and demonstrate its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication.

ASSESSMENT (%)							
Continuous Assessment	80						
Viva-voce	20						
Total	100						

							SEME	STER V	1						
COURS	E TITLE		СОМР	JTER A	IDED	DESIG	N AND) MAN	UFAC	URIN	G C		s		3
COURS	E COD	E	MEB4	316	CO	URSE	CATEC	GORY		РС		L-T-P	- S	3	3-0-0-2
Ver	sion		1.0)	Approval Details			3 ACM, 02.202		LEARN LEVI	_		BTL-4		
ASSESS	MENT	SCHE	ME												
First Pe Assess			Seco Perioc Assessi	lical		Seminar/ Assignments/ Project			-	orise To ' Quiz	est 4	Attendance			ESE
15	5%		159	6		1	.0%			5%		5%	,		50%
CourseThis course broadly introduces the mechanical design using computer aided desiCoursetools and fundamentals of 3D modeling. It prepares the students to learn tDescriptionassembly of different parts of the components. It also emphasis on the principles manufacturing process integrated with computer.												learn the			
 Course Objective 1. To provide an overview of how computers are being used in mecha component design 2. To understand the application of computers in various aspects of Manufacturity viz., Design, Proper planning, Manufacturing cost, Layout & Material Hand system. 									ufacturing						
Outc		1. 2. 3. 4. 5.	Illus Den App Dev Imp	trate t nonstra ly Graj elop C lemen	he cor ate the ohic St NC Pro t the C	acept o e conce andar ograms CAD an	of com ept of ds and s d CAN	puter numer data e 1 on re	graphi ical cc exchan al time	ge e appli	CAD nd ma	anufact s			
Prerequ	isites:	Engine	eering	Graph	ics and	d Com	puter /	Aided I	Jesign	, Manu	ifactur	ing le	chnolo	gy II	
CO, PO	AND P	SO M	APPIN	G											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	РО -10	PO -11	PO -12	PSO	-1	PSO-2
CO-1	2	2	1	-	1	2	2	2	-	-	-	-	-		-
CO-2	2	2	-	-1	2	-	1	-	1	-	-	-	-		-
CO-3	2	2	-	2	2	-	-	1	-	2	-	2	-		-
CO-4	2	2	1	-	2	-	1	-	-	1	-	2	-		-
CO-5	2	2	-	-	2	-	-	1	-	1	-	2	-		-
								•	ted an	d 3: St	rongly	relate	ed	•	
MODU	JLE 1: I	JESIG	n and	GEON	/IETRIC	l iviod	PELING							9	

and solid Extrude - Parabola -	ion to Design process - CAD. Geometric Modeling: Types - Wireframe, surface modeling. Solid modeling techniques: CSG and B-rep - Operations: Boolean - Sweep - Revolve. Mathematical Representation- Line - Circle -Ellipse - Cubic Spline, Bezier and Bspline (Basic treatment only). ed Reading: NURBS Curve	CO-1 BTL-4
MODULE	2: CONCEPTS OF COMPUTER GRAPHICS	9
Concatena Visibility Rendering	te systems - Transformations: translation, scaling, reflection, rotation – ated transformation - Inverse transformation. Clipping-Hidden line removal - Techniques- Algorithm-Shading - Enhancement- Colouring - color models- g. ed Reading: Composite Transformation	CO-2 BTL-4
MODULE	3: SOFTWARE PACKAGES AND LATEST TECHNOLOGY	9
Library (O communio Technical	s for computer graphics – Graphical Kernal System (GKS) – Open Graphics OpenGL) - Brief outline of data exchange standards – GES, STEP, CALS etc – cation standards. Commercial solid modeling packages: Salient features - comparison – Modules and tools. <i>ed Reading:</i> Initial Graphics Exchange Specification (IGES)	CO-3 BTL-4
MODULE	4: COMPUTER AIDED MANUFACTURING	9
Introduct Numerica - manufac of FMS – i Suggeste	CO-4 BTL-4	
MODULE	5: IMPLEMENTATION OF CAD AND CAM	9
Analysis, s	ntation of CAD in - CAM - CIM - RPT, kinematic analysis, Manufacturability simulation and Animation – Types – Techniques. ed Reading: Mass property calculation	CO-5 BTL-4
TEXT BOO	KS	
1.	Ibrahim Zeid, (2010), "CAD / CAM - Theory and Practice 2E", Tata Mcgraw-Hill,	NewDelhi.
2.	P. Radhakrishnan, S. Subramanyan, V. Raju (2015), "CAD/CAM/CIM", New Age	International.
REFERENC	E BOOKS	
1	Donald Hearn and M. Pauline Baker, (2009), "Computer Graphics", Prentice edition.	Hall, Inc., 2nd
2	Mikell.P.Groover, (2008), "CAD/CAM: Computer-Aided Design and Manufactuhall of India Pvt. Ltd., New Delhi.	
3	Kant vajpayee S,(2007), "Principles of computer integrated manufacturing" India.	
4	Tien-chien chang, Richard A wysk, Hsu-pin wang, (2009), "Computer-Aided M Pearson Edition.	1anufacturing",
E BOOKS		
1.	https://books.google.co.in/books?isbn=0070151342	
MOOC		
1.	http://www.nptel.ac.in/courses/Webcourse-contents/IITDelhi/	

Computer%20Aided%20Design%20&%20Manufacturingl/index.htm

COURS	E TITLE		DESIGN OF MECHANICAL TRANSMISSION SYSTEM										S	3
COURS	E COD	E	MEB4	317	СО	URSE	CATE	GORY		РС		L-T-P	-S	3-0-0-2
Ver	sion		1.0)	A	pprov	al Det	ails		3 ACM, 02.202		LEARN LEVI		BTL-3
ASSESS	MENT	SCHEN	ИE		·				•				·	
First Periodical Assessment			Seco Perioc Assessi	lical		Assigr	ninar/ nments oject		/ Surprise Test / Quiz		est /	Attend	ance	ESE
15	5%		159	6		1	.0%			5%		5%		50%
	CourseTo expose the students on the principles and procedure for the design of powerDescriptionTransmission components											f power		
 Course Objective 1. To learn the principles and procedure for the design of power Transmission 2. To understand the standard procedure available for Design of Transmission Systems using standard data and catalogues 3. To calculate the force on the tooth. 														
	Course OutcomeUpon completion of this course, the students will be able to1. Select the Belts, Pulleys, Wire ropes, Transmission Chains and Sprockets fo different applications.2. Design Pulleys and Sprockets.3. Describe Gear Terminology and various types of Gears and its applications.4. Design Gear Boxes with various speeds5. Design the Cam and Clutches for various speeds and torques													
Prerequ	isites:	Desigr	n of Ma	achine	Eleme	ent, M	echani	cs of N	Лаchin	es				
CO, PO	AND P	SO M	APPIN	G										
со	РО -1	PO -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	PO -9	PO -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	1	2	2	-	-	-	-	-	-	-	-	-	-	-
CO-2	1	2	2	-	-	-	-	-	-	-	-	-	-	-
CO-3	1	-	2	-	-	-	1	-	-	-	-	-	-	-
CO-4	1	1	-	-	2	-	-	-	-	-	-	2	-	-
CO-5	1	-	2	-	-	-	2	-	-	-	-	2	-	-
		1	: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	rongly	/ relate	ed	

MODUL	E 1: DESIGN OF TRANSMISSION SYSTEMS FOR FLEXIBLE ELEMENTS	9					
Selectior	n of V belts and pulleys - selection of Flat belts and pulleys - Wire ropes and	CO-1					
pulleys S	election of Transmission chains and Sprockets. Design of pulleys and sprockets.	BTL-3					
Suggeste	ed Reading: Timing belt drive	DIE-3					
MODULE	2: SPUR GEARS AND PARALLEL AXIS HELICAL GEARS	9					
Dynamic width-po Parallel Equivaler	rminology-Speed ratios and number of teeth-Force analysis -Tooth stresses - effects - Fatigue strength - Factor of safety - Gear materials - Module and Face ower rating calculations based on strength and Darabiling considerations - axis Helical Gears - Pressure angle in the normal and transverse plane- nt number of teeth-forces and stresses. Estimating the size of the helical gears. ed Reading : Cross helical gear	CO-2 BTL-3					
MODULE	3: BEVEL, WORM AND CROSS HELICAL GEARS	9					
teeth. Es Worm G stresses, Crossed cross hel	bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of timating the dimensions of pair of straight bevel gears. The straight bevel gears. The straight bevel gears. The straight best of the stresses	CO-3 BTL-3					
MODULE	:4 DESIGN OF GEAR BOXES	9					
of sliding	ric progression - Standard step ratio - Ray diagram, kinematics layout -Design g mesh gear box - Constant mesh gear box Design of multi speed gear box. ed Reading : Gear box with worm gears.	CO-4 BTL-3					
MODULE	:5 DESIGN OF CAM, CLUTCHES AND BRAKES	9					
and surfa Design o internal a Suggesta	sign: Types-pressure angle and under cutting base circle determination-forces ace contain stresses. of plate clutches -axial clutches-cone clutches-internal expanding rim clutches- and external shoe brakes. ed Reading : Simulation of clutch mechanism using Matlab©-simulink	CO-5 BTL-3					
TEXT BOO							
1	Juvinall R. C., Marshek K.M., (2012), Fundamentals of Machine component Wiley & Sons Fifth Edition.	Design - John					
2	Bhandari, V.B.,(2010), Design of Machine Elements, Tata McGraw-Hill Publis Ltd.	hing Company					
REFEREN	CE BOOKS						
1	Maitra G.M., Prasad L.V., (2009), Hand book of Mechanical Design, Tata M Edition.	AcGraw-Hill, II					
2 Shigley J.E and Mischke C. R.,(2010), Mechanical Engineering Design, McGraw-Hill							
2	International Editions, New Delhi.						

4	Norton R.L,(2004), Design of Machinery, McGraw-Hill Book co.								
5	Hamrock B.J., Jacobson B., Schmid S.R., (2014), Fundamentals of Machine Elements,								
	McGraw-Hill Book Co.								
E BOOKS									
1	https://books.google.co.in/books?isbn=1118987683								
2	https://books.google.co.in/books?isbn=1259083519								
3	https://books.google.co.in/books?isbn=0074602381								
4	https://books.google.co.in/books?isbn=1482247488								
MOOC									
1	https://onlinecourses.nptel.ac.in/noc18_me16/preview								
2	http://nptel.ac.in/courses/112106137/								
3	http://nptel.ac.in/courses/112105125/								
4	http://www.nptelvideos.in/2012/12/design-of-machine-elements.html								

COURSE TITLE	СОМРС	SITE AND SMART MAT	ERIALS	CREDITS	3				
COURSE CODE	MEB4318	COURSE CATEGORY	PC	L-T-P-S	3-0-0-2				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4				
ASSESSMENT SC	HEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	Composites and smart materials deal with the study on different material combinations for composites and smart materials. It provides a means of assessing the suitability of various materials with respect to their chemical nature and physical characteristics.								
Course Objective	 the composition 2. To acquire key making of constraints 3. To acquire key micro-mechan 4. To acquire properties based 5. To acquire key based on Kire 	nowledge on Classificati tion and structure of the mowledge for Choosing mposites based on type nowledge on Evaluating anical behavior knowledge on Analyz ased on macro-mechani nowledge on Examining nowledge on Formulatin choff's hypothesis and p nowledge on different m	e composite mate from different of of application composite elast ting the compo cal behavior the composite for g A, B and D ma ropose different	erial manufacturing ic properties ba osites for the pr their failure i trices of Compo-	techniques for ased on eir mechanical mechanisms osite laminates				

		8.	To ac comp Upon	quire osites comp	know 5. oletior	ledge n of thi	s cours	nufacti e, the	uring to	nts will	be ab	le to		netal matrix
Course2. Describe the different manufacturing techniques for making of composite on type of applicationOutcome3. Formulate and define composite elastic properties based on micro-me behavior4. Analyze the composites for their mechanical properties based on mechanical behavior5. Examine the composite for their failure mechanisms										osites based -mechanical				
Prerequi					istry									
CO, PO	PO	PO	PO-	PO	РО	РО	PO-	PO	PO-	PO	РО	PO-	DCO 1	DEO 3
СО	-1	-2	3	-4	-5	-6	7	-8	9	-10	-11	12	PSO-1	PSO-2
CO-1	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO-2	2	-	2	-	2	-	-	-	-	-	-	2	-	-
CO-3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO-4	2	-	2	-	2	-	-	-	-	-	-	2	-	-
CO-5	2	-	2	-	2	-	-	-	-	-	-	2	-	-
MODUL	F 1: IN			•				ly rela	ted an	d 3: St	rongly	relate	d	9
Fundam classifica composi reinforce Practical Suggeste	entals ation ites (I ed cor	s of con of con MMC), mposit conen t	omposi nposite Cerar es, Fibr t:Mate	ites - es- Ma nic m re rein rials id	need atrix-P natrix forceo lentifio	for co olyme comp d comp cation	omposi r matr osites posites	ix con (CMC	nposite) - Re	es (PM	IC), M	etal m	atrix	CO-1 BTL-4
MODUL	E 2: PC	OLYME	R MAT	RIX C	омро	OSITES								9
Polymer Reinford types o Compres mouldin Practica	emen f fibre ssion g - Pu	es. PN moulo Itrusio	es Rov AC pro ding - n - Fila	rings - cesses Reinf ment	Wov s - H orced windir	en fab and la react ng - Inj	ay up tion in	Non w proce jectior	voven sses - n mou	Spray	m ma [:] v up j	orocess	rious ses -	CO-2 BTL-4

Suggested	Readings: reinforced plastics (FRP), Glass fibre reinforced plastics (GFRP).	
MODULE	3: METAL MATRIX COMPOSITES	9
Character	istics of MMC, Various types of Metal matrix composites Alloy vs. MMC,	
Advantage	es, Limitations, Metal Matrix, Reinforcements - particles - fibres. Effect of	
reinforcer	nent - Volume fraction - Rule of mixtures. Processing of MMC - Powder	CO-3
metallurg	y process - diffusion bonding - stir casting - squeeze casting.	BTL-4
Practical c	omponent:Fabrication of MMC	
Suggested	Readings: Applications of MMC	
MODULE 4	4: CERAMIC MATRIX COMPOSITES	9
Monolithic composite reinforcer pressing (Practical c	ng ceramic materials - properties - advantages - limitations - applications of c ceramics - Need for CMC - Ceramic matrix - Various types of Ceramic Matrix es- oxide ceramics - non oxide ceramics - aluminium oxide - silicon nitride - nents - particles- fibres- whiskers. Sintering, Hot pressing - Cold isostatic CIPing) - Hot isostatic pressing (HIPing). component: Fabrication of CMC Readings: Thermal analysis of ceramic matrix composites	CO-4 BTL-4
MODULE	5: ADVANCES IN COMPOSITES	9
Carbon /	carbon composites - Advantages of carbon matrix - limitations of carbon	
matrix Ca	rbon fibre - chemical vapour deposition of carbon on carbon fibre perform.	CO-5
Sol gel tec	hnique.	BTL-4
Practical c	omponent: Sol gel technique	
Suggested	Readings: Composites for aerospace applications	
TEXT BOO	KS	
1.	M. Balasubramanian, (2013), Composite Materials and Processing, CRC Press, I	New York.
REFERENC	EBOOKS	
1.	Maitra G.M., Prasad L.V., (2009), Hand book of Mechanical Design, Tata I Edition.	McGraw-Hill, II
2.	Shigley J.E and Mischke C. R., (2010) Mechanical Engineering Design International Editions, New Delhi.	, McGraw-Hill
E BOOKS		aliantian
E BOOKS	https://www.amazon.in/Polymer-Nanocomposite-Based-Smart-Materials-Ap ebook/dp/B0891LFFYB	plication-
		·

COURSE TITLE		NANO TECHNOLOGY	CREDITS	3	
COURSE CODE	MEB4319	COURSE CATEGORY	PC	L-T-P-S	3-0-0-2

Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3			
ASSESSMENT	SCHEME							
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE			
15%	15%	10%	5%	5%	50%			
Course Description	This course introduces the basics of the nano-sized materials, ways of producing it and its characteristics. Characterization techniques of these kind of materials are also dealt with in detail and its societal impact.							
Course Objective	 To understar To comprehend the same and To apprehend tubes. 	the basic concepts of na nd the various synthesis end the need for using d its applications. Ind the various character ut the safety aspects wh	techniques of n carbon nanotul rization techniq	bes, production ues used by th	e carbon nano			
Course Outcome	 Upon completion of this course, the students will be able to Realize the concepts of nano science and technology Describe the synthesis of nano materials and their applications Recognize the functions and properties of carbon nano tubes Identify the various characterization techniques applicable for nano materials Illustrate health and social impact of nano industry 							

Prerequisites: Engineering Materials

CO, PO AND PSO MAPPING

	PO	PO	PO	РО	РО	PO-	PO	РО	РО	РО	PO-	PO-			
СО	-1	-2	-3	-4	-5	6	-7	-8	-9	-10	11	12	PSO-1	PSO-2	
CO-1	-	-	-	ŀ	1	-	-	ŀ	-	-	-	-	-	-	
CO-2	-	-	-	-	-	-	-	-	-	2	-	-	-	-	
CO-3	-	-	-	-	-	1	-	-	-	-	-	-	-	-	
CO-4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO-5	-	-	3	-	-	•	-	-	-	-	-	-	-	-	
		1	L: Wea	akly re	lated	, 2: Mo	derate	ely rel	ated a	and 3: 9	Strongly	relate	ed		
MODU	ILE 1: I	NTRO	DUCT	ION T		NOTECH	INOLO	DGY						(9)	

Molecula nanolithe	ound, Basic concepts of Quantum wire-Quantum well-Quantum, hnology and nano-machines - types, top down and bottom up techniques, ar nanotechnology, atomic manipulation-nanodots, self-assembly, Dip pen ography, Applications of nanomaterials in various fields. ed Reading: Analysis Nano- Sized Magnetic Materials Using MATLAB©	CO-1 BTL-3
MODULE	2: NANOMATERIALS	(9)
techniqu nanostru	tion of Nanomaterials-Plasma arcing, Chemical Vapor Deposition, Sol-gels les, Electrodeposition, Ball Milling, Natural Nanomaterials. Optically useful actured polymers, Photonic Crystals. ed Reading: Application of MATLAB© for Nanocomposite System	CO-2 BTL-3
MODULE	3: CARBON NANO TUBES	(9)
Carbon na hybrid na Suggeste	ubes-types of nanotubes, formation of nanotubes, Assemblies, purification of anotubes, Properties of nanotubes, applications of nanotubes, Core shell and nocomposites ed Reading: Application of MATLAB© for Molecular Dynamics Simulation of Nano-Oscillators	CO-3 BTL-3
MODULE	4: CHARACTERIZATION TECHNIQUES	(9)
fluoresce Analysis techniqu	details of characterization tools- SEM, TEM, AFM. X-ray diffraction – X-ray ence spectroscopy – Thermogravimetric Analysis (TGA) – Differential Thermal (DTA) – Differential Scanning Calorimetry (DSC), Applications of diffraction les to nanomaterials; Grain size, phase formation, texture, stress analysis. ed Reading: Application of MATLAB© in Adsorption of Ne Atoms on CNTs	CO-4 BTL-3
MODULE	5: HEALTH IMPACT OF NANOMATERIALS	(9)
Body – L Effect o Inflamm Barrier.	of Nanoparticles; Epidemiological Evidence; Entry Routes into the Human ung, Intestinal Tract, Skin; Nano particle Size - Surface and Body Distribution; of Size and Surface Charges; Nanoparticles, Thrombosis and Lung ation, Nanoparticles and Cellular Uptake; Nanoparticles and the Blood-Brain ed Reading: Application of MATLAB© for Solvation Studies of CNTs or FCNTs	CO-5 BTL-3
TEXT BO	OKS	
1	T.Pradeep, (2012) "A Text Book of Nanoscience and Nanotechnology", Tata New Delhi.	
2	 G. Cao, Y. Wang, (2011), "Nanostructures & Nanomaterials: Synthes & Applications", Imperial College Press, 2nd Edition. 	sis, Properties
REFEREN	CE BOOKS	
1	H.S. Nalwa, (2004), "Encyclopedia of Nanoscience and Nanotechnology", Ame Publishers.	rican Scientific

2	W.Gaddard, D.Brenner, S.Lysherski and G.J.Infrate(Eds.),(2012), "Handbook of
	NanoScience, Engg. and Technology", CRC Press.
3	Michael J. O. Connell, (2006), "Carbon Nanotubes: Properties and Applications", CRC Press, .
4	Sam Zhang, L. Li, A. Kumar, (2009) "Materials Characterization Techniques", CRC Press.
5	M. Zafar Nyamadzi,(2008), "A Reference handbook of nanotoxicology", Dominant publisher.
E BOOKS	
1	https://books.google.co.in/books?id=TzdmAgAAQBAJ&lpg=PP1&dq=isbn%3A1259007324
1	&pg=PP1#v= onepage&q&f=false
2	https://books.google.co.in/books?id=XfzgEoY9SNkC&lpg=PP1&dq=isbn%3A0471079359&p
2	g=PP1#v=onep age&q&f=false
3	https://books.google.co.in/books?id=HRvNTjo4tZQC&lpg=PP1&dq=isbn%3A9814322504&
5	pg= PP1#v=onepage&q&f=false
MOOC	
1	http://nptel.ac.in/courses/118102003/
2	http://nptel.ac.in/courses/118104008/
3	http://nptel.ac.in/courses/104103019/9
4	http://nptel.ac.in/courses/103103033/43

COURSE TITLE		BUSINESS ECONOMICS		CREDITS	2			
COURSE CODE	GEA4304	COURSE CATEGORY	L-T-P-S	2-0-0-1				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-2			
ASSESSMENT SC	HEME			•				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE			
15%	15%	10%	5%	5%	50%			
Course Description	understanding t organizations op	oduces economic concep he general economic envo perate. Microeconomics ow they interact with eac	vironment withir examines how co	n which busines onsumers and f	ses and other			
Course Objective	 To understand the importance of economics To acquire knowledge on cost analysis To know about consumer's and producer's behavior To know about the budget To know about financial services 							

CURRIC	JULUIM	AND S	YLLABL	15						B.1	ECH –	MECHA	NICAL EI	NGINEERING
	urse come	1. 2. 3. 4. 5.	 Describe to know knowledge about cost analysis identify consumer's and producer's behavior 											
Prerequ	isites:	NIL												
СО, РО		PSO M	APPIN	G										
СО	PO -1	РО -2											PSO- 1	PSO-2
CO-1	1	-	-	-	-	-	-	-	-	2	2	2	-	-
CO-2	-	-	-	-	2	-	-	-	-	2	2	2	-	-
CO-3	-	-	-	-	-	-	-	2	-	-	2	2	-	-
CO-4	-	-	-	-	-	-	-	2	-	-	2	2	-	-
CO-5	-	2 - 2 2 -								-				
		1	1: Wea	kly rel	lated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1:I	NTROI	DUCTIO	ON TO	ECON	OMIC	S						(5
Introdu Enginee enginee	ering l	Econoi	mics -				•						-	CO1 BTL1
MODUL	E 2: C	OST A	NALYS	IS										6
Types Opport													cost,	CO2 BTL2
MODUL														6
Consum Consum Laws o Classific	ner's Eo of Retu	quilibr	ium - I	ndiffe	rence	Curve ·	– Prod	uction	: Law	of Vari	able P	roport	ion –	CO3 BTL1
MODUL	E 4: B	UDGE ⁻	Т											6
Process types of debt an	f defici	its – fis	scal po					-				•		CO4 BTL1
MODUL	E 5: F	INANC	E										6	
Basics of finance and financial environment – instruments of financial markets – financial intermediation – investment banking and brokerage services – securities – types of securities – market for securities – how and where traded – initial public offering (IPO) – secondary markets – trading on exchanges and trading with margins.CO5 BTL2														

TEXT BOOKS	
1	S. Shankaran, (2012), Business Economics, Margham Publications.
2	H.L. Ahuja, (2016), Business Economics – Micro & Macro, Sultan Chand & Sons, New
	Delhi – 55.
REFERENCE BO	OKS
1	S.A.Ross, R.W.Westerfield, J.Jaffe and Roberts: Corporate Finance, McGraw-Hill.
2	Joseph E Stiglitz: Economics of the Public Sector.
E BOOKS	
1	https://sites.google.com/site/readbookpdf7734/pdf-download-business-economics-by-
1	mark-taylor-read-online
2	https://bookboon.com/en/economics-ebooks

COURSE	TITLE	СС	COMPUTER AIDED DESIGN AND MANUFACTURING LAB CREDITS 1									1				
COURSE	E CODE	Ν	MEB4	341	CC	URSE	CATEC	GORY	DRY PC L-T-P-S 0-0-2-							
Vers	ion		1.0	n		nnrov	al Det	aile		23 AC	М,	LEA	RNING		BTL-3	
Vers			1.(0	1	(ppi 04		ans	0	6.02.2	021	L	EVEL		DIL-J	
ASSESSI	MENT S	CHEN	1E													
			CIA ESE													
			80	%								20%				
Cou	rse	Gair	n pra	ctical e	experi	ence ir	n hand	ling 2D	g 2D drafting and 3D modelling software systems				stems			
Descri	ption	and hands on training in CNC Mach														
Cou	rse	1.	1. To Expose students to latest CAD systems													
Objec	tive						n of va	rious	CNC m	achine	s like C	NC lat	ne and Cl	NC V	ertical	
•					centre											
			•	-							ll be ab				<i>c</i> .	
Cou	rse								•			•	t using C/	AD so	oftware	
Outco	ome	2.	Dem	onstra	ite Imp	port ar	nd exp	ort the	e mode	els in va	arious (CAD so	ftwares			
oute	onne	3.	Deve	elop Cl	NC pro	gram	for an	y com	ponen	t for r	eal tim	e macł	nining us	ing (CAD/CAM	
			softv	vare												
Prerequi	isites: N	s: NIL														
со, ро	AND PS	50 MA	PPIN	IG												
со	_	PO	PO	PO	PO -5	PO -6	PO -7	PO	PO _9	PO	PO	PSO-1 PSO-				

со	РО	PO	PO	РО	PO	РО	РО	РО	РО	PO	РО	PO-	PSO-1	PSO-2	
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	F30-1	F30-2	
CO-1	2	-	2	•	2	I	-	-	2	-	1	2	-	-	
CO-2	1	1	1	-	2	-	-	-	-	-	2	2	-	-	
CO-3	2	-	-	-	2	-	-	-	-	-	2	2	-	-]
1: Weakly related, 2: Moder						oderat	tely re	lated a	and 3:	Strong	ly relat	ed			

	LIST OF EXPERIMENTS
	COMPUTER AIDED DESIGN (CAD) 30
1	DRAWING STANDARDS
	Code of practice for technical Drawing, BIS specifications–Welding symbols, riveted joints, keys,
	and fasteners–Reference to hand book for the selection of standard components like bolts, nuts,
	screws, keys etc.
2	INTRODUCTIONTO GRAPHIC SOFTWARE FOR DESIGN
	Drawing, Editing, Dimensioning, Plotting Commands, Layering concepts, Limits, Fits and Tolerances
	incorporated in design and drawing.
3	PREPARATION OF SOLID MODELS AND ASSEMBLY
	Screw Jack Plummer block
	Tailstock of Lathe Machine vice
	Stuffing box Stop valve
	Piston and connecting rod
4	COMPUTER AIDED MANUFACTURING (CAM) 15
	1. MANUALPART PROGRAMMING (Using G and M Codes) in CNC lathe
	1.1 Part programming for Linear and Circular interpolation, Chamfering and Grooving
	1.2 Part programming using standard canned cycles for Turning, Facing, Taper turning and Thread
	cutting
	2. MANUALPART PROGRAMMING (using G and M codes) in CNC milling
	2.1 Part programming for Linear and Circular interpolation and Contour motions.
	2.2 Part programming involving canned cycles for Drilling, Peck drilling, and Boring.
	3. SIMULATIONAND NC CODE GENERATION
	NC code generation using CAD/CAM software – Pos processing for standard CNC Controls like
	FANUC, Hiedenhain etc.
	LIST OF EQUIPMENTS (For a batch of 30 students)
Hard	
1	Computer server
2	Computer nodes or systems (Intel i3 or higher with 2GB or higher RAM)networked to the server
3	Plotter
4	Laser Printer
5	Trainer CNC lathe
6	Trainer CNC milling
Softv	
1	CAD/CAM Software
	(Pro –E or IDEAS or Unigraphics or CATIA or Solidworks)
2	CAM Software
	(CNC programming and tool path simulation for FANUC, Sinumeric and Heiden controller)

COURS	SE TITL	F	CO	MPOS	TFS A	ND SM		ЛАТFR		AB	CRI			1	
	SE COD			COMPOSITES AND SMART MATERIALS LABCREDITS1MEB4342COURSE CATEGORYPCL-T-P-S0-0-2-0											
	rsion	_	1.	-		Approval Details 23 ACM, LEARNING BTL-3 BTL-3									
ASSES	SMENT	SCHE	ME		I								_		
	CIA ESE														
	80% 20%														
	ourse ription	tion assessing through synthesis, the suitability of various materials with respect to their chemical nature and physical characteristics.													
Course Object	-	 To acquire knowledge on development of skills in synthesize composites To acquire knowledge on test requirements of the composites To acquire knowledge on conduct of mechanical test and determine the properties of the composites To acquire knowledge on use of codes and standards in materials processing and testing 													
Course Outcor	me	1. 2. 3. 4.	Deve Illus Iden App	elop sk trate o tify the ly the o	ills in s n test e mecl codes	synthe requir hanica	esizing Tement I test a	compo s of th ind de	osites ne com termin	•	s proper		he compos ting	ites	
Prereq	D AND			-	listiy										
со, ге	PO -1	PO -2	PO -3	PO -4	PO -5	РО -6	РО -7	РО -8	РО -9	PO -10	PO -11	PO- 12	PSO-1	PSO-2	
CO-1	2	-	2	-	2	-	-	-	2	-	-	2	-	-	
CO-2	2	-	-	-	2	-	-	-	-	-	2	2	-	-	
CO-3	2	-	-	-	2	-	-	-	-	-	2	2	-	-	
CO-4	2	-	-	-	2	-	-	-	-	-	2	2	-	-	
	1 1		1: We	eakly r	elated	l, 2: M	oderat	tely re	lated a	and 3: 9	Strong	ly relat	ed		
						LIS	ST OF E	XPERI	MENT	S	_				
1	Manuf		-	ompo: /-up te		ues	b. \	Vaccur	n Bag	Mould	ing c	. Comp	ression mo	ulding	
2															

3	Estimation of resin / fiber fraction by Burn off method using muffle furnace
4	Estimation of void content of reinforced composites.
5	Tensile test of composite specimen as per the ASTM procedure.
6	Compression test of composite specimen as per the ASTM procedure.
7	Laminar shear strength of composite specimen as per the ASTM procedure.
8	Flexural bend test of composite specimen as per the ASTM procedure.
9	Determine the critical buckling loads for given specimen using Buckling Test.
10	Determine the changes in dimensions of the graphite-reinforced polymer composite cube using
	MATLAB©.
	LIST OF EQUIPMENTS (For a batch of 30 students)
1.	Muffle Furnace
2	Hydraulic Press 50T
3	Vaccum bag moulding apparatus
4	Weighing Scale
5	Universal Testing Machine
6	Ultrasonicator
7	Band Saw
8	Flat Mould
9	Dead Weights

COURSE TITLE		DESIGN PROJECT IV		CREDITS	1					
COURSE CODE	MEB4343	COURSE CATEGORY	PC	L-T-P-S	0-0-2-0					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-6					
ASSESSMENT SCH	EME									
CIA			ESE							
80%			20%							
Course Description	products. Eng	d methods of designing ineering drawing and CA tion methodology, func	D, design metho	ods, material pro	operties, failure					
Course Objective	previous s 2. To under products 3. To foster 4. To develo	e opportunity for the stu semesters to practical pro- stand the engineering innovation in design of p p design that add value to p skills in doing literation.	oblems. aspects of des roducts, process to products and	ign with refere ses or systems solve technical	ence to simple problems					

	Upon completion of this course, the students will be able to 1. Design and fabricate a mini device/ machine/ equipment using the knowledge
Course Outcome	acquired in the previous semesters.
	2. Describe the making a product is achieved for solving practical problem.
	3. Prepare a technical drawing, technical report and technical presentation skill.

Prerequisites: Nil

CO, PO AND PSO MAPPING

-	F	F			F	F		F			F			
со	PO	PO	РО	PO	PO	PO-	PSO-1	PSO-2						
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	P30-1	P30-2
CO-1	2	1	2	-	3	-	-	2	1	2	2	3	1	2
CO-2	2	1	-	-	3	-	-	-	-	-	-	2	1	2
CO-3	1	2	2	-	3	1	2	2	1	2	2	3	1	2

1: Weakly related, 2: Moderately related and 3: Strongly related

NOTE

- The students in convenient groups of not more than 4 members have to take one small item for design and fabrication. Every project work shall have a guide who is the member of the faculty of the institution.
- The item chosen may be small machine elements (Example-screw jack, coupling, machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic /pneumatic devices etc.
- The students are required to design and fabricate the chosen item and demonstrate its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication.

ASSESSMENT (%) Continuous Assessment 80								
80								
20								
100								

BTL-6

COUR	SE TITI	LE			C	OMPR	EHENS	ION				CRED	ITS	1	
COUR	SE CO	DE	MEB	4344	С	DURSE	CATEG	iory		РС		L-T-P	1-0-0-0		
Version			1	.0		Approv	val Det	ails	23 ACM, 06.02.2021			LEARNING LEVEL		BTL-6	
ASSES	SMEN	r sci	IEME												
		CIA	•							ES	SE .				
		80%	6							20	%				
	ourse criptior	ו	standar MCAT, or for o approa	rdized t LSAT, c other p ch a va	tests a or GM oerson riety c	seeking to pass the reading comprehension portion of such s as the SAT, ACT, CLEP, College Placement Test, ACCUPLACER, GRE, iMAT, or you need to improve your reading comprehension for work onal reasons, this course is for you. You will learn the best way to y of reading materials and how to improve both your comprehension reading those materials.									
	Course1. To acquait facilitate tObjective2. To develor		uainting the students with reading comprehension strategies and skills that te their understanding and analyzing of written texts effectively and easily veloping the students' writing and paraphrasing skills through writin pries and short compositions about the topics									y and easily			
Out	ourse tcome	1. comprehends any problem related to mechanical engineering neid to h									field to face				
Prereq			MAPPIN	NG											
со	PO -1	PO -2	-	PO -4	РО -5	РО -6	PO -7	PO -8	РО -9	PO -10	PO -11	PO- 12	PSO-1	PSO-2	
CO-1	2	1	2	-	3	-	-	2	1	2	2	3	_	-	
CO-2	2	1	-	-	3	2	-	-	-	-	-	2	-	-	
			1: We	eakly re	elated,	, 2: Mo	oderate	ely rela	ited ar	nd 3: Si	trongly	y relate	ed		
							N	ΟΤΕ							
				near fo	r a MC	CQ Tes	t and C	ompre	ehensiv	ve Viva	-Voce	examir	nation co	overing all the	
			ve to app board of	-	iners.	Δ	SSESSI	MENT	(%)						
		re a		f exami			SSESSI	MENT	(%)		80				
		re a	board of	f exami us Asse			SSESSI		(%)		80 20				

		SEMESTER V	11							
COURSE TITLE	ŀ	IEAT AND MASS TRANSF	ER	CREDITS	3					
COURSE CODE	MEB4401	COURSE CATEGORY	PC	L-T-P-S	3-0-0-2					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4					
ASSESSMENT SCH	EME			•						
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					
15%	15%	10%	5%	5%	50%					
Course Description	engineering ap mechanical sys	escribes the applications of oplications. The course wi stem involving phase char tail and enable the stude	ll provide an insi nge. The combine	ght to various ty ed heat and ma	vpes of ss transfer are					
Course Objective	 To understand the steady state and unsteady state conduction in solids. To understand the natural and forced convection heat transfer. To understand the phase change heat transfer. To understand the radiation heat transfer in solids and gases. To understand the principles of combined heat and mass transfer. 									
Course Outcome	 Apply the analyse steed Describe a and forced Solve prob design a he Illustrate t transfer wi Analyse co mass trans 	pletion of this course, the principles of various mode ady state and unsteady of bout the types of convect convection. lems on phase change he eat exchanger. he mode of heat transfe ith convection and radiation nvection and diffusion N fer are analogous.	es of heat transforduction in soli onduction in soli tion and correlat eat transfer like b r, radiation and on. lass transfer and	fer in practical a ds. tions to solve p poiling and cond to study about	roblems on free ensation and to combined heat					
Prerequisites: Engi	neering Thermo	odynamics, Thermal Engi	neering							
CO, PO AND PSO I	MAPPING									

			T	T										1
со	PO	PO-	РО	PO-	PO-	PSO-1	PSO-2							
	-1	2	3	4	5	6	7	8	9	-10	11	12	F30-1	F 30-2
CO-1	3	3	2	1	2	2	2	1	1	1	-	-	3	-
CO-2	3	-	2	1	2	2	2	-	1	1	-	-	3	-
CO-3	3	3	2	1	2	2	2	-	-	1	-	-	3	-

CO-4	3	3	2	1	2	2	2	-	1	-	-	-	-	-
CO-5	2	1	2	1	2	2	2	1	1	1	-	-	3	-
			1: W	eakly r	elated	, 2: Mo	derat	ely rela	ited ar	nd 3: St	rongly	relate	d	
MODUL	E 1:	CON				•					0,			9
Basic Co					Heat 1	Fransfe	r – Co	onducti	on .Co	nvectio	on and	Radia	tion-	
General		-												
	and Cylindrical Coordinates – One Dimensional Steady State Heat Conduction -													
Conduct									•					
Conduct	ion	with	Interr	nal He	eat G	enerat	ion–	Extend	led S	urface	s–Unst	eady	Heat	CO-1
Conduct	ion–l	Lumpe	ed Anal	ysis–Us	se of H	eisler's	Chart							BTL-4
Suggeste	ed R	eadin	g : Nun	nerical	meth	ods in	cond	uction,	Trans	ient co	onduct	ion in	semi	
infinite	solia	ls, tu	vo dim	nension	al co	nductio	on pr	oblems	using	g MAT	TLAB©	, Trar	nsient	
conducti	on pi	roblen	ns using	g MATL	AB©									
MODULE	2:	CON	VECTIC	N									·	9
Basic Co	once	pts–Co	onvectiv	ve Hea	t Trans	fer Co	efficie	nts–Bo	undary	' Layer	Conce	pt–Typ	es of	
Convecti	ion–F	orcec	l Conve	ection-	Dimen	sional	Analy	/sis– E	xterna	l Flow-	-Flow	over P	lates,	
Cylinder														CO-2
Turbuler	nt He	eat T	ransfer	– Flo	ow ov	er Bar	nk of	tubes-	-Free	Conve	ction–l	Dimen	sional	BTL-4
Analysis-												-		
Suggest			-	nsition	and t	urbuler	nce in	Free c	onvect	ion, Co	ombine	ed Free	e and	
Forced C														
MODULE	-		SE CHA						-					9
Nusselt'		•			•		-		-			-	-	
condens						-					0			
Effective			metho	d of H	eat Exc	change	r Anal	ysis–Ov	erall F	leat Ira	ansfer	Coeffic	lent–	CO-3
Fouling F			من المداري		[+ h a .a		f		مامممام	10 0000			ation.	BTL-4
<i>Suggest</i> Pressure			-		•					-			-	
exchange		p un	a pun		ower	in the	acsig		cut c/	(chung		mpuer	near	
MODULE			TION											9
Basic Co	ncep	ots, La	ws of F	Radiatio	on – St	efan B	oltzm	an Law	, Kirch	off Lav	v —			
Black Bo	dy Ra	adiatio	on– Gre	y body	radiat	ion Sh	ape Fa	ictor Al	gebra-	-Electri	cal			60.4
Analogy-	-Radi	iation	Shields	–Intro	ductio	n to Ga	as Rad	iation.						CO-4
Suggest	ed R	eadin	g: Coe	efficien	t of Ro	adiant	heat i	ransfei	r and I	Radiati	on cor	nbined	with	BTL-4
convecti	on, R	adiati	ion fron	n vapo	urs and	d flame	S							
MODULE	5:	MAS	S TRAN	ISFER										9
Basic Co	ncep	ots–Di	ffusion	Mass	Transfe	er– Fic	k's Lav	w of Di	ffusior	–Stead	ly stat	e Mole	ecular	
Diffusior							ntum,	Heat	and I	Mass 1	ransfe	er Ana	logy-	CO-5
Convecti														BTL-4
Suggest	ed R	eadin	g : Simı	ıltanec	ous hea	it and r	nass t	ransfer,	. Lewis	relatic	on.			

TEXT BOOH	<s< th=""></s<>
1	R.C. Sachdeva, (2017), "Fundamentals of Heat and Mass Transfer", New age International Publishers, Fifth edition.
2	R.K.Rajput, (2012), "Heat and Mass Transfer", S.Chand Publishers, Fifth Edition.
3	Dr.D.S.Kumar,(2013), "Heat and Mass Transfer", S.K.Kataria & Sons.
REFERENCI	BOOKS
1	J.P.Holman, (2013), "Heat Transfer", McGraw Hill Publishers, 10 th edition.
2	Yunus A.Cengel, (2017), "Heat and Mass Transfer – Fundamentals & Applications", Fifth edition.
3	P.K.Nag,(2011) "Heat and Mass Transfer", Mcgraw Hill Edition, 3 edition.
4	Incropera F.P. (2016), "Principles of Heat and Mass Transfer", Wiley India, 7 th edition.
E BOOKS	
1	https://books.google.co.in/books?isbn=0070634513- J.P.Holman
2	https://books.google.co.in/books?isbn=0073398187-Yunus A.Cengel
3	https://books.google.co.in/books?isbn=0070702535- P.K.Nag
4	https://books.google.co.in/books?isbn=0070664609- Ozisik, M.N.
5	https://books.google.co.in/books?isbn=0470917865 – Incropera F.P.
MOOC	
1	https://www.mooc-list.com/course/heat-transfer-saylororg
2	http://nptel.ac.in/courses/112108149/
3	http://nptel.ac.in/courses/112101097/
4	http://nptel.ac.in/courses/112101002/
5	http://nptel.ac.in/courses/103103032/

COURSE TITLE	F	INITE ELEMENT METHOD	S	CREDITS	3							
COURSE CODE	MEB4402	COURSE CATEGORY	РС	L-T-P-S	3-0-0-2							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4							
ASSESSMENT SCHEME												
First Periodical	Second	Seminar/	Surprise Test									
Assessment	Periodical Assessment	Assignments/ Project	/ Quiz	Attendance	ESE							
Assessment 15%		•	-	Attendance 5%	ESE 50%							

	4 T. I			:								
	1. To l		•	•				•	•			
					and o	charac	teristic	cs of	finite	eleme	ents tha	t represent
Course	-	neerin	-									
Objective			-									ial, dynamic
					know	ledge	and sk	ills nee	eded t	o effec	tively ev	aluate finite
		nent an	•									
		n comp										
	1. Des	cribe th	e Mat	hemat	ical M	odelin	g of fie	eld pro	blems	in Eng	ineering	
	2. Ana	lyze the	e One I	Dimen	sional	Secon	d Orde	er Equa	tions			
3. Apply Galarkin approach, Temperature effects stress strain relations, plane												
Course problems of elasticity and element equations												
Outcome	Outcome 4. Apply axisymmetric formulation, Element stiffness matrix and force vector,										orce vector,	
	Galarkin approach and Problems											
	5. Solve numerical integration and application to plane stress problems, Matrix											
solution techniques Solutions Techniques to Dynamic problems, Introduction to												
Analysis Software												
Prerequisites: Stre	ength of	Materi	als, Nu	imeric	al Met	hods,	Engine	ering	Mecha	nics		
CO, PO AND PSO	MAPPIN	IG										
CO PO PO	O PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	PSO-2
-1 -2	2 -3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	130-2
CO-1 2 2	2 -	-	2	-	-	-	-	-	-	-	-	-
CO-2 3 2	2 -	-	3	-	-	-	-	-	-	-	-	-
CO-3 2 3	-	3	2	-	-	-	-	2	-	2	-	-
CO-4 2 3	-	-	3	-	-	-	-	-	-	2	-	-
CO-5 2 3	-	-	3	-	-	-	-	-	-	2	-	-
	1: We	akly rel	ated, 2	2: Moo	lerate	y rela	ted an	d 3: St	rongly	relate	d	
MODULE 1: INTRODUCTION (9)												
MODULE 1: INTRO	ODUCTI	ON										(9)
MODULE 1: INTRO			natica	l Mod	eling (of fiel	d prot	olems	in Eng	gineeri	ng –	(9)
	ound –	Mather			0		•		-		0	
Historical Backgro	ound – ons – Di	Mather screte	and co	ontinu	ous m	odels	– Bou	ndary,	Initial	and E	ligen	CO-1
Historical Backgro Governing Equation	ound – ons – Di Weighte	Mather screte ed Resi	and co dual N	ontinu Aethoo	ous m ds — V	odels ariatio	– Bou nal Fo	ndary, ormula	Initial tion o	and E f Boun	ligen	
Historical Backgro Governing Equatic Value problems–	ound – ons – Di Weighte Ritz Tecl	Mather screte ed Resi nnique	and co dual N – Basio	ontinu Aethoo c conce	ous m ls – V epts of	odels ariatio the Fi	– Bou nal Fo nite El	ndary, ormula [.] ement	Initial tion o Meth	and E f Boun od.	ligen	CO-1

One Dimensional Second Order Equations - Derivation of Shape functions and Stiffness matrices and force vectors - Galarkin approach - Assembly of stiffness matrix and load vector - Solution of problems from solid mechanics and heat transfer-Finite element equations - Longitudinal vibration frequencies and mode. CO-2 BTL-4 Suggested Readings: Applications to plane trusses, Quadratic shape functions. (9) Introduction - Finite element modelling - Scalar valued problem - Poisson equation - Laplace equation - Triangular elements - Element stiffness matrix - Force vector - Galarkin approach - Temperature effects - stress strain relations - plane problems of elasticity - element equations - assembly - need for quadrature formulae - transformations to natural coordinates - Gaussian quadrature - example problems in plane stress, plane strain using MATLAB© and Abagus. CO-3 BTL-4 Suggested Readings: Structural mechanics applications. (9) Axisymmetric formulation - Element stiffness matrix and force vector - Galarkin approach - Body forces and temperature effects - Stress calculations - Boundary conditions - Applications to cylinders under internal or external pressures - Rotating discs - Plate and shell elements. (9) Natural co-ordinate systems - Isoparametric elements with mat lab coding - Shape functions for iso parametric elements - One and two dimensions - Numerical integration and application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software. CO-5 BTL-4 1 C Krishnamoorthy,(2017), Finite Element Analysis. Theory and Programming, McGraw Hill Educatior, 2 nd edition. Anand V. Kulkarni,(201			
Introduction - Finite element modelling - Scalar valued problem - Poisson equation - Laplace equation - Triangular elements - Element stiffness matrix - Force vector - Galarkin approach - Temperature effects - stress strain relations - plane problems of elasticity - element equations - assembly - need for quadrature formulae - transformations to natural coordinates - Gaussian quadrature - example problems in plane stress, plane strain using MATLAB@ and Abaqus. CO-3 BTL-4 Suggested Readings: Structural mechanics applications. (9) Axisymmetric formulation - Element stiffness matrix and force vector - Galarkin approach - Body forces and temperature effects - Stress calculations - Boundary conditions - Applications to cylinders under internal or external pressures - Rotating discs - Plate and shell elements. (9) Natural co-ordinate systems - Isoparametric elements with mat lab coding - Shape functions for iso parametric elements - One and two dimensions - Numerical integration and application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software. CO-5 BTL-4 2 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 ^{ed} edition. Rand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 3 Salow Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. A. J. DaviesRao S., (2017), <i>APSY</i> and Matub@ Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .	matrices vector - S equations	and force vectors- Galarkin approach - Assembly of stiffness matrix and load Solution of problems from solid mechanics and heat transfer-Finite element s - Longitudinal vibration frequencies and mode.	
Laplace equation - Triangular elements - Element stiffness matrix - Force vector - Galarkin approach - Temperature effects - stress strain relations – plane problems of CO-3 elasticity - element equations - assembly - need for quadrature formulae - transformations to natural coordinates - Gaussian quadrature - example problems in BTL-4 Suggested Readings: Structural mechanics applications. (9) Axisymmetric formulation - Element stiffness matrix and force vector - Galarkin approach - Body forces and temperature effects - Stress calculations - Boundary conditions - Applications to cylinders under internal or external pressures - Rotating discs - Plate and shell elements. (9) Suggested Readings: Structural mechanics applications. (9) Natural co-ordinate systems - Isoparametric elements with mat lab coding - Shape functions for iso parametric elements - One and two dimensions- Numerical integration application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software. CO-5 Suggested Readings: Application of four node quadrilateral. Education; 2 nd edition. Education; 2 nd edition. 1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 nd edition. Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 2 Anand V. Kulkarni,(2017), The Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 3 Salome Meca	MODULE	3: TWO DIMENSIONAL CONTINUUM	(9)
Axisymmetric formulation - Element stiffness matrix and force vector - Galarkin approach - Body forces and temperature effects - Stress calculations - Boundary conditions - Applications to cylinders under internal or external pressures - Rotating discs - Plate and shell elements. CO-4 BTL-4 Suggested Readings: Axisymmetric applications. (9) Natural co-ordinate systems - Isoparametric elements with mat lab coding - Shape functions for iso parametric elements - One and two dimensions - Numerical integration and application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software. CO-5 BTL-4 1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 nd edition. 2 Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 1 Randy Shih,(2016), Introduction to Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 A.J DaviesRao S.S.,(2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .	Laplace e Galarkin a elasticity transform plane stre		
approach - Body forces and temperature effects - Stress calculations - Boundary conditions - Applications to cylinders under internal or external pressures - Rotating discs - Plate and shell elements. CO-4 BTL-4 Suggested Readings: Axisymmetric applications. (9) Natural co-ordinate systems - Isoparametric elements with mat lab coding - Shape functions for iso parametric elements - One and two dimensions- Numerical integration and application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software. CO-5 BTL-4 Suggested Readings: Application of four node quadrilateral. CO-5 BTL-4 1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 nd edition. 2 Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 2 Anand V. Kulkarni,(2017), The Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 Anand V. Kulkarni,(2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 2 Anand V. SugesRao S.S., (2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek, (2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann, (2017), ANSYS and Matlab© Mechanical APDL for Finite E	MODULE	4: AXISYMMETRIC CONTINUUM	(9)
Natural co-ordinate systems – Isoparametric elements with mat lab coding – Shape functions for iso parametric elements – One and two dimensions– Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software. Suggested Readings: Application of four node quadrilateral. TEXT BOOKS 1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill 2 Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. Reference BOOKS 1 Randy Shih,(2016), Introduction to Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 A.J DaviesRao S.S.,(2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .	approach condition discs - Pla	- Body forces and temperature effects - Stress calculations - Boundary is - Applications to cylinders under internal or external pressures - Rotating ate and shell elements.	
functions for iso parametric elements – One and two dimensions– Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software. CO-5 BTL-4 Suggested Readings: Application of four node quadrilateral. TEXT BOOKS Education; 2 nd edition. C 1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 nd edition. Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 2 Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 2 Anand V. Kulkarni,(2017), The Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 A.J DaviesRao S.S.,(2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .	MODULE	5: ISOPARAMETRIC FORMULATION	(9)
TEXT BOOKS 1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 nd edition. 2 Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. 8 Reference BOOKS 1 Randy Shih,(2016), Introduction to Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 A.J DaviesRao S.S.,(2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .	functions integratic Solutions	for iso parametric elements – One and two dimensions– Numerical on and application to plane stress problems - Matrix solution techniques – Techniques to Dynamic problems – Introduction to Analysis Software.	
1 C Krishnamoorthy,(2017), Finite Element Analysis: Theory and Programming, McGraw Hill Education; 2 nd edition. 2 Anand V. Kulkarni,(2017), A PRIMER ON FINITE ELEMENT ANALYSIS, Laxmi Publications, First edition. REFERENCE BOOKS 1 1 Randy Shih,(2016), Introduction to Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 A.J DaviesRao S.S.,(2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .			
2 edition. REFERENCE BOOKS 1 Randy Shih,(2016), Introduction to Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. 2 A.J DaviesRao S.S.,(2017), The Finite Element Method with An Introduction Partial Differentiate Equations by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition .		C Krishnamoorthy, (2017), Finite Element Analysis: Theory and Programming	g, McGraw Hill
 Randy Shih, (2016), Introduction to Finite Element Analysis Using SOLIDWORKS Simulation, SDC Publications. A.J DaviesRao S.S., (2017), The Finite Element Method with An Introduction Partial Differential Equations by Oxford, Second edition. Salome Meca, Syllignakis Stefanos, Petr Vosynek, (2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann; (2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition. 	2		blications, First
 SDC Publications. A.J DaviesRao S.S.,(2017), <i>The Finite Element Method with An Introduction Partial Differential Equations</i> by Oxford, Second edition. Salome Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition. 	REFEREN	CE BOOKS	
 <i>Equations</i> by Oxford, Second edition. 3 Salome Meca, Syllignakis Stefanos, Petr Vosynek,,(2018), Finite Element Analysis, Aster Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition. 	1		RKS Simulation,
Kindle Edition, Amazon Digital Services LLC. 4 Mary Kathryn Thompson, John Martin Thompson, Butterworth-Heinemann;(2017), ANSYS and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition.	2		tial Differential
and Matlab© Mechanical APDL for Finite Element Analysis, Kindle Edition, 1 edition.	3		Analysis, Aster
E BOOKS	4		
	E BOOKS		

1	https://books.google.co.in/books/about/Applied_Finite_Element_Analysis.html?id=								
	wzZ7BkQgMnAC - G. Ramamurty https://books.google.co.in/books/about/Finite Element Analysis.html?id=M0cK 4Tocx9MC								
2	- C. S. Krishnamoorthy								
3	https://books.google.co.in/books/about/The_Finite_Element_Method_in_Engine								
5	ering.html?id=nBgZqyepUGwC - S. S. Rao								
4	https://books.google.co.in/books/about/Finite_Element_Analysis.html?id=CwO KP1a70Y4C -								
4	S. S. Bhavikatti								
MOOC									
1	https://onlinecourses.nptel.ac.in/noc16_me02/preview								
2	http://nptel.ac.in/courses/112104193/								
3	http://nptel.ac.in/courses/112104193/4								
4	https://onlinecourses.nptel.ac.in/noc16_me10/preview								
5	http://nptel.ac.in/courses/112104116/3								
6	http://nptel.ac.in/courses/112104205/								

COURSE TITLE	ROI	BOTICS AND AUTOMAT	ON	CREDITS	3							
COURSE CODE	MEB4403	COURSE CATEGORY	PC	L-T-P-S	3-0-0-1							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3							
ASSESSMENT SC	•											
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE								
15%	15%	15% 10% 5% 5% 50%										
Course Description		The course describe the basics of robots, structural designing and programming of robots and low cost automation										
Course Objective	 To study the To impart kn 	nd the functions of the b use of various types of I owledge in Robot Kinem ot safety issues and eco	End of Effectors a natics and Progra	and Sensors								
Course Outcome	 Demonstrat Design the constration on application Illustrate and variables, res Develop and several parts 	 To learn Robot safety issues and economics. Upon completion of this course, the students will be able to Demonstrate the types, principles and applications of industrial robots. Design the drive mechanism and power transmission method used in robot based on applications, elaborate types of end effectors and grippers. Illustrate and select sensors for industrial robots for sensing the environmental variables, related to various applications. Develop an application oriented robot by applying the concepts of kinematics and programming language. 										

Prerequ	Prerequisites: NIL													
CO, PO	AND P	SO M	APPIN	G										
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	РО -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	1	2	2	-	-	-	-	-	-	-	-	-	-	-
CO-2	CO-2 1 2 2											-	-	
CO-3	CO-3 1 - 2 1										-	-		
CO-4	1	1	-	-	2	-	-	-	-	-	-	2	-	-
CO-5	1	-	2	-	-	-	2	-	-	-	-	2	-	-
		1	l: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: I	NTRO	DUCTI	ON										9
Definition of Robot, History of robotics, Robot Anatomy, Robot configurations: Polar, Cartesian, cylindrical and Jointed-arm configuration, Robot motions, Joints, Work volume, Applications of Robots – material handling and processing. <i>Suggested Reading:</i> Recent developments in industrial robots MODULE 2: DRIVE SYSTEMS AND END EFFECTORS Robot drive mechanisms – hydraulic, pneumatic and electric drives, power transmission methods, Construction of Manipulators, Classification of End effectors, grippers – mechanical, pneumatic, hydraulic, vacuum gripper, fingered grippers, internal and external gripper, selection of grippers and design considerations, simulate and visualize robot arm motion using Simscape multibody of Matlab©, Simulink® schematic of the speed reducer model. Suggested Reading: Interfacing of drive system with a microcontroller									CO-1 BTL-3 9 CO-2 BTL-3					
MODUL							INE VIS							9
Sensor characteristics, Position sensors, Displacement sensor, Velocity sensor, Acceleration sensors, Force and Pressure sensors, Torque sensors, Touch and tactile sensor, Proximity sensors, Machine Vision System - Introduction to Machine vision, sensing and digitizing function in Machine vision, Image processing and analysis, application of Vision systems in robotics, acquiring and logging sensor data using Simulink of Matlab© Suggested Reading: Building a robot that avoids obstacles								actile sion, lysis,	CO-3 BTL-3					
Simulink of Matlab© Suggested Reading: Building a robot that avoids obstacles MODULE 4: ROBOT MOTION ANALYSIS AND ROBOT PROGRAMMING														

homogen Forward a Arm dyna Robot p programn commanc	ons, Rotations and Transformations - Forward and reverse transformation, eous transformations – coordinate system transformations using Matlab© - and inverse Kinematics Of three & four Degree of Freedom Robot Arm, Robot mics, manipulator path control, manipulator algorithms using Matlab© programming and languages: Methods of programming, lead-through ning methods, textual robot languages – motion commands, sensor ds, end effector commands, graphical simulation facilities.	CO-4 BTL-3
MODULE	5: AUTOMATION	9
automatic Automate manufact Robot pro	of Automation, Reasons for automation, Automation systems, Types of on – Fixed, Programmable and Flexible automation, Automation strategies, ed Manufacturing Systems - Components, classification and overview of uring Systems, Flexible Manufacturing Systems, Types of FMS, Robot cell, ocess automation, d Reading: PLC used in automation.	CO-5 BTL-3
TEXT BOO	_	
1 2	Mikell P. Groover, Mitchell Weiss, (2012), "Industrial Robotics, Technology, Pro Applications ", McGraw Hill International Editions, 1st Edition. Richard D. Klafter, Thomas A. Chmielewski and Michael Negin, (2012),"Robotic	
	An Integrated Approach", Prentice Hall India.	
REFERENC	CE BOOKS	
1	Saeed B. Niku, (2011) "Introduction to Robotics: Analysis, Systems, Application.	ion", Pearson
2	Deb S R, (2010), "Robotics Technology and Flexible Automation", Tata McG Delhi.	iraw Hill, New
E BOOKS		
1	http://www.robotics.org/	
2	http://www.robotbooks.com/general-robotics-links.htm	
3	https://books.google.co.in/books?id=P1ljICxFA_AC&printsec=frontcover#v=on q&f=false	epage&
моос		
1	https://www.mooc-list.com	
2	http://nptel.ac.in/courses/112101098/	

COURSE TITLE	ADDITIVE	MANUFACTURING TECH	CREDITS	3	
COURSE CODE	MEB4404	COURSE CATEGORY	РС	L-T-P-S	3-0-0-2
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	HEME				

	riodical sment		Seco Perioc Assessi	dical		Seminar/ Assignments/ Project				orise Te ' Quiz	est /	Attenda	ance	ESE
15	5%		159	%		1	.0%			5%		5%		50%
	urse iption			rse giv erials u			-		bus ad	ditive r	nanuf	acturin	ig techni	ques and
Coι	urse ctive	1.	To kn as en To be	iow the vironn e famil	e prino nental iar wit	ciple m effect th the	nethoc s of th charac	ls, area e Addi	tive M	anufac	turing	; techn	ologies	ations as well e are used in
	Additive Manufacturing. Upon completion of this course, the students will be able to 1. Apply the principles of this manufacturing process to produce the product. 2. Identify the characteristics of those materials and tools that can be used for this process. 3. Handle the softwares applicable to the product. 4. Identify areas of applications for this process. 5. Do research in medical and bio-additive manufacturing													
Prerequ	isites: N	IIL												
CO, PO	AND PS	50 M/	APPIN	G										
со	PO -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	РО -10	РО -11	PO -12	PSO-1	L PSO-2
CO-1	1	2	2	-	-	-	-	-	-	-	-	2	-	-
CO-2	-	2	2	-	-	-	-	-	-	-	-	2	-	-
CO-3	1	-	2	-	-	-	-	-	-	-	-	-	-	-
CO-4	1	1	-	-	2	-	-	-	-	-	-	2	-	-
CO-5	1	-	2	-	-	-	2	-	-	-	-	2	-	-
		1	L: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	/ relate	ed	
MODU			RODUC										. 1	9
Overvie develop Applicat <i>Sugges</i> <i>circle ar</i>	ment-N tions. ted Rea	lateri Iding	ials f : 3D p	or A rinting	dditive	e Ma	nufact	turing	Tech	nology	-		g —	CO-1 BTL-3
MODUL	E 2: C	AD 8	k REVE	RSE EI	NGINE	ERING	i						•	9

	oncept – 3D Design- Digitization techniques – Model Reconstruction – Data ing for Additive Manufacturing Technology: CAD model preparation- Design to	
	nat conversion – Part Orientation and support generation – Model Slicing – Tool	CO-2
path Ge	neration	BTL-3
Sugges	ted Reading: Software practice for Additive Manufacturing Technology: Flash	
Print/ A	uto Maker.	
MODUL	E 3: LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS	9
Classif	ication – Liquid based system – Stereolithography Apparatus (SLA)- Principle,	
proces	s, advantages and applications - Solid based system –Fused Deposition	CO-3
Model	BTL-3	
Sugges	ted Reading: Laminated Object Manufacturing.	
MODUL	E 4: POWDER BASED ADDITIVE MANUFACTURING SYSTEMS	9
Selectiv	e Laser Sintering – Principles of SLS process - Process, advantages and	
applicat	ions, Three Dimensional Printing - Principle, process, advantages and	CO-4
applicat	ions- Laser Engineered Net Shaping (LENS), Electron Beam Melting.	BTL-3
Sugges	ted Reading: Powder production technique, characterisation technique	
MODUL	E 5: MEDICAL AND BIO-ADDITIVE MANUFACTURING	9
Custom	ized implants and prosthesis: Design and production. Bio-Additive	
Manufa	cturing- Computer Aided Tissue Engineering (CATE) – Case studies.	CO-5
Sugges	ted Reading: Application in Medical, Biomedical, Dental, Bio-printing, Tissue &	BTL-3
Organ E	ngineering and many others	
TEXT BC	DOKS	
1	Chua C.K., Leong K.F., and Lim C.S., (2017), 3D Printing and Additive Manufactu	ring: Principles
	and Applications: World Scientific Publisher, Fifth Edition of Rapid Prototyping.	
2	Gebhardt A., (2011), Understanding Additive Manufacturing: Rapid Prototyping,	Rapid Tooling,
	Rapid Manufacturing, Hanser Publications, 1 st edition.	
REFERE	NCE BOOKS	
1	Ian Gibson, David Rosen, Brent Stucker., (2015) Additive Manufacturing Tec	-
	Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2nd Edit	
2	Clifford T Smyth., (2017),— Functional Design for 3D Printing: Designing 3d pri everyday use , Clifford Smyth - 3rd edition,	nted things for
E BOOK		
1	https://www.newcastlesys.com/the-essentials-of-lean-manufacturing-ebook	
2	www.vebridge.com/contact-us/lean-manufacturing-ebook/	
MOOC		
1	https://www.edx.org/course/lean-production-tumx-qpls3x	

COURSE TITI	.E			HE	AT TR	ANSFI	ER LAE	6			CRED	DITS	1				
COURSE CO	DE	MEB4	431	COL	JRSE (CATEG	GORY		РС		L-T-P-S 0-0-2- LEARNING LEVEL BTL-4 ESE 20% and radiation heat transfer ase change heat transfer building materials. I building materials.						
Version		1.	ט	Aŗ	prova	al Det	ails		23 ACM				BTL-4				
ASSESSMENT	r sche	ME								-							
			CIA								ESE						
			80%								20%						
Course Description	cond		o prac	tical ap	plicat	• •											
Course1. To learn about thermal conductivity of insulating and building materials.Course2. To understand the heat transfer coefficient of condensation, free and forced convection.Objective3. To learn about the radiation constant and emissivity of specimen.																	
Course OutcomeUpon completion of this course, the students will be able to1. Perform steady state conduction experiments to estimate thermal conductivity of different insulating and building materials.2. Estimate heat transfer coefficients in forced convection, free convection condensation and correlate with theoretical values3. Obtain variation of temperature along the length of the pin fin under forced and free convection4. Perform radiation experiments: Determine surface emissivity of a test plate and Stefan-Boltzmann's constant and compare with theoretical valuePrerequisites: Thermodynamics, Heat Transfer											nvection,						
CO, PO AND	PSO N	1APPIN	G														
CO PO -1	РО -2	РО -3	PO -4	РО- 5	Р О- 6	РО -7	РО -8	PO -9	PO - 10	РО- 11	РО- 12	PSO- 1	PSO-2				
CO-1 3	3	1	1	3	2	2	1	2	1	-	3	3	-				
CO-2 3	3	1	1	3	2	2	1	2	1	-	3	3	-				
CO-3 3	3	1	1	3	2	2	1	2	1	-	3	3	-				
CO-4 3	3	1	1	3	2	2	1	2	1	-	3	3	-				
	. 1	: Weal	dy rela	ated, 2	: Mod	lerate	ly rela	ted an	d 3: Str	onglyı	elated	•					
					LIST	OF EX	PERIN	IENTS									

1	Thermal conductivity measurement by Guarded Plate Method		
2	Thermal conductivity of pipe insulation using Lagged Pipe apparatus		
3	Thermal conductivity measurement in composite wall apparatus		
4	Natural convection heat transfer from a vertical cylinder		
5	Forced convection inside a tube		
6	Heat transfer from pin fin (both natural & free convection modes)		
7	Determination of Stefan Boltzman's constant		
8	Determination of emissivity of Grey surface		
9	Effectiveness of Parallel/Counter flow heat exchanger	BT	L-4
10	Determination of overall heat transfer coefficient and effectiveness of Shell & Tube h exchanger.	eat	
11	Steady state conduction problem using MATLAB©.		
	MATLAB ASSIGNMENTS		
1.	Nonlinear Heat Transfer In a Thin Plate		
2.	Solving a Heat Transfer Problem With Temperature-Dependent Properties		
3.	Determining Heat Transfer and Mass Flow Rate in a Ramjet Combustion Chamber		
4.	Heat Conduction in a Spherical Multidomain Geometry with Nonuniform Heat Flux		
5.	Temperature Control in a Heat Exchanger		
	LIST OF EQUIPMENTS (For a batch of 30 students)		
1	Guarded Plate apparatus		
2	Lagged pipe apparatus		
3	Composite wall apparatus		
4	Natural convection- vertical cylinder apparatus		
5	Forced convection inside tube apparatus		
6	Pin – fin apparatus		
7	Stefan-Boltzman's apparatus		
8	Emissivity measurement apparatus		
9	Parallel and Counter flow heat exchanger apparatus		
10	Shell and Tube heat exchanger apparatus		

COURSE TITLE	COMPUTER	AIDED SIMULATION A	AND AN	ALYSIS LAB	CREDITS	1
COURSE CODE	MEB4432	COURSE CATEGOR	GORY PC		L-T-P-S	0-0-2-1
Version	1.0	Approval Details	C	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SCH	IEME					
	CIA				ESE	
	80%				20%	

C	Course		Deals	with v	arious	analy	sis like	structur	al and	therm	al anal	lysis in	mechanica	al related
Des	scriptio	n	compo	onents										
C	Course		1. To	obtair	n know	/ledge	in Var	ious stru	ctural	analys	is			
Ob	ojective		2. To	obtair	n know	/ledge	in the	rmal ana	lysis					
			Up	on co	mpleti	on of t	his co	urse, the	stude	nts wil	l be ab	le to		
			1. De	termir	ne of s	tress,	nodal	displacen	nents	and re	action	s of dif	ferent bar	and truss.
C	Course		2. Co	mpute	e the s	hear f	orce a	nd bendi	ng mo	ment	diagra	m for t	the cantile	ver, simply
Οι	utcome	2	su	pporte	ed and	fixed I	beam v	with diffe	erent l	oad				
						-						n and	convectio	on for the
			te	mpera	ture di	stribu	tion w	ithin the	rectar	ngular	plate.			
Prerec	quisites	: Nil												
СО, Р	O AND	PSO N	/IAPPII	NG										
	PO	РО	РО	РО	РО	РО	РО		РО	PO	РО	PO-		
СО	-1	-2	-3	-4	-5	-6	-7	PO-8	-9	-10	-11	12	PSO-1	PSO-2
CO-1	2	-	2	-	2	-	-	-	2	-	1	2	-	-
CO-2	1	1	1	-	2	-	-	-	-	-	2	2	-	-
CO-3	2	-	-	-	2	-	-	-	-	-	2	2	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related														
						LIS	ST OF I	EXPERIM	ENTS					
1	Stress	analys	is of b	ar of c	onstan	t cros	s-secti	on area.						
2	Stress	analys	is of b	ars of t	tapere	d cros	s secti	on area.						
3	Stress	analys	is of st	epped	bar.									
4	Stress	analys	is of co	ompos	ite ste	pped k	bar.							
5	Stress	analys	is and	nodal	displa	cemen	ts of T	wo bar T	russ					
6	Stress	analys	is and	nodal	displa	cemen	ts of F	our bar ٦	russ					
7	Stress	analys	is and	nodal	displa	cemen	ts of n	nultiple b	ar Tru	ISS				
8	-					pendin	g mor	nent dia	gram f	or the	cantil	ever, s	imply sup	ported and
	fixed b		•											
9	•					bend	ing m	oment d	iagran	n for t	the sir	nply si	upported	beam with
	Unifor	•					-	-						
10	•				e and	bend	ing m	oment d	iagran	n tor t	the sir	nply si	upported	beam with
	Unifor	-			·						. (
11		•			-			ed and fi						
12		-		-	-			-	ted to	axial l	load St	ress ar	nalysis of i	rectangular
10	plate v													
13			-	for th	e 2-D	neat	cond	luction f	or the	e tem	peratu	re dis	tribution	within the
1.4	rectan	• •		for	<u> </u>				الد سم				•	
14	Therm	al ana	aiysis	tor th	e 2-D	neat	conv	ection f	or the	e tem	peratu	re dis	tribution	within the

	rectangular plate.
15	Develop a program to find the response of a multidegree-of-freedom system using modal analysis.
16	Develop a program to find the response of a multidegree-of-freedom system using modal analysis.
	LIST OF EQUIPMENTS (For a batch of 30 students)
HP Pi	ro6200 – 30 systems
1	Mother board : Intel i5
2	Processor: 3.1 GHz
3	RAM : 4 GB
4	HDD : 500 GB
5	Monitor : 18.5"LCD
6	Key board & Mouse: PS/2
ACEF	R- 30 systems
1	Mother board : Intel i3
2	Processor: 3.6 GHz
3	RAM : 4 GB
4	HDD : 500 GB
5	Monitor : 18.5"LCD
6	Key board & Mouse: PS/2

COURSE TITLE	ROBOTICS AND AUTOMATION LABCREDITS1											
COURSE CODE	MEB4433	COURSE CATEGORY	PC	L-T-P-S	0-0-2-1							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3							
ASSESSMENT SO	CHEME			•								
CIA ESE												
80% 20%												
Course Description	Students get the practical knowledge in sensors, robot programming and designing of robotic cell.											
Course Objective	 To know about different types of kinematics and select a suitable robot for a specific application. To Know about Robot Vision 											
Course 1. Identify different types of robots and their applications Outcome 2. Differentiate sensors usage 3. Develop basic programming in Robots												
Prerequisites: N	IL											
CO, PO AND PS	CO, PO AND PSO MAPPING											

со	PO -1	PO -2	PO -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	PO -11	PO- 12	PSO-1	PSO-2
CO-1	2	-	2	-	2	-	-	-	2	-	-	2	-	-
CO-2	-	-	-	-	2	-	-	-	-	-	2	2	-	-
CO-3	2	-	-	-	2	-	-	-	-	-	2	2	-	-
			1: We	eakly r	elated	, 2: M	oderat	tely re	lated a	and 3:	Strong	ly relat	ed	
						LIS	T OF E	XPER	MENT	S				
1	Study	of diffe	erent t	ypes o	f robo	ts base	ed on c	configu	iration	and a	pplicat	ion.		
2	Study of different type of links and joints used in robots													
3	Study	Study of components of robots with drive system and end effectors.												
4	Simula	Simulate and Visualize Robot Arm Motion using Simscape - Matlab©												
5	Programming of Industrial Robot for material handling application													
6	Programming of industrial robot for processing application													
7	Interfacing of conveyor with industrial robot and exercises related to robot – conveyor systems										systems			
8	Robot progra			g exer	cises fo	or vari	ous ap	plicati	ons (Po	oint-to	-point	and co	ntinuous p	bath
9	Teach	ing to i	robot ı	using t	each p	endan	t							
10	Desigr	n a Pick	k and P	lace R	obotic	s Appl	ication	with	MATLA	AB© ar	nd Sim	ulink		
11	Vision	inspec	tion ar	nd sort	ing									
12	Simula	tion of	f weldi	ng, pa	inting	and de	e-burri	ng						
13	Develo	• •						-						
14	Test ro	botics	algori					-						
								-		of 30 s		-		
1.	Any or				-				-	-	freed	om.		
2	Robot	· ·		-										
3	Model							rive sys	stems	Links a	nd Joii	nts.		
4	Model				-									
5	Vision	•		-		spectio	on							
6	Matlal	o© sot	tware	R2017										

COURSE TITLE		DESIGN PROJECT - V		CREDITS	1			
COURSE CODE	MEB4434	COURSE CATEGORY	PC	L-T-P-S	0-0-2-0			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-6			
ASSESSMENT SCH	EME							
CIA		ESE						
80%		20%						

	Strate	egies a	ind m	ethods	of de	esignin	g, ma	nufact	uring,	and t	esting of	mechanical
Course	produ	icts. Er	nginee	ring dr	awing	and CA	AD, des	sign me	ethods	, mate	rial proper	ties, failure
Description	mode	s, sele	ection	metho	odolog	y, funo	damen	tal GE	D&T, a	nd se	lected mai	nufacturing
	proce	sses.										
Course Objective	p 2. T 3. T 4. T 5. T	reviou o und roduct o foste o deve	s seme erstan s er inno lop de elop sl	esters t d the vation sign th	in desi	tical pr eering gn of p value	oblem aspec produc to prod	s. ts of ts, pro ducts a	desigr cesses and sol	or systeed	reference tems nnical prob	uired in the to simple lems and report
 Course Outcome Course Outcome Design and fabricate a mini device/ machine/ equipment using the knowledge acquired in the previous semesters. Describe the making a product is achieved for solving practical problem. Prepare a technical drawing, technical report and technical presentation skill. 												
Prerequisites: Nil												
CO, PO AND PSO N	/IAPPIN	IG										
PO PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO-	D C O 4	560 0
CO -1 -2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	PSO-1	PSO-2
CO-1 2 1	2	-	3	-	-	2	1	2	2	3	1	2
CO-2 2 1	-	-	3	-	-	-	-	-	-	2	1	2
CO-3 1 2	2	-	3	1	2	2	1	2	2	3	1	2
1: Weakly related, 2: Moderately related and 3: Strongly related												
	1	any	ciateu	, 2. 1010	uciate	ery rela	iteu ai	iu 5. 5	liongi	relate	a a a a a a a a a a a a a a a a a a a	

BTL-6

- The students in convenient groups of not more than 4 members have to take one small item for design and fabrication. Every project work shall have a guide who is the member of the faculty of the institution.
- The item chosen may be small machine elements (Example-screw jack, coupling, machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic /pneumatic devices etc.
- The students are required to design and fabricate the chosen item and demonstrate its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication.

80
20
100

COURSE TITLE		INTERNSHIP CREDITS 1											
COURSE CODE	MEB4435 COURSE CATEGORY PC L-T-P-S 0-0-0												
Version	1.0	Approval Details	LEARNING LEVEL	BTL-6									
ASSESSMENT SCHEME													
1		Report and Viva-voce - 100											
Course Description	opportunity to structured pla professional c	ng Internship course is a o explore and develop th an of education impacts levelopment skill-buildin edback from employer; i	heir careers thro student work r g activities, inclu	ough profession eadiness throug uding goal settii	al practice. The gh a number of ng; analysis and								
Course Objective	2. To unders	 To make industrial exposure in various streams in mechanical engineering To understand the current industry needs based on their production 											

Course OutcomeUpon completion of this course, the students will be able to1. Industrial experience in design and fabricate of device/ machine/ equipment2. Describe the making a product in the real industries is achieved3. Prepare a technical drawing, technical report and technical presentation skill.														
Prereq	Prerequisites: Nil													
CO, PO AND PSO MAPPING														
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO-	PSO-1	PSO-2
co	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	F30-1	130 2
CO-1	2	1	2	-	3	-	-	2	1	2	2	3	1	2
CO-2	2	1	-	-	3	2	-	-	-	-	-	2	1	2
CO-3	2	1	2		3	2		2	1	2	1	2	1	2
			1: We	eakly r	elated,	, 2: Mc	oderate	ely rela	ted ar	nd 3: S	trongly	/ relate	ed	

SEMESTER VIII

COUR	SE TIT	LE			PROJ	ECT AI	ND VIV	A-VOC	E			CRED	ITS		8	
COUR	SE CO	DE	MEB	4441 COURSE CATEGORY PC L-T-P-S 0-0-24-0												
Ve	ersion		1	.0		Approv	/al Det	ails		3 ACM 02.202		LEARN LEVE			BTL-6	
ASSES	SMEN	T SCH	HEME													
		CIA	4			VIVA-VOCE										
		80%	6			20%										
	ourse criptio	n	Strategies and methods of designing, manufacturing, and testing of mechanical products. Engineering drawing and CAD, design methods, material properties, failure modes, selection methodology, fundamental GD&T, and selected manufacturing processes.													
	Course Objective1. To provide opportunity for the students to implement their skills acquired in the previous semesters to practical problems.Course Objective2. To understand the engineering aspects of design with reference to simple products 3. To foster innovation in design of products, processes or systems 4. To develop design that add value to products and solve technical problems 5. To develop skills in doing literature survey, technical presentation and report preparation.														e products ns	
Course Upon completion of this course, the students will be able to Outcome 1. Design and fabricate a device/ machine/ equipment using the know acquired in the previous semesters. 2. Numerical Analysis of physical engineering problem. 3. Complete understanding of making a product is achieved for solving problem 4. Prepare a technical drawing, technical report and technical presentation skill											g practical					
Prereq																
CO, PC			MAPPIN						1							
со	РО -1	РО -2		РО -4	РО -5	РО -6	PO -7	РО -8	PO -9	PO -10	PO -11	PO- 12	PSO	-1	PSO-2	
CO-1	-1	-2	-3	-4	-5	-0	-/	-8	-5	2	-11	3	1		2	
CO-2	2	1	-	-	3	-	-	-	-	-	-	2	1		2	
CO-3	1	2	2	-	3	1	2	2	1	2	2	3	1		2	
CO-4	1	2	3	-	1	-	-	2	1	2	1	1	1		2	
			1: We	eakly r	elated	, 2: Mc	oderate	ely rela	ated ar	nd 3: S	trongly	y relate	ed			

NOTE
 The students in convenient groups of not more than 4 members have to take one small item for design and fabrication or Individual student can do Modeling and Simulation using software like Ansys, CFX, etc. Every project work shall have a guide who is the member of the faculty of the institution.
2. The item chosen may be small machine elements (Example-screw jack, coupling, machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic /pneumatic devices etc. Numerical Analysis can also be done using commercially available software or by developing own code.
3. The students are required to design and fabricate the chosen item and demonstrate its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication, result analysis for numerical simulation.
ASSESSMENT (%)
Continuous Assessment - 80
Viva-voce - 20
Total - 100

LIST OF DEPARTMENTAL ELECTIVES - SEMESTER III

COURSE TITLE	NON	-DESTRU	CTIVE	TESTIN	IG MI	THOD	S	0	CREDIT	S	3		
COURSE CODE	MEC4251												
Version	1.0	A	pprov	al Deta	ils		3 ACM, 02.202		LEARN LEV		BTL-3		
ASSESSMENT SC	CHEME												
First Periodical Assessment	Second Periodical Assessmen		Assign	ninar/ ments/ oject	1	-	orise Te ' Quiz	est	Attend	ance	ESE		
15%	15%		1	0%			5%		5%	,	50%		
Course Description	evaluate th characteristic damage to	Non-destructive testing (NDT) is a testing and analysis technique used by industry to evaluate the properties of a material, component, structure or system for characteristic differences or welding defects and discontinuities without causing damage to the original part. This course provides a detailed study on different echniques of NDT to detect surface, sub surface and volumetric defects.											
Course Objective	 the Visua To unde involved To unde involved To under involved 	l inspect rstand the for the sin rstand the methodo stand the in the inst rstand the	ion an he pri urface he pr blogy in e prin spectione prin	d its aid nciple inspect inciple n differe ciple be on. nciple b	ds behir tion. and ent a ehind pehind	ind LPT instru oplicat MPT d UT a	and t mentations. and to	to stu tion stud	udy th for EC y the c	e diffe T and lifferen	g and to study erent methods AET and the it equipment's int methods of		
Course Outcome	Upon completed 1. Described behind van 2. Identify tag 3. Developed 4. Compared 5. Apply the	 behind various NDT techniques. Identify the operation of various NDT equipment's and accessories. Develop the NDT techniques for practical applications. Compare and select various NDT techniques based on applications 											
Prerequisites: Er	ngineering Phys	ics, Engi	neerin	g Chem	nistry								
CO, PO AND PSC	O MAPPING												
CO	PO PO PC -2 -3 -4	PO -5	РО -6	PO -7	РО -8	РО -9	PO -10	РО -11	PO -12	PSO 1	PSO-2		

CO-1	3	1	1	-	1	-	1	1	-	-	-	1	-	-
CO-2	2	2	-	-	-	-	-	-	-	2	-	1	-	-
CO-3	2	-	2	2	2	-	-	2	2	1	1	-	-	-
CO-4	CO-4 ² 1 2 -													
CO-5	CO-5 1 1 2 2 - 2 2 1 1 - -													
		1	L: Wea	ıkly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: N	ION DE	STRU		TESTIN	IG: AN		ODUCI	ION					(9)
MODULE 1: NON DESTRUCTIVE TESTING: AN INTRODUCTIONScope of NDT, Introduction to various NDT methods Impact of NDT in disaster prevention, Comparison of Destructive and Non destructive tests, Visual Inspection, Optical aids used for Visual inspection and their applications.Practical component:Applications of NDT- Inspection using ROBO NDT-A MATLAB© TOOLBOX approach Robots in NDT to speed up inspection Suggested Readings: International codes, and standards and their importance in NDT, Basic metallurgical processes and defectsMODULE 2: LIQUID PENETRANT TESTING (PT)Physical principles, Procedure for Penetrant testing, Penetrant Testing materials Penetrant Testing Methods—Water washable, Post emulsifiable, Solvent removable methods Sensitivity, Advantages, Limitations and applications.Practical component: Report generation of the method using MATLAB© Report generatorSuggested Readings: National and International Standards for Liquid Penetrant Flaw										erials vable	CO-1 BTL-2 (9) CO-2 BTL-3			
detectio MODUL		DDY CL	JRRFN	T TFST	ING A	ND AC	OUST	IC FMI	SSION	TESTI	NG			(9)
Principles and Instrumentation for ECT, Absolute- differential probes, Techniques of ECT-High Sensitivity techniques, 3D or phased array ECT, Sensitivity, Advantages, Limitations and Applications of ECT. Principles of AET and instrumentation, Sensitivity, Advantages and Limitations of AET, Applications-Testing of metal pressure vessels, Fatigue crack detection in aerospace structures. Practical component: Applications- using MATLAB©'s Image Acquisition Tool Box Suggested Readings: Advanced ECT methods and Standards for ECT. Advanced AET and										ges, AET, pace	CO-3 BTL-3			
areas of opportunities for AE development, Standards for AET MODULE 4: MAGNETIC PARTICLE TESTING												(9)		
Definitions and principles of MPT, Magnetizing techniques, Procedure used for testing a component, Equipment used for MPT, Sensitivity, Advantages, Limitations and Applications Practical component: Applications- using MATLAB©'s Tool Box Suggested Readings: Improvements in MPI and Selection of equipment for MPT										-	CO-4 BTL-3			

Principles of UT, Ultrasonic transducers, Inspection methods, Normal incident pulse- echo, through transmission testing, Angle-beam Pulse- Echo testing, Criteria for selection of Probes, Flaw sensitivity, Techniques for Normal Beam Inspection, Iaw characterization Techniques, Ultrasonic Iaw Detection Equipment, Modes of display, A Scan, B S can and C Scan Immersion testing, Advantages, Limitations and Applications of UT. CO-5 Practical component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© TOOL BOX Suggested Readings: Mechanical Impedance Analysis Technique Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi, Third edition. Peter J. Shull,(2010),:Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc.,New York. Publication, NewYork. REFERENCE BOOKS I. Kraut krammer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. Publication, Springer Verlag Publication, New York. 1. https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu Baldev Raj,T. Jaya kumar, M.Thavasimuthu Baldev Raj,T. Jaya kumar, M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.class central.com/tag/non20% destructive20% testing - Langenberg, ReneMarklein, Klaus Meyer MOOC 1. https://www.edess central.com/tag/	MODULE	5: ULTRASONIC TESTING	(9)
selection of Probes, Flaw sensitivity, Techniques for Normal Beam Inspection, law characterization Techniques, Ultrasonic law Detection Equipment, Modes of display, A Scan, B Scan and C Scan Immersion testing, Advantages, Limitations and Applications of UT. CO-5 Baldev Raj, T.Jeya kumar, Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© TOOL BOX Suggested Readings: Mechanical Impedance Analysis Technique CO-5 1. Baldev Raj, T.Jeya kumar, . M.Thavasimuthu, (2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi, Third edition. Peter J. Shull, (2010), Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc., New York. REFERENCE BOOKS I. Kraut krammer J., (2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. 1. https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar, M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.class central.com/tag/non20% destructive20% testing	Principle	es of UT, Ultrasonic transducers, Inspection methods, Normal incident pulse-	
characterization Techniques, Ultrasonic law Detection Equipment, Modes of display, A Scan, B Scan and C Scan Immersion testing, Advantages, Limitations and Applications of UT. CO-5 BTL-3 Practical component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© TOOL BOX Suggested Readings: Mechanical Impedance Analysis Technique EVENT 1. Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi,Third edition. Peter J. Shull,(2010):Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc.,New York. REFERENCE BOOKS Kraut krammer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Nethods for Non destructive Testing and Material Characterization - C.H.Chen Methods for Non destructive Testing and Material characterization - C.H.Chen 1. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer MOOC 1 https://online coursesnptel.ac.in/noc18mm04 1 2. https://online.coursesnptel.ac.in/noc18mm04 1 http://nptel.ac.in/courses/114106035/35/	echo, th	rough transmission testing, Angle-beam Pulse- Echo testing, Criteria for	
A Scan, B Scan and C Scan Immersion testing, Advantages, Limitations and Applications of UT. BTL-3 Practical component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© Tool BOX Suggested Readings: Mechanical Impedance Analysis Technique Testinations of UT. Practical component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© Tool BOX Suggested Readings: Mechanical Impedance Analysis Technique Testination 1. Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi,Third edition. 2. Peter J. Shull,(2010); Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc.,New York. REFERENCE BOOKS Schmmer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Intps://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.class central.com/tag/non20% destructive20% testing 2. https://online coursesnptel.ac.in/noc18mm04 3. http://nptel.ac.in/co	selection	of Probes, Flaw sensitivity, Techniques for Normal Beam Inspection, law	
Applications of UT. Practical component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© TOOL BOX Suggested Readings: Mechanical Impedance Analysis Technique TEXT BOOKS 1. Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi,Third edition. 2. Peter J. Shull,(2010),:Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc.,New York. REFERENCE BOOKS 1. Kraut krammer .J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS E BOOKS 2. https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar, M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 1. https://www.class central.com/tag/non20% destructive20% testing 2. http://online coursesnptel.ac.in/noc18mm04 3. http://nptel.ac.in/courses/114106035/35/ 4. http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	characte	rization Techniques, Ultrasonic law Detection Equipment, Modes of display,	CO-5
Practical component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB© TOOL BOX Suggested Readings: Mechanical Impedance Analysis Technique TEXT BOOK: TEXT BOOK: Suggested Readings: Mechanical Impedance Analysis Technique TEXT BOOK: Suggested Readings: Mechanical Impedance Analysis Technique Peter J. Shull,/2010); Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc., New York. REFERENCE BOOKS I. Kraut krammer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, NewYork. BOOKS EBOOKS Ittps://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu 2. https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu 3. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen MODE MODE 1. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer	A Scan,	B Scan and C Scan Immersion testing, Advantages, Limitations and	BTL-3
TOOL BOX Suggested Readings: Mechanical Impedance Analysis Technique TEXT BOOK 1. Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi,Third edition. 2. Peter J. Shull,(2010),:Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc., New York. REFERENCE BOOKS Intervention (2010), 2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, NewYork. E BOOKS Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Nttps://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer MOOC Intps://www.class central.com/tag/non20% destructive20% testing 3. https://online coursesnptel.ac.in/noc18mm04 3. http://nptel.ac.in/courses/114106035/35/ 4. http://www.nde-ed.org/./Intro to NDT/Intro_to NDT ptt	Applicati	ons of UT.	
TEXT BOOKS 1. Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi, Third edition. 2. Peter J. Shull,(2010),:Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc.,New York. REFERENCE BOOKS . 1. Kraut krammer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS . 1. https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer MOOC . 1. https://www.class central.com/tag/non20% destructive20% testing 2. http:// online coursesnptel.ac.in/noc18mm04 3. http://nptel.ac.in/courses/114106035/35/ 4. http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	Practical of	component: Use of Ultrasound field Simulation tool ULTRA SLIM-A MATLAB©	
1.Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive Testing, Narosa Publishing housing, New Delhi,Third edition.2.Peter J. Shull,(2010),:Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc.,New York.REFERENCE BOOKS1.Kraut krammer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition.2.Schmmer Jr. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York.E BOOKSImage: New York.1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen Langenberg, ReneMarklein, Klaus MeyerMOOCImage.pherg, ReneMarklein, Klaus MeyerMOOCImage.pherg., ReneMarklein, Klaus Meyer3.https://www.class central.com/tag/non20% destructive20% testing3.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	TOOL BOX	Suggested Readings: Mechanical Impedance Analysis Technique	
1.Publishing housing, New Delhi, Third edition.2.Peter J. Shull, (2010),:Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc., New York.REFERENCE BOOKS1.Kraut krammer J., (2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition.2.Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York.E BOOKSE BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOCIntps://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	TEXT BOO	DKS	
Publishing housing, New Delhi, Third edition.Peter J. Shull, (2010).: Non Destructive Evaluation: Theory, Techniques and Applications, Marcel Dekker, Inc., New York.REFERENCE BOOKS1.Kraut krammer J., (2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition.2.Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York.E BOOKSE BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar, M. Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	1.	Baldev Raj,T.Jeya kumar, . M.Thavasimuthu,(2017), Practical Non Destructive 7	<i>esting,</i> Narosa
2. Marcel Dekker, Inc.,New York. REFERENCE BOOKS 1. Kraut krammer J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, New York, 2nd Edition. 2. Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS E BOOKS 1. https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer MOOC 1. https://www.class central.com/tag/non20% destructive20% testing 1. 2. http://online coursesnptel.ac.in/noc18mm04 3. http://nptel.ac.in/courses/114106035/35/ 4. http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt 1.		Publishing housing, New Delhi, Third edition.	
Marcel Dekker, Inc., New York. REFERENCE BOOKS 1. Kraut krammer .J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition. 2. Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Image: Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Image: Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Image: Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Image: Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Image: Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York. E BOOKS Image: Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Testing/html?id - Baldev Raj, T. Jaya kumar , M.Thavasimuthu 2. https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer MOOC Image: Schmmer J. (Image: Schmmol Schmmol Schmmol Schmmol Schm	2	Peter J. Shull, (2010),: Non Destructive Evaluation: Theory, Techniques and Appl	lications,
1.Kraut krammer .J.,(2010), Ultrasonic Testing of Materials, Springer Verlag Publication, NewYork, 2nd Edition.2.Schmmer Jr. L.W. (2016), Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York.E BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/ 4.4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	۷.	Marcel Dekker, Inc.,New York.	
I.NewYork, 2nd Edition.2.Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York.E BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOCInttps://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	REFERENC	CE BOOKS	
2.Schmmer Jr. L.W. (2016),Fundamentals of Ultrasonic Non-destructive Evaluation, Springer Verlag Publication, New York.E BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	1.		g Publication,
2.Verlag Publication, New York.E BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt			
E BOOKS1.https://books.google.com/books/Practical Non Destructive Testing/html?id - Baldev Raj,T. Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	2.		ation, Springer
1.Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.1.https://www.class central.com/tag/non20% destructive20% testing2.http:// online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	E BOOKS		
Jaya kumar ,M.Thavasimuthu2.https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and Advanced Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	1	https://books.google.com/books/Practical Non Destructive Testing/html?id - I	Baldev Raj,T.
 2. Methods for Non destructive Testing and Material characterization - C.H.Chen 3. https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus Meyer MOOC 1. https://www.class central.com/tag/non20% destructive20% testing 2. http:// online coursesnptel.ac.in/noc18mm04 3. http://nptel.ac.in/courses/114106035/35/ 4. http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt 	1.	Jaya kumar ,M.Thavasimuthu	
Methods for Non destructive Testing and Material characterization - C.H.Chen3.https://www.crcpress.com/NondestructiveTesting/book/9781138075962 google - Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http://online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	2	https://www.worldscientific.com/worldscibooks/10,1142/6327 Ultrasonic and	Advanced
 3. Langenberg, ReneMarklein, Klaus Meyer MOOC https://www.class central.com/tag/non20% destructive20% testing http:// online coursesnptel.ac.in/noc18mm04 http://nptel.ac.in/courses/114106035/35/ http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt 	Ζ.	Methods for Non destructive Testing and Material characterization - C.H.Che	en
Langenberg, ReneMarklein, Klaus MeyerMOOC1.https://www.class central.com/tag/non20% destructive20% testing2.http:// online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	2	https://www.crcpress.com/NondestructiveTesting/book/9781138075962 goo	gle -
1.https://www.class central.com/tag/non20% destructive20% testing2.http:// online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	5.	Langenberg, ReneMarklein, Klaus Meyer	
2.http:// online coursesnptel.ac.in/noc18mm043.http://nptel.ac.in/courses/114106035/35/4.http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	MOOC		
3. http://nptel.ac.in/courses/114106035/35/ 4. http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	1.	https://www.class central.com/tag/non20% destructive20% testing	
4. http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	2.	http:// online coursesnptel.ac.in/noc18mm04	
	3.	http://nptel.ac.in/courses/114106035/35/	
5. http://nptel.ac.in/courses/113106070/	4.	http://www.nde-ed.org//Intro to NDT/Intro_to NDT ppt	
	5.	http://nptel.ac.in/courses/113106070/	

COURSE TITLE		REVERSE ENGINEERING		CREDITS	3
COURSE CODE	MEC4252	COURSE CATEGORY	L-T-P-S	3-0-0-0	
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	HEME				
First Periodical Assessment	Second Periodical	Seminar/ Assignments/	Surprise Test / Quiz	Attendance	ESE

	Assessment	Project			
15%	15%	10%	5%	5%	50%
Course Description	engineering pr engineering. It	scribes the basic conce ocess. It also discrimi pronounces the various ering and also outlines t ring.	nates the varions data manager	ous tools use nent strategies	d for reverse s pertaining to
Course Objective	 with exposu 2. To comprehengineering 3. To recognizent engineering 4. To know the tool environ 5. To apprecia 	nd need for and the vare re to the software needen nend and select the software for any product ze the important reso and its data processing to e important integrating ments to reverse engine te with various concep engineering product or	ed for implemen uitable tools ar earch challenge cools reverse enginee ering ts in quality an	ting reverse en nd methodolog es associated ering, reuse ar	gineering. gy for reverse with Reverse nd specification
Course Outcome Prerequisites: Ni	 Familiarize t Recognize th Formulate engineering Apply stand environmen Recognize th 	dard integration and	reverse engineer es for any revers s to challenge reuse techniqu	ring implement e engineered p es associated ues in revers	roduct with reverse e engineering
CO, PO AND PSC					

0,10														
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	PSO-2
co	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -1													P3U-2
CO-1														
CO-2	CO-2 1 1 1 1 2 - 1 1													
CO-3	CO-3 1 2 1 1													
CO-4	CO-4 2 2 1 - 1 1 1													-
CO-5	CO-5 1 - 1 1 3 1 -													-
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODU	MODULE 1: INTRODUCTION												9	

Basic co	oncept- Digitization techniques – Model reconstruction – Data Processing for	
•	rototyping: CAD model preparation, Data requirements – Geometric modeling	
•	ues: Wire frame, surface and solid modeling – data formats - Data interfacing,	CO-1
	entation and support generation, Support structure design, Model Slicing, Tool	BTL-2
	neration-Software for AM- Case studies.	
Suggest	ed Reading: Scope and tasks of RE - Domain analysis- process of duplicating	
MODULE	2: TOOLS FOR REVERSE ENGINEERING	9
Function	nality- dimensional- developing technical data - digitizing techniques -	
construc	tion of surface model - solid-part material- characteristics evaluation -software	CO-2
and app	lication prototyping - verification	BTL-2
Suggest	ed Reading: Stereo lithography Apparatus, Fused deposition Modeling (FDM)	DIL-2
Case stu	dies	
MODULE	E 3: CONCEPTS OF REVERSE	9
History	of Reverse Engineering – Preserving and preparation for the four stage process	
– Evalua	ation and Verification- Technical Data Generation, Data Verification, Project	CO-3
Impleme	entation	BTL-3
Suggest	red Reading: Selective Laser Sintering (SLS), Laser Engineered Net Shaping	DIL-3
(LENS) C	ase studies	
MODULE	E 4: DATA MANAGEMENT	9
organiz compor evaluat	everse engineering – Three data Reverse engineering strategies – Definition – ation data issues - Software application – Finding reusable software nents – Recycling real-time embedded software – Design experiments to e a Reverse Engineering tool – Rule based detection for reverse Engineering cerfaces – Reverse Engineering of assembly programs: A model based approach	CO-4 BTL-3
	logical basics	
Suggest	ed Reading: Liquid based and powder based 3DP systems, strength and	
weaknes	ss, Applications and case studies. Shape Deposition Manufacturing (SDM)	
MODULE	5: INTEGRATION OF REVERESE ENGINEERING	9
methods specifica feature o	re approach to program understated – Integrating formal and structured s in reverse engineering – Integrating reverse engineering, reuse and ation tool environments to reverse engineering –coordinate measurement – capturing – surface and solid members ed Reading: reverse engineering a simple neural network using MATLAB©	CO-5 BTL-3
TEXT BO	OKS	
1	Kevin Otto & Kristin Wood, (2011), Product Design Techniques in Reverse Engine Product Development, Pearson Education (LPE).	ering and New
2	Robert W. Messler Jr. (2013), Reverse Engineering: Mechanisms, Structure Materials, 1st Edition	es, Systems &
REFEREN	ICE BOOKS	

1	Liou, L.W. and Liou, F.W., (2011), "Rapid Prototyping and Engineering applications : A tool box
	for prototype development", CRC Press.
2	Chua, C.K., Leong K.F. and Lim C.S., (2010), "Rapid prototyping: Principles and applications",
	World Scientific Publishers, second edition.
3	Kathryn, A. Ingle, Reverse Engineering, McGraw-Hill
E BOOKS	
1	https://books.google.co.in/books/about/Reverse_Engineering.html?id=1_KFldjML8wC
1	&redir_esc=y- Vinesh Raja, Kiran J. Fernandes
2	https://books.google.co.in/books/about/Reverse_Engineering.html?id=sSkfgehm4y
2	QC&redir_esc=y Linda M. Wills, Philip Newcomb
3	https://books.google.co.in/books?isbn=1439806314 - Wego Wang
4	https://books.google.co.in/books?isbn=1118079760 - Eldad Eilam
MOOC	
1	Computer Aided Design and Manufacturing ('Mechanical Engineering' course from IIT Delhi)
	Video Lectures by Prof. P.V. Madhusudan Rao, Prof. Anoop Chawla.
	https://youtu.be/9dd3M2a4LKI
2	https://ocw.mit.edu/courses/health-sciences-and-technology/hst-512-genomic-medicine-
	spring-2004/audio-lectures/lecture-19/
3	https://www.mooc-list.com/course/introduction-reverse-engineering-software-ost
4	https://mooc.live/reverse-engineering-and-exploit-development-online-course/

COURSE TITLE	М	MECHANICAL METALLURGY CREDITS 3												
COURSE CODE	MEC4253 COURSE CATEGORY DE L-T-P-S 3-0-0-0													
Version	1.0	1.0Approval Details23 ACM,LEARNING06.02.2021LEVELBTL-3												
ASSESSMENT SC	HEME													
First Periodical Assessment	Second Periodical Assessment	Periodical Assignments/ Surprise Test Attendance ESE												
15%	15%	15% 10% 5% 5% 50%												
	This course de	This course describes various types of failures occurs in metals and alloys. The												
Course	reasons for failu	ires and property chang	es are also desc	ribed. The test	ing procedures									
Description	for finding vari	ous properties of meta	als and alloys w	vere described	as per ASTM									
	standards.													
	 To understand the different types of failures in metals and alloys. To understand the types of fractures and reason behind the fracture. 													
Course	3. To underst	3. To understand the property changes with respect to various parameters.												
Objective	standards.	4. To understand the various testing procedures of metals and alloys under ASTM												
	5. To underst	and the various testing	procedures of n	netals and alloy	ys under ASTM									

			stai	ndards	5.									
										nts wil				
		1.	1. Demonstrate the basics of dislocation in metals and the theory behind its											
				ation.										
		2.		-	e type	es of f	fractur	e and	the I	mecha	nisms	behin	d the o	ccurrence o
			fract											
	ırse	3.		-					-			ead or	n the ph	ase diagrams
Outc	ome			-	-	-	• •	-		to allo				
		4.		-	e mec	hanica	l testi	ng pro	cedur	es anc	ASTN	/l stan	dards fo	or conducting
			the t					c .			c			
	 Conduct the test procedures for Impact testing, fatigue testing and creep testing overview on the general results obtained for metals-theory behind the failure 													
						-				tor n	netals-	theory	behind	the failures
						for cor		-						
Prerequ					s, Eng	ineerir	ng Che	mistry						
СО, РО		-	-						[1		
со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO-	PSO-2
	-1	-2	-3	-4 -5 -6 -7 -8 -9 -10 -11 -12 1										
CO-1	3	2	-	2 2 2 1 1 1 3 -										
CO-2	3	2	1 1 2 1 1											
CO-3	3	2	-	-	2	2	2	-	1	1	-	-	-	-
CO-4	-	-	1	1	2	2	2	-	-	-	-	-	3	-
CO-5	3	2	1	1	2	2	2	-	1	1	-	-	3	-
		1	L: Wea	kly re	lated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	/ relate	ed	
MODU			-											9
Dislocat			-							-		-	-	
measure twinning		•			•	• •							,	
hexagor		-				•			• •					CO-1
intersec							-						-	BTL-3
hardeni	ng of s	ingle o	crystals	5.			-							
Suggest	ed Red	ading:	Stress	-Strain	Curve	, Plast	ic regi	on vs l	Elastic	region	, Stud	y on d	uctile	
and brit	tle ma	terials	, View	disloc	ations	under	a micı	roscop	е.					
MODUL	E 2: F	RACTU	IRE											9
Types					-					ractog	raphy,	effeo	t of	
tempera	ature	ctrocc	raicard		train r	-+	f	· · 1· · 1·	•				1	
-														
Fracture testing,	e mecl	hanics	-stress	inten	sity fa	ctor, fr	racture	e tougl	nness,	•		-	nness	CO-2 BTL-3

Reasons for generation of cracks in metals during loading

MODUI	E 3: ALLOYING THEORY AND PHASE DIAGRAMS	9		
substitu Determ Phase r equilibu Differen	of solid solutions and compounds - Hume-Rothery rules for formation of ational solid solutions-properties of solid solutions, Principles of solidification, ination and uses of phase diagrams, Types of phase reactions with examples, rule and its application to phase diagrams, lever rule, Detailed discussion of Fe-C rium diagram, Concept of ternary phase diagrams. Suggested Reading: nece between solution and solid solution, saturation of salt in water	CO-3 BTL-3		
MODUI	E 4: MECHANICAL TESTING-I	9		
tension tensile Hardne hardne Torsion testing Sugges	n test- Engineering stress-strain curve and True stress-strain curve, Instability in , measurement of tensile properties, factors affecting flow properties, notch test. ess test-Brinell hardness-relationship between hardness and flow curve, Vickers ss, Rockwell hardness, microhardness tests, hardness-conversion relationships. n Test-Types, torsion test Vs tension test, hot torsion test, Overview of ASTM standards for tension, hardness and torsion tests, compression test. ted Reading: Procedures for doing tension, hardness and torsion testing. To take study on failures due to tension and torsion action in a material.	CO-4 BTL-3		
MODUI	E 5: MECHANICAL TESTING-II	9		
factors test. Fatigue feature Creep- deform Few ca Sugges creep o		CO-5 BTL-3		
TEXT BO				
1	Dieter G. E., (2013), 'Mechanical Metallurgy', McGraw Hill ,3rd Edition.			
2	Thomas H. Courtney, (2013), 'Mechanical Behavior of Materials', Overseas Pres Limited, 2013.	ss India Private		
3	M. N. Shetty, 'Dislocations and Mechanical Behaviour of Materials', Prentice Hall Private Limited, 2nd Edition.	India Learning		
4	4 Norman E. Dowling, (2017), 'Mechanical Behavior of Materials', Pearson Publication, 4 th Edition.			
REFERE	NCE BOOKS			
1	Bhargava A.K. and Sharma. C. P. ,(2011), 'Mechanical Behaviour and Testing Prentice Hall India Learning Private Limited. William F. Hosford,(2010), 'Mechanical Behavior of Materials', Cambridg University.			
E BOOK				

1	http://nozdr.ru/biblio/kolxo3/Ch/ChCm/Newnham%20R.E.%20Properties%20of%20 materials%20Anisotropy,%20symmetry,%20structure%20(OUP,%202005) (ISBN%200198520751)(O)(391s)_ChCmpdf – By Robert E Newnham
2	https://books.google.com/books?id=pZL44wHzswsC&printsec=frontcover - By Joachim Roesler, Harald Harders, Martin Baeker
MOOC	
1	http://nptel.ac.in/courses/112106153/3
2	http://nptel.ac.in/courses/122102008/26
3	https://www.class-central.com/course/edx-3-032x-mechanical-behavior-of-materials-2234

COURSE TITLE	UNCONVENT	CREDITS	3		
COURSE CODE	MEC4254	IEC4254 COURSE CATEGORY		L-T-P-S	3-0-0-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3

ASSESSMENT SCHEME

First Periodical Assessment	Assessment		Surprise Test / Quiz	Attendance	ESE		
15%	15%	10%	5%	5%	50%		
Course Description	This course broadly introduces the various unconventional machining processes and fundamentals of those processes in detail. It prepares the students to learn the basic concepts involved in each and every unconventional machining process and increases the skill of selecting appropriate machining processes for the requirements. It also emphasizes the advantages and limitations of the various processes so that selection of the process becomes easy for the students.						
Course Objective	 To acquire knowledge on the various unconventional machining processes To acquire knowledge on mechanical energy based processes To acquire knowledge on electrical energy based processes To acquire knowledge on chemical and electrochemical energy based processes To acquire knowledge on thermal energy based processes 						
Course Outcome	 Upon completion of this course, the students will be able to Identify appropriate technique to a specific requirement. Demonstrate different machining based on mechanical energy. Execute the processes parameters of electrical energy based machining processes Implement the chemical and electro chemical machining techniques. Execute plasma arc and electron beam machining processes for industrial 						

applications.

Prerequisites: Engineering Physics, Engineering Materials and Manufacturing Technology I and II

CO, PC	CO, PO AND PSO MAPPING													
со	PO -1	РО- 2	PO -3	РО- 4	РО- 5	Р О- 6	Р О- 7	Р О- 8	Р О- 9	PO - 10	PO -11	Р О- 12	PSO-1	PSO-2
CO-1	2	2	-	-	3	-	-	2	-	-	-	-	-	-
CO-2	-	2	2	-	-	-	-	2	-	-	-	-	-	-
CO-3	2	2	-	2	3	2	-	-	-	2	-	2	-	-
CO-4	2	-	-	2	3	-	-	-	-	-	2	2	-	-
CO-5	2	2	1	2	3	-	-	1	-	-	-	1	-	-
		1:	Weal	dy relat	ed, 2: I	Mode	rately	relate	ed and	d 3: Stro	ngly r	elated	ł	L
MODU	LE 1: I	NTRO	υστια	ON										(9)
Unconv techniq <i>Sugges</i>	ues.			-		Veed	- clar	ificati	on -	Brief c	vervie	w of		CO-1 BTL-2
MODU	le 2: N	/IECHAI	NICAL	ENERG	Y BASE	D PRO	CESSE	S						(9)
USM).V	Vorkin	g Princ	iples -	equipm	ient us	ed - Aj	oplicat	tions.		hining. (asive fin			and	CO-2 BTL-2
MODU	LE 3:	ELECTR		NERGY	BASED	PRO	CESSE	S						(9)
Parame EDM - A Sugges	Electric Discharge Machining (EDM) - working Principles-equipment's-ProcessParameters- MRR electrode / Tool - Power Circuits- Dielectric - Flushing - Wire cutEDM - Applications.Suggested Reading: Electron Beam Machining (EBM), ION Beam machining(IM)													
					(9)									
Maskar equipm	Chemical Machining and Electro-Chemical Machining (CHM and ECM)-Etchants- Maskant's Techniques of applying Maskant's-Process Parameters, Principles of ECM - equipment Electrical circuit - Process Parameters-ECG and ECH Applications.CO-4BTL-2 Suggested Reading Biochemical Machining (BM)BTL-2													

MODULE	5: THERMAL ENERGY BASED PROCESSES	(9)			
Laser Be	eam Machining (LBM), Plasma Arc Machining (PAM) and Electron Beam				
Machinir	Machining (EBM). Principles-Equipment-Types-Beam control techniques - Applications. CO-5				
Suggeste	ed Reading: Electro stream Drilling(ED)	BTL-3			
Demons	ration of CNC Laser beam cutting and Laser beam engraving				
TEXT BO	OKS				
1.	Vijay.K. Jain, (2002), Advanced Machining Processes, Allied Publishers Pvt. Ltd. ISBN 81-7764-294-4.	, New Delhi <i>,</i>			
2.	2. Pandey P.C. and Shan H.S.(2007), Modern Machining Processes Tata McGraw-Hill, New Delhi.				
REFEREN	REFERENCE BOOKS				
1.	 Paul De Garmo, J.T.Black, and Ronald.A.Kohser,(2001), Material and Processes in Manufacturing Prentice Hall of India Pvt. Ltd., New Delhi (8th Edition) ISBN - 81-203-1243- 0. 				
E BOOKS					
1.	https://books.google.co.in/books?isbn=8177642944				
2.	https://books.google.co.in/books?id=xdmNVSio8jUC&printsec=front				
	cover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false				
MOOC					
1.	http://nptel.ac.in/courses/112104028/				

COURSE TITLE	COMPUTE	CREDITS	3		
COURSE CODE	MEC4255	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3

ASSESSMENT SCHEME

First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	need for automa involved in group advantages of su flexible manufact	tion in detail. It pre technology and couch ch technology. It al uring systems. It also	various plant opera pares the students mputer aided proces so describes shop f o emphasis on the a ation and key techno	to learn the bas s planning and loor control and dvantages and c	sic concepts explains the d introduces difficulties in

	1. To acquire knowledge on the changing manufacturing scenario and plant operations
Course	2. To acquire knowledge on group technology and computer aided process planning
Objective	3. To acquire knowledge on shop floor control and flexible manufacturing systems
	4. To acquire knowledge on CIM Implementation and data communication
	5. To acquire knowledge on key technologies for the integration
	Upon completion of this course, the students will be able to
	1. Demonstrate Plant operations and need for automation
	2. Select suitable process plan for the plant
Course	3. Design workstation and select suitable computer control systems
Outcome	4. Integrate the computers efficiently to the manufacturing systems
	5. Control the shop floor effectively and able to be comfortable with using CAD/CAM
	systems and with programming and operating of CNC machine Tools

Prerequisites: Manufacturing technology II

CO, PO AND PSO MAPPING PO-PO PO -PO PO-PO-PO PO-PO PO PO PO PSO-1 СО PSO-2 1 -2 -3 4 5 7 -8 9 -10 -12 -6 -11 2 3 2 2 -3 -2 CO-1 -3 -2 ---CO-2 3 -2 -2 2 -------2 2 CO-3 2 2 -2 -2 ------CO-4 2 ---3 ----2 -2 --CO-5 3 2 2 3 2 2 3 -------

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: INTRODUCTION	(9)
The meaning and origin of CIM- the changing manufacturing and management scene -	
External communication - Islands of automation and software-Dedicated and open	
systems-Manufacturing automation protocol - Product related activities of a company-	CO-1
Marketing engineering - Production planning - Plant operations - Physical distribution-	BTL-2
Business and financial management.	
Suggested Reading: Company valuation and risk assessment, Manufacturing Controls	
MODULE 2: GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING	(9)
History of group technology- Role of G.T. in CAD/CAM integration - Part families -	
Classification and coding - DCLASS and MICLASS and OPITZ coding systems-Facility	
design using G.Tbenefits of G.T Cellular manufacturing.	CO-2
Process planning - role of process planning in CAD/CAM integration - Approaches to	BTL-2
computer aided process planning -Variant approach and generative approaches	
Suggested Reading: CAPP and CMPP process planning systems.	

MODULE	3: SHOP FLOOR CONTROL AND INTRODUCTION OF FMS	(9)	
Shop floo	or control-phases - Factory data collection system -Automatic identification		
methods	 Bar code technology-Automated data collection system. 		
FMS-com	ponents of FMS - types -FMS workstation -Material handling and storage	CO-3	
systems-	FMS layout -Computer control systems-Application and benefits.	BTL-3	
Suggested	Reading: Handling and Storage with Manufacturing, Design Work station		
using MAT	TLAB© Simulink.		
MODULE	4: CIM IMPLEMENTATION AND DATA COMMUNICATION	(9)	
diagram managem Communio - Network	company strategy - System modelling tools -IDEF models - Activity cycle - Manufacturing enterprise wheel-CIM architecture - Product data ent-CIM implementation software. cation fundamentals- Local area networks -Topology - LAN implementations management and installations. <i>d Reading: - CIM open system architecture (CIMOSA)</i>	CO-4 BTL-3	
MODULE	5: KEY TECHNOLOGIES FOR THE INTEGRATION	(9)	
Business, enterprise Suggested	Intelligence, Knowledge-Based Systems, Expert Systems gy,Applications of Genetic Algorithm, Agent-Based Technology, Virtual e- Commerce Technologies, Global Manufacturing Networks, Digital e technologies. I Reading: Manufacturing automations protocol and technical office MAP /TOP)	CO-5 BTL-3	
TEXT BOO	KS		
1.	Mikell.P.Groover (2016), Automation, Production Systems and compute manufacturing, Pearson Education, New Delhi.	er integrated	
2.	Alan Weatherall, (2013), Computer Integrated Manufacturing: From Fun Implementation.	damentals to	
3.	Justin Riggs, (2016), Computer-Aided Design and Manufacturing, Willford edition.	d Press; First	
REFERENC	E BOOKS		
1.	Thomas O. Boucher,(2013), Computer Automation in Manufacturing: An Springer, Third Edition.		
 Hermann Kühnle, Günter Bitsch ,(2015), Foundations & Principles of Distributed Manufacturing: Elements of Manufacturing Networks, Cyber-Physical Production Systems and Smart Automation, Springer Education, First edition. 			
E BOOKS			
1.	https://books.google.co.in/books?id=DREwDwAAQBAJ&lpg=PP1&dq=Mikell P.Groover%20Automation%2C%20Production%20Systems%20and%20 computer%20integrated%20manufacturing%2C%20Pearson%20Education% New%20Delhi%2C%202016.&pg=PP1#v=onepage&q&f=false - Mikell.P.Groo	2C%20	
2.	https://books.google.co.in/books?id=NgKcFcJYxw8C&lpg=PP1&dq=computer integrated%20manufacturing&pg=PP1#v=onepage&q=computer%20 integrated%20manufacturing&f=false - 1. Yorem koren		
MOOC			

1.	https://www.coursera.org/specializations/cad-design-digital-manufacturing
2.	https://www.coursera.org/specializations/digital-manufacturing-design-technology
3.	https://ocw.mit.edu/courses/mechanical-engineering/2-830j-control-of-manufacturing-
5.	processes-sma-6303-spring-2008/
4.	https://www.coursera.org/learn/advanced-manufacturing-process-analysis
5.	https://www.coursera.org/learn/intelligent-machining#syllabus
6.	https://ocw.mit.edu/courses/mechanical-engineering/2-96-management-in-engineering-
0.	fall-2012/

COURSE TITLE	IC EN	IGINE AND STEAM TUR	BINE	CREDITS	3					
COURSE CODE	MEC4256	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0					
Version	1.0 Approval Details		23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4					
ASSESSMENT SC	HEME									
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE						
15%	15%	10%	5%	5%	50%					
Course Description	This course describes the applications of the laws of Thermodynamics to various advanced energy system in engineering applications. The course will provide an insight to various thermal cycles applied for petrol, diesel and aircraft engines. The machineries such as IC engines, hybrid vehicles, steam nozzles & turbines are analyzed in detail and enable the student to solve more advanced problems									
Course Objective	 To understand the features of Gas power cycles and efficiency enhancement methods. To understand the combustion phenomena in SI and CI engines. To understand the working principles of supercharging and scavenging. To understand the working principles of steam nozzles and turbine and to analyze the performance. To understand the principles of flow through turbine blades and to design a system for the given application and specification. 									
Course Outcome	 Upon completion of this course, the students will be able to 1. Demonstrate the working principle, performance parameters and testing of IC Engine. 2. Describe the combustion phenomena in SI and CI engines and factors influencing combustion chamber design. 3. Illustrate the concept of SI and CI engine combustion with respect to supercharging and scavenging 4. Apply the basics principles of steam turbine and its nozzle flow Characteristics. 									

5. Describe on the theories of fluid flow through turbine blades.														
Prerequisites: Thermal Engineering, Gas dynamics and Jet Propulsion														
CO, PO AND PSO MAPPING														
PO PO<												PSO- 1	PSO-2	
CO-1	1	-	-	-	-	2	-	-	-	-	-	-	-	-
CO-2	1	-	-	-	-	1	2	-	-	-	-	-	-	-
CO-3	2	-	-	-	-	1	1	3	-	-	-	-	-	-
CO-4	2	-	-	-	-	2	2	1	1	-	1	-	-	-
CO-5	2	-	-	-	-	1	1	2	-	-	-	2	-	-
		1	L: Wea	ıkly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: I	C ENG	SINE											9
									CO-1 BTL-3					
MODULE 2: COMBUSTION										9				
Combustion calculations related to I.C. Engine fuels. Desirable characteristics of fuels for I.C. Engine. Mixture requirements for S.I Engine; Carburation pressure drop - flow relation; fuel air ratio; complete carburettor. Petrol injection. Ignition system in S.I. Engine: Battery, Magneto, and electronic ignition systems; Fuel injection systems; Injection pumps and nozzles. Suggested Reading: Ignition timing and spark advance, Thermodynamic modelling using Matlab©.									flow n S.I. æms;	CO-2 BTL-4				
MODUL	E 3: SI	UPERC	HARG	ING AI	ND SC/	AVENO	GING						I	9
Theories of combustion in S.I and C. I. Engines - Methods for reduction of detonation and knock; Octane number and Cetane number. Supercharging and Scavenging: Supercharging in I.C. Engine; Supercharging limits; Scavenging of I.C. engines, two stroke S.I. and C.I. engines; Scavenging parameters; Suggested Reading: Actual scavenging; Scavenging pump, Ideal scavenging processes								ging: two	CO-3 BTL-3					
MODULE 4: STEAM TURBINE									9					
 Steam Generation - introduction to Boilers; Principles of action of turbines, Classification, relative advantages of turbines as prime movers, Isentropic flow through nozzle, Nozzle shape, Critical pressure ratio and maximum flow, Effect of friction in nozzle flow. Suggested Reading: Under-expansion and over-expansion in nozzles, Supersaturated flow through nozzles. 										ough n in	CO-4 BTL-4			
MODULE 5: FLOW THROUGH TURBINE BLADE														9

Optimu turbine point la Blade v Sugges	Flow through impulse turbine blade, Velocity diagram, Blade work, Blade efficiency, Optimum velocity ratio, Multi-staging and its advantage, Velocity compounded impulse turbine, Pressure compounded impulse turbine, Reheat factor, Internal efficiency, State point locus. Flow through reaction turbine blade, Velocity diagram, Degree of reaction, Blade work, Blade height and Stage efficiency.CO-5 BTL-4Suggested Reading:Stage efficiency, Optimum velocity ratio, Axial thrust in reaction turbine, erosion of turbine blades.CO-5									
TEXT B										
1	V Ganesan.,(2017), "Internal Combustion Engines", McGraw-Hill Education; 4 th Education (2017), "Internal Combustion Engines", McGraw-Hill Education (2017), "Internal Combustion (2017), "Intern	dition.								
2	S SThipse.,(2008), "Internal Combustion Engines", Jaico Publishing House; 1 st Edit	ion.								
3	R K Rajput.,(2005), "Internal combustion Engines", Laxmi Publication.									
REFERE	NCE BOOKS									
1	1 John B Heywood, (2017), "Internal Combustion Engine Fundamentals", McGraw Hill Education, 1st Edition (Indian Edition).									
2	Richard Stone, (2012), "Introduction to Internal Combustion Engines", Palgrave publishers, 4th Edition.									
3	John H.Weaving, "Internal Combustion Engineering: Science & Technology", Elsevier Applied Science,									
4	William J. Kearton, (2011), Steam Turbine Theory and Practice, CBS Publication.									
E BOOK	S									
1	https://books.google.co.in/books?id=u9FSAAAAMAAJ&q=IC+engine&dq=IC+eng	ine&								
1	hl=en&sa=X&ved=0ahUKEwiLuPjhl8jZAhVGNI8KHbNvBh8Q6AEILTAB – John B Heywood									
	https://books.google.co.in/books?id=hfejAwAAQBAJ&printsec=frontcover&dq=									
2	IC+engine&hl=en&sa=X&ved=0ahUKEwiLuPjhl8jZAhVGNI8KHbNvBh8Q6									
	AEIKDAA#v=onepage&q=IC%20engine&f=false – V Ganesan									
	https://books.google.co.in/books?id=UtxI5gXM1yQC&printsec=frontcover&dq=									
3	IC+engine&hl=en&sa=X&ved=0ahUKEwiLuPjhl8jZAhVGNI8KHbNvBh8Q6AEIOD									
	AD#v=onepage&q=IC%20engine&f=false – R K Rajput									
MOOC										
1	http://nptel.ac.in/courses/101106037/									
2	http://nptel.ac.in/courses/112104033/									
3	http://nptel.ac.in/courses/101104014/									
4	http://nptel.ac.in/courses/101104070/									

COURSE TITLE	PROCESS PL	CREDITS	3				
COURSE CODE	MEC4257	MEC4257 COURSE CATEGORY DE					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3		

ASSESSME	NT S	CHEME												
First Periodica Assessme		Second Periodical Assessment				Seminar/ Assignments/ Project				rise Te Quiz	st A	Attenda	ance	ESE
15%			15%			1	.0%			5%		5%		50%
Course Descriptie		introduc	This course provides an introduction about process planning and its acti introduces the procedure of cost estimation of products manufactured in shops and also machine time evaluation											
Course Objectiv		 To introduce the process planning concepts to make cost estimation for vario products after process planning 										r various		
Course Outcom		 Upon completion of this course, the students will be able to Demonstrate the basic concepts of work study and ergonomics. Develop manufacturing logic and optimize process cost Appreciate the basic concepts of cost accounting Estimate cost for any value-added activity and incorporate allowances in estimat Develop cost estimation and analyze profitability 										timation		
Prerequisit	es: N	lanufactu	ring Te	echnolo	ogy II									
CO, PO AN	ID PS	O MAPPII	NG									1		
со	P 0- 1	PO-2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	PO -11	РО- 12	PSO- 1	PSO- 2
CO-1	3	2	-	-	3	2	-	-	-	-	2	1	2	1
CO-2	-	2	2	1	-	-	-	3	2	-	-	-	2	-
CO-3	3	2	-	-	-	-	-	-	-	-	2	1	-	-
CO-4	2	-	-	-	2	1	-	-	-	-	-	-	2	1
CO-5	3	3	-	-	2	1	-	-	-	-	2	1	2	1
		1: We	akly re	elated,	2: Mo	derate	ely rela	ated a	nd 3: S	Strong	y rela	ted		
MODULE 1													.0	
Standard time -Ergonomics - principles - applications.											CO-1 BTL-2			
MODULE 2		ROCESS P											10	
sequences- machine selection - Set of documents for process planning- selection of jigs &											CO-2 BTL-2			

tool box in MA							
suggested Re manufacturing	ading : Plant layout, process flow chart for any mechanical component units						
MODULE 3: INTRODUCTION TO COST ESTIMATION 7							
	cost estimation- costing - cost accounting- classification of cost- Elements						
of cost.							
Suggested Rea	ding: machine cost per hour	BTL-3					
MODULE 4: C	OST ESTIMATION 8						
	nates - methods of estimates - data requirements and sources- collection nces in estimation	CO-4					
Suggested Rea	ding: Design cost, depreciation cost , cost of quality	BTL-3					
MODULE 5: F	PRODUCTION COST ESTIMATION 10						
Estimation of machining time – factors to calculate machining time – calculation of CO-5							
machining time for processes like casting, sheet metal, forging							
Suggested Reading: cost estimation of any process industry							
TEXT BOOKS	L						
1	Sinha.B.P., (1995), Mechanical Estimating and Costing, Tata McGraw-Hill, Publis	shing Co.					
REFERENCE BO	OKS						
1.	Russell.R.S and Tailor, B.W, (2003), Operations Management, PHI, 4th Edition.						
2.	Chitale.A.V. and Gupta.R.C.,(2007), Product Design and Manufacturing, Edition.	PHI, 2nd					
E BOOKS							
1.	https://www.elsevier.com/books/process-planning/scallan/978-0-7506-5129-	5					
2.	2. http://www.sanfoundry.com/best-reference-books-facilities-process-planning-layout- design/						
моос							
1.	https://onlinecourses.nptel.ac.in/noc16_ce02/announcements						
2.	http://nptel.ac.in/courses/105103023/35						

LIST OF DEPARTMENTAL ELECTIVES - SEMESTER IV

COURSE TITLE	REFRIG	REFRIGERATION AND AIR CONDITIONING CREDITS									
COURSE CODE	MEC4266	COURSE CATEGORY	L-T-P-S	3-0-0-0							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4						
ASSESSMENT SC	ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE						

		ĺ	Assess	ment										
1	L5%		15	%		1	0%			5%		5%		50%
	ourse criptio	components involved, usage of refrigerant tables and charts, applications and non- conventional systems.												
	ourse ective		 To understand and apply the basic refrigeration cycles To understand the various components used in Refrigeration and air conditioning systems To know the parameters of the psychrometric chart and how to use in air conditioning applications To know the working principles of various air conditioning system To know the other conventional and unconventional air conditioning systems 											
Out	systems Upon completion of this course, the students will be able to 1. Demonstrate the basic principles of refrigeration, describe and compare the various refrigeration cycles 2. Identify the various components in Refrigeration and air conditioning systems used in applications 3. Plot the various Air conditioning processes in the psychometric chart and how to apply in air conditioning applications 4. Demonstrate the working principle of air conditioning systems, types and design methods. 5. Demonstrate the working principles of vapor absorption refrigeration system and other unconventional air conditioning systems										systems used t and how to s and design			
Prerequ			•											
со, ро со	PO PO -1	PSO I PO -2	PO -3	NG PO -4	PO -5	PO -6	PO -7	PO -8	PO -9	PO -10	PO -11	PO- 12	PSO-1	PSO-2
CO-1	3	3	2	1	2	-	2	1	1	1	-	-	3	-
CO-2	-	3	-	1	-	2	-	-	1	1	-	-	-	-
CO-3	3	3	2	-	2	-	2	-	-	-	-	-	3	-
CO-4	-	-	2 1 2 2 2 - 1 1								-			
CO-5	3	3	2	1	-	2	2	-	1	1	-	-	3	-
MODU	1: Weakly related, 2: Moderately related and 3: Strongly related MODULE 1: REFRIGERATION CYCLE 7											y relate		

Review of thermodynamic principles of refrigeration. Carnot refrigeration cycle – Vapour	
compression refrigeration cycle – use of P.H. charts – multistage and multiple evaporator systems – cascade system – COP comparison. Air Refrigeration cycles. Suggested Reading: Deviations of ideal cycles from theoretical cycle – subcooling and super heating- effects of condenser and evaporator pressure on COP- multi pressure system - low temperature refrigeration.	CO-1 BTL-2
MODULE 2: REFRIGERANTS AND SYSTEM COMPONENTS	10
Compressors – reciprocating and rotary (elementary treatment), Types of condensers, evaporators, cooling towers – Functional aspects. Refrigerants – properties – selection of refrigerants, Alternate Refrigerants, Cycling controls. Suggested Reading: - Refrigerants Desirable properties with respect to ODP & GWP	CO-2 BTL-4
MODULE 3: PSYCHROMETRY	10
 Psychometric processes use of Psychrometric charts – Grand and Room Sensible Heat Factors – bypass factor – air washers, requirements of comfort air conditioning, summer and Winter Air conditioning. Suggested Reading: Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature; Psychrometric of air-conditioning processes, mixing of air streams. 	CO-3 BTL-4
MODULE 4: AIR CONDITIONING SYSTEMS	9
Working principles of – Centralized Air conditioning systems, Split, Duct able split, Packaged Air conditioning, VAV & VRV Systems. Indoor Air quality, Cooling load calculation, Duct Design methods. Suggested Reading: Air conditioning loads: Outside and inside design conditions; Heat	
transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls. Design and plot load curves of indoor summer air conditioning system using MATLAB©	CO-4 BTL-4
transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls. Design and plot load curves of indoor summer air	

1.	Arora, C.P., (2017), "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 3 rd
1.	edition.
2.	Roy J. Dossat, (2009), "Principles of Refrigeration", Pearson Education Asia, 4th edition.
REFERENCE	BOOKS
1.	Stoecker, W.F. and Jones J. W., (2014), "Refrigeration and Air Conditioning", McGraw Hill, New Delhi.
2.	Andrew D, Althouse, Carl H, Turnquist, Alfred F, Bracciano., (2016)"Modern Refrigeration and Air Conditioning", Goodheart-Willcox Publication; 20 edition.
3.	ASHRAE Hand book, Fundamentals, 2010.
4.	Jones W.P., (2001), "Air conditioning engineering", Elsevier Butterworth-Heinemann, 5 th edition.
E BOOKS	
1.	https://drive.google.com/open?id=0B7JWdKw_4Q07VWNrLVNkRXpyUmM-TROTT, WELCH.
2.	https://drive.google.com/open?id=0B7JWdKw_4Q07Q3VwSlBxMFd0Vjg- REX MILLER.
3.	https://drive.google.com/open?id=0B9bpsTYXP4ceTC0ycVVMX3RxSGs
моос	
1.	http://www.nptelvideos.in/2012/12/refrigeration-and-airconditioning.html
2.	http://nptel.ac.in/courses/112105128/

COURSE TITLE	P	OWER PLANT ENGINEERII	NG	CREDITS	3					
COURSE CODE	MEC4267	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4					
ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					
15%	15%	10%	5%	5%	50%					
Course Description	This course describes the various equipment's used in modern steam power plant and steam boilers and its selection. Power generation in Nuclear and Hydel power plant are dealt in detail. The various types of diesel and gas turbine power and its operational cycle are elaborated. The working performance, loading problems and environmental hazards in connection with power plants and boilers are discussed.									
Course Objective	 To classify the various equipment's used in steam power plants and bollers are discussed. To classify the various equipment's used in steam power plant and to improve its performance To choose the modern boilers principle to increase productivity To compare the utilization of Hydel & Nuclear power plant To understand the technology in the application of wind & solar power plant To inspect the economics of various power plant and reduce pollutants 									

CURRICULUM AND SYLLABUS B.TECH – MECHANICAL EN												NICAL EN	GINEERING	
CourseUpon completion of this course, the students will be able toCourse1. Categorize the various major equipment's used in steam power plant.Outcome2. Demonstrate the boiler in increasing productivity.3. Formulate better utilization of Nuclear and Hydel power plants4. Recognize the technology applied in solar and wind power generation.5. Differentiate the methodologies to reduce environmental pollution.Prerequisites: Thermal Engineering														
-			-		ng									
СО, РО	-	1	1											
со	PO 1	РО -2	РО -3	PO -4	РО -5	РО -6	PO -7	PO -8	РО -9	РО -10	РО -11	PO -12	PSO- 1	PSO-2
CO-1	-1			-4			-/		-9	-10	-11	-12	1	
	1	1	-	-	-	2	-	-	-	-	-	-	-	-
CO-2	1	2	-	1	-	1	2	-	-	-	-	-	-	-
CO-3	2	-	1	2	-	1	1	3	-	-	-	-	-	-
CO-4	2	2	2	-	-	2	2	1	1	-	1	-	-	-
CO-5	2	-	-	-	-	1	1	2	-	-	-	2	-	-
		1	L: Wea	kly re	ated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1:	MOD	ERN S	TEAM	POWE	R PLA	NT							5
MODULE 1:MODERN STEAM POWER PLANTModern Steam power plants: layout, selection, working, application of Rankine cycle.Auxiliary equipment, fuels and ash handling equipment Electrostatic precipitator,draught system. Furnace, boiler drum, circulation, air pre heaters, Economizers, Superheaters, Reheater, Deaerator , feed water heaters, feed water treatment .Condenser,sea water cooling system, cooling towers,Suggested Reading:Calculate the efficiency of boiler by direct and indirect method andcompare the results. Visit to Thermal power plant										ator, uper nser,	CO-1 BTL-2			
MODUL	E 2:	MODE	RN ST	EAM B	OILER	S								10
Ctoom	Steam Deilans, Marking of Super evitiant beilans & Significating fluiding d had combustion										stion			

Steam Boilers: Working of Super critical boilers & Circulating fluidized bed combustion boilers, materials used in sub critical & supercritical boilers, factors to be considered for selection of boilers for various fuels. **Suggested Reading:** Analyse the issues in various Sub critical, supercritical CFBC boilers. Visit to Thermal Power plant.

MODULE 3: NUCLEAR AND HYDEL POWER PLANTS8Lay out, Nuclear Energy, Fission, Fusion Reaction, Types of Reactors, Pressurized water
reactor, Boiling water reactors, Waste disposal and safety. Layout, Hydal Power Plant:
Essential Elements, Selection of Turbines, Governing of turbines, Micro Hydel
Development.CO-3
BTL-3Suggested Reading: Constraints and remedial measures in Nuclear and hydel power
plants. Model Temperature control of a boiler using SIMULINK©
Visit to Nuclear &Hydel power plant.BTL-3

CO-2

BTL-2

MODUL	E 4: DIESEL AND GAS TURBINE POWER	12
turbine Regene gasifica Sugges	of Diesel Plants, Components, Selection of Engine Type, Application of Gas Power Plant, Fuels, gas Turbine Materials, Open and Closed Cycles, Reheating, ration and intercooling, Combined cycle. Waste heat recovery boilers. Integral tion combined cycles (IGCC) ted Reading : Reduce pollution in diesel and gas turbine power plants. Visit to & gas turbine power plant.	CO-4 BTL-3
MODUL	E 5: OTHER POWER PLANTS , VARIABLE LOAD PROBLEMS AND ENVIRONMENTAL	L
	HAZARDS	8
Geo Th	ermal-OTEC- Tidal- Pumped Storage. Solar: Types of solar Thermal Power plants,	
Roof to	p solar, solar drying, Performance of solar plants. Wind power plant: working	
principl	e & issues. load curves, effect of variable load on plant design and operation,	CO-5
	patch. Power station Economics analysis. Power plants Environmental issues	BTL-4
	ted Reading: Environmental pollution monitoring & CFD Modelling. Visit to all	
	solar power plants.	
TEXT BC		
1	P.K.Nag, (2014), Power Plant Engineering, McGraw-Hill Education.	
2	R.K. Rajput, (2007), A textbook on Power Plant Engineering, Laxmi publications, 5t	h edition.
REFERE	NCE BOOKS	
1	M.M. El-Wakil, (2013), Power Plant Technology, McGraw-Hill Education.	
2	R.K.Rajput, (2010), Thermal Engineering, Laxmi Publication.	
3	V Ganeshan, (2010), Gas Turbines, McGraw Hill Education.	
4	William J. Kearton, (2011), Steam Turbine Theory and Practice, CBS Publication.	
E BOOK	5	
1	https://drive.google.com/open?id=0B7JWdKw_4Q07VWNrLVNkRXpyUmM- TROT	T, WELCH.
2	https://drive.google.com/open?id=0B7JWdKw_4Q07Q3VwSlBxMFd0Vjg- REX MI	LLER.
3	https://drive.google.com/open?id=0B9bpsTYXP4ceTC0ycVVMX3RxSGs	
MOOC		
1	http://nptel.ac.in/courses/112105128/	

COURSE TITLE	COMPL	JTATIONAL FLUID DYN	CREDITS	3							
COURSE CODE	MEC4268	COURSE CATEGORY	L-T-P-S	3-0-0-0							
Version	1.0	Approval Details	LEARNING LEVEL	BTL-4							
ASSESSMENT SC	ASSESSMENT SCHEME										

First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE							
15%	15%	50%										
Course Description	Subject deals with mathematical Behavior of fluid flow and heat transfer domains. It contains governing equations (PDE), boundary conditions and discretization techniques based on FVM/FDM. It provides solution for 1-D/2-D steady/unsteady: Diffusion problems, Convection problems, Convection-diffusion problems, unsteady problems using various approaches and algorithms.											
Course Objective	 To appreciate the To appreciate the transfer To appreciate the To appreciate the To solve the prace 	ations governing flui e tools available for s e problems associate e numerical formulat tical problems assoc l software.	solving the num ed with discretiz cions of diffusion	erical equation ation in conduc n and convectio	ctive heat							
Course Outcome	 using commercial software. Upon completion of this course, the students will be able to 1. Demonstrate the equations governing fluid flow and heat transfer. 2. Identify the tools available for solving the numerical equations. 3. Identify the problems associated with discretization in conductive heat transfer 4. Demonstrate the numerical formulations of diffusion and convection 5. Solve the practical problems associated with Fluid Flow and Heat Transfer using commercial software. 											
-	Prerequisites: Nil CO, PO AND PSO MAPPING											

CO, P	CO, PO AND PSO MAPPING													
со	РО	РО	РО	PO-	PO-	РО	РО	РО	РО	РО	РО	PO-		PSO-2
0	-1	-2	-3	4	5	-6	-7	-8	-9	-10	-11	12	PSO-1	F30-2
CO-1	3	3	3	2	1	-	-	-	-	-	-	1	3	2
CO-2	2	-	-	2	-	-	-	-	-	-	-	3	-	-
CO-3	3	3	3	2	1	-	-	-	-	-	-	1	3	-
CO-4	2	3	-	2	-	-	-	-	-	-	-	2	3	1
CO-5	3	3	3	2	1	-	-	-	I	-	-	3	2	3
	1: Weakly related, 2: Moderately related and 3: Strongly related													
MOD	ULE 1:	GO\	/ERNIN	IG EQL	JATION	IS AND	BOU	NDAR	CON	DITIO	NS			9

Basic Conti avera math Sugge	CO-1 BTL-3							
MOD	ULE 2: DISCRETISATION AND SOLUTION METHODOLOGIES	9						
differ iterat Implie Sugg scher	nods of Deriving the Discretisation Equations - Taylor Series formulation - Finite rence method - Control volume Formulation. Solution methodologies: Direct and rive methods, Thomas algorithm, Relaxation method, Alternating Direction cit method. ested Reading: Studying the formulation of central, forward and backward mes using Taylor series	CO-2 BTL-4						
MOD	ULE 3: HEAT CONDUCTION	9						
condı Finite	e difference and finite volume formulation of steady/transient one-dimensional uction equation, Source term linearization, Incorporating boundary conditions, e volume formulations for two- and three-dimensional conduction problems. ested Reading: Heat conduction in a room using Ansys Fluent software.	CO-3 BTL-4						
MOD	OULE 4: CONVECTION AND DIFFUSION	9						
proble for tw	volume formulation of steady one-dimensional convection and Diffusion ems, Central, upwind, hybrid and power-law schemes - Discretization equations vo-dimensional convection and diffusion. ested Reading: Gauss-Siedel method for central upwind scheme in C++	CO-4 BTL-4						
MOD	ULE 5: CALCULATION OF FLOW FIELD	9						
grid - equat Two e Sugg	esentation of the pressure - Gradient term and continuity equation - Staggered Momentum equations - Pressure and velocity corrections - Pressure - Correction cion, SIMPLE algorithm and its variants. Turbulence models: mixing length model, equation (k-ε) models. ested Reading: Implementing SIMPLE algorithm in Matlab©	CO-5 BTL-4						
TEXT	BOOKS							
1	C. Pozrikidis, (2012), Introduction to theoretical and computational fluid dynamics edition.	s, Oxford, 2nd						
2	H. Lomax, T. H. Pulliam, D. W. Zingg, (2013), Fundamentals of Computational Fluid	Dynamics.						
REFER	RENCE BOOKS							
1	G. D. Mallinson, S. E. Norris, (2010), "Fundamentals of Computational Fluid Dynam	nics, Springer.						
2	Patankar, S.V., (2009), Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980 Indian Edition.). Ane - Books						
3								
E BOO	DKS							

1	http://bookboon.com/en/computational-fluid-dynamics-ebook - Naser Sayma
2	http://www.e-booksdirectory.com/details.php?ebook=2832 - Abdulnaser Sayma
3	http://www.engineering108.com/pages/Mechanical_Engineering/Computational_
	Fluid_Dynamics/mason-cfd_ebooks-free-download.html - W. H. Mason
MOO	c
1	http://nptel.ac.in/courses/112107080/
2	http://nptel.ac.in/courses/112107079/
3	

COURS	E TITLE	HE	AT TRE	ATME		MET	ALS AN	ID ALL	OYS	C	REDIT	S		3
COURS	E CODE	MEC4269 COURSE CATEGORY DE 23 ACM,										p-S		3-0-0-0
Ver	sion	1.	0	A	L	LEARN LEV			BTL-4					
ASSESS	MENT SC	HEME								·		·		
	eriodical sment	SecondSeminar/PeriodicalAssignments/AssessmentProject												
15	5%	15% 10% 5% 5% 50%												
	urse iption	processe	The course is designed to introduce the students to various types of heat treatment processes for ferrous and nonferrous metals. The various heat treatments defects and the inspection methods are included.											
	urse ective	 2. To p proc 3. To p 	 To provide knowledge as to how mechanical properties can be improved by these processes applicable to ferrous metals To provide comprehensive understanding of microstructure and property created 											
	by controlled heat treatment processesUpon completion of this course, the students will be able to1. Demonstrate the basics of phase diagrams, different types of furnaces used and about its accessories.2. Analyze the various heat treating techniques for steel and knowing on the property change due to the same.3. Identify the surface techniques that are to be used for various metals and the procedural ways for doing the same.4. Analyze the various heat-treating techniques for ferrous and nonferrous alloys and knowing the property change due to the heat treatment.5. Describe the surface defects caused due to heat treatment and the control													
Prerequ	i isites: En	gineering	materi	•										
CO, PO	AND PSC) MAPPIN	IG											
СО	PO	PO PO-	PO-	РО	PO-	PO-	PO-	PO	PO	PO	PO-	PSO-	L	PSO-2

	-1	-2	3	4	-5	6	7	8	-9	-10	-11	12		
CO-1	3	2	2	2	-	2	2	2	-	-	2	-	-	-
CO-2	3	2	-	-	-	2	2	2	-	-	-	-	-	-
CO-3	3	2	2	2	-	2	2	2	-	-	2	-	-	-
CO-4	3	-	2	2	-	2	2	2	-	-	2	-	-	-
CO-5	CO-5 3 2 2 2 - 2 2 2 2 2 1 -													
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODULE 1: HEAT TREATMENT EQUIPMENTS														(8)
Review of phase diagrams and transformations, Furnaces, Calibration of thermocouple, Quenching methods, fixtures, control of furnace atmosphere, temperature control, Design of heat treatment furnaces. Suggested Readings: Theoretical and practical resolution of microscopes													CO-1 BTL-2 (8)	
Effect of	MODULE 2: HEAT TREATMENT OF STEEL Effect of alloying elements on Fe-C diagram, Annealing (different types), normalizing, hardening - Quenching media - Martensite formation, TTT and CCT diagrams,													(0)
Hardenability and measurement of hardenability-Influence of alloying elements. Tempering-Temper brittleness, Subzero treatment-Control of retained austenite. Austempering, Martempering and Thermo-mechanical treatments. Suggested Readings: Iron -Iron Carbide phase diagram, Significance of the phases present in alloys, Full annealing, Cryogenic atmosphere.											ents. enite.	CO-2 BTL-3		
MODUL	E 3: Sl	JRFAC	E ENG	INEERI	NG TE	CHNIC	UES							(8)
Flame electron plating, Sugges Differen	n beam ion im ted R	n and la planta eading	aser b ation, s s: Su	eam ha spray c <i>rface</i>	ardeni oating <i>engine</i>	ng. PV s. eering	D and	CVD p	rocess	es, spu	utter c	oating	, ion	CO-3 BTL-4
MODUL	E 4: HI		REATM		F FERF	ROUS 8	& NON	I FERR	OUS A	LLOYS				(8)
MODULE 4: HEAT TREATMENT OF FERROUS & NON FERROUS ALLOYSPlain carbon steel, Stainless steels, Tool steels and Cast irons, maraging steels, HSLA steels, and dual phase steels.Heat treating of Aluminium -precipitation hardening, Copper, Magnesium and Titanium alloys, Ni-base alloys.Suggested Readings: Properties of Al, Cu,Mg,Ti and Ni alloys, Non heat treatable nonferrous alloys.											and	CO-4 BTL-3		
MODULE 5: INSPECTION AND QUALITY CONTROL												(8)		
Defects during heat treatment, Causes and remedies for defects (like low hardness and strength, soft spots, oxidation and decarburization, overheating and burning, quench cracks, distortion and warping) in heat-treated parts. Design for heat treatment. Suggested Readings: QC techniques												CO-5 BTL-2		
TEXT BO	OKS													

1	Rajan.T.V , Sharma.R.C and Ashok Sharma ,(2010)"Heat Treatment: Principles and Techniques"
	Prentice Hall India Learning Private Limited, 2 nd Edition.
2	Porter.D.A and Easterling.K.E (2017), "Phase Transformations in Metals and Alloys'" Taylor and
	Francis/CRC Press.
REF	ERENCE BOOKS
1	Prabhudev. K. H., (2011), "Handbook of Heat Treatment of Steels", Tata-McGraw Hill Publications.
	Co. Ltd.
2	Karl Eric Thelning, (2000), "Steel and its heat treatment", Butterworth Publications.
3	Vijendra singh, (2010), "Physical Metallurgy", Standard Publishers distributors.
E BO	OOKS
1	https://books.google.co.in/books?id=vmV1cjBtPOAC&printsec=frontcover&source
1	=gbs_ge_summary_r&cad=0#v=onepage&q&f=false - By George E. Totten, Maurice A.H. Howes.
2	https://books.google.co.in/books?id=izvhnQAACAAJ&printsec=frontcover&sourc
2	e=gbs_ge_summary_r&cad=0#v=onepage&q&f=false - By K. H. Prabhudev.
3	https://books.google.co.in/books?id=RMpW7fl85WEC&printsec=frontcover&source=gbs_ge_
J	summary_r&cad= 0#v=onepage&q&f=false - By T. V. Rajan, C. P. Sharma, Ashok Sharm a
MO	000
1	http://nptel.ac.in/courses/113104074/
2	http://nptel.ac.in/courses/112104219/

COURSE TITLE	Ν	IECHANICAL VIBRATION	J	CREDITS	3								
COURSE CODE	MEC4270	COURSE CATEGORY	L-T-P-S	3-0-0-0									
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4								
ASSESSMENT SCHEME													
First Periodical Assessment	SecondSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE												
15%	15%	10%	5%	5%	50%								
Course Description	-	itions in single- and mult various types of dampi	-	•									
Course Objective	 This course should enable the students to To understand the basic concepts and behavior of vibrations in machines To understand the determination of frequencies and other parameters in single degree and two degree vibration systems To understand to determine the critical speeds of rotating shafts To understand how to apply the different measures for controlling the machine 												

CONNIC		AND 3	ILLAD							D.1				GINEEKING
			vibra	ations	and no	oise								
	urse come	1. 2. 3. 4. 5.	Upon Dem Sing Dete vibra Writ freq Dete	n comp nonstra le DOF ermine ation e Equ uencie ermine	ate the system ation ation s of su	of thi basic ms and ral fr of m ispens al freq	conce d deter equen notion ion sys uencie	for T tems for T tems	vibrat g natur /hen wo D	cion ar ral frec vibrati OF sy DF usir	nd writ quenci- ng bc stems ng diffe	ting eq es of vi odies s and erent n	ibrating l subjected determin nethods	of motion for bodies d to forced ning natura and can do
					-	r cond	ition n	nonito	ring.					
Prerequ					hines									
со, ро со	РО	РО	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO-	PSO-2
CO-1	-1 2	-2 3	-3 -	-4 -	-5 -	-6 -	-7 -	-8 -	-9 -	-10	-11	-12 2	1	_
CO-2	-	2	3	2	_	_	2	_		_		-		-
CO-3	2	1	2	-	-	-	-	-	-	-	-	3	-	_
CO-4	2	2	3	2	-	-	-	-	-	-	-	2	-	-
CO-5	2	1	2	2	2	-	3	-	-	-	-	-	_	-
		1	L: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: B	ASICS	OF VIE	BRATIC	ON									(9)
Introdu vibratic Method damped motion Suggest Elemen Bifilar so	ons: Vil d, Ene d free v s. Loga :ed Rea ts of vi	bration rgy m vibrati rithmi idings : ibratio	n moc lethod on - sp c decre : n, Typ	lel, Ec , Rayl becial d ement bes of	quatior eigh i cases: , Expei vibrati	n of n metho Oscilla riment	notion d and itory, r al dete	– Na D'Ale non-os ermina	itural ember cillator tion of	Freque t's pri ry and f damp	ency - nciple critica bing co	- New - Visco Illy dar efficier	ton's ously nped nt.	CO-1 BTL-4
MODUL	E 2: SI	NGLE I	DOF FO	DRCED	VIBR	ATION								(9)
MODULE 2: SINGLE DOF FORCED VIBRATION Single DOF Forced vibrations- Forced harmonic vibration, Magnification factor, Reciprocating and Rotor unbalance, Transmissibility ratio – harmonic excitation and support motion, Vibration Isolation, Equivalent viscous damping, sharpness of resonance. Suggested Readings: Critical speed and critical speed with damping												and	CO-2 BTL-4	
MODUL							•			-				(9)
ا بر اسا		D			al NI			<u>с</u> .,		.				<u> </u>

Introduction, Principal modes and Normal modes of vibration, Two-DOF free vibrations CO-3

	alized and Principal coordinates, Derivation of Equations of motion, Lagrange's	BTL-4
-	n, Coordinate coupling, Forced Harmonic Vibration, Applications – vehicle ion and dynamic vibration absorber	
-	ed Readings: Solutions using Laplace transform and frequency transfer	
function		
	E 4: MULTI DOF SYSTEM	(9)
Introdu	ction, Derivation of equations of motions, Influence coefficients method,	
Propert	es of vibrating system: Flexibility and stiffness matrices, Maxwell reciprocal	CO-4
theoren	n, Matrix method, Matrix-iteration method, Reyleigh method and Dunkerley's	BTL-4
method		DIL-4
	ed Readings: Torsional vibrations of two, three and multi rotor system	
MODUL	E 5: EXPERIMENTAL METHODS IN VIBRATION ANALYSIS	(9)
	n testing equipments: Signal generation, measuring and conditioning ents. Signal analysis instruments, Vibration tests – Free and forced vibration	CO-5
Suggest	ed Readings: Examples of vibration tests – Industrial case studies, Machine	BTL-4
conditio	n monitoring and diagnosis, plotting measured to true accelerations	
TEXT BC	OKS	
1.	Rao, S.S., (2014), "Mechanical Vibrations", Pearson Education Inc., Prentice Hall,	6 th Edition.
2	V.P. Singh, (2016), "Mechanical vibrations", Dhanpat Rai & company Pvt. Ltd., 5 rd	edition.
3	G.K.Grover, (2013), "Mechanical vibrations", New chand and Brothers, 8 th editio	n.
REFEREN	ICE BOOKS	
1	Graham Kelly,(2012), "Scham's outline of Theory and Problems of Mechanical vil McGraw-Hill, Special Indian edition.	brations", Tata
2	W.T. Thomson and Marie Dillion Dahleh, (2017), "Theory of vibration with Pearson Education, New Delhi, 5th Edition.	applications"
3	A.R.Mohanty, (2014), "Machinery condition Monitoring: Principles and Practices	", CRC Press.
E BOOKS		
1	https://drive.google.com/open?id=0B6pGoYzCs7PgMFF1ZzZXVGtLZHc - Alok Sir	nha
2	https://drive.google.com/open?id=0B4SQTWiEAAQeMFowVzh Sa2s0Rnc – Willi	am J. Bottega
3	https://drive.google.com//open?id=0B6pGoYzCs7PgYXBwc2 szNVQ4LTg – B. Balachandran	
MOOC		
1	https://www.mooc-list.com/course/introduction-%C3%A0-la-m%C3%A9canique	e-des-vibration
2	http://nptel.ac.in/courses/112103112/	
3	https://in.mathworks.com/support/learn-with-matlab-tutorials.html	

COURSE TITLE	MODERN CC	ONCEPTS OF ENGINEERI	NG DESIGN	CREDITS	3
COURSE CODE	MEC4271	COURSE CATEGORY	L-T-P-S	3-0-0-0	
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3

ASSES	SMEN	т ѕсн	EME											
Peri	irst odical ssmen		Peric	ond odical sment		Assig	minar/ nment oject		-	rise Te Quiz	est /	Attenda	ance	ESE
1	.5%		1	5%			10%			5%		5%		50%
CourseThe purpose of this course is to introduce to the undergrad fundamental principles of Engineering Design which is very import the context of today's engineering professionals. The course we engineering disciplines and will not require specialized preparatio any of the individual engineering disciplines. Case studies from real products will be used to illustrate these principles.												ortant ar will be a on or pr	nd relevant in generic to all erequisites in	
Course Objective1. To impart and train the student to Design Conceptualization and Philosophy of Product life cycle, Innovation2. To provide knowledge about Needs and opportunities, 3. To know about the Concepts screening, Concept testing 4. To Know the types of prototypes and their purpose													Philosophy of	
	ourse come		L. Rec 2. App 3. Ana 1. Den	on comp all the l oly the o lyze the nonstra all the o	basic p design e feasi ite abo	produc proce bility o put pro	t deve ss for p of the p oduct <i>A</i>	lopme produc propos Archite	nt proo t deve ed pro cture	cess lopme iject.	nt		concept	S.
Prereq	uisites	s: Nil												
СО, РС) AND	PSO I	MAPPII	NG										
со	PO -1	PO -2	РО- 3	РО- 4	РО- 5	РО- 6	РО- 7	РО- 8	РО- 9	PO -10	PO- 11	PO- 12	PSO-1	PSO-2
CO-1	2	2	-	-	2	-	-	2	-	-	1	-	-	-
CO-2	2	2	1	2	2	•	-	-	-	2	2	2	-	-
CO-3	2	3	-	-	3	2	-	2	-	2	-	3	-	-
CO-4	2	3	-	2	2	-	-	-	-	-	1	-	-	-
CO-5	2	2	1	-	2	-	-	2	-	2	-	1	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODU	JLE 1:	PR	ODUC	T DESIG	GN PRO	DCESS								9

Importance of product design - Design process - Design considerations - Morphology of design Marketing Organization for design - Computer aided engineering - Codes and standards - Design review - Technological innovation and design process - Product and process cycles -Societal considerations in design. Suggested Reading topics: establishing markets- market segments- relevance of market research MODULE 2: PRODUCT PLANNING AND SPECIFICATION	CO-1 BTL-2 9
Opportunities identification-Evaluation-Resource allocation - Pre-project planning - Customer need identification - Establishing target specification - Setting the final specification. Suggested Reading: affinity diagrams – needs importance- establishing engineering characteristics-competitive benchmarking-	CO-2 BTL-2
MODULE 3: CONCEPT GENERATION, SELECTION AND TESTING	9
Activity of concept generation - Clarification of problem - External and internal searches - Concept exploration - Result analysis - Overview of selection methodologies - Concept screening - Concept scoring - Concept testing - Choice of survey population - Survey formats - measurement of customer response - Interpretation and analysis of results. Suggested Reading: Creative thinking –creativity and problem solving- creative thinking methods	CO-3 BTL-3
MODULE 4: PRODUCT ARCHITECTURE	9
Decision making –decision theory –utility theory –decision trees –concept evaluation methods – Pugh concept selection method- weighted decision matrix –analytic hierarchy process – introduction to embodiment design –product architecture – types of modular architecture –steps in developing product architecture Product architecture - Implications - establishment - platform planning . <i>Suggested Reading :</i> system level design	CO-4 BTL-2
MODULE 5: INDUSTRIAL DESIGN, DESIGN FOR MANUFACTURE AND PROTOTYPING	9
Industrial design – human factors design –user friendly design – design for serviceability – design for environment Overview of Design for Manufacture process - Steps in DFM – prototyping and testing – cost evaluation –categories of cost –overhead costs – activity based costing –methods of developing cost estimates – manufacturing cost –value analysis in costing <i>Suggested Reading:</i> Design review, Value analysis/engineering.	CO-5 BTL-3
1 Karl T Ulrich Steven D Eppinger,(2016), Product design and development McGraw-Hill Education.	"" New York,
REFERENCE BOOKS	
1. G. E. Dieter, (2013), Engineering Design, McGraw – Hill International.	
2. Kavin N Aotto, Kritine I Wood, (2013), Product Design Prentice Hall Publications	
E BOOKS	

1.	https://books.google.co.in/books/about/Engineering_Design.html?id=wUgqAQAAMAAJ
2.	https://books.google.co.in/books?isbn=8177588214
MOOC	
1.	https://onlinecourses.nptel.ac.in/noc17 me16/preview
	https://oninecourses.iprendent/hour/_neto/preview

COURS	E TITLE		CHARACTERIZATION OF MATERIALS CREDITS 3												
COURS	e codi	E	MEC4272 COURSE CATEGORY DE									L-T-P	-S	3-0-0-0	
Vers	sion		1.0Approval Details23 ACM, 06.02.2021									LEARN LEVI		BTL-4	
ASSESS	ASSESSMENT SCHEME														
First Pe Assess			Second Periodical Assignments/ ProjectSurprise Test / QuizAttendanceESE												
15	5%		15%	/ D		10)%			5%		5%		50%	
Cou Descri		м	This course familiarizes students with the various methods for Characterization of Materials using techniques like electron microscopes, X-ray diffraction, Thermal analysis, etc.												
Cou Obje			 To have comprehensive knowledge of the Characterization of materials for studying the structure of materials and to Interpret their properties. To provide fundamental knowledge on Metallography, X-Ray diffraction, Electron diffraction, Scanning electron Microscope, Chemical and Thermal analysis. 												
Cou Outc		1. 2. 3. 4. 5.	Dem Desc Illust Appl Enun	onstra ribe th rate th y the v nerate	te the ne wor ne vari various	princi king pi ous ch electr various	ple of rinciple aracte ron mic tools	metall e of XR rizing crosco	urgical D and techni pes fo	its app ques u r testir	scope blicatic sed in ng.	and its on XRD	applica of diffe	tion rent surface	
Prerequi	isites:	Engine	eering	Physic	S										
CO, PO	AND P	SO M	APPIN	G											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO-1	PSO-2	
CO-1	1	2	-	2	-	1	1	-	-	2	2	2	-	-	
CO-2	3	2	1	2	2	-	-	-	-	-	-	1	-	-	
CO-3	1	1	-	2	2	-	2	2	2	-	-	2	-	-	

CO-4	3	2	-	2	2	-	1	-	-	-	-	2	-		-
CO-5	3	2	3	2	2	-	-	-	-	-	1	2	-		-
1: Weakly related, 2: Moderately related and 3: Strongly related						ed									
MODULE 1: METALLOGRAPHIC TECHNIQUES								(9)						
Macro e								roscop	e - pri	nciple,	const	ructio	n and	•	,
working			••			-			•	•					
numerio	al ape	erture,	resol	ving p	ower,	depth	of fo	ocus, (depth	of fiel	d, dif	ferent	light		
sources	lense	es ab	erratio	ons ar	nd th	eir re	emedia	al me	asures	, vari	ous i	llumin	ation		CO-1
techniqu	ues-bri	ight f	ield,	dark	field,	phas	e-con	trast	polariz	ed lig	ht ill	umina	tions,		BTL-2
interfer	ence n	nicroso	copy, I	nigh te	empera	ature I	Micros	copy;	quanti	itative	meta	llograp	hic –		
Image a	nalysis	5.													
Suggest	ed Rea	adings	: Theo	retical	and p	ractica	l resol	ution o	of micr	oscope	es				
MODUL	E 2: X	-RAY [DIFFRA	CTION	TECH	NIQUE	S								(9)
Crystallo	ograph	y ba	sics,	recipro	ocal l	attice,	X-ra	iy gei	neratio	on, ak	sorpt	ion e	dges,		
characte	eristic	spectr	um, B	ragg's	law, [Diffract	ion m	nethod	s – La	ue, ro	ating	crysta	l and		
powder	meth	ods. S	Stereo	graphio	c proj	ection.	Inter	nsity c	of diffr	acted	beam	s–stru	cture		CO-2
factor c										•		. Came	eras -		BTL-3
General feature and optics, Proportional, Scintillating and Geiger counters.															
Suggested Readings: Advances in Cyber Security: Principles, Techniques, and															
Applica															
MODUL															(9)
Line bi		•			•			•							
identifi		•	•				-								CO-3
applica									•				tress		BTL-4
– Quar		-					-								
Suggest						of nan	o part	icles u	sing X-	Ray Di	fractio	on			(-)
MODUL															(9)
Constru		-								•					
and im	-				•	•		•							
Diffract			•								•				CO-4
applicat			-			• •		-			-				BTL-3
Field io		-	y (FIB),Scani	ning T	unneli	ng Mi	crosco	pe (S	「M) ar	id Ato	omic F	orce		
Microso	• •					L V .									
Suggested Readings: Chemical analysis by X-ray analysis in electron microscopes															
MODUL														(9)	
Surface			•			•		•			•		• •		CO 5
(Princip				-		-		-				-			CO-5 BTL-2
Spectro			-		-				-		-				DIL-2
analysis	(ESCA	۹), Ult	raviole	et Pho	to Ele	ctron :	spectr	oscopy	/ (UPS), X ra	y Pho	toelec	tron		

	· · · · · · · · · · · · · · · · · · ·							
-	opy (XPS), Auger Electron Spectroscopy (AES), Electron Energy Analysers,							
Secondary	Secondary ion mass spectrometry - Applications. Unit meshes of five types of surface							
nets - diffraction from di periodic structures using electron, Low Energy Electron								
Diffraction	n (LEED), Reflection High Energy Electron Diffraction (RHEED).							
Suggested	Readings: Software's in surface analysis							
TEXT BOO	KS							
1. Cullity, B. D.,(2015)," Elements of X-ray diffraction", Addison-Wesley Company Inc., New								
1.	York,3rd Edition.							
2.	George F. Vander Voort, (2007), "Metallography, Principles and Practice", ASM International.							
REFERENC	E BOOKS							
1.	R. E. Smallman, K. H. G. Ashbee, (2013), "Modern Metallography", Pergaman Press.							
2.	David B. Williams, C. Barry Carter, (2009)"Transmission Electron Microscopy: A Textbook for							
۷.	Materials Science.							
3.	Raghavan. V,(2015), "Physical Metallurgy: Principles and Practice", PHI learning pvt ltd.							
4.	C.A. Brebbia, (2015), "Materials Characterization VII", WIT Press, UK.							
5.	Haines, P.J., (2016), "Principles of Thermal Analysis and Calorimetry", Royal Society of							
J.	Chemistry (RSC), Cambridge.							
E BOOKS								
1.	https://books.google.co.in/books?isbn=1292040548							
2.	https://books.google.co.in/books?id=pVJ8AAAAIAAJ							
3.	https://books.google.co.in/books?id=irHkAAAAMAAJ							
4.	https://books.google.co.in/books?isbn=0470031506							
5.	https://books.google.co.in/books?isbn=1782620516							
моос								
1.	https://www.edx.org/course/materials-science-engineering-misisx-mse1x							
2.	https://onlinecourses.nptel.ac.in/noc18_mm02/							
3.	http://nptel.ac.in/courses/113106034/							

LIST OF DEPARTMENTAL ELECTIVES - SEMESTER V

COURSE TITLE	STRUCTUR	E AND PROPERTIES OF N	CREDITS	3					
COURSE CODE	MEC4351	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	23 ACM,	LEARNING	BTL-4				
VEISION	1.0	Approvar Details	06.02.2021	LEVEL					
ASSESSMENT SC	ASSESSMENT SCHEME								
First Periodical	Second	Seminar/	Surprise Test						
Assessment	Periodical	Assignments/	/ Quiz	Attendance	ESE				
Assessment	Assessment	Project							
15%	15%	10%	5%	5%	50%				

	urse ription	St	Students are exposed to the correlation of properties of materials and their structure.											
 Course Objective 1. To introduce the correlation of properties of materials and their structure. 2. To revise student's knowledge of crystal structure and phase diagrams of variou alloy systems. 3. To get knowledge in metals, mainly ferrous and non-ferrous alloys, but als structures and properties of ceramics, polymers, elastomers and composites. 									of various					
Course OutcomeUpon completion of this course, the students will be able to1. Demonstrate the basic concepts of Structure And Properties of Materials, crystallography of materials, knowing basics about Nano and isotropic materials2. Recognize basic microstructure, associate terms with the appropriate structure/phenomena, and be able to differentiate between related structures/ 														
Prerequ	isites:	Engin	eering	Physic	S									
CO, PO	AND P	SO M	APPIN	G										
со	РО -1	РО -2	РО 3	РО 4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	РО -12	PSO-1	PSO-2
CO-1	3	2	-	-	3	-	-	-	-	-	-	-	-	-
CO-2	3	2	2	-	3	-	-	-	-	2	-	-	-	-
CO-3	3	2	-	-	3	-	2	-	-	2	-	-	-	-
CO-4	3	2	-	-	3	-	-	-	-	-	-	2	-	-
CO-5	3	2	3	-	3	-	-	-	-	2	-	2	-	-
		1	L: Wea	ıkly rel	ated,	2: Moo	derate	ly rela [.]	ted an	d 3: St	rongly	relate	ed	
1: Weakly related, 2: Moderately related and 3: Strongly related MODULE 1: STRUCTURE OF SOLIDS (10)														(10)
MODU	LE 1: S	moei	Overview of Crystal Structure – Solid Solutions-Hume Rothery Rules-Defects in Crystal - Point Defects- Line Defects-Surface Defects-Bulk Defects-Critical nucleus size and Critical Free energy- Nucleation-Homogeneous and Heterogeneous Nucleation- Growth - Single crystal -Polycrystalline Materials metallic crystalline structure- crystallography- Advancement in solidification of metals and alloys. Growth of crystals- Planar growth – dendritic growth – Solidification time - Cooling curves - Non-crystalline solids- Glass Transition Temperature-Single walled nanotubes (SWNTs) and multi walled nanotubes (MWNTs)- Isotopic materialsCO-1 BTL-2Suggested Readings: Allotropes of carbon, fullerene structural familySuggested Readings:Context											
Overvie Point E Critical - Single Advanc dendrit Transiti (MWNT	ew of C Defects Free en crysta ement ic grov on Ten Ts)- Isot	rystal - Line nergy- I -Poly in sol vth – nperat	Struct Defe Nucle crysta idifica Solidif cure-Si nateria	ects-Su ation- lline N tion of icatior ngle w als	rface Homog Iateria Tmeta Time valled	Defect geneou Ils met Is and - Coc nanotu	ts-Bulk us and tallic cr alloys. alloys cr ubes (S	Defe Heter rystalli Grow urves	cts-Cri ogene ne stru th of c - Non-) and	tical r ous Nu ucture- rystals crystal multi v	nucleu icleatio - crysta - Plana line so	s size on-Gro allogra ar grov olids- (and owth phy– vth – Glass	CO-1

Phase phase change Peritec Kinetics carbide Sugges	CO-2 BTL-3	
MODU	LE 3: FERROUS AND NON FERROUS MATERIALS	(9)
steel- F Strengt Therma Titaniu	cation of steels and cast iron –Microstructure– Effect of alloying elements on Ferrous alloys and their applications - Factors affecting conductivity of a metal – Thening and degradation - Temper Designations - Electrical Resistivity in alloys – al conductivity of metals and alloys - High Resistivity alloys –Some important m alloys, Nickel alloys, Copper alloys, Magnesium alloys and Aluminium alloys. sted Readings: Copper beryllium microstructure, complex resistivity alloy al	CO-3 BTL-4
MODU	LE 4: CERAMIC AND COMPOSITE MATERIALS	(8)
Types ceramic materia Compo Discont strengt of com desired Sugges compo	CO-4 BTL-3	
MODU	LE 5: POLYMERS AND ELASTOMERS	(8)
Classifi blend– Advanc materia -Elastor Sugges softwar	CO-5 BTL-2	
TEXT B	DOKS	
1	William D. Callister, Jr., (2013), "Materials Science and Engineering an Introduction & Sons, Inc., 9 Edition.	on", John Wiley
2	Elliot P. Douglas, (2013), "Introduction to Material Science and Engineering Edition.	", Pearson, 1 st
REFERE	NCE BOOKS	
1	Sidney H. Avner, (2017), "Introduction to Physical Metallurgy", Tata Mc-Gra Edition.	w-Hill Inc, 2 nd

2	W.Boltan, (2016), "Materials for Engineering", Routledge, 2 nd Edition.
3	Susan Trolier-McKinstry, (2017), "Materials Engineering", Cambridge University Press, 1 st
	Edition.
4	Tim A. Osswald(2012), "Material Science of Polymer for Engineers", Hanser, 3Edition.
5	William F. Smith, (2014), "Structure and Properties of Engineering Alloys", Mc Graw Hill India
	2Edition.
E BOOK	5
1	https://books.google.co.in/books?isbn=007048287X - V. S. R. Murthy
2	https://books.google.co.in/books?id=exF4rgEACAAJ - John Wulff
3	https://books.google.co.in/books?isbn=0191523402 - Robert E. Newnham
4	https://books.google.co.in/books?isbn=047136469X – John Wiley
MOOC	
1	http://nptel.ac.in/courses/112104203/
2	http://nptel.ac.in/courses/112108150/
3	http://nptel.ac.in/courses/112104122/10

COURSE TITLE	ENGINEERING ECONOMICS AND COST ANALYSIS CREDITS 3							
COURSE CODE	MEC4352	COURSE CATEGORY	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3			
ASSESSMENT SC	HEME							
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE			
15%	15%	10%	5%	5%	50%			
Course Description	proposed techn value of money	e systematic evaluation ical projects. The studen " and the methods of di regarding money as c	t will be expose scounted cash f	d to the concep low. Students a	ots of the "time are prepared to			
Course Objective	2. To know abo	knowledge about value e out the cash slow in Indu oblem on depreciation.						
Course Outcome	1. Illustrate the elements.	etion of this course, the e basic characteristics of time value of money, ar	engineering eco	onomics and the				

comparing alternatives.

- 3. Demonstrate depreciation, maintenance and replacement affect the economic life of assets.
- 4. Analyze the maintenance activities
- 5. Calculate the Depreciation cost for various assests

Prerequisites: Nil

CO, PO AND PSO MAPPING

	1	1	1	1	1		1			1	1	1	l	
со	PO	PO	PO	PSO-1	PSO-2									
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	P30-2
CO-1	2	2	-	-	-	-	-	2	-	-	2	-	-	-
CO-2	2	2	2	-	2	-	-	2	-	-	-	-	-	-
CO-3	-	3	-	-	-	2	-	2	-	-	3	-	-	-
CO-4	2	3	-	-	2	-	-	2	-	-	1	-	-	-
CO-5	2	2	3	-	-	-	-	3	-	-	2		-	-

1: Weakly related, 2: Moderately	related and 3: Strongly related
----------------------------------	---------------------------------

MODULE 1: INTRODUCTION TO ECONOMICS	8
Introduction to Economics- Flow in an economy, Law of supply and demand, Concept	
of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of	
engineering economics- Element of costs, Marginal cost, Marginal Revenue, Sunk cost,	CO-1
Opportunity cost, Break-even analysis- V-ratio, Elementary economic Analysis–Material	BTL-2
selection for product design selection for a product, Process planning.	DIL-2
Suggested Reading: Engineer's role in corporate profitability, Economic viability of	
projects, Cost-Benefit Analysis	
MODULE 2: VALUE ENGINEERING	10
Make or buy decision, Value engineering – Function, aims, Value engineering	
procedure. Interest formulae and their applications-Time value of money, Single	
payment compound amount factor, Single payment present worth factor, Equal	
payment series sinking fund factor, Equal payment series payment Present worth	CO-2
factor-equal payment series capital recovery factor-Uniform gradient series annual	BTL-2
equivalent factor, Effective interest rate, Examples in all the methods.	
Suggested Reading: Before- and After-Tax considerations, Compounding other than	
annually	
MODULE 3: CASH FLOW	9
Methods of comparison of alternatives – present worth method (Revenue dominated	
cash flow diagram), Future worth method (Revenue dominated cash flow diagram,	CO-3
cost dominated	BTL-3
Cash cost dominated cash flow diagram), Annual equivalent method (Revenue	DIL-3
dominated cash flow diagram, cost dominated cash flow diagram), rate of return	

method,	Examples in all the methods.		
Suggeste	d Reading: Estimating capital and other investments		
MODULE	4: REPLACEMENT AND MAINTENANCE ANALYSIS	•	9
problem, new asse Simple pr Suggeste	nent and Maintenance analysis– Types of maintenance, types of r determination of economic life of an asset, Replacement of an a et – capital recovery with return and concept of challenger an obabilistic model for items which fail completely. d Reading: Defining capital and production costs, Fixed and variabl	asset with a d defender,	CO-4 BTL-2
MODULE	5: DEPRECIATION		9
method of method of depreciat adjusted alternativ	tion- Introduction, Straight line method of depreciation, declin of depreciation-Sum of the years digits method of depreciation, so of depreciation/ Annuity method of depreciation, service output cion-Evaluation of public alternatives- introduction, Example decisions – procedure to adjust inflation, Examples on con- res and determination of economic life of asset. Id Reading: Types of Assets, Inflation and Indices	sinking fund t method of es, Inflation	CO-5 BTL-3
TEXT BOO	DKS	·	
1.	Panneerselvam, R, (2013), "Engineering Economics", Prentice Hall 2nd edition.	l of India Pvt L	td, New Delhi,
REFEREN	CE BOOKS		
	Park, Chan S., (2016), "Contemporary Engineering Economics", edition.	Pearson Educ	ation Ltd, 6th
7.	Newnan, Donald G., Eschenbach, Ted G., and Lavelle, Jerc Economics Analysis", Oxford University Press, USA, 13th edition.	ome P.,(2017),	, "Engineering
E BOOKS			
1.	https://books.google.co.in/books?id=AY67AQAAQBAJ - "Engine selvam, R.		
2.	https://books.google.co.in/books?id=A-iVDQAAQBAJ - "Engineer	ring Economics	s", Yates, J.K.
MOOC			
1.	http://www.nptel.ac.in/courses/112107209/		
2.	https://onlinecourses.nptel.ac.in/noc18_me35/preview		
COURSE T	ITLE TOOL DESIGN	CREDITS	3

COURSE TITLE		TOOL DESIGN		CREDITS	3
COURSE CODE	MEC4353	COURSE CATEGORY	L-T-P-S	3-0-0-0	
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	CHEME				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE

1	.5%		15	5%			10%			5%		5%		50%
	ourse riptior		This cou and dies		parts	knowl	edge o	n desi	gn of t	tools s	uch as	Jigs, fi	ixtures,	Press working
	ourse ective		2. To a	. To design the Presses										
Out	 Upon completion of this course, the students will be able to Recognize the materials properties, tool nomenclature and to categories the cutting tools. Interpret the parameters of cutting tools for machining process; identify the types of jigs and fixtures. Distinguish the various locating and clamping methods Design the jig, fixture, press tools and molds Design Dies and various molding operations 													
Prereq					e Elem	ents								
CO, PC	PO	PSO	MAPPIN PO	PO	РО	PO	PO	PO	РО	PO	PO	PO-		
СО	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	PSO	-1 PSO-2
CO-1	2	2	2	-	-	-	-	-	-	-	-	-	-	-
CO-2	3	3	-	2	2	-	-	-	-	-	-	-	-	-
CO-3	2	3	-	3	2	-	-	-	-	-	-	-	-	-
CO-4	2	3	-	-	3	-	-	-	-	-	-	-	-	-
CO-5	2	3	-	-	3	-	-	-	-	-	-	-	-	-
			1: W	eakly r	elated	l, 2: M	oderat	ely rela	ated ar	nd 3: S ¹	trongly	/ relate	ed	
MODU	JLE 1:	PURP	OSE TY	PES AN	ID FUN	ICTION	IS OF J	IGS AN	D FIXT	URES				(9)
and Fiz hydrau Traditie	Tool design objectives - Production devices - Inspection devices - Materials used in Jigs and Fixtures - Types of Jigs - Types of Fixtures-Mechanical actuation-pneumatic and hydraulic actuation-Analysis of clamping force-Tolerance and error analysis. Non Traditional Manufacturing, Forces Developing and Acting In Machine Tools. Suggested Readings: Estimation of Machining Time, Conventional Cutting Tool Maths													
MODU	LE 2: J	IGS												(9)
post, t compo	urnov nents. Conce	er, po . Desi ept of	rent ty ot jigs-A gn and Machir gs: Mate	utoma develo nability	itic dri opmer and it	ll jigs-I nt of Ji s Impre	Rack ai gs for oveme	nd pini given nt	on op compo	erated onents.	. Air o Jigs F	perated or Ma	d Jigs	CO-2 BTL-3

MODULE	3: FIXTURES	(9)
General	principles of boring, lathe, milling and broaching fixtures- grinding, planning and	
shaping f	ixtures, assembly, Inspection and welding fixtures- Modular fixtures. Design and	CO-3
developn	nent of fixtures for given component. Fixtures For Machine Shops	BTL-3
Suggeste	d Readings: Fixtures for cutting tools.	
MODULE	4: PRESS WORKING TERMINOLOGIES AND ELEMENTS OF DIES AND STRIP LAY OU	JT (9)
tonnage block-die - knockc calculatic	orking terminology-Presses and press accessories-Computation of capacities and requirements. Elements of progressive combination and compound dies: Die shoe. Bolster plate-punch plate - punch holder-guide pins and bushes - strippers outs-stops -pilots-Selection of standard die sets strip lay out-strip lay out ons. Design and manufacture of drills, hobs and gear shaper cutters. d Readings: Basic construction of moulds, types of moulds, mould damping	CO-4 BTL-3
MODULE	5: DESIGN AND DEVELOPMENT OF DIES	(9)
operation Developr plastic di Suggeste	and development of progressive and compound dies for Blanking and piercing ns. Bending dies - development of bending dies-forming and drawing dies- ment of drawing dies. Design considerations in forging, extrusion, casting and es. d Readings: Design of dies for sheet metal components, Simulation for Industrial f a Sheet-Metal-Rolling Application using MATLAB©	CO-5 BTL-3
TEXT BOO	DKS	
1	Edward G Hoffman, (2010), Jigs & Fixture Design, Thomson - Delmar Learning, Edition.	Singapore, 5th
2	Donaldson. C,(2012), Tool Design, Tata McGraw-Hill,4 Edition.	
REFEREN	CE BOOKS	
1	Luqman M, Sheet Meta, (2015), I Press Tools Design Making, CBS Publishing; First	edition.
2	Vukota Boljanovic, (2014), Sheet Metal Forming Processes and Die Design, Inc., U.S.; 2nd Revised edition.	Industrial Press
E BOOKS		
1	https://openlibrary.org/subjects/jigs_and_fixtures	
2	https://books.google.co.in/books/about/Jig_and_Fixture_Design.html?id=6UFhc	omTE8KYC
3	https://drive.google.com/open?id=0B7JWdKw_4Q07WGFSTk8tcGhRVm8	
4	https://drive.google.com/open?id=0B7JWdKw_4Q07bEVaSE5uT3VFUTQ	
MOOC		
1	http://nptel.ac.in/courses/112105126/34	
2	http://freevideolectures.com/Course/2369/Manufacturing-Processes-II/35	

COURSE TITLE	APPLI	ED HYDRAULICS & PNEUR	ATICS	CREDITS	3
COURSE CODE	MEC4354	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0

Ver	sion		1.0)	Α	pprova	al Deta	ails		3 ACM, 02.202		LEARN LEVI		BTL-3
ASSESS	MENT	SCHE	ME											
First Periodical AssessmentSecond Periodical AssessmentSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceE									ESE					
15	5%		15%	6		1	0%			5%		5%		50%
Course DescriptionThis course describes the fundamentals of fluid power systems. The Designing hydraulic system and pneumatic system circuits were demonstrated. The import of low cost automation is also explained neatly.														
Cou Obje	irse ctive		To ur	To understand the fundamentals, components and designing of hydraulic systems. To understand the fundamentals, components and designing of pneumatic systems.										
Cou Outc	ome	2. 3. 4. 5.	Dem lamii Illust syste Desi accu Dem lubri unde Desi circu	onstra nar and rate tl em like gn a hy mulato onstra cant u erstano gn a p it and	te the d turbine con pump ydrauli ors and te pri units d a syn neuma ladder	e fluid ulent f icept c ic circu d its ty eumat and a nbols a atic cir r diagra	power low, R of hydr eory, c uits an pe. ics sys ble to ond sta cuit sy am an	r syste eynold aulics cylinde d unde stems o desi ndard stem v d PLC u	m and s num systen rs and erstand like co gn a with se units.	ber and n and N Actuat ding the ompres pneum ervo m	iment d Darc variou cors. e conc ssor, v natic otor a	als. Ph cy's equ s comp cept of valves, and h	hydrau filter ydraulid	Pascal's law, of hydraulics llic valves and regulator and c circuit and ding the logic
Prerequ	isites:	Fluid	Mecha	nics ar	nd Ma	chiner	y, Mec	hatror	ics an	d Pneu	matic			
CO, PO	AND F	SO M	APPIN	G										
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	1 30-2
CO-1	3	2	-	-	2	2	2	1	1	1	-	-	3	-
CO-2	3	2	1	1	2	-	-	-	1	1	-	-	-	-
CO-3	3	2	-	-	2	2	2	-	1	1	-	-	-	-
CO-4	-	-	1	1	2	2	2	-	-	-	-	-	3	-
CO-5	3	2	1	1	2	2	2	-	1	1	-	-	3	-
			1: Wea	kly re	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	/ relate	ed	
MODU	.E 1: F	LUID	POWE	R SYST	EMS A	ND FL	JNDAN	MENTA	LS					9

Introduction to fluid power, Advantages of fluid power, Application of fluid power	
system. Types of fluid power systems, Properties of hydraulic fluids - General types of	66 <i>6</i>
fluids - Fluid power symbols. Basics of Hydraulics-Applications of Pascal's Law- Laminar	CO-1
and Turbulent flow - Reynolds number - Darcy's equation - Losses in pipe, valves and	BTL-3
fittings.	
Suggested Reading: Fluid power Industry in India, Comparison of Properties.	
MODULE 2: HYDRAULIC SYSTEM & COMPONENTS	9
Sources of Hydraulic Power: Pumping theory - Pump classification - Gear pump, Vane	
Pump, Piston pump, construction and working of pumps - pump performance - Variable	
displacement pumps. Fluid Power Actuators: Linear hydraulic actuators - Types of	
hydraulic cylinders - Single acting, Double acting, special cylinders like Tanden, Rodless,	CO-2
Telescopic, Cushioning mechanism, Construction of double acting cylinder, Rotary	BTL-3
actuators - Fluid motors, Gear, Vane and Piston motors.	
Suggested Reading: Hydrodynamic and hydrostatic pumps, Screw Pump, Cylinder	
Mounting Configurations, Cylinder Cushioning.	
MODULE 3: DESIGN OF HYDRAULIC CIRCUITS	9
Construction of Control Components : Direction control valve - 3/2 way valve - 4/2 way	
valve - Shuttle valve - check valve - pressure control valve - pressure reducing valve,	
sequence valve, Flow control valve - Fixed and adjustable, electrical control solenoid	
valves, Relays, ladder diagram. Accumulators and Intensifiers : Types of accumulators -	CO-3
Accumulators circuits, sizing of accumulators, intensifier Applications of Intensifier -	BTL-3
Intensifier circuit.	
Suggested Reading: Unloading Valve, Counterbalance Valve, Proportional Valves,	
Regenerative Circuits, Design of Safety Circuits in Simulink software.	
MODULE 4: PNEUMATIC SYSTEMS AND COMPONENTS	9
Pneumatic Components: Properties of air - Compressors - Filter, Regulator, Lubricator	
Unit - Air control valves, Quick exhaust valves, pneumatic actuators.	
Fluid Power Circuit Design, Speed control circuits, synchronizing circuit, Pneumatic	CO-4
and Hydraulic circuit, Sequential circuit design for simple applications using cascade	BTL-3
method.	
Suggested Reading:Mufflers, Sizing of Compressors, Air Motors, Vacuum Suction Cup.	
MODULE 5: DESIGN OF PNEUMATIC CIRCUITS	9
Servo systems - Hydro Mechanical servo systems, Electro hydraulic servo systems and	
proportional valves. Fluidics - Introduction to fluidic devices, simple circuits,	
Introduction to Electro Hydraulic Pneumatic logic circuits, ladder diagrams, PLC	
applications in fluid power control. Fluid power circuits; failure and troubleshooting.	CO-5
Suggested Reading: Hydro-pneumatic Systems, Installation and Maintenance of	BTL-3
Hydraulic Systems, Design a pneumatic system for sorting of components using	
MATLAB© software.	
TEXT BOOKS	

1	Anthony Esposito, (2014), Fluid Power with Applications, Pearson Education, 7 th Edition.						
2	Majumdar S.R., (2015), Oil Hydraulics, Tata McGraw-Hill, New Delhi.						
REFERE	NCE BOOKS						
1	Majumdar S.R., (2013), Pneumatic systems - Principles and maintenance, Tata McGraw Hill,						
	New Delhi.						
2	Srinivasan.R,(2006), "Hydraulic and Pneumatic controls", Vijay Nicole.						
3	James R. Daines, (2012) Fluid Power: Hydraulics and Pneumatics, Goodheart-Willcox Publisher,						
	Second Edition.						
E BOOK	S						
1	https://docs.zoho.com/file/2bvxi8191d4a73d1d4f05941a1f132f86ae1a - Fluid power with						
	Applications – Anthony Esposito						
2	http://pages.hydraulicspneumatics.com/fluid-power-basics?code=UM_NX7UMB3 – Fluid						
_	Power Basics						
3	http://controlmanuals.com/files/Automation/Fluid-Power/TSM-363-Fluid-Power-						
5	Systems~ppt908.html						
4	https://www.pdfdrive.net/industrial-fluid-power-e3104018.html						
MOOC							
1	https://www.mooc-list.com/course/hydraulics-%E6%B0%B4%E5%8A%9B%E5%AD%A6-edx						
2	https://www.mooc-list.com/course/fundamentals-fluid-power-coursera						

COURSE TITLE	AL	ITOMOBILE ENGINEERIN	IG	CREDITS	3
COURSE CODE	MEC4355	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	CHEME			•	
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	of various syste	cribes the various parts ms involved in the auto e developments are also	mobile are dem	onstrated. The	-
Course Objective	2. To understa	nd the various parts of au nd the environmental iss advanced development	ues due to auto	mobile emissio	ns.

	Upon completion of this course, the students will be able to
	1. Identify the different parts of the automobile.
Course	2. Describe the working of various parts like engine, transmission, clutch, brakes.
Course	3. Describe how the steering and the suspension systems operate.
Outcome	4. Demonstrate the environmental implications of automobile emissions.
	5. Develop a strong base for understanding future developments in the automobile
	industry.
Prerequisites: N	il

CO, PO AND PSO MAPPING

со	РО	РО	РО	РО	PO	PO	РО	РО	РО	PO	РО	РО	PSO-	PSO-2
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	P30-2
CO-1	2	2	-	-	2	2	1	1	1	1	-	-	2	-
CO-2	3	-	-	1	2	-	-	-	-	-	-	-	-	-
CO-3	3	2	-	-	2	2	2	-	1	1	-	-	-	-
CO-4	-	-	1	1	2	-	2	-	-	-	-	-	3	-
CO-5	3	2	1	-	2	2	2	-	1	1	-	-	3	-
	1: Weakly related, 2: Moderately related and 3: Strongly related													

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: ENGINES	9
Constructional details of engines - engine parts - piston - different types - piston rings	
cylinder block, cylinder head-gudgeon pin-connecting rod-bearing bushes-different type	CO-1
of bearings.	BTL-3
Suggested Reading: History and classification of automobiles, Engine classification and	DIL-3
trouble shooting.	
MODULE 2: ENGINE AUXILLARY SYSTEM	9
Cooling - purpose of cooling - types of cooling systems - air cooling - water cooling -	
steam cooling - radiator - types of radiators- constructional details thermostat-	
temperature indicators. Fuel systems-fuel system components-fuel tank-fuel filters and	CO-2
screens-fuel gauges-fuel pumps- carburetors - petrol injection system-diesel pump-	BTL-3
injectors ignition system- battery and coil ignition magneto ignition.	DIL-3
Suggested Reading: Lubrication- purpose of lubricating systems- grading of oils- service	
ratings of oils- oil pumps- oil filters- oil pressure indicators.	
MODULE 3: POWER TRAIN AND CONTROL SYSTEM	9
Transmission – clutch-types of clutches-single and multi plate clutches-centrifugal	
clutch-fluid coupling-torque converter-gear box-sliding mesh-constant mesh-synchro	
mesh. Brakes- mechanical and hydraulic brakes- vacuum, servo and air brakes -	CO-3
different components of braking systems and their functions-constructional details.	BTL-3
Steering mechanism – steering geometry-steering gears-worm and wheel gearspower	
assisted steering-wheel alignment-caster, camber, toe in, toe out; king pin inclination.	

	ted Reading: ABS, air bag, propeller shaft-universal coupling-differential-axle- pating, three-fourth floating, fully floating	
MODUL	E 4: CHASSIS AND SUSPENSION	9
suspens wheel over ru	and suspension – chassis lay out-road springs-shock absorbers-independent sion – torsion bars – air suspension systems – independent rear suspension- balancing-tyres and tubes. Starting mechanism – starter drives-bendix drive- nning clutch.	CO-4 BTL-3
	ted Reading: Tubless tyre, wheel balancing. Automobile air-conditioning.	-
	E 5: ELECTRICAL AND MODERN TRENDS	9
output- cars, ele	al equipments – battery-battery charging-charging circuit-regulating generator wiring circuit Electronic equipments Modern trends in automobiles - Hybrid ectric cars and solar power cars – air pollution and control – pollution rating. ted Reading: Barth and euro emission norms, Driving cycle and vehicle safety	CO-5 BTL-3
TEXT BO	DOKS	
1	R.B.Gupta, (2016), Automobile Engg, SatyaPrakashan Publication 3 rd edition.	
2	N.K. Giri, (2015), Automobile Technology, 2015, Khanna Publication 1 st edition.	
REFERE	NCE BOOKS	
1	Joseph Heitner, (2004), Automotive mechanics, D.VanNostrand Company Inc., I Edition.	New York, 2nd
2	K. Newton,W. Steeds,(2000), Motor Vehicle, ELBS Publishers, London.	
E BOOK	S	
1	https://books.google.co.in/books?id=nBVefxD_0agC&lpg=PP1&dq= A%20text%20book%20of%20automobile%20engineering&pg=PA843#v= onepage&q=A%20text%20book%20of%20automobile%20 engineering&f=false	
2	https://books.google.co.in/books?id=C8UMQDBXBQQC&lpg=PP1&dq= A%20text%20book%20of%20automobile%20engineering&pg=PP1#v=onepage& A%20text%20book%20of%20automobile%20engineering&f=false	q=
MOOC		
1	https://www.edx.org/micromasters/chalmersx-emerging-automotive-technolog	ies
2	https://www.udemy.com/automobile-engineering-from-zero-to-100-for-everyor	ne/

COURSE TITLE	OPER	CREDITS	3		
COURSE CODE	MEC 4356	MEC 4356 COURSE CATEGORY DE			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SO	CHEME				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE

15%	15%	10%	5%	5%	50%							
	Operations Research	(OR) is a discipline that	helps to make be	etter decisions ir	n complex							
Course	scenarios by the app	lication of a set of advan	ced analytical m	ethods. It couple	es theories,							
Description	results and theorem	s of mathematics, statist	ics and probabili	ty with its own t	heories							
	and algorithms for problem solving.											
Course Objective	 To acquire kno industry applicat To know the met To understand th To acquire know 	nable the students to wledge on operations ions thods of solving transpor ne OR tools in wide range ledge on current topics i ne concepts of inventory	tations problems of applications n OR	S	y them in							
Course Outcome	 Apply operation industrial optimi Solve transporta Illustrate the use Demonstrate cu Research for indu 	completion of this cours ns research techniques ization problems. Ition problems using vari of OR tools in a wide ra rrent topics and advance ustrial solutions OR models like Inventory	like L.P.P, sche ous OR methods nge of applicatio d techniques In (duling and sec ns in industries Operations	quencing in							

Prerequisites: NIL

CO, PO AND PSO MAPPING

CO	PO -1	РО	РО	РО	РО	РО	PO	PO	РО	PO	РО	PO-	PSO-1	PSO-2
CO	PO-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	P30-1	
CO-1	3	3	1	-	2	-	1	2	-	-	1	2	-	-
CO-2	3	-	-	-	2	-	-	-	-	-	1	-	-	-
CO-3	3	2	2	-	2	-	-	-	-	-	1	2	-	-
CO-4	3	-	1	-	2	-	1	2	-	-	1	2	-	-
CO-5	3	3	1	-	2	-	-	-	-	-	1	2	-	-
		4				N 4 I				a <u>c</u> .				

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: INTRODUCTION TO OPERATIONS RESEARCH

Introduction- Role of Operations Research in business-Role of O.R in Engineering-MainPhases of OR. Linear Programming Formulation and Graphical method -Network Models-
Assignment and Transportation models.CO-1
BTL-2

Suggested Reading: LPP problem's using TORA and MatLab $\ensuremath{\mathbb{C}}$.

MODULE 2: SEQUENCING MODELS

9

9

	-assumptions - Johnson's Algorithm – processing of n jobs on two Machines- n jobs on three machines - processing of n jobs on m machines- processing of	CO-2					
•	n machines – Graphical Method.	BTL-2					
-	eading: Sequencing problems using MatLab©.						
MODULE 3:	DECISION MODELS	9					
	ry – Two-person zero sum games- saddle point- Matrix oddment method-	-					
	Property – Graphical Method.						
Replacement	t models – Items that deteriorate with time - When money value changes –	CO-3					
Items that fa	il completely – Individual replacement and Group replacement.	BTL-3					
Suggested R	eading: Game theory problems using MatLab©.						
MODULE 4:	QUEUING MODELS	9					
Queueing sy	stem- Kendal's Notation- Poisson arrival -single channel models-Multi channel						
models .Stoc	hastic Processes and its classification.						
Simulation:	uses and Limitation -Monte-Carlo Technique -Generation of random numbers-	CO-4 BTL-2					
Simulation applied to queueing and other problems.							
Suggested R	eading: Queueing problems using MatLab©.						
Suggested R	eading: Queueing problems using MatLab©. INVENTORY MODELS	9					
MODULE 5:		9					
MODULE 5: Types of inv	INVENTORY MODELS	9 CO-5					
MODULE 5: Types of inv Shortages -	INVENTORY MODELS ventory – Deterministic Inventory models - Purchase Model with and without	-					
MODULE 5: Types of inv Shortages - Probabilistic	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model.	CO-5					
MODULE 5: Types of inv Shortages - Probabilistic	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks.	CO-5					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Re	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks.	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested R TEXT BOOKS	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Ro TEXT BOOKS	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma, (2012), "Operations Research: Theory and Applications", Macmillan 5 th edition.	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Ra TEXT BOOKS 1 2	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma, (2012), "Operations Research: Theory and Applications", Macmillan 5 th edition.	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Re TEXT BOOKS 1 2 REFERENCE B	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma,(2012), "Operations Research: Theory and Applications", Macmillan 5 th edition.	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Ro TEXT BOOKS 1 2 REFERENCE B 1	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma,(2012), "Operations Research: Theory and Applications", Macmillan 5 th edition. S.Kalavathy ,(2013), "Operations Research", Vikas Publishing House Fourth Editor	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Ra TEXT BOOKS 1 2 REFERENCE B 1 2	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma,(2012), "Operations Research: Theory and Applications", Macmillan 5 th edition. S.Kalavathy ,(2013), "Operations Research", Vikas Publishing House Fourth Editor	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested R TEXT BOOKS REFERENCE B 1 2 REFERENCE B 1 2 E BOOKS	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma,(2012), "Operations Research: Theory and Applications", Macmillan 5 th edition. BOOKS S.Kalavathy ,(2013), "Operations Research", Vikas Publishing House Fourth Editon PKGupta,D.S.Hira,(2014) "OperationsResearch", S.Chand Publishers.	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Ro TEXT BOOKS 1 2 REFERENCE B 1 2 E BOOKS 1	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma,(2012), "Operations Research : Theory and Applications", Macmillan 5 th edition. BOOKS S.Kalavathy ,(2013), "Operations Research", Vikas Publishing House Fourth Editon PKGupta,D.S.Hira,(2014) "OperationsResearch", S.Chand Publishers.	CO-5 BTL-2					
MODULE 5: Types of inv Shortages - Probabilistic Suggested Re TEXT BOOKS 1 2 REFERENCE B 1 2 E BOOKS 1 2	INVENTORY MODELS rentory – Deterministic Inventory models - Purchase Model with and without Manufacturing Model with and without shortages Probabilistic Model. Model-Inventory models with price breaks. eading: Inventory problems using MatLab©. Hamdy A Taha (2016), "Operations Research : An Introduction", Pearson Edu Edition. J.K.Sharma,(2012), "Operations Research : Theory and Applications", Macmillan 5 th edition. BOOKS S.Kalavathy ,(2013), "Operations Research", Vikas Publishing House Fourth Editon PKGupta,D.S.Hira,(2014) "OperationsResearch", S.Chand Publishers.	CO-5 BTL-2 Ication, 9 th Publishers					

COURSE TITLE	MAINTENANCE ENGINEERING AND CONDITION	CREDITS	3
		CREDITO	J

CO-1

CO-2

CO-3

CO-4

CO-5

2

-

2

2

-

1

-

1

1

-

1

3

-

3

-

-

-

-

-

-

-

2

-

-

3

1

-

1

-

-

-

-

-

-

1

-

-

-

-

1

2

-

2

1

-

-

-

-

-

-

1

-

1

1

-

-

-

-

1

1

-

-

-

-

-

					ĺ	MONI	FORIN	G							
COURSE	E CODE		MEC4	357	СС	DURSE	CATE	GORY		DE		L-T-P	-S		3-0-0-0
Vers	sion		1.0Approval Details23 ACM, 06.02.2021					LEARN LEVI		G BTL-3					
ASSESSMENT SCHEME															
First Per Assess			SecondSeminar/PeriodicalAssignments/AssessmentProject									ttenda	ance		ESE
15	%		15	%		1	L 0%			5%		5%			50%
Cou Descri		ma wil mo Id	Maintenance activities are very important activity in Industries to avoid break down of machineries and calculate the machine availability. Preventive maintenance schedule will help to take regular maintenance activities. The basic concepts of condition monitoring gives Identify the machine faults and take corrective action. and to understand the need for safety engineering and its tools												
Cou Objec		1. 2. 3. 4. 5.	To d To u To ic	evelop nderst lentify	preve and ar mach	entive nd app ine fau	mainte reciate Ilts and	enance e the b d take	sched asic co correc	lule oncepts tive ac	s of co tion	nditior	availat n moni		
5. To understand the need for safety engineering and its toolsUpon successful completion of this course the student should be able to1. Identify maintenance activities and calculate machine availability2. Develop preventive maintenance schedule3. Differentiate and appreciate the basic concepts of condition monitoring4. Identify machine faults and take corrective action5. Demonstrate the need for safety engineering and its tools															
Prerequis															
CO, PO A	AND PS	O MA	PPING	i											
со	РО -1	РО -2	PO -3	РО -4	РО -5	РО -6	РО -7	P O- 8	PO -9	PO -10	PO -11	PO -12	PSO	-1	PSO-2

-

-

-

-

-

1: Weakly related, 2: Moderately related and 3: Strongly related									
MODULE 1: PRINCIPLES OF MAINTENANCE PLANNING	10								
Basic Principles of maintenance planning - Objectives and principles of planned									
maintenance activity Importance and benefits of sound Maintenance systems -	CO-1								
Reliability and machine availability MTBF, MTTR and MWT - Factors of availability -									
Maintenance organization - Maintenance economics.									
Suggested Reading: computer aided maintenance management systems, RAM									
(Reliability, availability ,maintainability)									
MODULE 2: MAINTENANCE POLICIES	9								
Maintenance categories - Comparative merits of each category - Preventive									
maintenance, maintenance schedules, repair cycle - Principles and methods of	CO-2								
lubrication - TPM	BTL-3								
Suggested Reading: Statutory requirements on EHS									
MODULE 3: CONDITION MONITORING	9								
Condition Monitoring - Cost comparison with and without CM - On-load testing and off-									
load testing Methods and instruments for CM - Temperature sensitive tapes - pistol	CO-3								
thermometers - wear-debris analysis - use of model predictive control tool box in									
MATLAB©	BTL-3								
Suggested Reading: vibration analysis and current signature analysis, CBM (Condition based maintenance)									
MODULE 4: REPAIR METHODS FOR BASIC MACHINE ELEMENTS	9								
Repair methods for beds, slideways, spindles, gears, lead screws and bearings - Failure	5								
analysis Failures and their development - Logical fault location methods - Sequential fault	CO-4								
location.									
Suggested Reading: Science of friction and wear	BTL-3								
MODULE 5: SAFETY ENGINEERING	8								
Industrial hazards and safety – Cause of accidents and preventive measures - Safety									
	CO-5								
equipment – Safety Planning BTL-3 BTL-3									
Suggested Reduing. Factory Act and statutory reduirement on industrial safety									
Suggested Reading: Factory Act and statutory requirement on industrial safety TEXT BOOKS									
TEXT BOOKS 1 Fedele, Lorenzo, (2011), Methodologies and Techniques for Advanced Maintenance									
TEXT BOOKS									
TEXT BOOKS 1 Fedele, Lorenzo, (2011), Methodologies and Techniques for Advanced Maintenance 2 Mishra R C and Pathak K., (2009), Maintenance Engineering and Management, PHI									
TEXT BOOKS 1 Fedele, Lorenzo, (2011), Methodologies and Techniques for Advanced Maintenance 2 Mishra R C and Pathak K., (2009), Maintenance Engineering and Management, PHI New Delhi.	Learning Pvt								
TEXT BOOKS 1 Fedele, Lorenzo, (2011), Methodologies and Techniques for Advanced Maintenance 2 Mishra R C and Pathak K., (2009), Maintenance Engineering and Management, PHI New Delhi. REFERENCE BOOKS	Learning Pvt								

1	https://www.amazon.co.uk/Maintenance-Engineering-Handbook-Eighth-Mobley/dp/ 0071826610
2	https://www.amazon.in/Maintenance-EngineeringKebook/dp/B00K7YGK8K
MOO	C
1	www.nptelvideos.com/lecture.php?id=14763
2	nptel.ac.in/courses/112107142/28

LIST OF DEPARTMENTAL ELECTIVES - SEMESTER VI

COUR	SE TIT	LE			TRI	BOLOG	gy in d	ESIGN				CRED	ITS	3
COUR	SE CO	DE	MEC	4366	C	OURSE	CATE	GORY		DE		L-T-P	-S	3-0-0-0
Ve	ersion		1	0		Approval Details 23 ACM, 06.02.2021					LEARN LEVE	_	BTL-4	
ASSES	SMEN	T SC	HEME		·									
	Periodi essmer		Perio	cond odical sment	As		minar/ ents/ P	roject	-	rise Te Quiz	st /	Attenda	ince	ESE
1	15%		1	5%		:	10%			5%		5%		50%
	Course Escription This course deals with Friction, Wear and Lubrication concepts.													
	1. To understand the types of Friction and its types.													
Co	ourse		2. To i								n.			
Obj	jective	9					rent ty	•	•	S.				
			4. To (-							
			•		-		s cours							
												-	aterials	
	ourse			•								chnique	9	
Out	tcome		3. Apply the types of lubricants in different machining processes											
			 Apply the concepts of tribology in bearing Apply contacts under lubrication 											
				-			Direatio							
Prereq	uisites	s: Ma	nufactu	ring Te	chnolo	gy II								
CO, PC	D AND	PSO	MAPPIN	NG										
со	РО	PC	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-1	PSO-2
	-1	-2	3	4	5	6	7	8	9	-10	11	12	1.50 1	1.50 2
CO-1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO-2	1	2	2	3	2	-	-	-	-	-	-	-	-	-
CO-3	3	2	-	-	2	-	-	-	-	-	-	-	-	-

CO-4	2	2	-	2	-	-	-	-	-	-	-	2	-	-
CO-5	-	-	-	3	3	-	-	-	-	-	-	2	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related											d			
MODULE 1: SURFACE INTERACTION AND FRICTION											(7)			
Topography of Surfaces – Surface features -Properties and measurement – Surface										urface	(*)			
interaction – Adhesive Theory of Sliding Friction –Rolling Friction-Friction properties of														
metallic and non-metallic materials – friction in extreme conditions –Thermal														
consid	eratio	ns in sl	liding c	ontact	, effec	ts of fri	ction,	wear a	nd lub	ricatior	n in me	etal wo	rking.	CO-1
Abrasi	ve We	ar Resi	istance	of Ma	terials,	Transf	er film	s in Ad	hesion					BTL-4
Sugges	ted Re	eading	s:											
Tribolo	ogy in	Metal	workin	g indu	stries,	measu	ring su	rface r	oughn	ess and	d analy	sing su	irface	
roughr	iess po	ower s	pectrur	n tool i	in MAT	LAB ©								
MODU	LE 2: \	NEAR	AND SI	URFAC	E TREA		Г							(8)
Types	of wea	ar – M	lechani	ism of	variou	s type	s of w	ear — L	aws o	f wear	–Theo	retical	wear	
models	s-Wea	r of M	letals a	and No	nmeta	als — Su	urface	treatm	ents –	- Surfa	ce mo	dificati	ons –	
surface		-										metho	ds –	CO-2
instrun				ional s	tandar	ds in fr	iction	and we	ear mea	asurem	ents			BTL-4
Sugges		-												
Introdu						-		nal sur	face ro	oughne	ss pow	er spe	trum	
of a pr			• •											
MODU														(8)
				•	• •	erties-		•		•	•			
						Lubric			•		•			
			-			ication			-	-				CO-3
	•					: lubric				•	•	-	nic -	BTL-4
-		•		ubrica	tion –	Hydro	static II	ubricat	ion – G	ias iubr	ication	1.		
Sugges		-			ala f	abricat	ion to	hniau						
Nano T MODU		•••										M		(10)
						l limit				-			nolde	(10)
		•		•		bounda								
-		•				ydrody	•							
-	•								-	-		-		CO-4
bearings and Journal bearings-Squeeze film effects-Thermal considerations-Hydrostatic lubrication of Pad bearing- Pressure , flow , load and friction calculations-Stiffness									BTL-4					
						estricto								2127
Sugges			-					,		0-				
Nano T		-		pes of	seals,	Frictio	n in sea	als – ch	aracte	ristics				
MODU				·							LUBRIC	CATION		(12)
Rollin	g conta	acts of	Elastic	solids	- conta	act stre	sses –	Hertz a	an stre	ss equa	ation-S	pherica	al and	CO-5
Rolling contacts of Elastic solids- contact stresses – Hertz an stress equation-Spherical and														

cylindric	al contacts-Contact Fatigue life- Oil film effects- Elasto Hydrodynamic lubrication	BTL-4
		DIC-4
-	oft and hard EHL-Reynolds equation for Elasto hydrodynamic lubrication Film	
	ithin and outside contact zones-Film thickness and friction calculation- Rolling	
bearings	- Stresses and deflections-Traction drives	
Suggeste	d Readings:	
Nano Tri	bology, Measurement techniques – contact and non-contact type.	
TEXT BO	DKS	
1	R. Arnell , Tribology: (14 June 2012), Principles and Design Applications, Sprin	ger; Soft cover
	reprint of the original 1 st edition	
2	J.Paulo davim (8 September 2012), Tribology in Manufacturing Technology (Ma	terials Forming,
	Machining and Tribology)Springer; 1 st edition	
3	Michael M. Khonsari, E. Richard Booser, Wiley (1 August 2017), Applied Tri	bology: Bearing
	Design and Lubrication (Tribology in Practice Series); 3 rd edition	
4	T. A. Stolarski, (22 October 2013), Tribology in Machine Design, Newnes	
REFEREN	CE BOOKS	
1	V.B.Bhandari (2012), "Design of Machine Elements ", Tata McGraw hill Edition Pvt,	third edition.
2	Paulo Davim J,(2013), Green Manufacturing Processes and Systems (Mat	erials Forming,
	Machining and Tribology) Springer, 1 st edition.	
E BOOKS		
1	https://drive.google.com/open?id=0B7JWdKw_4Q07QzJaZVpaeXBPOFU	
2	https://www.whsmith.co.uk/dept/ebooks-technology-and-engineering-tribology-	friction-and-
	lubrication-05x02119	
3	https://www.ellibs.com/book/9783642036538/advanced-tribology	
MOOC		
1	https://www.edx.org/course/lean-production-tumx-qpls3x	
·		

COURSE TITLE	QUALITY	AND RELIABILITY ENGI	NEERING	CREDITS	3									
COURSE CODE	MEC4367	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0									
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3									
ASSESSMENT SC	SSESSMENT SCHEME													
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE									
15%	15%	10%	5%	5%	50%									
Course Description	Develop on quality management philosophies, SQC tools, and frameworks for reliability, availability, models, using field and test data and maintainability. Implement strategies for improving reliability of repairable and non-repairable													

		sys	stems													
		1.		idersta liabilit			•	n quali	ty mai	nagem	ent ph	ilosop	hies and fr	rameworks		
		2.	To an	alyze t	he SQ	C tools	s, conc	epts o	f reliat	oility, a	vailab	ility an	d maintair	ability.		
Cou	ırse	3.	To a	pply t	he Q	MS to	ools a	nd Bu	uild sy	vstem	reliab	ility n	nodels for	different		
Obje	ctive			guratic												
		4.	To as	ses rel	iability	of co	mpone	ents an	d syste	ems us	ing fie	ld and	test data.			
		5.	 5. To implement strategies for improving reliability of repairable and non-repairable systems Upon completion of this course, the students will be able to 													
		Up														
		1.	 Develop an understanding on quality management philosophies and frameworks for reliability in Engineering. 													
6		2.	Analy	ze the	SQC t	ools, c	oncep	ts of re	eliabilit	ty, avai	ilability	y and r	naintainab	ility.		
	irse	3.	Apply	, the	QMS	tool	s and	l Buil	d sys [.]	tem r	eliabil	ity m	odels for	different		
Outc	ome		config	guratic	ons.											
		4.	Asses	s relial	bility o	of com	ponen	ts and	systen	ns usin	g field	and te	est data.			
		5.	Imple	ment	strate	gies f	or imp	proving	g relia	bility o	of rep	airable	and non	-repairable		
			syster	ns												
Prerequ	isites: I	Nil														
CO, PO	AND P	SO M	APPIN	G												
0	РО	РО	РО	РО	РО	РО	PO	PO	РО	РО	РО	PO		DSO_2		

со	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	F30-1	F30-2
CO-1	2	1	-	1	1	-	1	1	-	1	1	-	-	-
CO-2	-	-	2	-	3	-	-	1	1	-	-	-	-	-
CO-3	2	1	-	-	-	1	-	-	-	-	1	1	-	-
CO-4	-	-	-	-	3	-	-	-	-	-	1	-	-	-
CO-5	2	1	3	-	-	1	1	-	-	-	-	1	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: QUALITY	9
Quality: Definition, History, Importance, Cost of Quality, Approaches of Quality	
Management. Hierarchy of Quality management: Inspection & Test, Quality Control,	
Quality Assurance, Total Quality Management: Definition, Models of TQM, Elements of	
TQM, Principles of TQM - Edward Deming's approach, PDCA cycle, Joseph M. Juran's	CO-1
approach, JIT, Training for Quality management - Quality Improvement Programme:	BTL-2
Histogram, Charts, Brain-storming, Cause & Effect diagram, Pareto analysis.	
Suggested Reading: Quality Function Deployment, Quality cost systems and Quality	
Policy Deployment.	
MODULE 2: STATISTICAL QUALITY CONTROL	9

T	
SQC tools, Benefits of SQC, Concept of variation, Assignable & Chance causes, Attributes & variables, Frequency Distribution curve & its types. Normal Distribution curve, Problems on Frequency Distribution curve & Normal Distribution curve. Control chart for variable: Definition, Formulae & its problems. Control chart patterns, Process capability. Problems on X & R chart and Process capability. Control chart for attribute: Definition, Formulae & its problems. Problems on p- charts and c-charts. Suggested Reading: Sampling: Definition, types of sampling, importance, benefits and limitations of sampling.	CO-2 BTL-3
MODULE 3: QUALITY MANAGEMENT SYSTEMS	9
Quality Assurance (QA): Introduction, Definition, Management principles in QA, Forms of QA, QA in different stages - Quality planning, QA program, QA aspect, Quality in material management, Vendor selection & development - ISO: Introduction, ISO 9000 series of standard, ISO 9001 clauses, Registration process, Benefits of ISO - ISO 9001 clauses, Registration process, Benefits of ISO - Quality survey: Scope, Types of audit, inspection methods, Quality budget, Vendor Quality Rating. Suggested Reading: Quality Circle: Quality Circle structure, Its operation, Characteristics of Quality Circle, Basic problem solving techniques. Introduction to Six Sigma and Taguchi concepts.	CO-3 BTL-3
MODULE 4: RELIABILITY CONCEPTS	9
Elements of probability, Reliability engineering fundamentals, Failure data analysis and examples, Failure rate, Failure density, Probability of failure, Mortality rate, mean time to failure, Reliability in terms of Hazard rate and Failure Density, examples, Useful life and wear out phase of a system, Concept of burnperiod. Hazard Models, Conditional Probabilities and examples, Multiplication rule and examples, Bayes theorem and examples. Suggested Reading: Weibull model, system reliability, series, parallel and mixed configuration – simple problems	CO-4 BTL-2
MODULE 5: SYSTEM RELIABILITY AND IMPROVEMENT	9
Reliability of series and parallel connected systems and examples, Logic diagrams, An r- out of -n structures, Improvement of components, Element Redundancy, Unit redundancy, Standby redundancy. Suggested Reading : Product design – Product analysis – Product development – Product life cycles.	CO-5 BTL-2
TEXT BOOKS	
1 Samunel. K. H., (2011), TQM - an integrated approach, Crest publishing House.	
2 Grant, Eugene. I., (2013), "statistical quality control", McGraw-hill.	
2Grant, Eugene. I.,(2013), "statistical quality control", McGraw-hill.3Srinath. I. S.,(2012), "Reliability Engineering" Affiliated east west press.	
2 Grant, Eugene. I., (2013), "statistical quality control", McGraw-hill.	

	13 th edition, .
2	Besterfield. D. H., (2017). "Quality Control", Prentice Hall.
3	John. S. Oakland. (2015), "Statistical process control", Elsevier.,9 th edition.
MOOC	
1	https://www.csudh.edu/qa-ms/certificates/reliability-engineering/

COURSI	E TITLE		PRODUCTIVITY MANAGEMENT AND RE-ENGINEERING CREDITS														
COURS	E COD	E	MEC4	368	CC	URSE	CATEC	GORY		DE		L-T-P	-S	3	3-0-0-0		
Vers	sion		1.(ט	4	pprov	al Det	ails		3 ACM, 02.202		LEARNING LEVEL			BTL-3		
ASSESS	MENT	SCHE	ME														
First Pe Assess			SecondSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE														
15	5%		159	%		1	.0%			5%		5%			50%		
Cou Descri		co th co	Productivity management is done to plan and organize the resource and to direct and control the productivity to improve the projects and studies. Re-engineering involves the examination and redesign of the processes and workflows in an organization. This course provides a detailed study on the basic principles of Productivity Models and the applications of Re-Engineering Concepts required for various organizations.														
Cou Obje		1. 2. 3. 4. 5.	appr To u To u To u	oach t nderst nderst nderst	o mea and th and th and th	sure p e proc e orga e busi	roduct luctivi nizatio ness p	ivity. ty cond onal tra rocess	ceptua ansfori re-eng	l frame mation gineerii	work and t	he met			ne system nage it.		
Cou Outc		Upon completion of this course, the students will be able to 1. Demonstrate the productivity concepts and its measurement methods 2. Analyze and apply the principles of organizational transformation.													trategy.		
Prerequi	isites:	NIL															
CO, PO	AND P	SO M	APPIN	G													
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	PO -9	PO -10	PO -11	PO -12	PSO-	1	PSO-2		

CO-1	3	-	1	1	1	-	-	-	-	-	-	-	-	-	
CO-2	-	2	2	-	-	-	-	-	-	2	-	2	2	-	
CO-3	2	2	2	-	-	-	2	2	-	-	1	-	-	-	
CO-4	-	1	-	-	-	-	-	-	-	-	-	2	-	-	
CO-5	CO-5 - 2 2 1														
	1: Weakly related, 2: Moderately related and 3: Strongly related														
MODULE 1: PRODUCTIVITY CONCEPTS AND MEASURES														(9)	
Productivity Concepts, Partial-Factor Productivity, Total Factor Productivity, Productivity Measures, Use of Productivity Measures, Factors Affecting Productivity, Productivity Index, Improving Productivity, Productivity at the National level. Suggested Reading: Investments in physical capital, human capital and innovation drive productivity												tivity,	CO-1 BTL-2		
MODUL	E 2: PF	RODUC	τινιτ	Y CON	CEPTU	AL FRA	AME V	VORK						(9)	
Targetir Product	Business strategy, Marketing strategy, Management strategy, Segmentation, Targeting, Marketing mix, Management by Objectives (MBO), Performance Objectives Productivity (POP) – Methodology and application to manufacturing and service sector. Suggested Reading: Materials management function in a firm.												ctives	CO-2 BTL-3	
MODUL	E 3: M	ANAG	ING O	RGAN	SATIO	NAL T	RANS	ORM	ATION					(9)	
Elemen transfor Transfo Sugges	matior rmatio	n - Ty on, Cor	ypes porate	of Self R	Transf enewa	ormati al - Pha	ion ises of	- Impro Transfo	oving	Oper	ng or ation,	-	tional ategic	CO-3 BTL-3	
MODUL	E 4: Bl	JSINES	SS PRO	CESS F	RE-ENG	GINEEF	RING							(9)	
Business Process Reengineering Methodologies-Introduction into Business Reengineering, Identification of Business Processes, Selection of Business Processes, Understanding of Selected Business Processes, Redesign of the Selected Business Processes, Implementation of Redesigned Business Processes. Suggested Reading: PDCA improvement cycle in manufacturing industries											sses,	CO-4 BTL-3			
MODULE 5: RE-ENGINEERING MODELS AND IMPLEMENTATION													(9)		
PMI LES Model, COBRA, LMI CIP Transformation Model, DSMC Q & PMP model, Moen and Nolan Strategy for process improvement, NPRDC Model- Implementation of Reengineering Projects – Success Factors and common implementation Problem – Cases.										n of	CO-5 BTL-3				
Suggested Reading: Surrogate models, Product oriented models															
TEXT BC	OKS														

1	James Cox III, John Schleier, (2010) "Theory of Constraints for Personal Productivity
1.	Dilemmas", McGraw Hill Professional.
2.	Robert D. Pritchard, Sallie J. Weaver, ElissaAshwood, (2012), "Evidence-Based Productivity
Ζ.	Improvement" Routledge.
3.	Jeffrey Magee, (2015), "The Managerial Leadership Bible" FT Press,
4.	James F. Chang, (2016), "Business Process Management Systems: Strategy and
4.	Implementation", CRC Press,
5.	Carolina Machado, J. Paulo Davim, (2017), "Productivity and Organizational Management",
5.	Walter de Gruyter GmbH & Co KG,
REFERENC	E BOOKS
1.	Matthew P. Stephens, (2010), "Productivity and Reliability-Based Maintenance Management
	Purdue" University Press.
2.	2012, Productivity Measurement in the Retail and Food Industry, Asian Productivity
	Organization (APO), Tokyo. Kurt Lehberger (2016), "Management Concept of Business Process Reengineering", GRIN
3.	Verlag.
4.	Giles Johnston (2017), "Business Process Re-Engineering: A Simple Process Improvement
ч.	Approach to Improve Business Performance "The Business Productivity Series.
5.	Matthew P. Stephens, (2010), "Productivity and Reliability-Based Maintenance Management
E BOOKS	Purdue" University Press,.
1.	https://baaks.google.co.in/baaks2ishp=1574440578_David L.Sumanth
	https://books.google.co.in/books?isbn=1574440578- David J. Sumanth
2.	https://books.google.co.in/books?isbn=0873893395- Joseph N. Kelada
3.	https://books.google.co.in/books?isbn=038734876X-J. Browne, David O'Sullivan
4.	https://books.google.co.in/books?isbn=1317463005 - Evan Berman
MOOC	
1.	https://www.mooc-list.com/course/fundamentals-project-planning-and-management-
	coursera
2.	http://nptel.ac.in/courses/112107143
3.	http://nptel.ac.in/downloads/110105034/
4.	http://nptel.ac.in/courses/110105033/
5.	http://nptel.ac.in/courses/112107142/12

COURSE TITLE	POLYME	POLYMER SCIENCE AND ENGINEERINGCREDITS3											
COURSE CODE	MEC4369	L-T-P-S	3-0-0-0										
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3								
ASSESSMENT S	CHEME												
First	Second	Seminar/	Surprise Test	Attendance	ESE								

Peric	odical		Perio	dical		Assig	nment	s/	/	Quiz				
Asses	sment		Assess	ment		Pr	oject							
15	5%		15	%		1	L 0%			5%		5%		50%
	urse iption	on	the p	olyme	rizatio	n proc	esses.	It also	briefs	s on th	e poly	mer cł	-	an overview stics and the ale.
	urse ective		To u for p To c ident To ap	olymei ompre tify the oprehe	and th rs. hend same nd the	the diffe the p	erent hysica pility cł	metho I trans naracte	ds by ition a eristics	of the of the	polym polym	ner an ner.	d the te	re calculated echniques to
 5. To learn about the different manufacturing processes to form polymer products Upon completion of this course, the students will be able to 1. Demonstrate the basic concepts of Polymer, Nano materials and smart materia 2. Calculate molecular weight of the Polymer materials 3. Describe Transitions, crystallization in Polymers and the concept of metastas state, simulation of self-assembling polymer blend using MATLAB© software 4. Demonstrate the Solution Properties of Polymers and Its Size Exclusion chromatography and Confinement 5. Identify the polymer and process in making polymer components and Creation of the polymer and process in making polymer components and Creation of the polymer and process in making polymer components and Creation of the polymer and process in making polymer components and Creation of the polymer and process in making polymer components and Creation of the polymer and process in making polymer components and Creation provide the polymer and process in making polymer components and Creation provide the polymer polymer polymer polymer components and Creation polymer polymer polymer polymer components and Creation polymer polymer polymer polymer components and Creation polymer polyme													f metastable ftware e Exclusion	
Prerequ		-			istiy									
CO, PO			-											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO- 1	PSO-2
CO-1	2	-	-	-	1	-	-	-	-	-	-	-	-	-
CO-2	2	-	2	-	-	-	-	-	3	2	-	2	-	-
CO-3	-	-	2	-	-	1	-	-	-	-	-	2	-	-
CO-4	2	-	-	2	-	-	-	-	-	-	-	2	-	-
CO-5	3	2	3	2	-	-	-	-	-	-	-	2	-	-
				-	lated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	(
MODU	LE 1: P(OLYM	ERIZA	TION										(9)

Fundamentals of polymers – monomers – functionality - Classification – characterization –. Types of Polymerization: cationic polymerization – anionic polymerization – coordination polymerization – free radical polymerization. Copolymerization concepts - Simple condensation reactions – Extension of condensation reactions to polymer synthesis – functional group reactivity. Poly condensation – kinetics of poly condensation - Carother's equation – Linear polymers by poly condensation – Interfacial polymerization – crosslinked polymers by condensation – gel point- smart gel and smart polymer material – nano materials <i>Suggested Reading: graphene, carbon nanotubes, smart polymer nano composites</i>	CO-1 BTL-3
MODULE 2: MOLECULAR WEIGHTS OF POLYMERS	(9)
Number average and weight average molecular weights – Degree of polymerization – molecular weight distribution – Polydispersity – Molecular weight determination- Different methods – Gel Permeation Chromatography - Renegade Distributions - Tromsdorff effect - <u>size exclusion chromatography</u> - <u>MALDI mass spectrometry</u> . <i>Suggested Reading: calculate molecular weight of the Polymer materials</i>	CO-2 BTL-3
MODULE 3: TRANSITIONS IN POLYMERS	(9)
First and second order transitions – Glass transition, Tg – multiple transitions in polymers – experimental study – significance of transition temperatures. Crystallinity in polymers – differential scanning calorimeter – factors affecting crystallization, crystal nucleation and growth – Relationship between Tg and Tm – Structure–Property relationship- PerkinElmer Analysis. <i>Suggested Reading:</i> Gaining knowledge about the concept of metastable state, simulation of self-assembling polymer blend using MATLAB© software	CO-3 BTL-3
MODULE 4: SOLUTION PROPERTIES OF POLYMERS	(9)
Size and shape of the macromolecules – Solubility parameter – Ideal chain & Gaussian Chain– polymer/solvent interaction parameter – temperature – size and molecular weight. Solution properties of polymers. Importance of Rheology – Newtonian and Non- Newtonian flow behaviour – Polymer melts Rheology - Thermodynamics of Dilute Polymer Solutions Suggested Reading: Flory-Huggins Mean-Field Theory, Size Exclusion Chromatography and Confinement	CO-4 BTL-3
MODULE 5: POLYMER PROCESSING	(9)
Overview of Features of Single screw extruder –Tubular blown film process - Coextrusion Injection Moulding systems – Compression & Transfer Moulding - Blow Moulding – Rotational Moulding – Thermoforming – Vacuum forming - Fiber Spinning process –Structural Foam Moulding – Sandwich Moulding. Processing for Thermosets- Reaction Injection Moulding & Reinforced Reaction Injection Moulding. <i>Suggested Reading: Create mould design using CAD/CAM Software Packages</i> TEXT BOOKS	CO-5 BTL-3

1	R. Griskey (2012). "Polymer Process Engineering", springer.
2	Richard A. Pethrick, (2013). "Polymer Products and chemical Process", Chapman & Hall, New
	York.
REFERE	INCE BOOKS
1	Joel R. Fried ,(2014), "polymer science and technology", Prentice Hall; 3 edition.
2	Sebastian Koltzenburg,(2017), "Polymer Chemistry", 1 st Edition.
3	Hal F. Brinson, (2014), "Polymer Engineering Science and Viscoelasticity" 2nd edition.
4	Donald G. Baird, (2014)" Polymer Processing", Wiley; 2 edition
5	A. Gandini (2013), "Advancement in polymer Science", Springer.
6	R. R. Morrison, R. N. Boyd and S. K. Bhattacharjee, (2011), Organic Chemistry, Dorling
	Kindersley (India) Pvt. Ltd, New Delhi.
E BOOK	(S
1	https://books.google.co.in/books?isbn=0123821797 - Alfred Rudin
2	https://books.google.co.in/books?isbn=1932078754 - Paul C. Painter
3	https://books.google.co.in/books?isbn=0299146944 - Robert Byron Bird
4	https://books.google.co.in/books?isbn=3527341315 - Stoyko Fakirov
5	https://books.google.co.in/books?isbn=0471811815 - Herman Francis Mark
MOOC	
1	https://www.edx.org/course/materials-science-engineering-misisx-mse1x
2	http://www.open.edu/openlearn/science-maths-technology/science/chemistry/introduction-
	polymers/content-section-0?active-tab=description-tab
3	http://nptel.ac.in/courses/113105028/
4	http://nptel.ac.in/courses/116102010/

COURSE TITLE	ADVANCED I.C. ENGINE CREDITS 3											
COURSE CODE	MEC4370	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4							
ASSESSMENT S	CHEME	IEME										
First Periodical Assessment	Second Periodical Assessment	Periodical Assignments/ Surprise Test Attendance ESE										
15%	15%	10%	5%	5%	50%							
Course Description	This course describes the applications of the laws of Thermodynamics to various advanced Internal Combustion engines. The course will provide an insight to various modelling and simulation. The advancements such as LHR engines, Stratified charge and lean burn engines, Sensors, Computer Controls are analyzed in detail and enable the student to solve more advanced problems											

		1		unders hods.	stand	the fe	atures	of Ga	as pov	ver cy	cles ar	nd effi	ciency en	hancement
		2		unders	tand t	he con	nbusti	on phe	nome	na in S	I and C	CI engii	nes.	
Co	urse	3	. Τοι	unders	tand t	he con	cept o	fengi	ne cycl	e mod	elling	and sir	nulation.	
Obje	ective	4					rking p	rincip	es LHF	R, Surfa	ace Igr	ition e	engine and	d to analyze
				r perfo										- ·
		5						es of o	operat	ions o	t Sens	ors, C	omputer	Controls to
						nission			م الم الم	nto!!	l ha al			
		1	•							nts wil			marcocio	n and charle
		1.		-		pare u	ne vari	ous cy	cie or	operat	lion ur	ider co	mpressio	n and spark
		2	-	ion en	-									
		2.	2. Analyse the combustion chemistry under constant volume and pressure considerations with emphasizes on premixed and diffusive combustion.											
Со	urse													
Oute	come	<u>່</u> 3.	3. Apply the concept of engine cycle simulation considering adiabatic flame temperature, heat release correlations and other thermodynamic models.											
	 Demonstrate the advances concepts of IC engine like LHR, surface ignition and stratified engine leading to better engine performance 													
	stratified engine leading to better engine performance													
	5. Apply their knowledge on electronics parts used in SI and CI engine for lower													
emission and better performance.														
Prerequisites: Thermal Engineering, IC Engine and Steam turbine														
CO, PO AND PSO MAPPING														
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12		
CO-1	1	-	-	-	-	2	-	-	-	-	-	-	-	-
CO-2	1	-	-	-	-	1	2	-	-	-	-	-	-	-
CO-3	2	-	-	-	-	1	1	3	-	-	-	-	-	-
CO-4	2	-	-	-	-	2	2	1	1	-	1	-	-	-
CO-5	2	-	-	-	-	1	1	2	-	-	-	2	-	-
			1: Wea	akly re	lated,	2: Mo	derate	ly rela	ted ar	nd 3: S	trongly	y relat	ed	
MODU	LE 1:	ENGI	NE CYO	CLE AN	ALYSI	S							9	
Otto, D	iesel, [Dual, S	Stirling	and B	raytor	n cycle	s, Corr	parisc	n of a	ir stan	dard, I	uel ai	r and	
actual (-		•	•		•			,			CO-1
Sugges	•	•	-			-	-		emisti	ry				BTL-3
MODU			-	-	,									9
Combu					stoichi	ometr	v. he	at of	read	tion.	adiab	atic f	lame	-
temper							•							
combu				•					-					CO-2
applica		_					-							BTL-4
	velocity			-				-						
		,	~~~~y	u			221110							

Basic concepts of engine simulation, governing equations, simulation of various engine processes for SI and CI engines. Adiabatic flame temperature, Heat release calculations. Suggested Reading: Thermodynamic and Fluid mechanic based models using Matlab©MODULE 4: ADVANCES IN IC ENGINESLHR engines, Surface ignition concept, Stratified charge and lean burn engines, Performance and emission characteristics, Merits and demerits. Suggested Reading: Concept of HCCI engine and multi fuel engines, Magnetic engineMODULE 5: ELECTRONIC ENGINE9Computer control of SI & CI engines for better performance and low emissions, closed loop control of engine parameters of fuel injection and ignition Suggested Reading: Digital data acquisition system (DDAS), Interfacing of piezo- electric sensor and fuel monitoring sensor.	CO-3 BTL-4 9 CO-4 BTL-4 CO-5 BTL-4
LHR engines, Surface ignition concept, Stratified charge and lean burn engines, Performance and emission characteristics, Merits and demerits.Performance and emission characteristics, Merits and demerits.Suggested Reading: Concept of HCCI engine and multi fuel engines, Magnetic engine9MODULE 5: ELECTRONIC ENGINE9Computer control of SI & CI engines for better performance and low emissions, closed loop control of engine parameters of fuel injection and ignition1Suggested Reading: Digital data acquisition system (DDAS), Interfacing of piezo-1	CO-4 BTL-4 CO-5
Performance and emission characteristics, Merits and demerits.Suggested Reading: Concept of HCCI engine and multi fuel engines, Magnetic engineMODULE 5: ELECTRONIC ENGINE9Computer control of SI & CI engines for better performance and low emissions, closed loop control of engine parameters of fuel injection and ignition9Suggested Reading: Digital data acquisition system (DDAS), Interfacing of piezo-	BTL-4 CO-5
Computer control of SI & CI engines for better performance and low emissions, closed loop control of engine parameters of fuel injection and ignition Suggested Reading: Digital data acquisition system (DDAS), Interfacing of piezo-	
loop control of engine parameters of fuel injection and ignition Suggested Reading: Digital data acquisition system (DDAS), Interfacing of piezo-	
TEXT BOOKS	
1 John B Heywood, (July 2017), "Internal Combustion Engine Fundamentals", McGraw Hill 1 st Edition (Indian Edition)	
2 V Ganesan, (July 2017), "Internal Combustion Engines", McGraw-Hill Education; 4 th Edition	on.
REFERENCE BOOKS	
1 Kenneth W. Raglan and Kenneth M.Bryde. (2011) "Combustion Engineering", CRC Pres and Francis Group. New York, Second Edition.	ess – Taylor
2 Jerald A. Caton, (2016), "An Introduction to Thermodynamic Cycle Simulation for Combustion Engines", John Wiley and Sons,.	
3 A J Martyr and M A Plint, (2007), "Engine Testing – Testing and Practice", Butterworth-I Publication.	-Heinemann
E BOOKS	
	=IC+engine v=onepage
2 https://www.elsevier.com/books/engine-testing/martyr/978-0-7506-8439-2	
3 https://books.google.co.in/books?id=u9FSAAAAMAAJ&q=IC+engine& dq=IC+engine& 3 =X&ved=0ahUKEwiLuPjhl8jZAhVGNI8KHb NvBh8Q6AEILTAB – John B Heywood	hl=en &sa
 https://books.google.co.in/books?id=hfejAwAAQBAJ&printsec=front cover&dq= IC- 4 =en&sa=X&ved=0ahUKEwiLuPjhl8jZAh VGNI8KHb NvBh8Q6AEIK DAA#v=onep =IC%20engine&f=false – V Ganesan 	C+engine&hl page &q
MOOC	
1 http://nptel.ac.in/courses/101104070/	
2 http://nptel.ac.in/courses/101104014/	
3 http://nptel.ac.in/courses/101106037/	
4 http://nptel.ac.in/courses/112104033/	

COURS	E TITLE	:	CREE	P AND	FATI	GUE B	EHAVI	OR OF		ERIALS	C	REDIT	S	3			
COURS	E COD	E	MEC4	371	СС		L-T-P	-S	3-0-0-0)							
Ver	Version1.0Approval Details23 ACM, 06.02.2021										LEARN LEV		BTL-4				
ASSESS	MENT	SCHEI	ME						. .								
First Pe Asses			Seco Perioc Assessi	lical		Assigr	ninar/ nments oject	s/	-	orise To Quiz	est /	Attend	ance	ESE			
15	5%		15% 10% 5% 5% 50%														
	urse iption	th	The course will introduce to the useful life of components which is often limited by the fracture, fatigue and creep properties of the materials used. The students study the fundamental principles leading to failure of technical components.														
	urse ctive	2. 3. 4.	 To Know the structure of materials and their defects To understand the behaviors of materials when subject to creep and fatigue loads leading to their failure in service To identify the privative methods to be adopted to overcome their failures To get Knowledge in failure mechanisms due to creep and fatigue To understand the methods to be adopted in the design stage of the product to sucide their failure 														
	avoids their failure.Upon completion of this course, the students will be able to1. Demonstrate the structure of materials, their defects and the principles behind deformation2. Demonstrate the Creep and Fatigue behavior of the materials when subjected to their respective loads while in serviceOutcome3. Calculate the Creep rupture data and its extrapolation, Fatigue life estimation and reasons for Macro fracto graphic Fatgue failures4. Apply the principles and methods of Creep and Fatigue in the design stage of the product to avoid their failures5. Conduct Fracture and failure analysis																
Prerequ	isites:	Engin	eering	Physic	S												
CO, PO	AND P	SO M	APPIN	G													
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	РО -12	PSO-1	PSO-	-2		
CO-1	3	2	-	-	2	-	-	-	-	-	-	-	-	-			
CO-2	3	2	-	-	2	-	-	-	-	-	-	-	-	-			
CO-3	3	-	2	2	2	1	-	-	-	2	-	-	-	-			

CO-4	3	2	2	2	2	-	-	-	2	-	-	2	-	-
CO-5	3	2	-	-	2	-	-	-	-	2	-	2	-	-
	1: Weakly related, 2: Moderately related and 3: Strongly related													
MODULE 1: INTRODUCTION														(9)
Strength of perfect crystals- Lattice resistance to dislocation movement, Elastic properties of dislocation multiplication—Slip and Twinning in crystalline solid. Suggested Readings: Lattice structure defects, Types of dislocations. Mechanical properties of metals												CO-1 BTL-2		
MODULE 2: HIGH TEMPERATURE DEFORMATION RESPONSE												(9)		
Creep of Solids Temperature stress—Strain rate relation—Deformation mechanism—Super plasticity deformation mechanism maps—Extrapolation procedure for Creep rupture Data—Materials for elevated temperature roles using MAT LAB Curve fitting Tool Box Suggested Readings: Creep behaviour of Metals, Inferences from Creep curves											edure	CO-2 BTL-3		
MODUL	E 3: C\	CLIC S	TRESS	AND S	STRAI	N FAT	IGUE							(9)
Macro fatigue MAT L Sugges	life e AB's St	estima atistic	tion fo al Tool	or Note Box	ched o	compo	onents	—Crac	k initia	ition m	lechan	iisms ι	ising	CO-3 BTL-4
					-								I	(9)
Micros Influer Acquis	MODULE 4: FATIGUE CRACK PROPAGATIONStress and crack length correlations with FCP—Fracture modes in Fatigue— Microscopic fracture mechanisms – Crack growth behaviour at Δk extremes— Influences- Microstructural aspect of FCP in metal box Alloys using MATLAB©'s Data Acquisition Tool BoxSuggested Readings: Types of Mode failures- Design considerations										es—	CO-4 BTL-3		
MODUL		-						-					 	(9)
Typical defects—Microscopic surface examination—Metallographic and Fracto graphic examination Component failure analysis—Fracture surface preservation—Cleaning and replication techniques and Image interpretation using Matlab©'s Image Acquisition Tool box Suggested Readings: Fracture Mechanics and Failure Analysis											and	CO-5 BTL-2		
TEXT BC	OKS													

1	Richard W. Hertzberg, Richard P. Vinci, Jason L. Hertzberg (2012), "Deformation and Fracture
	Mechanics of Engineering Materials" John Wiley and Sons, 5 th edition.
2	Anderson T.L. (2017), "Fracture Mechanics: Fundamentals and Applications" CRC Pres 4 th edition.
3	Jean Lemontre and Rodrigue Desmorat, (2010), "Engineering Damage Mechanics: Ductile, Creep,
	Fatigue and Brittle Failures" Springer.
REFE	RENCE BOOKS
1	Courtney T.H. (2005), "Mechanical Behaviour of Materials" Wave Land Press.
2	Hull &Bacon (2011), "Introduction to Dislocations" Elsevier Ltd, 5 th edition.
3	Michael E. Kassner (2015), "Fundamentals of Creep in Metals and Alloys" Elsevier, 3 rd edition.
4	Norman E.Dowling, (2013), "Mechanical Behaviour of Materials" Pearson Publishing, 4 th edition.
E BO	OKS
1	https://www.amazon.in/Mechanical-Behavior-Matrial-Courtney/BOOGHVBHO
2	https://www.Wiley.com//Dofrmation+and+Fracture+Mechanics+of+
_	EngineeringMaterials%2C+5 th +Edition-10-
3	https//www.goodreads.com/book//285369Deformation_and_Fracture_Mechanics_of_
	Engineering_Materials
MO	OC
1	Edu.epfi.ch/course book/en/fracture-of-materials-MSE-424
2	https//www.edx.org//mechanical-behavior of materials-part-1-mifx-3-032-1
3	https://en.wikipedia.org/wik/creep_(deformation)

COURSE TITLE	PRODUCTI	ON PLANNING AND	CONTROL	CREDITS	3						
COURSE CODE	MEC4372	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0						
Version	1.0	Approval Details	23 ACM,	LEARNING	BTL-3						
version	1.0	Approval Details	LEVEL	DIL-3							
ASSESSMENT SCI	HEME										
First Periodical	Second	Seminar/	Surprise								
Assessment	Periodical	Attendance	ESE								
	Assessment	Project	Test / Quiz								
15%	15%	10%	5%	5%	50%						
Course Description	With the global marketplace constantly changing, it is crucial that your Manufacturing Planning and Control (MPC) system evolve to stay current with technology, product, and market conditions. Regardless of what industry or business you work in, understanding all the various systems involved in Manufacturing Planning and Control is ideal 'Planning and control' is concerned with managing the ongoing activities of the operation to satisfy customer demand.										

				-										
		fo	rmality	and o	detail	may v	ary.							
	urse ective	1.	and prod To k	cont uctior	rol su hische he reo	ich a duling	s wo g, Inve	rk stud ntory C	dy, p ontro	roduct I.	plannir	ng, pr	ocess	planning planning g (MRP II
	urse come isites: N	1. 2. 3. 4. 5.	Reca Dem Illust Desc Appr	ll the onstra rate t ribe th aise t	variou ate the he var ne var he rec	s func e varic ious c ious co cent ti	ctions ous ste ompo ompoi rends	of prod ps of in nents o nents o	uctior idustr if sche f cont anufac	y plannir duling. rolling	ng		Plannin	g (MRPII)
CO, PO	AND PS	50 MA	PPING	i										
со	PO - 1	РО- 2	РО- 3	РО -4	РО -5	РО -6	РО -7	РО- 8	PO -9	PO - 10	PO- 11	PO -12	PSO- 1	PSO-2
CO-1	2	-	-	-	-	2	2	2	-	-	-	2	-	-
CO-2	2	1	1	2	-	2	-	2	2	-	-	2	-	-
CO-3	2	1	2	-	-	-	-	-	2	2	-	3	-	-
CO-4	2	-	-	2	-	-	-	-	2	2	3	3	-	-
CO-5	2	1	-	-	-	-	-	-	2	2	3	3	2	-
		1:	Weakl	y rela	ted, 2:	Mod	eratel	y relate	ed and	3: Stror	ngly rel	ated		<u> </u>
MODUL	LE 1:	PRO	DUCTIO)N FU	NCTIC	NS								9
Functio	ns of pr	roduct	ion coi	ntrol-	Types	of pro	ductio	ons-Pro	duct d	developm	nent ar	d desi	gn-	CO-1
Marketi	ng aspe	ect –F	unctio	nal as	pects-	Opera	ationa	l aspec	t-Dura	ability an	d dep	endabi	ility	BTL-2
aspect-a	aestheti	ic as	oect.	-Econ	omics	of	a ne	ew de	sign,	Method	d stuc	ly, w	ork	
measure	,													
Self Stu	-	nvestr	nents	in ph	iysical	capi	tal, h	uman	capita	l and ir	nnovati	on dr	ive	
producti	•													
MODUL			JSTRY			1		<u>.</u>	·			- 1- 1		9
		-	-		-	•				alue anal isite info	•			CO-2 BTL-2
•		•	-		-	-		-	•	ment pla			Jeu	DIL-2
Suggest	-	_	-	-	-		-		-	inchi pia	ığ.			
MODUL														9
					chedu	ling-So	chedu	ling ru	ıles-	Gantt (charts-	Perpet	ual	CO-3

loading-Basic scheduling problems -Line of balance-Flow production scheduling-Batch

BTL-3

produ	uction scheduling, Loading and -Product sequencing, - kanban–Dispatching-	
Progr	ress reporting and expediting	
Sugg	ested Reading: Cycle-time analysis in batch processing environment	
MOD	ULE 4: CONTROL METHODS	9
Prod	uction Control Systems-Production Control systems- Periodic batch control -	CO-4
Manu	ufacturing lead time-Techniques for aligning completion times and due dates,	BTL-2
Inver	ntory control-Purpose of holding stock-Effect of demand on inventories-Ordering	
proce	edures. Two bin system-Determination of Economic order quantity and economic	
lot siz	ze-ABC analysis	
Sugg	ested Reading: Kaizen , long-term approach ,5 S program	
MOD	ULE 5: COMPUTER IN PRODUCTION PLANNING & CONTROL	9
Intro	duction to Computer Integrated Production Planning systems-elements of Just In	CO-5
Time	Systems-Fundamentals of MRPII, ERP.SAP	BTL-3
Sugg	ested Reading: Business process reengineering in manufacturing industries	
TEXT	BOOKS	
1	John Kenworthy (2013), "Planning and Control of Manufacturing Operations", Routle	edge.
REFE	RENCE BOOKS	
1.	Nick T. Thomopoulos, (2013), "Assembly Line Planning and Control", Springer Business Media.	Science &
2.	Modrák, Vladimír (2014), "Handbook of Research on Design and Manageme Production Systems", IGI Global.	nt of Lean
E BOC		
E BOC 1.		
	DKS	
1.	DKS https://books.google.co.in/books?isbn=0071817247- Thomas E Vollmann https://books.google.co.in/books?isbn=0071750320- F. Robert Jacobs	
1. 2.	DKS https://books.google.co.in/books?isbn=0071817247- Thomas E Vollmann https://books.google.co.in/books?isbn=0071750320- F. Robert Jacobs	

LIST OF DEPARTMENTAL ELECTIVES - SEMESTER VII

COURS				I	DYNAI		ND CO	ONTRO	L		C		S	3				
COURS	E COD	E MEC4451 COURSE CATEGORY DE											L-T-P-S 3-0-0-0					
Ver	sion		1.0	D	A	Approval Details 23 ACM, 06.02.2021						LEARN LEVI		BTL-3				
ASSESS	MENT	SCHEI	ME															
First Pe Asses	eriodica sment		Seco Perioc Assess	dical		Assigr	ninar/ nments oject	5/	-	orise Te ' Quiz	est /	Attenda	ance	ESE				
15	5%		15% 10% 5% 5% 50%															
	urse iption	ma un	Establish the fundamental techniques for modeling dynamic systems. Analyse and manipulate system models in the time and frequency domain. Develop an understanding of feedback control systems and the parameters that influence their stability and performance.															
	urse ective	2	 To learn Low order linear mathematical models of physical systems and their manipulation. To know how negative feedback affects dynamic response and its characterization by primary analysis and performance measures. To learn Fundamental mathematical tools used in system analysis and design. To analyze dynamic systems using standard mathematical techniques 															
	urse come	1. 2. 3. 4. 5.	Desc Fami Evalu Dem	ribe va iliar wi uate th	arious th frec e stab te the	input a juency ility of conce	and ou doma syster pt of s	tput m in des ns usir tability	iodels criptio ng vari 7 and e	ns and ous me	amic s dynar ethods	ystem. nic ana 5.	alysis.	n sensitivity.				
Prerequ	isites:	Mech	anics c	of Mac	hines													
CO, PO	AND P	SO M	APPIN	G														
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	PSO-2				
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1					
CO-1	2		1 - 3 - 2 2 - 1 2										-					
CO-2	2	1	-	3	3	2	2	-	1	-	-	-	-	-				
CO-3	1	-	-	2	-	1	2	-	1	2	-	-	-	-				
CO-4	1	2	-	3	-	-	-	-	-	2	-	-	-	-				
CO-5	1	2	-	2	3	2	1	-	1	2	-	-	-	-				

	1: Weakly related, 2: Moderately related and 3: Strongly related							
MODU	LE 1: LINEAR SYSTEMS THEORY	9						
Review	of time domain analysis of linear systems dynamics - stability, performance							
measur	es and design process - state space and process models - example control							
system	5.							
System	Representation in the s-domain: - free/ forced behaviour and the characteristic	CO-1						
equatio	n - system poles and zeros, relative and absolute stability, root loci - steady-	BTL-3						
state er	ror and the final value theorem.							
Suggest	ted Reading: The Laplace transform and system transfer function, plot free/							
forced	pehaviour using MATLAB©							
MODUL	E 2: FREQUENCY RESPONSE OF LINEAR SYSTEMS	9						
Sinusoi	dal excitation and Fourier Series - forecasting gain and phase, the frequency							
respons	se function - graphical representation of frequency response, Bode plots.	CO-2						
Sugges	ted Reading: Sinusoidal Inputs and response plot, plot the frequency response	BTL-3						
using N	IATLAB©							
MODUI	E 3: CLOSED-LOOP CONTROL SYSTEMS	9						
Open/	closed loop transfer function definitions - performance measures in control system							
design control system design examples - PID control system definitions and CO-3								
charac								
Sugges	Suggested Reading: models of mechanical system , Design PID controller using							
MATLA	B©							
MODUL	E 4: CONTROL SYSTEM STABILITY ANALYSIS	9						
Stabilit	y in the s-domain, the Root locus method - stability in the frequency domain,							
NY Qui	st criterion - performance measures in the frequency domain - gain and phase							
	s, closed loop frequency response.	CO-4						
Sugges	ted Reading: sketching of polar plots, Nichols Plot, performance measures	BTL-3						
	IATLAB©							
MODUL		9						
	compensation objectives and characteristics - lead-lag compensation, root	CO-5						
	nd frequency response methods	BTL-3						
	ted Reading: Gain and Phase Margins							
TEXT BO	I							
1	N.S. Nise, (2012), Control System Engineering, Wiley & Sons, , 6th edition.							
2	C. L. Phillips and R. D. Harbor, (2013), Feedback Control Systems, Pearson Educa	ntion India, 5th						
	Edition.							
3	Craig A Kluever (2015), Dynamic Systems: Modeling, Simulation, and Control, Wi	iley & Sons,.						
REFERE	NCE BOOKS							
1	Benjamin C. KuoFaridGolnaraghi (2014), Automatic Control System, Wiley F	Publication, 9 th						
	edition.							

2	K. Ogata, (2010), Modern Control Engineering, Pearson Education India, 5th Edition.
E BOOK	S
1	https://books.google.co.in/books?id=Gq6T7Pqauk4C&lpg=PP1&dq=Control%20System %20Engineering&pg=PP1#v=onepage&q=Control% 20System%20Engineering&f=false
2	https://books.google.co.in/books?id=mvlQAAAAMAAJ&q=Dynamic+ Systems&dq=Dynamic+Systems&hl=en&sa=X&ved=0ahUKEwjtxObctMjZ AhUCTo8KHcmPB5EQ6AEIKzAB
MOOC	
1	https://www.edx.org/course/dynamics-and-control
2	http://nptel.ac.in/courses/111108066/
3	http://nptel.ac.in/courses/111104025/
4	http://nptel.ac.in/courses/108103007/

COURSE TITLE	MODAL AN	IALYSIS OF MECHANICA	L SYSTEMS	CREDITS	3				
COURSE CODE	MEC4452	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3				
ASSESSMENT SC	HEME			•					
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	It helps the students to get familiarized with the modal testing, modal analysis of single and multi-degree of freedom systems.								
Course Objective	of freedom 2. To make the	students to gain the cor	ncepts on modal	analysis, meas	urement				
Course Outcome	 system, review test procedure and to derive the mathematical models Upon completion of this course, the students will be able to 1. Demonstrate the modal testing procedure and measurement methods of vibration parameters. 2. Present the responses of properties of FRF data for SDOF & MDOF system. 3. Design the elements of the measurement scheme and construct the mounting arrangements for measurement of vibration parameters. 4. Present the modal parameters by using different methods for SDOF & MDOF system. 								
Prerequisites: M	echanics of Mach	ines							

CO, PO		PSO M	APPIN	G										
60	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	
CO	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	PSO-2
CO-1	2	2	2	-	-	2	-	2	-	-	1	2	2	-
CO-2	3	-	-	-	-	-	-	2	2	1	-	1	-	-
CO-3	-	-	-	2	-	2	-	1	3	3	2	1	2	-
CO-4	3	-	-	2	-	-	-	-	-	-	1	-	1	-
CO-5	1	-	1	-	1	2	-	1	-	-	-	2	1	-
1: Weakly related, 2: Moderately related and 3: Strongly related								ed						
MODULE 1: OVERVIEW									9					
Introdu	ction t	o Mo	dal Tes	sting –	Appli	cation	s of M	odal T	esting	, – Phi	losoph	y of N	1odal	
Testing	–Sum	mary	of The	eory –	Sumr	nary o	of Mea	asuren	nent N	/lethoo	ls – S	umma	ry of	CO-1
Analysis	s – Re	eview	of Te	st Pro	ocedur	e.	Sugges	sted F	Readin	g:Basic	com	ponent	ts of	BTL-3
Analysis – Review of Test Procedure. Suggested Reading:Basic components of Measurement System, Nyquist plots														
MODUL	E 2:	THEO	RETIC	AL BAS	SIS									9
Introduction – Single Degree of Freedom (SDOF) System Theory – Presentation and														
Properties of FRF Data for SDOF System – Undamped Multi-degree of freedom (MDOF)									-					
system		•		-	-	-			-					
Dampin	-						-							CO-2
Comple			-				inusoi	dal vik	oration	n and	FRF P	ropert	ies –	BTL-3
Analysi: Sugges							respo	nso fi	Inction	ns Fra	nuenci	, rosno	nses	
of Mass		-			orrice	lacity	respe		metion	13, 1100	fucine	respe	11303	
MODUL					REME	NT TEC		UES						9
Introdu	iction ·	– Basio	c Meas	surem	ent Sy	stem -	- Struc	ture p	repara	ation –	Excita	ation o	f the	
Structu	re –Tra	ansduc	ers an	id Am	olifiers	– Ana	alyzers	– Digi	tal Sig	nal Pr	ocessii	ng – U	se of	
Differer	nt Exci	itation	types	5 – Ca	alibrati	on –	Mass	Cance	llation	n – Ro	tation	al Mo	bility	CO-3
Measur	ement	: – M	leasure	ement	on N	Ion-lin	iear st	tructu	res –	Multi	point	excit	ation	BTL-3
method	ls.													
Sugges		-				sureme	ent cha	ain, Va	rious ı	mount	ing arr	angem	nents	
used in MODUL						RACTIO		THOD	S					9
										odol ^	naluat	~ I _ T		-
Introdu				•							-			
amplitu Inverse				-								•		CO-4
Time Do							• ·				uive I	itting I		BTL-3
						-			-		al serie	s for F	RF	
Suggested Reading: Properties of Modal Circle, Various terms in Modal series for FRF														

MODUL	E 5: DERIVATION OF MATHEMATICAL MODELS	9							
Introdu	ction – Modal Models – Display of Modal Model – Response Models – Spatial								
Models	 Mobility Skeletons and System Models. 	CO-5							
Metho	Methods for Structural modification- Applications. BTL-3								
Sugges	ted Reading: Mobility plot of Simple Mass-Spring-Mass system, Comparison of	DIE-5							
Measur	ed and Predicted Mode Shapes and plotting.								
TEXT BO	DOKS								
1	D J Ewins, (2016), "Modal Testing Theory, Practice and application", Research Ltd., England, 2 nd edition.	n studies press							
2	Rao, S.S., (2014.), "Mechanical Vibrations", Pearson Education Inc., Prentice Hal	l, 6 th Edition.							
3	C. Sujatha, (2009), "Vibration and Acoustics: Measurement and Signal Analysis",	Tata McGraw-							
	Hill Education Private Limited, New Delhi.								
REFERE	NCE BOOKS								
1	Graham Kelly. Scham's (2012), outline of Theory and Problems of Mechanical v	vibrations. Tata							
	McGraw-Hill,. Special Indian edition.								
2	M. L. Munjal, (2014), Noise and Vibration Control, World Scientific Press: Singapo	ore.							
3	A.R.Mohanty, (2014), "Machinery condition Monitoring: Principles and Practices	", CRC Press.							
E BOOK	5								
1	https://drive.google.com/open?id=0B4SOTWiEAAOeMFowVzhSa2s0Rnc-William	n J.Bottega							
2	https://drive.google.com/open?id=0B6pGoYzCs7PgMENHa2lOSEpreTQ - C.F.Be	ards							
3	https://drive .google.com/open?id=0B7JWdKw_4Q07ZnZVYURuWTJnNTQ-SCHA	UM							
MOOC									
1	https://www.mooc-list.com/course/introduction-%C3%A0-la-m%C3%A9canique	-des-non-							
	linear systems vibration								
2	https://courses.iitm.ac.in/course/info.php?id=1395								
3	https://in.mathworks.com/support/learn-with-matlab-tutorials.html								

COURSE TITLE	NEW PRODUCT DESIGN AND DEVELOPMENT CREDITS 3									
COURSE CODE	MEC4453	COURSE CATEGO	RY	DE		L-T-P-S	3-0-0-0			
Version	1.0	Approval Detai	ls	23 ACM, 06.02.2021		LEARNING LEVEL	BTL-3			
ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz		A	ttendance	ESE			
15%	15%	10%		5%		5%	50%			

		Tł	is cour	se disc	usses t	he ste	p by s	step p	rocess	of pro	duct d	levelo	pment. Ev	ery stage
6	urse	of	the dev	velopm	nent cy	cle is o	descril	bed in	detail.	lt pre	pares	the st	udents to	learn the
	riptior	ba	basic concepts involved in each and every step involved in product development											
Desc	Πρειοι	ar	and increases the skill of developing a new product for the customer requirements.											
It also emphasizes the legal and financial aspects of build									uildin	g a ne	w product	•		
		1.	То ас	quire k	nowled	dge or	n prod	uct de	evelopm	nent p	rocess	and p	product pl	anning
		2.	2. To acquire knowledge on concept development											
Co	urse	3.	3. To acquire knowledge on concept testing, product architecture and platform											
Obje	ective		planning											
		4.	4. To acquire knowledge on manufacturing and managing a product											
		5.	To ac	quire k	nowled	dge on	Intell	lectua	l Prope	rty Rig	shts ar	nd Pro	ject Econo	omics
	Upon completion of this course, the students will be able to													
		1.	Descr	ibe the	basic	produ	ct dev	elopn	nent pro	ocess				
Co	urse	2.	Illustr	ate the	e conce	ept de	velopr	nent p	orocess					
Out	come	3.	Apply	the de	esign pi	rocess	for p	roduct	t develo	pmen	t			
		4.	-			-	-	-	ed proje					
		5.	Analy	ze the	IPR rel	ated is	ssues	and pa	atent re	gistra	tion			
Prereq	Prerequisites: Nil													
СО, РС	CO, PO AND PSO MAPPING													
со	РО	PO-	PO-	PO-	PO-	РО	РО	РО	PO-	РО	РО	РО	PSO-1	PSO-2
	-1	2	3	4	5	-6	-7	-8	9	-10	-11	-12		
CO-1	2	2	-	-	3	-	-	-	-	2	-	-	-	-
			_	_	3	-							_	
CO-2	2	2	2				-	-	-	-	-	-	-	-
CO-2 CO-3	2 2	2	-	2	2		-	-	-	-	-	-	-	-
		2 - 2	2 - 2	2 2	2 2	-	-	-		- - 2	-	-	-	-
CO-3	2	-	-			-	-	-	- - -	- - 2 2	-	-	-	- - -
CO-3 CO-4	2 2	- 2 2	-	2	2	- - Mode	- - - rately	- - - relate	- - - ed and 3	2	- - ongly i	relate	- - - d	-
CO-3 CO-4	2 2 2	- 2 2 1	- 2	2 y relat	2	- - Mode	- - rately	- - - relate	- - - ed and 3	2	- - ongly (relate	- - - d	- - - (9)
CO-3 CO-4 CO-5	2 2 2 JLE 1:	- 2 2 1 IN	- 2 : Weakl	2 ly relat CTION	2 ed, 2:		-			2 3: Stro				- - - (9)
CO-3 CO-4 CO-5 MODU	2 2 2 JLE 1: t Dev	- 2 2 1 IN ⁻ velopm	- 2 : Weakl RODU(ent Or	2 ly relat CTION rganiza	2 ed, 2:		-			2 3: Stro				- - - (9)
CO-3 CO-4 CO-5 MODL Produc Identifi Sugges	2 2 JLE 1: t Dev cation ted R	- 2 2 1 velopm of Cus	- 2 : Weakl rRODU(ent Or tomer N	2 y relat CTION rganiza Needs.	2 ed, 2: 1 tions.	Deve	lopme	ent P	Process,	2 3: Stro	duct	Plann	ing,	
CO-3 CO-4 CO-5 MODL Produc Identifi Sugges researc	2 2 2 JLE 1: t Dev cation ted R	- 2 2 1 velopm of Cus eading	- 2 : Weakl rRODUC ent Or tomer N : Estab	2 y relat CTION rganiza Needs. lishing	2 ed, 2: I tions. marke	Deve	lopme	ent P	Process,	2 3: Stro	duct	Plann	ing,	CO-1 BTL-2
CO-3 CO-4 CO-5 MODU Produc Identifi Sugges researc MODU	2 2 2 JLE 1: t Dev cation ted R ch LE 2: (- 2 2 1 velopm of Cus eading	- 2 : Weakl ent Or tomer N : Estab	2 y relat CTION rganiza Needs. lishing	2 ed, 2: I tions. marke	Deve ets- m	lopme	ent F segn	Process, nents-	2 3: Stro Prov	duct nce c	Plann of ma	ing, rket	CO-1
CO-3 CO-4 CO-5 MODU Produc Identifi Sugges researc MODU	2 2 JLE 1: t Dev cation ted R th LE 2: (t and	- 2 2 1 velopm of Cus eading CONCE	- 2 : Weakl rRODUC ent Or tomer N : Estab	2 by relat CTION rganiza Needs. lishing ELOPM cation,	2 ed, 2: I tions. marke	Deve ets- m s step	lopme harket	ent F segn	Process, nents- t gener	2 3: Stro Proo	duct nce c Brain	Plann of ma storm	ing, rket ing,	CO-1 BTL-2
CO-3 CO-4 CO-5 MODU Produc Identifi Sugges researc MODU	2 2 2 JLE 1: t Dev cation ted Ro th LE 2: (t and i ologica	- 2 2 1 velopm of Cus eading CONCE Target	- 2 : Weakl ent Or tomer N : Estab PT DEVI specific ysis, Se	2 y relat CTION rganiza Needs. lishing ELOPM cation, election	2 ed, 2: 1 tions. marke	Deve ets- m s step oncep	lopme narket s in co	ent F segn	Process, nents- t gener	2 3: Stro Proo	duct nce c Brain	Plann of ma storm	ing, rket ing,	CO-1 BTL-2

MODULE 3:	DESIGN PROCESS	(9)					
Concept T	esting, Response and Interpretation. Product Architecture, Platform	CO-3					
planning, Sy	stem level design issues. Embodiment design, Modelling.	BTL-4					
MODULE 4:	PLANNING FOR MANUFACTURE AND MANAGEMENT	(9)					
Detail Design, Design Management, Project planning and control, Production design CO-4							
specificatio	n (PDS), Design review, Value analysis/engineering.	BTL-2					
MODULE 5:	INTELLECTUAL PROPERTY RIGHTS AND PROJECT ECONOMICS	(9)					
Intellectual	Property Rights, Write the description of the invention, Refine Claims,	CO-5					
Pursue ap	plication. Economics and Management Accelerating Projects, Project	BTL-3					
Execution.		DIEG					
TEXT BOOK	S						
1.	1. G. E. Dieter, (2013), "Engineering Design", McGraw – Hill International.						
2.	2. Ken Hurst, (2014), "Engineering Design Principles", Elsevier Science and Technology Books.						
REFERENCE	BOOKS						
1.	Karl T Ulrich, Steven D Eppinger, (2016), "Product design and developme Hill Education, New York.	ent", McGraw-					
2.	Kavin N Aotto, Kritine I Wood, (2013), "Product Design", Prentice Hall Publi	cations.					
E BOOKS							
1.	https://books.google.co.in/books/about/Engineering_Design.html?id=wUgo	qAQAAMAAJ					
2.	https://books.google.co.in/books?isbn=8177588214						
3.	https://books.google.co.in/books?isbn=082477565						
MOOC							
1.	https://onlinecourses.nptel.ac.in/noc17_me16/preview						
2.	https://www.edx.org/course/product-design-delft-design-approach-delftx-	dda691x-1					

COURSE TITLE	ADVAN	CED STRENGTH OF MAT	CREDITS	3					
COURSE CODE	MEC4454	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4				
ASSESSMENT SC	ASSESSMENT SCHEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				

	urse iption	be ur	This Course deals with theory of elasticity, plane-stress and plane-strain, engineering beam theory, beam on elastic foundation, strain energy, curved flexural members, unsymmetrical bending, torsion, geometric nonlinearity, and axisymmetric ally loaded members.											
	urse ective	1.	 To Use approximate theories of strength of materials for engineering stress and strain analyses of open and closed thin-walled sections subjected to torsion and unsymmetric bending. To Analyze curved beam, beams on elastic foundation, shear deformation of beams, and stress concentration problems. 											
							affect their ds, member ntional tools compression, pts of stress,							
Prerequ			-		al									
CO, PO	AND P	SO M	APPIN	G										
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	РО -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	3	3	-	-	-	-	-	-	-	-	-	-	1	-

2

-

-

2

1: Weakly related, 2: Moderately related and 3: Strongly related

-

-

-

-

1

3

_

1

-

2

-

-

-

-

-

-

-

-

_

-

(8)

-

-

-

-

MODULE 1: ELASTICITY

3

3

3

3

3

3

3

2

2

2

2

-

-

-

-

-

-

-

-

3

-

-

-

-

-

-

-

-

CO-2

CO-3

CO-4

CO-5

Spherical coordinates differential econditions - representation of 3 - di law - St. Venant's principle - plane Center: Location of Shear center f Bending: Stresses and deflections in of a section.	I equations of elasticity in Cartesian, Polar and quations of equilibrium - Compatibility - boundary mensional stress of a tensor - Generalized Hooke's strain - plane stress - Airy's stress function. Shear or various sections - shear flows. Unsymmetrical beams subjected to unsymmetrical loading - Kern minate – indeterminate, Stress on inclined planes	CO-1 BTL-4			
MODULE 2: CURVED FLEXURAL MEM		(8)			
closed ring subjected to concentration hooks.	deflections- curved beam with restrained ends- ted load and uniform load chain links and crane allure mode - Necking – tensile member – plastic	CO-2 BTL-4			
MODULE 3: STRESSES IN FLAT PLATE	S	(8)			
Stresses in circular and rectangular conditions - buckling of plates and st Suggested Readings: plane stress – specimen.	CO-3 BTL-4				
MODULE 4: TORISION OF NON - CIRC	(8)				
Torsion of rectangular cross section Prandtl's stress function-Torsional st Suggested Readings: Torsion – recta under torsion in MATLAB©.	CO-4 BTL-4				
MODULE 5: STRESSES DUE TO ROTA	ΓΙΟΝ	(13)			
_		CO-5 BTL-4			
TEXT BOOKS					
	Advanced Strength of Materials", Dover/BSP Books, I heory of Elasticity", McGraw Hill Education, Third edi				
REFERENCE BOOKS					
1 Nash W.A, (2013), "Theo McGrawHill Book Co, Ne	ory and problems in Strength of Materials", Schaum w York.	Outline Series,			
2 Popov E.P,(2015), "Med	hanics of Materials ", Pearson Education India; Secor	d edition.			
3 A. C. Ugural, Saul K. Fenster, (2012), "Advanced strength and applied elasticity" Prentice Hall, Fifth edition.					
4 Beer F. P. and Johnston Edition,.	R, (2015), "Mechanics of Materials", McGraw-Hill Bo	ok Co, Seventh			

5	S.S. Bhavikatti, (2013), "Advanced Strength of Materials", Vikas Publishing, Fouth edition.
6	Hibbeler,R.C, (2016), "Mechanics of materials" Pearson Education, 10 th edition.
E BOOKS	
1	https://goo.gl/ArHdiY - Popov E.P
2	https://goo.gl/EgypX3 - Beer F. P. and Johnston R
3	https://goo.gl/VroJEj - R K Bansal
4	https://goo.gl/bqvIA8 - Rattan S S
MOOC	
1	http://nptel.ac.in/courses/112101095/
2	https://goo.gl/ICHuKR
3	http://nptel.ac.in/courses/112107147/
4	http://nptel.ac.in/courses/112107146/
5	http://nptel.ac.in/courses/112101095/
6	http://nptel.ac.in/courses/105105108/

COURSE TITLE	ТН	ERMAL TURBO MACHI	NES	CREDITS	3					
COURSE CODE	MEC4455	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4					
ASSESSMENT SCHEME										
First Periodical Assessment	SecondSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE									
15%	15%	10%	5%	50%						
Course Description	advanced ener insight to diffe	scribes the applications gy system in engineerir rent power developing vide an opportunity to	ng applications. T and power abso	The course will rbing turbo ma	provide an chines. The					
Course Objective	2. To acquire machines.	asic flow equations rela e the knowledge and e and chose machines f	skill of design	and analyze						
Course Outcome	 Describe the with basic Demonstrative used for error 	 Upon completion of this course, the students will be able to 1. Describe the basics of thermal turbo machines, its governing equation along with basic terminologies and parameters used in this domain 2. Demonstrate the basics of centrifugal compressor, blower and various diffuser used for energy transformation, its performance parameters 								

transformation, its theory and performance parameters

- 4. Illustrate the basics of an axial turbine, its theory along with losses and performance parameters
- 5. Demonstrate the basics of radial flow turbines, wind turbine, various types and working of a horizontal wind turbine and performance parameters.

Prerequisites: Thermal Engineering, Heat Transfer, IC Engine and Steam turbine

CO, PO AND PSO MAPPING

-														
со	РО	PO	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	F30-1	F30-2
CO-1	3	3	2	1	2	2	2	1	1	1	-	-	3	-
CO-2	3	3	2	1	2	-	-	-	1	1	-	-	3	-
CO-3	3	3	-	-	2	2	2	-	-	-	-	-	-	-
CO-4	-	-	2	1	2	2	2	-	1	1	-	-	3	-
CO-5	3	3	2	1	2	2	2	-	1	1	-	-	3	-

1: Weakly related, 2: Moderately related and 3: Strongly related									
MODULE 1: INTRODUCTION TO TURBO MACHINES	9								
Turbines, Pumps, Compressors, Fans and Blowers - Stages of Turbo machines - Energy									
transfer between fluid and rotor - Stage velocity triangles Thermal Turbo machines -									
Classification - General energy equation - Modified to turbo machines compression									
and expansion process - Velocity triangles - Work - T-S and H-S diagram, Total to Total	CO-1								
and Total to Static efficiencies. Dimensional analysis - Non dimensional parameters of	BTL-3								
compressible flow Turbo machines - Similarity laws, applications and limitations.									
Suggested Reading: Shape number, specific speed and its importance in turbo									
machines.									
MODULE 2: CENTRIFUGAL FANS AND BLOWERS	9								
Definition, selection and classifications -Types of blading design-velocity triangles -									
Stage Parameters - Flow analysis in impeller blades - Design parameter- Volute and									
Diffusers - Efficiencies and Losses - Fan noises - Causes and remedial measures.									
Diffusers - Efficiencies and Losses - Fan noises - Causes and remedial measures. Centrifugal Compressors: - Constructional details - Stage velocity triangles Stage	CO 3								
	CO-2								
Centrifugal Compressors: - Constructional details - Stage velocity triangles Stage	CO-2 BTL-4								
Centrifugal Compressors: - Constructional details - Stage velocity triangles Stage work - Stage pressure rise - Stage efficiency - Degree of reaction - Slip factor - H-S									

different mass flow rates using MATLAB©

	5
Definition and classifications - Stage parameters - Types of fan stages-	60 1
performance characteristics. Cascade of blades - Cascade tunnel - Blade geometry -	CO-3
Cascade variables - Energy transfer and loss in terms of lift and drag - Axial Flow	BTL-4

q

	mpressors: definition and classifications - Constructional details - Stage velocity	
	ngles - Stage work - Stage pressure rise - H-S diagram- Stage efficiencies and losses-	
De	gree of reaction - Radial equilibrium-Surging and Stalling - Performance	
cha	racteristics.	
	ggested Reading : Twist in the blades; Plot the W-Q characteristics curve for the al fan at different mass flow rates using MATLAB©	
MO	DULE 4: AXIAL FLOW TURBINES	9
Со	nstruction details - 90 ⁰ IFR turbine - Stage work - Stage Velocity triangles - Stage	
pre	ssure rise - Impulse and reaction stage - Effect of degree of reaction - H-S diagram -	CO-4
Effi	ciencies and Losses Performance characteristics.	BTL-4
Su	gested Reading: Degree of reaction for a case R = 0.50	
	DULE 5: RADIAL FLOW TURBINES AND WIND TURBINES	9
Co	nstructional details Stage velocity triangles - H-S diagram - Stage efficiencies	
	l losses - Performance characteristics. Wind turbines: definition and	
	sifications - Constructional details -Horizontal axis wind turbine- Power	
	veloped - Axial thrust - Efficiency.	CO-5
	ggested Reading: Vertical axis wind turbine, its different types and arrangement.;	BTL-4
	t the performance characteristics curve for a horizontal axis wind turbine at	
	erent wind speeds using MATLAB© T BOOKS	
1	Erik Dick, (2015), "Fundamentals of Turbomachines", Science + Business Media, Spri	nger.
2	S.L Dixon and C.A. Hall, (2015), Fluid Mechanics and Thermodynamics of Tur Elsevier, Seventh Edition.	bo machinery,
3	S.M. Yahya, (2011), Turbines, Compressors and Fans, Tata McGraw Hill Education I	Private Limited,
	New Delhi, Fourth Edition.	
REF	ERENCE BOOKS	
1	H. Cohen, G.F.C. Rogers, Paul Straznicky, H.I.H. Saravanamuttoo, Andrew Nix, (201	7). Gas Turbine
	Theory, Prentice Education Limited.	,,
2	V. Ganesan, (2010), Gas Turbines, Tata McGraw Hill Education Private Limited, No	ew Delhi. Third
-	Edition.	
3	Erich Hau, (2013), Wind Turbines: Fundamentals, Technologies, Application, Econo	mics. Springer
2	London, Third Translated Edition.	
E BO	DOKS	
	https://books.google.co.in/books?id=0SEyBwAAQBAJ&printsec=frontcover&dq=tur	bo
1	machine&hl=en&sa=X&ved=0ahUKEwi8tPeZqdzZAhXCRY8KHW9gAIIQ6AEINjAG	
_	#v=onepage&q=turbomachine&f=false Erik Dick	
	https://books.google.co.in/books?id=wZoTAAAAQBAJ&printsec=frontcover&dq=tur	.po
2	machine+2010&hl=en&sa=X&ved=0ahUKEwij2fjcqtzZAhUBto8KHTrDA8oQ6AEIJDAD	
2	#v=onepage&q&f=false S.L Dixon and C.A. Hall	
2	https://books.google.co.in/books?id=MpAl7kJPR1MC&printsec=frontcover&dq=t	urboma chine
3		

	+2010&hl=en&sa=X&ved=0ahUKEwij2fjcqtzZAhUBto8KHTrDA8oQ6AEIEzAA	#v=onepage&q&
	=false S.M. Yahya	
	https://books.google.co.in/books?id=jX1vKWdUVYMC&printsec=frontcover&	dq=turbo ma
4	chine+2010&hl=en&sa=X&ved=0ahUKEwij2fjcqtzZAhUBto8KHTrDA8oQ6AEIHjAC	
	#v=onepage&q&f=false V. Ganesan	
M	000	
1	http://nptel.ac.in/courses/101101058/	
2	http://nptel.ac.in/courses/112105182/	
3	http://nptel.ac.in/courses/112105206/	
4	http://nptel.ac.in/courses/112107216/	

COURSE TITLE	I	POWDER METALLURGY		CREDITS	3				
COURSE CODE	MEC4456	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4				
ASSESSMENT S	CHEME								
First Periodical Assessment	Second Periodical AssessmentSeminar/Surprise Test / QuizAttendanceESE								
15%	15% 10% 5% 50%								
Course Description Course Objective	 This course introduces the metallurgy of metal powders and its stages to manufacture a powder metallurgy part. A brief overview on the various powder testing procedures and the PM part applications is also covered. 1. To gain an understanding on the various methods to manufacture the metal powders with various sizes and the methods to conditioning the powders. 2. To study the various properties of metal powders and the testing methods for properties. 3. To read and analyze the compaction stage of metal powder and the various methods involved in it. 4. To examine the sintering stage of metal powder and the various methods involved in it. 5. To have a study on the various applications for various metal powders made parts. 								
Course Outcome	 Identify and distribution Identify and distribution Recognize the i Demonstrate a Infer the chang 	f this course, the student stinguish between the va- nditioning. mportance of testing the bout the reasoning in foll e in the property attained prious applications and id	powders using sta owing the compace d because of sinte	andard procedure ction with powde ring.	es. rs				

Prereq	uisites	: Engir	neering	g Mater	ials and	d Meta	llurgy							
СО, РС	D AND	PSO N	ΛΑΡΡΙΝ	IG										
со	РО -1	РО -2	РО- 3	РО- 4	РО- 5	РО- 6	РО- 7	РО- 8	РО- 9	PO - 10	РО- 11	PO- 12	PSO-1	PSO-2
CO-1	2 1										-	-		
CO-2	2	-	2	-	-	-	-	2	-	2	-	1	-	-
CO-3	-	-	2	-	-	1	-	2	-	-	-	1	-	-
CO-4	2	-	_	-	-	_	-	-	-	-	-	1	-	-
CO-5	-	-	3	-	-	-	-	-	-	-	-	-	-	-
			1: V	Veakly	related	l, 2: M	oderate	ely rela	ted an	d 3: Str	ongly r	elated	L	
MODU	JLE 1:	POWD	ER MA	NUFAC		AND CO	ONDITI	ONING						12
process, electro deposition, precipitation from aqueous solution and fused salts, hydro metallurgical method. Physical methods: Electrolysis and atomisation processes, types of equipment, factors affecting these processes, examples of powders produced by these methods, applications, powder conditioning, heat treatment, blending and mixing, types of equipment, types of mixing and blending, Self-propagating high-temperature synthesis (SHS), sol-gel synthesis- Nano powder production methods <i>Suggested Reading: Powder Making from Vapour Phase, Reduction of Metal Compounds.</i> MODULE 2: CHARACTERISTICS AND TESTING OF METAL POWDERS									es of these bes of (SHS), s.	CO-1 BTL-3				
Sampling, chemical composition purity, surface contamination etc. Particle size and its measurement, Principle and procedure of sieve analysis, microscopic analysis: sedimentation, elutriation, permeability. Adsorption methods and resistivity methods: particle shape, classifications, microstructure. Apparent and tap density, green density, green strength, sintered compact density, porosity, shrinkage. Suggested Reading: Specific Surface Determination, Alloying of Powder, SEM Analysis of Powders.								ation, hape, ength,	CO-2 BTL-4					
MODU	LE 3:	POWD	ER COI	MPACT	ION								· · · · ·	7
Pressure less compaction slips casting and slurry casting. pressure compaction- lubrication, single ended and double ended compaction, iso static pressing, powder rolling, forging and extrusion, explosive compaction. Suggested Reading: Injection Moulding, Forming without External Pressure, Methods to								g and	CO-3 BTL-3					
Produce Complicated Parts. MODULE 4: SINTERING														

Stage of si	ntering, property changes, mechanisms of sintering, liquid phase sintering and	
infiltration,	activated sintering, hot pressing and Hot Isostatic Pressing (HIP), vacuum	
sintering,	sintering furnaces-batch and continuous-sintering atmosphere, Finishing	
operations	- sizing, coining, repressing and heat treatment, special sintering processes-	CO-4
microwave	sintering, Spark plasma sintering, Field assisted sintering, Reactive sintering,	BTL-3
sintering of	nano structured materials.	
Suggested	Reading: Sintering in Multicomponent System, Activated Sintering, Sintering	
Furnaces.		
MODULE 5:	APPLICATIONS	10
Major appli	cations in Aerospace, Nuclear and Automobile industries- Bearing Materials-types,	
Self lubricat	tion and other types, Methods of production, Properties, Applications. Sintered	
Friction Ma	terials-Clutches, Brake linings, Tool Materials- Cemented carbides, Oxide ceramics,	CO-5
Cermets- Di	spersion strengthened materials.	BTL-4
Suggested	Reading: Products from Hard Materials and Porous Materials, Products from	
Refractory I	Materials and Magnetic Materials.	
TEXT BOOKS	S	
1	P.C.Angelo and R.Subramanian., (2013), "Powder Metallurgy: Science, Technolog Application" Prentice Hall, Reprint.	y and
2	AnishUpadhya and G S Upadhaya, (2011), "Powder Metallurgy: Science, Technolo Materials, Universities Press,.	ogy and
REFERENCE	BOOKS	
1	Sinha A. K., (2005), "Powder Metallurgy", DhanpatRai& Sons. New Delhi.	
2	Katsuyoshi Kondoh, (2012), "Powder Metallurgy"	
3	ASM Handbook. Vol. 7, (2015), "Powder Metallurgy", Metals Park, Ohio, USA,	
4	Animesh Bose., (2013), "Advances in Particulate Materials", Elsevier Publisher.	
E BOOKS		
1	https://books.google.co.in/books/about/POWDER_METALLURGY.html?id=7cmb7 C. Angelo & R. Subramanian.	'BgZtvIC – P.
2	http://allaboutmetallurgy.com/wp/wp-content/uploads/2016/12/ Powder_Me Kondoh	tallurgy.pdf -
3	https://books.google.co.in/books/about/ASM_Handbook_Volume_7.html?id=ep – ASM Handbook	JUAAAAMAAJ
4	https://books.google.co.in/books/about/Iron_Powder_Metallurgy.html?id=W3r1 BAJ&redir_esc=y - Peter K Johnson.	BwAAQ
MOOC		
1	http://nptel.ac.in/courses/112101005/downloads/Module_3_Lecture_6_final.pd	f
2	http://nptel.ac.in/courses/112107144/12	

COUR	SE TIT	LE		REM	IEWA	BLE SO	URCES	OF EN	IERGY			CRED	ITS		3
COUR	SE CO	DE	MEC	4457	C	OURSE	CATEC	GORY		DE		L-T-P	-S		3-0-0-0
Ve	ersion		1	0		Approv	/al Det	ails		3 ACM 02.202	·	LEARN LEVI	_		BTL-4
ASSES	SMEN	T SCH	IEME												
First P Asse	Period ssmer		Perio	cond odical sment	Ass	Ser signme	minar/ ents/ P		-	rise Te Quiz	est /	Attenda	ance		ESE
1	15%		1	5%		-	L0%			5%		5%			50%
CourseRenewable sources of energy deals with the conventional sources and its available and the emerging new and renewable sources of energy. How to harness the renewable sources, the conventional methods followed and the emerging method are discussed.												ness these g methods			
Obj Co Out	ourse fective ourse tcome	2	2. To 3. To 4. To 5. To en Upon co 1. De de 2. Exp 3. Eff 4. Illu 5. Ap	ources o unde o unde o unde o unde o unde nergy a comple scribe mand olore th ectively strate ply the	rstand rstand rstand rstand tion of the en the sola y utiliz in bio mode	the pr the pr the pr the pr eir dev this co ergy d r energy energy energy energy	operti operti operti elopmo ourse, emano gy reso vailable vsyster rgy co	es of so es of M es of B es of o ent. the stu l of wo ources wind o m. nversio	blar en /ind er io ene ther no idents orld, na and th energy on tech	ergy a nergy a rgy and onconv will be ation a eir effe resou	nd har ind ha d harnovention eable t nd ava ective f rces		resourc	s. enew	able
Prereq	uisites	s: Eng	ineerin	g Thern	nodyn	amics,	Therm	al Engi	ineerir	ıg					
CO, PC) AND	PSO	MAPPI	NG											
со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO-	PSO	-1	PSO-2
CO-1	-1 3	-2 2	-3	-4	-5 2	-6 2	-7 2	-8 1	-9 1	-10 1	-11 -	12 -	3		
CO-2	3	2	1	1	2	-	-	-	1	1	-	-	-		_
CO-3	3	2	-	-	2	2	2	-	1	1	-	-	-		-
CO-4	-	-	1	1	2	2	2	-	_	-	_	-	3		-
CO-5	3	2	1	1	2	2	2	-	1	1	-	-	3		-
			1: W	eakly re	elated	, 2: Mo	oderate	ely rela	ated ar	nd 3: S	trongl	y relate	ed		
MODU	JLE 1:	INT	RODUC	TION											9

World Energ Utilisation – Economics of Suggested Re	CO-1 BTL-3							
MODULE 2:	SOLAR ENERGY		9					
Solar Radiat	on – Measurements of Solar Radiation - Flat Plate and Concentrating							
Collectors – Solar direct Thermal Applications – Solar thermal Power Generation -								
Fundamental	s of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power	BTL-4						
Generation –	Solar PV Applications. Suggested Reading: Solar energy storage							
MODULE 3:	WIND ENERGY		9					
Selection – D	nd Energy Estimation – Types of Wind Energy Systems – Performance – Site etails of Wind Turbine Generator – Safety and Environmental Aspects eading: Application of wind energy	CO-3 BTL-4						
MODULE 4:	BIO - ENERGY	9						
Biomass dire	ct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol	CO-4						
production –	Bio diesel – Cogeneration Suggested Reading: Application of biomass	BTL-4						
MODULE 5:	OTHER RENEWABLE ENERGY SOURCES		9					
Tidal energy	– Wave Energy – Open and Closed OTEC Cycles – Small Hydro-Geothermal	CO-5						
Energy – Hyd Hybrid Syster	rogen and Storage - Fuel Cell Systems Hybrid Systems. Suggested Reading: ns.	BTL-4						
TEXT BOOKS								
1	Rai. G.D., (2011), "Non Conventional Energy Sources", Khanna Publishers, N	ew Delhi.						
2	Twidell, J.W. & Weir, A., (2006), "Renewable Energy Sources", EFN Spon Ltd	. <i>,</i> UK,.						
REFERENCE B	ООКЅ							
1	Tiwari. G.N., (2002), "Solar Energy – "Fundamentals Design, Modelling Applications", Narosa Publishing House, New Delhi.	&						
E BOOKS	· · · · · · · · · · · · · · · · · · ·							
1	https://books.google.co.in/books?id=Vps3P-S85o8C&printsec=copyright							
2	https://books.google.com/books//Non_conventional_Energy_Sources_a	and_Util.htm.						
11000	•							
MOOC								

COURSE TITLE		LEAN MANUFACTURING	CREDITS	3							
COURSE CODE	MEC4458	COURSE CATEGORY	L-T-P-S	3-0-0-0							
Version	1.0	Approval Details	LEARNING LEVEL	BTL-3							
ASSESSMENT SCH	ASSESSMENT SCHEME										

First Periodical Assessment			Seco Period Assessi	lical	Assi		ninar/ nts/ Pi	roject	-	rise Te Quiz	st A	ttenda	ance	ESE	
15%			15%	6		1	.0%			5%		5%		50%	
Cou Descri		th im	e vari	ous to ent LM	ols fo	r lean	manu	ıfactur	ing a	nd the	e app	licatior	n of va	ng system v nrious tools different c	s to
Course Objective1. To understand the concepts of lean manufacturing system 2. To understand the various tools for lean manufacturing (LM). 3. To understand and apply various tools to implement LM system. 4. To understand the principles of six sigma. 5. To understand and learn from case studies of LMCourse OutcomeUpon completion of this course, the students will be able to 1. Demonstrate with concepts of lean manufacturing system 2. Identify the various tools for lean manufacturing (LM).Outcome3. Apply various tools to implement LM system. 4. Apply the principles of six sigma for various environments. 5. Determine procedure to implement of LM in Industry															
Prerequis	sites: N	lil													
СО, РО А	AND PS	O MA	PPING	i											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO	-1 PSO	-2
CO-1	2	1	-	-	-	-	-	-	-	-	-	-	-	-	
CO-2	-	-	2	-	3	-	-	-	-	-	2	-	-	-	
CO-3	2	1	-	-	-	1	-	-	-	-	2	-	-	-	
CO-4	2	1	-	-	3	-	-	-	-	-	1	-	-	-	
CO-5	-	-	3	-	-	-	-	-	-	-	-	1	-	-	
		1	: Wea	kly rela	nted, 2	2: Mod	leratel	y relat	ed and	d 3: Str	ongly	relate	d		
MODUL	E 1: INT	rodu	ΙΟΙΤΟ	N TO LE	EAN N	IANUF	ACTU	RING							9
ConventionalManufacturingversusLeanManufacturingPrinciplesofLeanManufacturing– Basic elements of lean manufacturing– Introduction to LM Tools.BTL-3Suggested Reading:Industry ExamplesBTL-3															
MODULE	2: CEL	LULAF	R MAN	UFACT	URIN	G, JIT,	ТРМ								9
Cellular I Principle impleme	s of JI	Г and	Imple	menta	tion o	f Kank	oan. Ti	PM -	Pillars	of TPI	M, Pri			CO-2 BTL-3	
MODULE 3: SET UP TIME REDUCTION, TQM, 5S, VSM 9															

Princi	p time reduction – Definition, philosophies and reduction approaches. TQM – ples and implementation. 5S Principles and implementation - Value stream ing - Procedure and principles. Suggested Reading: TPS tools & techniques	CO-3 BTL-3							
MOD	DULE 4: SIX SIGMA	9							
expe	Sigma – Definition, statistical considerations, variability reduction, design of riments – Six Sigma implementation. Suggested Reading : Lean Manufacturing pany Application	CO-4 BTL-3							
MOD	OULE 5: CASE STUDIES	9							
	ous case studies of implementation of lean manufacturing at industries. gested Reading: Toyota Production System (TPS) Company Application	CO-5 BTL-3							
TEXT	BOOKS								
1	Ronald G. Askin & Jeffrey B. Goldberg, (2003), "Design and Analysis of Lean Production Systems", John Wiley & Sons.								
2	Mikell P. Groover, (2008), "Automation, Production Systems and CIM", Prentice Hall.								
3	3 Rother M. and Shook J, (2003), "Learning to See: Value Stream Mapping to Add Value and Eliminate Muda", Lean Enterprise Institute, Brookline, MA.								
REFE	RENCE BOOKS								
1	James P. James P. W, (2017), "Lean Thinking: Banish Waste and Create Wealth in Your Corporation" Create Space Independent Publishing Platform,.								
2									
E BO	OKS								
1	https://books.google.co.in/books?id=Vps3P-S85o8C&printsec=copyright								
2	Learn to use condition-based maintenance in a Predictive Maintenance program in this online training course on Predictive Maintenance strategy development.								
3 https://www.springer.com/in/book/9783662472149									
MO	oc								
1	This book presents the state-of-the-art in quality and reliability engineering from a p cycle standpoint. Topics in reliability include reliability models, life guides.lib.monash edu/c.php?g=219722&p= 1452921								

LIST OF NON DEPARTMENTAL ELECTIVES OFFERED BY MECHANICAL DEPARTMENT WITH GROUPING - SEMESTER WISE

SEMESTER –III	ER –III
---------------	---------

COURSE TITLE	SE TITLE APPLIED THERMO DYNAMICS FOR ENGINEERS CREDITS 3										
COURSE CODE	MED4281	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0						
Version	1.0	Approval Details	LEARNING LEVEL	BTL-3							
ASSESSMENT SCHEME											
First Periodical Assessment	SecondSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE										
15%	15% 10% 5% 5% 50%										
Course Description	Establish the fundamentals of thermodynamics, IC engines, Turbines, compressors and Refrigeration process										
 Course Objective 1. To understand the fundamentals of thermodynamics and to be able accounting for the bulk behavior of the sample physical systems. 2. To integrate the basic concepts into various thermal applications like gas turbines, steam boiler, steam turbine, compressors 3. To understand the concepts of refrigeration and air conditioning 											
Course Outcome	 Upon completion of this course, the students will be able to Describe the fundamentals of thermodynamics and to be able to apply in real life systems Demonstrate the concepts of IC engines and identify the applications of IC engines Demonstrate the working of gas turbines, steam boiler and steam turbine and identify its applications Illustrate the basics of compressors and identify its suitable applications Demonstrate and apply the concepts of refrigeration and air conditioning for different applications. 										
Prerequisites: Basic Sciences											
CO, PO AND PSO MAPPING											

-														
со	РО	PO	РО	РО	РО	PSO-1	PSO-2							
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	F3U-2
CO-1	2	1	-	3	-	2	2	-	1	2	-	-	-	-
CO-2	2	1	-	3	3	2	2	-	1	-	-	-	-	-
CO-3	1	-	-	2	-	1	2	-	1	2	-	-	-	-
CO-4	1	2	-	3	-	-	-	-	-	2	-	-	-	-

CO-5 1 2 - 2 3 2 1 - 1 2	-			
1: Weakly related, 2: Moderately related and 3: Strongly related				
MODULE 1: BASIC CONCEPTS AND LAWS OF THERMODYNAMICS	9			
Classical approach: Thermodynamic systems – Control volume - System and surroundings – Universe – Properties - State-process – Cycle – Equilibrium - Work and heat transfer – Point and path functions - First law of thermodynamics for open and closed systems - First law applied to acontrol volume - SFEE equations [steady flow energy equation] - Second law of thermodynamics - Heat engines - Refrigerators and heat pumps - Carnot cycle - Carnot theorem. Suggested Reading: IC engine Indicator diagram and problems associated MEP, IP, BP. Solving SFEE applications using Matlab©				
MODULE 2: IC ENGINES	9			
Air standard cycles: Otto, diesel and dual cycles and comparison of efficiency - Working Principle of four stroke and two stroke engines - Working principle of spark ignition and compression ignition engines - Application of IC engines. Suggested Reading: Simulation of Otto, Diesel and Dual cycles using Matlab©.	CO-2 BTL-3			
MODULE 3: STEAM BOILERS AND TURBINES	9			
Formation of steam - Properties of steam – Use of steam tables and charts – Steam power cycle(Rankine) - Modern features of high-pressure boilers – Mountings and accessories – Testing ofboilers. Steam turbines: Impulse and reaction principle – Velocity diagrams – Compounding and governing methods of steam turbines (qualitative treatment only) - Layout and working principle of a steam power plant. <i>Suggested Reading: Case studies on thermal power plants</i>	CO-3 BTL-3			
MODULE 4: COMPRESSORS	9			
Positive displacement compressors – Reciprocating compressors – Indicated power – Clearance volume – Various efficiencies – Clearance ratio - Volume rate - Conditions for perfect and imperfect intercooling - Rotary positive displacement compressors – Construction and working principle of centrifugal and axial flow compressors. Suggested Reading : Compressor selection for different pressure and flow rate in practical applications.	CO-4 BTL-3			
MODULE 5: REFRIGERATION AND AIR CONDITIONING	9			
Modes of heat transfer, Refrigeration - Various methods of producing refrigerating effects (RE) – Vapour compression cycle: P-H and T-S diagram - Saturation cycles - Effect of subcooling and super heating - (qualitative treatment only) - Airconditioning systems – Basic psychrometry - Simple psychrometric processes - Types of air conditioning systems -Selection criteria for a particular application (qualitative treatment only). Cooling of electronic components, Thermoelectric cooling, Chip cooling. <i>Suggested Reading: Thermal Load calculation in building and HVAC.</i>	CO-5 BTL-3			
TEXT BOOKS				

1	Cengel & Boles. (2017), Thermodynamics: an Engineering Approach, McGraw Hill, 8 th Edition.								
2	Nag, P.K., Engineering Thermodynamics, Tata McGraw-Hill Publishing Company, 6th Edition.								
3	S.Domkundwar, C.P.Kothandaraman & A.V.Domkundwar, (2015), Thermal Engineering,								
	Dhanpat Rai & Co.								
REFERE	NCE BOOKS								
1	Rao, Y.V.C., (2003), Thermodynamics, Wiley Eastern Ltd., New Delhi, 4th Edition.								
2	Moran and Shapairo, (2015), Principles of Engineering Thermodynamics, Wiley, 8th Edition.								
3	Rajput R K ,(2016), "A text book of Engineering Thermodynamics", S. Chand publishers.								
4	Stephen J Chapman, (2012), Matlab programing for Engineers, Cengage publishers, 4th edition.								
E BOOK	S								
1	http://engineeringstudymaterial.net/ebook/schaum-outline-of-thermodynamics-forengineers/								
2	http://engineeringstudymaterial.net/ebook/basics-and-applied-thermodynamics/								
3	https://books.google.co.in/books?id=YLNGv0bVay0C&dq=thermal+engineering								
4	https://books.google.co.in/books/about/Thermal_Engineering.html?id=65gxCX2dC84C								
MOOC									
1	http://www.nptelvideos.com/mechanical/								
2	http://nptel.ac.in/courses/112106133/								
3	http://nptel.ac.in/courses/112103016/								
4	http://nptel.ac.in/courses/112106133/								

COURSE TITLE	_	R DEVELOPING MACHIN	CREDITS	3				
COURSE CODE	MED4282	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3			
ASSESSMENT SC	HEME			•				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project Surprise Test / Quiz		Attendance	ESE			
15%	15%	10%	5%	5%	50%			
Course Description	This course is intended to provide the knowledge on different types of power developing engines for transports like roadways, airways and waterways. The students will able gain knowledge on heavy and medium vehicle engine, aircraft engines and marine engine in detail.							
Course Objective	 I. To understand the various aspects of power development in engines I. To understand the construction and working of road transport engines I. To understand various types aircraft engine and its basic components 							

CURRIC	JULUIVI	AND S	YLLABU	12						B.1	ECH –	WECHA	ANICAL EP	IGINEERING
	urse come	4. 5. 1. 2. 3. 4. 5.	To ui engii Upoi Desc Dem Iden Iden	nderst ne ribe th onstra tify van	and th bletion he basi te the rious t d appli te the	e cond of thi cs of p const ypes o y vario meas	s cours orincipl ruction f aircra	troub se, the le and nal fea aft eng	le shoo stude operat tures a ine an	nts wil tion of and pri d oper	nd ins l be ab 2 and nciples ation. f marir	ole to 4 strol s of roa	ke engine ad transp ine.	sportation e. port engine. nod of powe
Prerequ														
со, ро			[[I	I		I	1	I	I	1
со	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO-	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	
CO-1	2	2	2	-	-	2	-	2	-	-	1	2	-	-
CO-2	3	-	-	-	-	1-	-	2	2	1	-	1	-	-
CO-3	2	1	1	2	-	2	-	1	3	3	2	1	-	-
CO-4	3	-	-	2	-	-	-	-	-	-	1	-	-	-
CO-5	1	-	1	-	1	2	-	1	-	-	-	2	-	-
		1	L: Wea	ikly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: I	Introd	uction											9
Compre Timing Deviatio Sugges	diagra on from ted Red	m for n ideal ading:	2 an condit IC eng	d 4 st tion in gine, Ty	roke actual <i>pes, E</i>	engine engin <i>Ingine</i>	e, Otto e. <i>Cycles</i>	o, dies						CO-1 BTL-3
MODUL			-			-								9
					CO-2 BTL-3									
MODULE 3: Aircraft engine and components						I	9							
Types o used – small a	f aircra Details	aft eng of sta	gines – arting	· Princi the en	iple of igine -	opera - Deta	ntion – ils of c	arbure	etion a	nd inj	ection	syster	n for	CO-3

operation condition at various altitudes.BTL-3Suggested Reading:Aero engines, Operation, engine material, fuelling and ignition,
Altitude operations.

MODULE 4: Marine Engine and components

details starting Restora Sugges	Comparative study of Slow, medium and high speed marine diesel engine, V-type engine details – Construction and operation, Main propulsion diesel engine, Marine engine starting and reversing system, Safety provisions – Engine slowdown and shutdown – Restoration of operation. Suggested Reading: Slow, medium and high speed engine, marine propulsion, engine starting and slowdown procedures.							
MODU	MODULE 5: Measurement, Inspection and Trouble-shooting 9							
perform Aero en mainten Marine conditio on Air a combus <i>Sugges</i>	otive engines Measurement of friction, Cylinder pressure measurement. Engine hance maps, Engine testing standards ngines Maintenance and inspection check to be carried out. Inspection and hance and troubleshooting – Inspection of all engine components. engines trouble shooting related to various types of marine diesel engines and on monitoring – causes, effects, remedies and prevention of engine not turning and Fuel, knocking at TDC and BDC, black smoke in funnel, poor compression and otion. Eted Reading: Auto-engine, Marine engine and Aircraft engine- Inspection and -shooting.	CO-5 BTL-3						
TEXT B	DOKS							
1	Environmental protection", Engee Enterprises Mumbai, 3rd Edition.							
	NCE BOOKS							
1	Mathur and Sharma, (2002), "Fundamental Combustion Engines" Dhanpat Rai and	d Sons.						
E BOOK	S							
1	https://books.google.co.in/books/about/Advanced_Automobile_Engine_Perform	nance.html						
2	https://books.google.co.in/books/about/Automotive_Engines.html							
3	https://books.google.co.in/books/about/Marine_diesel_engines.html							
4	https://books.google.co.in/books/about/The_Development_of_Jet_and_Turbine	e_Aero.html						
моос								
1	https://nptel.ac.in/courses/112104033/							
2	https://nptel.ac.in/courses/112104033/15							
3	3 https://nptel.ac.in/courses/101101001/28							
4	https://nptel.ac.in/courses/112104033/31							
5	http://nptel.ac.in/courses/112106141/							
6	http://nptel.ac.in/courses/105105108/							

COURSE TITLE	MODERN	MANUFACTURING TEC	CREDITS	3		
COURSE CODE	MED4283	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0	
Version	1.0	Approval Details	LEARNING LEVEL	BTL-3		
ASSESSMENT SCHEME						

First Pe Assess			Second Periodical A Assessment				ninar/ nment oject	s/	-	orise Te ' Quiz	est /	Attend	ance	ESE
15	5%		15% 10% 5% 5%)	50%		
	Course products due to the development of new materials and processes. The students will totally get a feel of the relevant suitable process while evaluating and deciding.													
Cou Obje	ırse ctive		 To make the students aware of the various alternative manufacturing processes available. To develop an altitude to look for the unconventional manufacturing process to machine To make them to understand and appreciate the latest manufacturing process for micro fabrication and devices. 											
Cou Outo Prerequ		4. 5.	Upon completion of this course, the students will be able to 1. Identify a suitable non thermal energy based machining processes for applications											
CO, PO			APPIN	G										
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	PO -7	PO -8	РО -9	PO -10	PO -11	PO -12	PSO-1	PSO-2
CO-1	2	2	1	-	1	2	2	2	-	-	-	-	-	-
CO-2	2	2	-	1	2	-	1	-	1	-	-	-	-	-
CO-3	2	-	-	2	2	-	-	1	-	2	-	2	-	-
CO-4	-	2	1	-	2	-	1	-	-	1	-	2	-	-
CO-5	2	2	-	-	2	-	-	1	-	1	-	2	-	-
		1	L: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODUI	LE 1: N	ЛАСНІ	NING	PROCE	SSES -	- I								9
(Non thermal energy) – Abrasive machining – water jet machining - ultrasonic machining – chemical machining – electro chemical machining – construction working principle – steps - types – process parameters – derivations – problems, merits, demerits and applications.														
MODUI	LE 2: N	IACHII	NING F	PROCE	SS – II								<u>,</u>	9

construction – principle – applications. MODULE 3: MACHINING P	hemical machining – ECG - Electric discharge machining – types – control - circuits – tool design – merits, demerits & ROCESS – III lectron beam machining – Plasma arc machining – Ion beam	CO-2 BTL-3				
applications. MODULE 3: MACHINING P	ROCESS – III	BTL-3				
MODULE 3: MACHINING P						
Laser beam machining – E	lactron boom machining Plasma are machining Ion boom	9				
		CO-3				
-	working principle types – process parameter – derivations –	BTL-3				
problems, merits, demerits	• •					
MODULE 4: FABRICATION (OF MICRO DEVICES	9				
	and film depurification – Oxidation - diffusion – ion	CO-4				
	netallization – bonding – surface and bulk machining – LIGA	BTL-3				
Process – Solid free form fa	brication.	BIES				
MODULE 5: MICROFABRIC	ATION TECHNOLOGY	9				
Wafer preparation – mon	olithic processing – moulding – PCB board hybrid & mcm	CO-5				
technology – programmable devices & ASIC – electronic material and processing– BTL-3						
steriolithography SAW devi	ces and Surface Mount Technology.					
TEXT BOOKS						
	a & stevan R. schmid, (2009), Manufacturing process Engg ma	terial, Pearson				
Publishers, 5 th Edit	tion.					
REFERENCE BOOKS						
1 Julian W.Gardner,	(2002), Micro senors Mems & smart devices.					
E BOOKS						
1 www.iste.co.uk/d	ata/doc_ayupatunrlmy.pdf					
2 https://lecturenot	tes.in/subject/570/unconventional-machining-process-ump					
3 https://trove.nla.	3 https://trove.nla.gov.au/nbdid/1727915					
4 https://www.panacheehasselt.be > modern machining process by v k jain						
MOOC						
1 https://nptel.ac.ir	n/courses/112107078/					
2 https://nptel.ac.ir	n/courses/112104162/					
3 https://nptel.ac.ir	n/courses/112107077/					
4 https://nptel.ac.ir	n/courses/112104028/					
5 https://vyujacmul	an.cf/1007723408790.php					

COURSE TITLE	CN	CREDITS	3		
COURSE CODE	MED4292	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	HEME				
First Periodical Assessment	Second Periodical	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE

		A	ssessn	nent										
15	5%		15%	6		1	0%			5%		5%	,	50%
	urse iption	accuracy to the components. Therefore studying the fundamentals, construction											ime and ruction	
	urse ctive	2. 3. 4.	. To learn the fundamentals of CNC machines. . To understand the constructional features of CNC machines and Retrofitting. . To learn the concepts of control systems, Feedback devices and tooling. . To understand the CNC part programming . To learn about the economics and maintenance of CNC machines											
	urse come	1. 2. 3. 4.	 Upon completion of this course, the students will be able to Describe the fundamentals of CNC machines. Demonstrate the concepts of constructional features of CNC machines Identify the different controls, Feedback devices, tooling and their selection. Develop the CNC part programming for different profiles Develop the procedure for maintenance of CNC machines. 											
Prerequ	isites:	Manu	facturi	ng Teo	chnolo	gy								
CO, PO	- I		1	1	[[[
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	PO -12	PSO- 1	PSO-2
CO-1	1	2	2	2	-	-	-	-	-	-	1	-	-	-
CO-2	1	2	2	-	2	-	-	-	-	1	-	-	-	-
CO-3	1	-	2	1	-	-	1	-	-	-	-	-	-	-
CO-4	1	1	-	-	2	-	-	-	-	1	1	2	-	-
CO-5	1	-	2	_	1	_	2	-	-	-	-	2	-	-
		1	: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODU	LE 1: F	UND	MENT	TALS O	F CNC	MAC	HINES							9
Introduction to Computer Numerical Control: CNC Systems – An Overview of Fundamental aspects of machine control, Different types of CNC machines – AdvantagesCO-1and disadvantages of CNC machines.BTL-3Suggested Reading: working principle of lathe machine, milling machineBTL-3														
MODU	MODULE 2:CONSTRUCTIONAL FEATURES OF CNC MACHINES AND RETROFITTING 10									ND RE	FROFI	TING	ł	10

drive, Spindle Arrangement measurement Chip conveyo out on conver Suggested Rea	CNC Machines: Structure, Drive Mechanism, gearbox, Main drive, feed e Motors, Axes motors. Timing belts and pulleys, Spindle bearing – and installation. Slide ways. Re - circulating ball screws – Backlash and compensation, linear motion guide ways. Tool magazines, ATC, APC, rs. Retrofitting of Conventional Machine Tools: Modification to be carried intional machines for retrofitting ading: hydraulic power system, pneumatic power system, bearing types	CO-2 BTL-3					
MODULE 3:CO	ONTROL SYSTEMS, FEED BACK DEVICES AND TOOLING	10					
a CNC system measuring system scale – reso Qualified and holding device	of a simple CNC control system. Interpolation systems. Features available in m – introduction to some widely used CNC control systems. Types of stems in CNC machines – Incremental and absolute rotary encoders, linear liver – Linear inductosyn – Magnetic Sensors for Spindle Orientation. I pre-set tooling – Principles of location – Principles of clamping – Work es. prading: sensors classification, types of control system	CO-3 BTL-3					
MODULE 4:	CNC PART PROGRAMMING	9					
Part Program Terminology-G and M Codes – Types of interpolation Methods of CNC part programming – Manual part programming – Computer Assisted part programming – APT language – CNC part programming using CAD/CAM-Introduction to Computer Automated Part Programming. Suggested Reading: CNC codes in Matlab environment							
MODULE 5: ECONOMICS AND MAINTENANCE 7							
Practical aspe	ncing selection of CNC Machines – Cost of operation of CNC Machines – cts of introducing CNC machines in industries – Maintenance features of s – Preventive Maintenance, Other maintenance requirements. Pading: classification of cost, types of maintenance	CO-5 BTL-3					
1	Yoram Koren, (2005), "Computer Control of Manufacturing Systems", Hill Education,.	Tata McGraw-					
2	Graham T. Smith, (2013), "CNC Machining Technology", Springer Scier Media,.	nce & Business					
3	Hans B. Kief, Helmut A. Roschiwal, (2012), "CNC Handbook", McGraw Hil	l Professional,.					
4	Alan Overby, (2010) "CNC Machining Handbook: Building, Prog Implementation", McGraw Hill Professional,	ramming, and					
REFERENCE B	OOKS						
1 Roland Nathan Kalonji, (2018), "CNC Milling Programming. Linear & Circular interpolations for a workpiece", GR,IN Verlag,.							
	2 S. K Sinha, (2010), "CNC Programming using Fanuc", McGraw Hill Professional,.						
3	James Floyd Kelly, Patrick Hood-Daniel, (2010), "Build Your Own CNC Ma press,	chine", A					
4	Marcus Bowman, (2013), "CNC Milling in the Workshop", Crowood,.						
5	Peter Smid, (2010), "CNC Control Setup for Milling and Turning: Masteri Systems", Industrial Press Inc.	ng CNC Control					

E BOOKS	
1	https://books.google.co.in/books?isbn=1418060992- Mike Mattson
2	https://books.google.co.in/books?isbn=3668155267- Krupal Pawar
3	https://books.google.co.in/books?isbn=1447120515- T. Smith
4	https://books.google.co.in/books?isbn=1848003366- Suk-Hwan Suh
MOOC	
1	https://www.mooc-list.com/course/advanced-machine-learning-futurelearn
2	https://nptel.ac.in/courses/112103174/
3	https://nptel.ac.in/courses/112102103/
4	https://nptel.ac.in/courses/112105211/
5	https://nptel.ac.in/courses/108105062/23
6	https://swayam.gov.in/

						:	SEMES	STER -	V					
COURS	E TITLE	≣	UN	CONV	ENTIO	NAL N	1ACHII	NING F	ROCE	SSES	C	REDIT	s	3
COURS	E COD	E	MED4	291	СО	URSE (CATEG	ORY		NE		L-T-P	9-S	3-0-0-0
Ver	sion		1.0		A	Approval Details				3 ACM, 02.202		LEARN LEVI	_	BTL-3
ASSESS	ASSESSMENT SCHEME													
First Pe Assess		Secor Period ssessn	ical	Seminar/ Assignments/ Project			_	orise To ′ Quiz	est 4	Attend	ance	ESE		
15	5%		15%	/ D		1	0%			5%		5%		50%
	urse iption	Тс	о ехро	se the	stude	nt in v	arious	uncon	ventio	nal ma	ichinin	g proc	esses	
Cou Obje	 To learn the course will impart a good perspective with adequate depth to understand the unconventional machining processes To learn relative advantages over conventional machining techniques. 													
	urse come isites:	1. 2. 3. 4. 5.	Desc Com appli Dem Iden	ribe th pare ication onstra tify ele	ne wor the ro s te me ectrical	king p elative chanic l energ	rinciple adva al ene gy base	e of va antage rgy bas ed mac	rious l s ove sed ma hining		vention ventio g proc sses	nal Ma nal te æsses	chnique	Processes. s and their
CO, PO		SO M		G										
со	PO -1	PO -2	PO -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	PO -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	2	1	2	2	1	-	2	-	-	-	1	-	-	-
CO-2	1	1	1	-	2	-	-	2	-	1	1	-	-	-
CO-3	2	-	- 2 2 1 2 -		-	-								
CO-4	1	1	2	-	- 2 1 1		2	-	-					
CO-5	1	-	2	2	1	-	2	-	-	-	-	2	-	-
		1	: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed	
MODUI	LE 1:	NTRO	DUCTI	ON										5
Unconv techniq				-							over	view c	of all	CO-1 BTL-3

MODULE 2: N	AECHANICAL ENERGY BASED PROCESSES	10					
	achining - Water Jet Machining - Ultrasonic Machining. (AJM, WJM and g Principles - equipment used - Applications. <i>Suggested Reading: AJM,</i>	CO-2 BTL-3					
MODULE 3: ELECTRICAL ENERGY BASED PROCESSES8							
Parameters- M	ElectricDischargeMachining(EDM)-workingPrinciples-equipment-ProcessParameters-MRR electrode Tool - Power Circuits-Dielectric - Flushing - Wire cut EDM -BTL-3Applications.Suggested Reading:Wire cut EDMBTL-3						
MODULE 4:	CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES	12					
Chemical Machining and Electro-Chemical Machining (CHM and ECM)-Etchants- maskant techniques of applying maskants-Process Parameters, Principles of ECM - equipment Electrical circuit - Process Parameters-ECG and ECH Applications.CO-4Suggested Reading: ECMBTL-3							
MODULE 5: TH	MODULE 5: THERMAL ENERGY BASED PROCESSES 10						
Machining (EBN	Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Beam Machining (EBM). Principles-Equipment-Types-Beam control techniques - Applications.CO-5 BTL-3Suggested Reading: LASER and PLASMABTL-3						
TEXT BOOKS							
1	Vijay.K. Jain , (2002), Advanced Machining Processes , Allied Publishers Pub	vt. Ltd., New					
REFERENCE BO	OKS						
1	Pandey P.C. and Shan H.S. (2007), Modern Machining Processes Tata Mc Delhi.	Graw-Hill, New					
2	McGeough, Chapman and Halls, (2014), Advanced Machining Methods,	UK.					
3	Abdel, H. and El-Hofy, G.(2005), "Advanced Machining Processes", McG	raw-Hill, USA.					
E BOOKS							
1	1 https://b-ok.cc/book/870376/8a764a						
2	2 https://b-ok.cc/book/2467740/6c8b50						
моос							
1	http://nptel.ac.in/courses/112105126/36						
2	2 http://nptel.ac.in/courses/112105126/39						
3	http://nptel.ac.in/courses/112105127/						

COURSE TITLE	COMPUTER WORKSTATION ERGONOMICS CREDITS 3						
COURSE CODE	MED4293	COURSE CATEGORY	L-T-P-S	3-0-0-0			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3		
ASSESSMENT SCHEME							

First Pe Asses	eriodica sment		Second Periodical Assessment			Assigr	ninar/ nments oject	s/	-	orise Te ' Quiz	est 4	Attenda	ance	ESE	
1!	5%		15%	6		1	.0%			5%		5%		50%	
	urse iption	Erį	gonom		d train	stude			-	-			•	nent of structure	
	urse ective	2.	 To introduce methods of measuring mental workload and to manage occupational stress and strain To provide guidelines based on ergonomics principles for designing computer (office) workstation To expose students to the problems faced by children, women, elders and the 								al				
	urse come	2. 3. 4.	 disabled for designing computer workstation for the special population Upon completion of this course, the students will be able to 1. Demonstrate the basic concepts of Ergonomics and the development of Ergonomics. 2. Describe the human body as a mechanical structure using human biomechanics. 3. Explore the various methods of measuring mental workload and to manage occupational stress and strain 4. Illustrate guidelines based on ergonomics principles for designing workspaces. 5. Describe the problems faced by special populations such as women, children, elders and the disabled for designing various workspaces. 												
Prerequ	isites:	Nil													
CO, PO	AND P	SO M	APPIN	G											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	РО -11	РО -12	PSO-	1 PSO-2	2
CO-1	1	-	-	-	2	2	2	1	1	1	-	-	-	-	
CO-2	1	-	1	1	2	-	-	-	-	-	-	-	-	-	
CO-3	3	-	-	-	2	2	2	-	1	1	-	-	-	-	
CO-4	-	-	1	1	-	-	-	-	-	-	-	-	-	-	
CO-5	3	-	-	-	-	2	2	-	1	1	-	-	-	-	
	1: Weakly related, 2: Moderately related and 3: Strongly related														

akly related, 2: Moderately igiy

Module 1: INTRODUCTION TO ERGONOMICS

The Development of Ergonomics – Evolution of Disciplines, Directions in Europe, Directions in North America; Names for the Discipline ("Ergonomics" and "Human Factors"); The Ergonomic Knowledge Base – Professional Organizations, Sources of Ergonomic Information; Various Workspace Applications of Ergonomics Suggested Reading : Study examples of poor ergonomic designs.	CO-1 BTL-3
Module 2: ANATOMICAL & MECHANICAL STRUCTURE OF THE HUMAN BODY	10

	Dismochanica The Musculeskeletel System Dismochanical Description of the							
	Biomechanics – The Musculoskeletal System, Biomechanical Description of the Human Strength, Assessment of Human Strength; Anthropology and							
	pometry, Measurement Techniques, Available Anthropometric Information;	CO-2						
-	" Design procedures.	BTL-3						
-	ted Reading: Study the different types of human movements.							
	3: HOW THE MIND WORKS	10						
The "Tr	aditional" and the "Ecological" Concepts; Organization of the Nervous system,							
-	Responding to Stimuli; Mental Workload, "Stress" on Individuals and Crews, Strain Experienced by an Individual CO-3							
Experienced by an Individual,								
	Experienced by Confined groups; Enhancing Performance – General Findings,	BTL-3						
-	Findings, Enhancing Teamwork							
	ted Reading: Study the factors affecting human cognition.	10						
	4: THE OFFICE (COMPUTER) WORK STATION	10						
	es of Healthy Sitting – Ergonomic Design of the Office Workstation: Designing the							
Visual II	nterface – Designing the Sit-Down Workstation. Design Principles: Environment –							
Design	for Change –Furniture –Designing the stand-up workstation – Data Entry Devices	CO-4						
– Display Screen – Job Content and Work Organization – Changes through Technological								
Develop	Developments. Improving the body posture: Exercises, methods for correcting postures							
and Tra	and Training.							
Module	5: DESIGNING FOR SPECIAL POPULATIONS	8						
Special	Designs for Women and Men; Designing for Pregnant Women; Designing for							
Childrer	ו;							
_	ng for the Aging – Anthropometry; Changes in Biomechanics; Designing for the	CO-5						
Aging V		BTL-3						
-	mic Design for Disabled Persons; Ergonomic means to Enable the Disabled.							
	ted Reading: Study the various mental and physical conditions that are or are							
	sified as disabilities by the Government of India							
TEXT BC	DOKS							
1	Karl Kroemer, Henrike Kroemer, Katrin Kroemer-Elbert, (2001), ERGONOMICS -	<u>How to Design</u>						
	for Ease & Efficiency, Prentice Hall International Editions.							
REFERE	NCE BOOKS							
1	1 McCormick, E.J., and Sanders, (2011): Human Factors in Engineering and Design, McGraw-Hill,							
	New York.							
E BOOK	5							
1	1 https://uhs.berkeley.edu/sites/default/files/compworkstation_designguidelines.pdf							
2								
MOOC								
1								
L								

COURSE TITLE		ND SAFETY ASPECTS OF N SYSTEM FOR BUILDINGS		CREDITS	3
COURSE CODE	MED4294	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0

Ver	sion		1.0)	A	pprova	al Deta	ails		3 ACM, 02.202		LEARN LEVI		ВТ	°L-3
ASSESS	MENT	SCHE	ME						•		·				
First Pe Asses	eriodica sment		Seco Period ssessn	ical	Seminar/ Assignments/ Project			-	orise Te ' Quiz	est 🖌	Attenda	ance	E	SE	
1	5%		15%	6		1	0%			5%		5%		5	0%
CourseThe course is intended to impart knowledge on energy conservation and efficie aspects from mechanical engineering machinery applications. Refrigeration and conditioning which consumes nearly 40 percent of total power in buildings and safety are dealt in detail (only qualitative treatment only)								and air							
	Course1.To understand the various aspects of energy and its conservation.Objective1.To understand the governing principles of refrigeration and air conditioning.Objective3.To understand various types of HVAC systems.4.To understand the application of various types of HVAC systems.5.To understand the fire safety systems														
	 Upon completion of this course, the students will be able to Demonstrate their understanding of Energy sources, its distribution and conservation Demonstrate the refrigeration cycles and indoor air requirements Identify various air conditioning systems for the required applications. Identify and apply various types of HVAC systems. Demonstrate their understanding of firefighting devices and apply it for differ classes of fire. 														
Prerequ	isites:	Nil													
CO, PO	AND F	PSO M	APPIN	G											
СО	PO -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	PO -11	PO -12	PSO-	1	PSO-2
CO-1	1	2	-	3	-	2	2	-	1	1	2	-	-		-
CO-2	1	-	-	3	3	2	2	-	1	-	-	1	-		-
CO-3	1	2	-	2	-	1	2	-	1	2	-	-	-		-
CO-4	-	2	2 - 3 2 1 1 1 -							-					
CO-5	1	2	-	2	3	2	1	-	1	2	1	-	-		-
										d 3: Stı	rongly	relate	ed		
MODU	LE 1:	HISTO	KY AN	D GRO	WTH	JF ENI	ERGY L	JTILISA	TION					9	

comme conserv insulati Sugges t	Sources of energy, Energy demand and supply, Load curves of residential and commercial buildings, Energy auditing in buildings, Identifying avenues for Energy conservation, Conservation through periodic maintenance. High performance insulation, Day lighting and harnessing solar energy. Economic analysis.CO-1Suggested Reading: methods-Rankine cycle-Various Solar thermal collectorsBTL-3					
	LE 2: BASIC PRINCIPLES OF REFRIGERATION AND AIR CONDITIONING	9				
refriger refriger Psychro Sugges t	Reversed Carnot cycle, refrigerants and Eco friendly refrigerants, tonne of refrigeration, COP, vapor compression refrigeration cycles, vapor absorption refrigeration cycles, Geothermal air conditioning, Maisotsenko cycle, Kalina cycle. Psychrometric processes, Infiltration and indoor air quality. Suggested Reading: Role of NH ₃ -H ₂ O & H ₂ O-LiBr vapour absorption systems in solar air conditioning					
MODUL	E 3: RECENT ADVANCES IN HVAC SYSTEMS	9				
air cond single z Predicti mainter Sugges	Air conditioning systems for various types of buildings: Window air conditioning, Split air conditioning, unitary air conditioning, Packed air conditioning, Centralized systems: single zone and multi zone systems. Economizer cycle, and Heat pumps. HVAC systems: Predictive and Preventive maintenance. Energy conservation through periodic maintenance of HVAC systems. Suggested Reading: Various type of air handling devices, compressors and condenses used in HVAC-designing HVAC circuits for buildings.					
MODUL	E 4: EMERGING TRENDS IN ENERGY CONSERVATION AND MANAGEMENT	9				
Energy school a	al modelling, Star ratings - Energy efficient refrigerators and air conditioners, efficient ventilation of large enclosures, Energy efficiency in domestic buildings, and college environments, Hospital buildings, auditoriums theaters and malls. ted Reading : Green buildings.	CO-4 BTL-3				
MODUL	E 5: FIRE SAFETY AND CASE STUDIES	9				
and hea Dry and handlin conserv	MODULE 5: FIRE SAFETY AND CASE STUDIES 9 Fire triangle, fire classification and extinguishers, Cause of fire in buildings, Fire, smoke and heat Detectors – fire alarm Systems –Manual and Automatic Sprinklers - Fire Drills - Dry and Wet Risers, Fire protection of single and Multi-storied Building. Methods of handling the physically challenged and the elderly people during emergency. Energy conservation methods in fire fighting equipment. CO-5 Suggested Reading: Designing of fire safety circuits for buildings Brilling s					
TEXT BO	DOKS					
1						
2	Khurmi and Gupta, (2015), Refrigeration and air conditioning - S. Chand publishe	r				
1	P.N. Ananthanarayanan, (2013), Basic refrigeration and air conditioning, TMH.					
2	ASHRAE (2015), Hand book – HVAC Systems & Equipment, HVAC Applications.					
3	Grandzik, (2011), Air conditioning System Design Manual, Elsevier Publications, Second edition, , ISBN-10: 938093128X, ISBN-13: 978-9380931289.					

4	Albert Thumann and Scott Dunning, (2011), Plant Engineers & Managers Guide to Energy
	Conservation, The Fairmont Press, 10 th Edition.
5	Dale R. Patrick, Stephen W. Fardo, Ray E. Richardson, (2007), Energy Conservation Guidebook,
	Fairmont Press; 2 nd Edition, , ISBN-10: 0849391784 ISBN-13: 978-0849391781
6	Joel Levitt, (2009), Handbook of Maintenance Management, Industrial Press Inc.,U.S.; 2nd
	edition, , ISBN-10: 0831133899 and ISBN-13: 978-0831133894
E BOOK	5
1	https://books.google.co.in/books?isbn=178262578X-Gopal Nath Tiwari
2	https://books.google.co.in/books?isbn=0080984576-A. A. M. Sayigh
3	https://books.google.co.in/books?isbn=3319110470 - Javad Khaza
MOOC	
1	https://nptel.ac.in/courses/112104225/22
2	https://nptel.ac.in/courses/105102175/
3	https://nptel.ac.in/courses/112105221/
4	https://nptel.ac.in/downloads/112105129/

SEMESTER – V

COURSE TITLE	MEC	CHANICAL MEASUREME	NTS	CREDITS	3	
COURSE CODE	MED4381	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0	
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3	
ASSESSMENT SC	HEME					
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE		
15%	15%	10%	5%	50%		
Course Description	metrological de	intended to provide t vices available to measu re to be adopted to mea	ire the dimensio	on of the comp	onents and the	
Course Objective	 correct procedure to be adopted to measure the dimension of the component. To understand about the fundamentals of General Measurement system & Errors in Measurement To understand the Surface Metrology Concepts and terminology To understand the Basics of Optical Interference and Interferometry Optoelectronic measurements To understand the contact measuring devices and method of measurements. To understand the working principle and various non-contact measuring devices. 					

	Upon completion of this course, the students will be able to
	1. Illustrate basics of principle and operation metrological devices.
	2. Demonstrate the different measurement technologies.
Course	3. Identify various types of measurement technologies used in industries.
Outcome	4. Identify and apply the various contact and non-contact measuring device in industrial sector.
	5. Measure the various frequently used parameters such as temperature, pressure, force and etc.,
Prerequisites: N	il

CO, PO AND PSO MAPPING

•														
со	РО	РО	РО	PSO-1	PSO-2									
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	F30-2
CO-1	1	3	2	-	2	-	-	-	-	-	1	1	-	-
CO-2	1	2	1	2	1	-	-	1	-	1	-	-	-	-
CO-3	2	2	2	1	-	-	1	-	-	-	-	-	-	-
CO-4	2	1	-	-	1	-	-	-	-	1	1	1	-	-
CO-5	1	-	2	1	1	-	2	-	-	-	-	2	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: STANDARDS OF MEASUREMENT	9
Definition and Objectives of metrology, Standards of length - International prototype	
meter, Imperial standard yard, Wave length standard, subdivision of standards, line and	
end standard, Slip gauges, Wringing phenomena, Indian Standards, Numerical problems	
on building of slip gauges.	CO 1
Comparators: Introduction to Comparator, mechanical comparators - Johnson	CO-1
Mikrokator, Sigma Comparator, dial indicator, Optical Comparators -principles, Zeiss	BTL-3
ultra optimeter, Electric and Electronic Comparators -principles, LVDT, Pneumatic	
Comparators - Principles, Solex Comparator.	
Suggested Reading: Characteristics and classification of comparators	
MODULE 2: SYSTEM OF LIMITS, FITS, TOLERANCES AND GAUSING	9
Definition of tolerance, Specification in assembly, Principle of interchangeability and	
selective assembly, limits of size, Indian standards, concept of limits of size and	
tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of	
fits and their designation (IS 919 -1963), geometrical tolerances, positional tolerances,	CO-2
hole basis system, shaft basis system, classification of gauges, brief concept of design of	BTL-3
gauges -Taylor's principles, Design of 'Go' and 'No Go' gauges, Wear allowance on	
gauges. Suggested Reading: Types of gauges -plain plug gauge, ring gauge, snap gauge,	
limit gauge, gauge materials.	
MODULE 3: ANGULAR MEASUREMENTS	9

		-
numericals on screw thread Measurement Toolmakers m	tor, Sine Principle and use of Sine bar, Sine center, use of angle gauges, a building of angles. Screw thread & gear measurement Terminology of als, measurement of major diameter, minor diameter pitch, angle. c of effective diameter by 2-wire and 3-wire methods, Best size wire. hicroscope, gear terminology, use of gear tooth Vernier caliper Reading: Principles of Interferometry: Interferometer, autocollimator,	CO-3 BTL-3
MODULE 4:	MEASUREMENTS AND MEASUREMENT SYSTEM	9
and concept repeatability, I Transducers, Primary and advantages o Electrical int	gnificance of measurement, generalized measurement system, definitions of accuracy, precision, calibration, threshold, sensitivity, hysteresis, linearity, loading effect, system response-times delay. Intermediate modifying and terminating devices: Transfer efficiency, Secondary transducers, electrical, Mechanical, electronic transducers, of each type transducers. Mechanical systems, inherent problems, termediate modifying devices. Terminating devices, Mechanical X-Y Plotters. <i>Suggested Reading:</i> Errors in Measurements, Classification	CO-4 BTL-3
MODULE 5: N	IEASUREMENT OF FORCE, TORQUE, PRESSURE AND TEMPERTURE	9
dynamometer gauge, Pirani (Temperature of thermocoup Measurement	form balance, proving ring, Torque measurement, Prony brake, hydraulic rs. Pressure Measurements Principle, use of elastic members, McLeod Gauge. Bridgeman gauge. and strain measurement: Resistance thermometers, thermo-couple, laws ple materials used for construction, pyrometer, Optical Pyrometer. Strain rs- Strain gauge, gauge factor.	CO-5 BTL-3
TEXT BOOKS		
1	Beckwith Marangoni and Lienhard, (2006), "Mechanical measureme Education, 6 th Edition.	
2	N. V. Raghavendra, (2013), "Engineering Metrology and Measuren University Press,.	nents" Oxford
REFERENCE BC		
1	I. C. Gupta, "Engineering Metrology", Dhanpat Rai Publications, Delhi.	
2	Ernen O Dobeblein, Measurements Systems, Applications & Design, 5 th e	dition.
3	R. S. Shrohi & H. C. Radhakrishna, Mechanical Measurements, New Age Ir Edition.	ntl. Pvt Ltd., 3 rd
E BOOKS		
1	https://global.oup.com/academic/product/engineering-metrology-and-m 9780198085492?cc=in⟨=en& <u>N.V Raghavendra,</u> Oxford University Pre	
	57801580854521CC-IIIQIalig-eliQ <u>IV.V Ragilavenula,</u> Oxford Oniversity Fre	33, 2013.
моос	57801580854529cc-malang-ena <u>N.v Ragnavenura,</u> Oxford Oniversity Pre	33, 2013.

2	https://www.qimtonline.com/course/index.php?categoryid=84
3	http://www.npl.co.uk/commercial-services/products-and-services/training/e-
	learning/introduction-to-metrology/

COURS		E	FUN	IDAM		S OF C		ITER IN	ITEGR	ATED	c	REDIT	s	3
COURS	E COD	E	MED4	382	1	URSE (NE		L-T-P	-S	3-0-0-0
Ver	sion		1.0)	Approval Details				3 ACM 02.202		LEARNING LEVEL		BTL-3	
ASSESS	MENT	SCHE	ИE											
First Periodical Assessment			Seco Period ssessr	ical	Seminar, Assignments/ I			oject	Surprise Test / Quiz			Attendance		ESE
1	5%		15% 10% 5% 5% 50%											50%
	urse iption			rt kno nufactu	-	e on ho	ow cor	nputei	s are i	ntegra	ted at	variou	s levels	of planning
	urse ective	1. 2. 3.	To h	andle	the pro	oduct o	data ai	nd vari	ous so	stem a ftware anning	used	for ma	nufactu	ring
	urse come	1. 2. 3.	3. Differentiate Shop floor controls and components of FMS.											
		4. 5.		•	e CIM e knov			Л data	oases.					
Prerequ	isites:	Nil												
CO, PO	AND P	SO M	APPIN	G										
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	
CO-1	2	1	2	1	-	-	-	-	-	-	1	-	-	-
CO-2	1	2	1	-	1	-	-	-	-	1	-	-	-	-
CO-3	1	-	1	1	-	-	1	-	-	-	-	-	-	-

1: Weakly related, 2: Moderately related and 3: Strongly related

-

-

1

-

-

-

1

-

1

2

-

-

-

-

-

2

1

1

-

-

MODULE 1: INTRODUCTION

1

-

-

2

2

1

CO-4

CO-5

-

-

The meaning a		
	nd origin of CIM- the changing manufacturing and management scene -	
	unication - Islands of automation and software-Dedicated and open	CO-1
	acturing automation protocol - Product related activities of a company-	BTL-3
Marketing engin	neering. Suggested Reading: Manufacturing Technology	
MODULE 2: GR	OUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING	10
	up technology- Role of G.T. in CAD/CAM integration - Part families -	60 3
	nd coding - DCLASS and MICLASS and OPITZ coding systems-Facility	CO-2
	Tbenefits of G.T Cellular manufacturing ling: Industrial process planning types	BTL-3
	OP FLOOR CONTROL AND INTRODUCTION OF FMS	9
	trol-phases - Factory data collection system -Automatic identification	.
•	code technology-Automated data collection system. FMS-components of	CO-3
	1S workstation -Material handling and storage systems	BTL-3
	ding: Types of production process	
	CIM IMPLEMENTATION AND DATA COMMUNICATION	10
CIM and comp	oany strategy - System modelling tools -IDEF models - Activity cycle	
diagram - CIM	open system architecture (CIMOSA)- Manufacturing enterprise wheel-	CO-4
CIM architectur	re - Product data management-CIM implementation software.	BTL-3
Suggested Rea	ding: lifecycle management of products	
MODULE 5: OP	EN SYSTEM AND DATABASE FOR CIM	8
Open systems-	Open system inter connection - Manufacturing automations protocol	CO-5
and technical	office protocol (MAP /TOP) - Development of databases -Database	CO-3
	once protocol (MAP / IOP) - Development of databases -Database	BTI-3
	ggested Reading: Application of CIM database in various industries	BTL-3
		BTL-3
terminology Su		
terminology Su TEXT BOOKS	ggested Reading: Application of CIM database in various industries	
terminology Su TEXT BOOKS	ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput	er integrated
terminology Su TEXT BOOKS 1	ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi.	er integrated
terminology Su TEXT BOOKS 1	ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp	er integrated oringer Science
terminology Su TEXT BOOKS 1 2	ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media.	er integrated oringer Science
terminology Su TEXT BOOKS 1 2	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. 	er integrated oringer Science
terminology Su TEXT BOOKS 1 2 3	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. 	er integrated oringer Science curing: Current
terminology Su TEXT BOOKS 1 2 3 REFERENCE BOO	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. OKS V. Sandoval," (2016), Computer Integrated Manufacturing (CIM) in Japar 	er integrated oringer Science auring: Current
terminology Su TEXT BOOKS 1 2 3 REFERENCE BOO 1	ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. OKS	er integrated oringer Science curing: Current
terminology Su TEXT BOOKS 1 2 3 REFERENCE BOO 1	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. OKS V. Sandoval," (2016), Computer Integrated Manufacturing (CIM) in Japar Chris Fill, Graham Hughes, (2013), "CIM Course book Marketing Cor 	er integrated oringer Science auring: Current
terminology Su TEXT BOOKS 1 2 3 REFERENCE BOO 1 2	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. OKS V. Sandoval," (2016), Computer Integrated Manufacturing (CIM) in Japar Chris Fill, Graham Hughes, (2013), "CIM Course book Marketing Cor 	er integrated oringer Science auring: Current
terminology Survey TEXT BOOKS 1 2 3 REFERENCE BOO 1 2 E BOOKS	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. OKS V. Sandoval," (2016), Computer Integrated Manufacturing (CIM) in Japar Chris Fill, Graham Hughes, (2013), "CIM Course book Marketing Cor Routledge, 	er integrated oringer Science curing: Current
terminology Survey TEXT BOOKS 1 2 3 REFERENCE BOO 1 2 E BOOKS 1	 ggested Reading: Application of CIM database in various industries Mikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi. V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media. Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media. OKS V. Sandoval," (2016), Computer Integrated Manufacturing (CIM) in Japar Chris Fill, Graham Hughes, (2013), "CIM Course book Marketing Cor Routledge, https://books.google.co.in/books?isbn=1506302920- Jeffrey K. Pinto 	er integrated oringer Science curing: Current
terminology Survey TEXT BOOKS 1 2 3 REFERENCE BOO 1 2 E BOOKS 1 2	ggested Reading: Application of CIM database in various industriesMikell.P.Groover, (2008), "Automation, Production Systems and comput manufacturing", Pearson Education, New Delhi.V.D. Hunt, (2012), "Computer-Integrated Manufacturing Handbook", Sp & Business Media.Kiyoji Asai, Gunduz Ulusoy, (2012), "Computer Integrated Manufact Status and Challenges", Springer Science & Business Media.OKSV. Sandoval," (2016), Computer Integrated Manufacturing (CIM) in Japar Chris Fill, Graham Hughes, (2013), "CIM Course book Marketing Cor Routledge,https://books.google.co.in/books?isbn=1506302920- Jeffrey K. Pinto https://books.google.co.in/books?isbn=1483163415- Alan Weatherall	er integrated oringer Science curing: Current n", Elsevier.

1	https://www.mooc-list.com/categories/CIM management
2	https://nptel.ac.in/courses/112102101/
3	https://nptel.ac.in/courses/112103174/
4	https://nptel.ac.in/courses/112104031/
5	https://nptel.ac.in/courses/112102011/
6	https://swayam.gov.in/

COURS			FU	INDAN	1ENTA	LS OF	ENGIN	EERIN	G DES	IGN		CREDIT	S		3		
COURS	E COD	E	MED4	383	CO	URSE	CATEC	GORY		NE		L-T-P	P-S		3-0-0-0		
Vers	ion		1.(n		nnrou	al Dat	aile	23	B ACM,	,	LEARN	ING		BTL-3		
vers	SIOII		1.0	J		pprov	ai Det	alis	06.	02.202	1	LEV	LEVEL				
ASSESS	MENT	SCHE	ME														
First Pe	riodica		Seco	ond		Sen	ninar/		Surr	orise Te	act						
		11	Period	dical		Assigr	ment	s/	-		251	Attend	ance		ESE		
Assess	sment	4	Assess	ment		Pro	oject		/	/ Quiz							
15	5%		159	%		1	.0%			5%		5%	,)		50%		
Cou	irse				•								1				
Descri	ption	То	To impart knowledge on the various design procedures involved in engineering														
1. To impart the importance of design in today's context of global competit										petit	ion,						
Cou			-							riented	-						
Obje	ctive	2.		-		sic con	cepts	and va	rious a	spects	of de	esign us	ing sin	nple	examples		
				case st		<u> </u>											
										nts will							
		1.				-			-			ocess, I	materia	als ai	nd		
Cou	irco		•						•	onents							
		2.	 Design creative components and legal, human and marketing factors during the design of products. 														
Outc	ome	2						- I' -	- 1: - - : :	ام م م ، بل							
						•		• ·		-	•	ormanc nd succ	-				
		4.								igned p			essiui	uesi	gns.		
Prerequi	isites:		Carci			aonity				igneu p		1013.					
CO, PO	AND P	SO M	APPIN	G													
<u> </u>	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PO	PO					

60	PO	РО	PO	РО	PSO-1									
СО	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	P30-1	PSO-2
CO-1	2	3	-	2	-	1	2	-	2	2	-	2	-	-
CO-2	1	-	2	1	3	1	1	-	1	-	1	-	-	-
CO-3	1	-	•	1	-	2	1	-	1	1	2	-	-	-
CO-4	2	3	1	2	-	-	-	-	-	1	-	1	-	-

CO-5	1	2	-	1	3	2	1	-	1	2	1	-		-	-
		-	L: Wea	kly re	lated	2: Mo	derate	ly rela	ted an	id 3: St	trongly	y relat	ed		
MODU	LE 1: D	ESIGN	FUND	AMEN	ITALS										9
Importa of Desig and star	gn –Or	ganiza	tion fo	or desi	gn– C	omput									CO-1 BTL-3
MODU	LE 2: (CUSTO	MER C	RIEN	red d	ESIGN	& SOC	IETAL	CONSI	DERAT	IONS				9
Identi Deploy Aesthet propert	ment- cics. So	Produ cietal	ct Desi consid	gn Spe eratio	ecifica n - Co	tions- ntract	s – Pro	n Facto duct li	ors in D ability)esign – Prot	– Ergc ecting	nomic	s and		CO-2 BTL-3
MODUL	-	-												_	8
Creativ Solving Design Design-	(TRIZ – Eval	ː)– Co uation	ncept meth	ual d ods, E	ecom	positic	n-Gen	erating	g desi	gn co	oncept	s-Axio	matic		CO-3 BTL-3
MODUL	.E 4:	MATE	RIAL S	ELECT	ION F	ROCE	SSING	AND D	ESIGN						9
Materi Index – Process	Value	Analy	sis – R	ole of	Proc	essing	in Des	ign – C	lassifi	cation	of Ma	nufact			CO-4 BTL-3
MODUL	.E 5: F	PROBA	BILITY	CONC	EPTS	IN DES	GIGN FO	OR REL	IABILI	ТҮ					9
Probabi Theory	•				t of I	lypoth	esis –	Desigr	of Ex	perim	ents –	- Relia	bility		CO-5 BTL-3
TEXT BO	DOKS														
1 REFERE	McG	raw Hi					eering Singap		ו - A	Mate	rials a	and P	rocess	ing A	Approach",
1	Pahl	, G, B	eitz, \ Spring				Grote,	КН,	(2007	') <i>, "</i> E	ngine	ering	Design	1- A	systematic
2	Karl	T. Ulri		Steve			er, (20	08) <i>, "</i> P	roduct	: Desig	n and	Devel	opmer	nt" M	cGraw Hill
E BOOK	S														
1			-	0			bout/E	0	0_	Design.	.html?	id=wU	gqAQ	AAMA	4AJ
2	http	s://bo	oks.go	ogle.co	o.in/b	ooks?i	sbn=81	.77588	214						
MOOC						. ,									
1	-						oc17_r								
2	http	s://ww	/w.edx	.org/c	ourse	/produ	ict-des	ign-de	lft-des	ign-ap	proacl	n-delft	x-dda6	691x-	1

COURS	E TITLE		BASI	C REFF	RIGERA		AND A	AIR CO	NDITIC	DNING	C		s	3		
COURS	E COD	E	MED4	384	СО	URSE (CATEG	ORY		NE		L-T-P	P-S	3-0-0-0		
Ver	sion		1.0	1	А	pprova	al Deta	ails		3 ACM 02.202	·	LEARN LEVI	_	BTL-3		
ASSESS	MENT	SCHE	ME										·			
First Pe Assess			Seco Period ssessn	ical	Seminar/ Assignments/ Project				-	orise To ' Quiz	est 4	Attendance		ESE		
15	5%		15%	6		10	0%			5%		5%		50%		
Cou Descri			impa echani		•		ne var	ious as	spects	of ref	rigerat	ion an	nd air-con	ditioning in		
Course1. To understand the underlying principles of operation in different Refrigeration Air conditioning systems and components.Objective2. To provide knowledge on design aspects of Refrigeration & Air conditioning systems																
	Upon completion of this course, the students will be able to1. Demonstrate different Refrigeration and air conditioning systems.2. Differentiate types of Refrigeration systems3. Describe the properties of different refrigerants and their impact.4. Design Heating ventilating and air conditioning systems5. Describe different air conditioning systems and their impact on environment								act.	ment.						
Prerequ	isites:	Know	ledge (of ther	modyr	namics										
CO, PO	AND P	SO M	APPIN	G												
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	РО -10	РО -11	PO -12	PSO-1	PSO-2		
CO-1	1	1	-	2	-	2	2	-	1	2	-	1	-	-		
CO-2	-	1	-	2	3	1	2	-	1	-	1	-	-	-		
CO-3	1	-	-	1	-	1	1	-	- 1 1 1 -				-	-		
CO-4	1	2	-	3	-	-	-	-	-	1	- 1					
CO-5	1	2	-	1	3	2	1	-	1	2	1	-	-	-		
			L: Wea	kly re	ated,	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed			
MODU	LE 1: IN	ITROE	ουστια	N										9		
Introdu desirabl Suggest	e prop	erties	-class	ificatio	on- No	mencla	ature -	- ODP		•	cles- r	efriger	ants-	CO-1 BTL-3		
MODUI				-										9		

subcoo multipr Equipm	compression cycle : p-h and T-s diagrams - deviations from theoretical cycle - ling and super heating- effects of condenser and evaporator pressure on COP- essure system - low temperature refrigeration - Cascade systems – problems. ents: Type of Compressors, Condensers, Expansion devices, Evaporators. ted Reading: Vapour cycles, compressors	CO-2 BTL-3
MODUL	E3: OTHER REFRIGERATION SYSTEMS	8
Worki Steam j refriger Sugges	CO-3 BTL-3	
MODUL	E 4: PSYCHROMETRIC PROPERTIES AND PROCESSES	9
Degree Thermo conditio	ties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temp., odynamics wet bulb temp., Psychrometric chart; Psychrometric of air- oning processes, mixing of air stream ted Reading: psychometric charts. Reading of the charts	CO-4 BTL-3
MODUL	E 5: AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION	9
structur load; A temper	nditioning loads: Outside and inside design conditions; Heat transfer through re, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat pparatus selection; fresh air load, human comfort & IAQ principles, effective ature & chart, calculation of summer & winter air conditioning load.	CO-5 BTL-3
TEXT BO	DOKS	
1	Arora, C.P., (2010), Refrigeration and Air Conditioning, McGraw Hill, New Delhi,	3rd edition
REFERE	NCE BOOKS	
1	Roy J. Dossat, (2009), Principles of Refrigeration, Pearson Education Asia, 4th edi	ition.
2	ASHRAE (2010), Fundamentals of Refrigeration and Air Conditioning ,Hand book	
3	Jones W.P., (2001), Air conditioning engineering, Elsevier Butterworth-Heineman	nn, 5th edition.
E BOOK	S	
1	https://drive.google.com/open?id=0B7JWdKw_4Q07VWNrLVNkRXpyUmM-TROT	T, WELCH.
2	https://drive.google.com/open?id=0B7JWdKw_4Q07Q3VwSlBxMFd0Vjg- REX MI	LLER.
MOOC		
MOOC	http://www.nptelvideos.in/2012/12/refrigeration-and-airconditioning.html http://nptel.ac.in/courses/112105128/	

COURSE TITLE	3D PRINTI	NG IN MODERN MANUF	ACTURING	CREDITS	2					
COURSE CODE	MED4385	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0					
Version	1.0	Approval Details	LEARNING LEVEL	BTL-4						
ASSESSMENT SCHEME										

First Pe Asses			Second Periodical Assessment			Assigr	ninar/ nment oject	s/	-	orise Te ' Quiz	est 4	Attenda	ance	ESE
15	5%		15% 10% 5% 5%											50%
	urse iption	ne	ecessar		ateria	•							n underst or manufa	-
	 To Introduce Computer Aided Design (CAD) for Additive Manufacturing To Introduce Fusion Deposition Modeling (FDM) and other 3D Printers an subsequent operations To Practice component design for additive manufacturing To Review the operations of 3D Printer To provide hands-on practice for Fabrication of component 													
	urse come isites:	5.	Desc Deve Desc that Dem of th	cribe th elop di cribe th they c	ne 3D gital 3 ne 3D an tur ite the inolog	printin D mod printe n into e revol Y	g and lel and r, incl 3D pri utiona	differe able t uding l nted o ry adv	nt par o slice now it bjects. antage		c equa oftwa and o	ations are obtain	-	signs remix iting future
CO, PO	AND F	SO M	APPIN	G										
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	РО -8	РО -9	РО -10	PO -11	PO -12	PSO-1	PSO-2
CO-1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO-2	3	1	1	-	3	-	-	-	1	-	-	-	-	-
CO-3	3	-	-	-	3	-	-	-	-	-	-	-	-	-
CO-4	CO-4 2 1 -									-	-			
CO-5	2	-	1	-	-	-	-	-	-	-	-	-	-	-
		-	L: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: Sti	rongly	relate	d	
MODU										.				9)
3D Prin Square, Suggest	Cone,	Cylinc	ler, Spl	here, f	rustun	n of a o	cone, l			of Line	e, Tria	ngle, C	ircle,	CO-1 BTL-2
-	MODULE 2: 3D DESIGN (9)													

viev	Design; Design considerations – Material, Size, Resolution, Process; Modelling and ving - 3D; 3D Scanning- Reverse Engineering; Model preparation – Digital; Slicing; ware; File formats Suggested Activity: Learn commercially available slicing Software	CO-2 BTL-3
MO	DULE 3: 3D PRINTING FACT AND CONCEPT	(9)
Sint Prin Sug	rking principle of 3D Printing; SLA or Stereo Lithography; SLS or Selective Laser ering; Fused Deposition Modeling; 3D Printing Demonstration; Post-Processing; 3D ting vs Additive Manufacturing; 3D Printing Ecosystem Igested Activity: Do remixing exercise, using online Thingiverse and print the comized design using 3D Printer	CO-3 BTL-4
MO	DULE 4: 3D PRINTING – A REVOLUTION	(9)
tech	Printing Changing Business; Future 3D Printing; Case study of various Revolutionary nologies. <i>Suggested Activity:</i> Listen to an interview with the successful business in 3D Printing	CO-4 BTL-4
MO	DULE 5: APPLICATIONS	(9)
Engi Arch	lication in Medical, Biomedical, Dental, Bio-printing, Prosthetic Development, Tissue neering & Organ Printing, Aerospace Application, Automatic Application, nitectural Modeling and many others Case studies. gested Readings: Next-generation 3D Printing Technologies	CO-5 BTL-4
TEX	T BOOKS	
1	John Hornick, (2015), 3D Printing Will Rock the World, Create Space Independent Pu Platform; 1 edition	
2	Kalani Kirk, Hausman and Richard Horne, (2014), 3D Printing for Dummies, Wiley Pu	ublishing.
3	Christopher Barnatt, (2013), 3D Printing Next Industrial Revolution, Create space Publishing Platform.	e Independent
REFI	ERENCE BOOKS	
1	Ian Gibson, David Rosen and Brent Stucker, (2015), "Additive Manufacturing Te Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, Second edi	•
E BO	OKS	
1	Cutting-Edge Technology: All About 3D Printing, Apps, Coding, Drones, Robe Audiobook – Unabridged Various (Author), Lauren McCullough (Narrator), & 1 Mor Media, LLC	
2	https://amzn.in/dLDp0Ff	
3	https://amzn.in/7NVnaMJ	
MO		
1	3D Printing Software (Coursera)	
2	The 3D Printing Revolution (Coursera)	
3	Bioprinting: 3D Printing Body Parts (FutureLearn)	

SEMESTER --VI

COURS	E TITLE		FUNDAMENTALS OF POWER PLANT TECHNOLOGY CI										S		3
COURS	E COD	E	MED4	391	1 COURSE CATEGORY NE							L-T-P	-S	3	8-0-0-0
Ver	sion		1.0)	Approval Details 23 ACM, 06.02.2021					LEARN LEVI	_		BTL-3		
ASSESS	MENT	SCHEI	ME								·				
First Pe Asses			Second Periodical Assignments/ ProjectSurprise Test / QuizAttendanceESE												
15	5%		15%	6		10	0%			5%		5%			50%
	urse iption	To impart knowledge on the various components, operations and applications of different types of power plants.												ations of	
	urse ctive	1. 2. 3. 4. 5.	To un powe To un hyde To un Gas t To un	ndersta er plan ndersta I powe ndersta curbine	and the and the er plan and the powe and the	e arrar e arrar t e arrar er plan e princ	ngeme ngeme ngeme t ciples c	nt and nt and nt and of oper	variou variou variou	us com us com us com	poner poner poner	its invo its invo its invo	olved in	The Nuc Dies	lear and sel and
	urse come isites:	1. 2. 3. 4. 5. Nil	Class Dem invol Dem Desc	ify the onstra ved in onstra ribe th	e variou te the it te the e cons	us type arrang workin structio	es of bo gemen ng prir on of E	oilers a ts of s nciples Diesel a	and ide team p of nuc and Ga	ower p	heir ar plant a nd hyd ine Po	oplicati Ind the	on area compo er plan ants	onen	ts
CO, PO	AND P	SO M	APPIN	G											
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	PO -7	PO -8	РО -9	PO -10	PO -11	PO -12	PSO-	-1	PSO-2
CO-1												-			
CO-2	-	1	-	3	3	2	2	-	1	1	1	-	_		-
CO-3	1	2	-	-	-	1	2	-	1	2	-	2	-		-
CO-4	2	2	-	3	-	-	-	-	-	1	-	2	-		-
CO-5	1	2	-	2	3	2	1	-	1	2	-	-	-		-

	1: Weakly related, 2: Moderately related and 3: Strongly related	
MODU	ILE 1: INTRODUCTION TO POWER PLANTS AND BOILERS 9	
Installe	ntional and unconventional power plants, Present power scenario in India, ed capacity of various power plants in India. Steam boilers – Low pressure, High re, Super Critical Boilers – Fluidized Bed Boilers	CO-1 BTL-3
MODU	LE 2: STEAM POWER PLANT	9
burning	of Steam Power Plants, Fuel and ash handling, Combustion Equipment for g coal, Pulveriser, Electrostatic Precipitator, Draught- Different Types, Surface aser and cooling Towers	CO-2 BTL-3
MODU	LE 3: NUCLEAR AND HYDEL POWER PLANTS	9
Reacto	of Nuclear Power Plant, Nuclear Energy-Fission, Fusion Reaction, Types of rs, Pressurized water reactor, Boiling water reactor, Layout of Hydroelectric Plants, Essential elements, governing of Turbines- Micro hydel developments	CO-3 BTL-3
MODU	LE 4: DIESEL AND GAS TURBINE POWER PLANT	9
of Gas	of Diesel Power Plant, Types of diesel plants, components , applications. Layout turbine Power Plants, Fuels, open and closed cycles- reheating – Regeneration ercooling.	CO-4 BTL-3
MODU	LE 5: UNCONVENTIONAL POWER PLANTS AND ECONOMICS OF POWER PLANTS	9
	Geo thermal - OTEC- Tidel- Pumped storage –Solar central receiver system, Cost tric Energy - Load duration Curves, Fixed and operating costs - Energy rates - ariffs.	CO-5 BTL-3
TEXT B	OOKS	
1	Nag P.K , (2007), Power Plant Engineering, Tata McGraw- Hill , Third edition,	
2	Rajput R. K, (2008), A Text Book of Power Plant Engineering, Laxmi publications, I	ourth editior
REFERE	NCE BOOKS	
1	Arora S.C and Domkundwar S, (2001), A Course in Power Plant Engineering, Dhar	npat Rai,
E BOOK	۱ S	
1	https://drive.google.com/open?id=0B7JWdKw_4Q07VWNrLVNkRXpyUmM- TROT	T, WELCH.
2	https://drive.google.com/open?id=0B7JWdKw_4Q07Q3VwSIBxMFd0Vjg- REX MI	LLER.
3	https://drive.google.com/open?id=0B9bpsTYXP4ceTC0ycVVMX3RxSGs	
моос		
1	http://nptel.ac.in/courses/112105128/	

COURSE TITLE		INDUSTRIAL AUTOMATION		CREDITS	3							
COURSE CODE	MED4392	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3							
ASSESSMENT S	ASSESSMENT SCHEME											

Peri	irst odical ssment	: A	Seco Period Assessr	ical	Sen	ninar/ Ass Proje	-	ents/	-	orise Te ⁄ Quiz	est	Attend	ance	ESE
1	5%		15%	6		10%	%			5%		5%		50%
	urse ription	Тс	expos	e the s	tudent	ts to all kir	nds of a	autom	ation i	n the in	dustr	ial secto	or.	
Course1. To introduce the basic concepts of automation in production systems.Objective2. To make the student familiar with the various material handling systems3. To familiarize students in inspection and control technologies in Automatic											on			
CourseUpon completion of this course, the students will be able toCourse1. Describe the basics of automation process.Outcome2. Design a material handling and identification system for specific applications3. Demonstrate the various automated systems used in the industries.4. Employ suitable inspection technology depending on the applications5. Explore the various Control systems used in the automated systems											ns			
Prereq	uisites	: Nil												
СО, РС) AND	PSO N	1APPIN	IG										
со	РО -1	РО -2	РО- 3	РО- 4	РО -5	PO-6	РО -7	РО -8	РО -9	РО -10	РО -11	PO- 12	PSO- 1	PSO-2
CO-1	1	1	2	1	-	2	2	-	1	2	-	-	-	-
CO-2	2	-	-	1	3	1	2	-	1	2	-	1	-	-
CO-3	1	2	1	2	1	1	2	-	1	-	-	-	-	-
CO-4	2	-	-	3	-	-	1	-	-	2	1	-	-	-
CO-5	1	2	-	2	3	2	1	-	1	2	1	-	-	-
						l, 2: Mode			d and	3: Stror	ngly re	elated		
Autom an Aut	ation i omate	n Proc d Syst	luction em, Ad	Systen vanced	n, Prin I Auto	IATIC DAT ciples and mation Fu code Tech	l Strate	egies of s, Leve	els of A	utoma	tions.	Overvi		9 CO-1 BTL-3
MODULE 2: MATERIAL HANDLING AND IDENTIFICATION TECHNOLOGIES									9					
Overview of Material Handling Systems, Principles and Design Consideration, Industrial Trucks, Automated Guided Vehicles, Conveyor Systems, Storage Systems Performance, Automated Storage Systems Carousel Storage Systems.														
MODU	LE 3	AUT	ОМАТ	ED MA	NUFA	CTURING	SYSTE	MS						9
Components, Classification and Overview of Manufacturing Systems, GT and Cellular Manufacturing – Part Families, Parts Classification and Coding, Production Flow Analysis												CO-3 BTL-3		

Applic	ation and Benefits FMS Planning and Implementation issues.	
MODU	ILE 4: INSPECTION TECHNOLOGIES FOR AUTOMATION	9
Measu	ction Metrology, Contact vs. Non contact inspectionTechnologies, Coordinate uring Machines Technologies, Machine Vision, Optical Inspection Techniques and Non- ct Non-optical Inspection Technologies.	CO-4 BTL-3
MODU	ILE 5: CONTROL TECHNOLOGIES IN AUTOMATION	9
Contir Autom	trial Control Systems, Process Industries Verses Discrete Manufacturing Industries, nuous Verses Discrete Control, Computer Process Control and its Forms. Introduction & natic Process Control, Building Blocks of Automation Systems: LAN, Analog & Digital I/O les, SCADA Systems & RTU	CO-5 BTL-3
TEXT B	BOOKS	
1	M.P.Groover, (2008), Automation, Production Systems and Computer Integrated Manu Pearson Education,.	ıfacturing,
2	Krishna Kant, (2010), Computer Based Industrial Control, EEE-PHI, (2010-01-30) ISBN 10:8120339886.	
REFER	ENCE BOOKS	
1	Tiess Chiu Chang & Richard A.Wysk, (2000), An Introduction to Automated Process Plan Systems,	nning
E BOO	KS	
1	https://www.automation.com/en-us/resources-list-pages/advancing-automation-eboo	oks
2	https://plc4me.com/pdf-industrial-automation-hands-on-by-frank-lamb-ebook-free/	
MOOC		
1	https://nielit.gov.in/calicut/content/online-course-industrial-automation-plc-scada	
2	https://onlinecourses.nptel.ac.in/noc20_me39/preview	

COURSE TITLE	MECHATRONICS SYSTEM DESIGN CREDITS 3									
COURSE CODE	MED4393	COURSE CATEGORY	L-T-P-S	3-0-0-0						
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3					
ASSESSMENT S	СНЕМЕ									
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					

15%	15%	10%	5%	5%	50%
Course Description	•	tudents to an integratens involving Electrical, Me	• •	-	•

	urse ective	1. 2. 3. 4.	To le To u To le	arn rea ndersta arn ab	al time and ca out ac	Mechatro e interfacio se studies Ivanced ap	ng. s on Da pplicat	ata Aco tions ir	quisitic n Mech	natroni	ics.			
CourseUpon completion of this course, the students will be able toCourse1. Differentiate between traditional and mechatronics system.Outcome2. Make the real time interfacing.Outcome3. Solve case studies on data acquisition and control.4. Develop advanced applications in mechatronics.5. Describe the application of artificial Intelligence in mechanical field.														
Prerequ	Prerequisites: Nil													
СО, РО	CO, PO AND PSO MAPPING													
со	РО -1	РО -2	РО -3	РО -4	РО -5	PO-6	РО -7	РО -8	РО -9	РО -10	PO -11	PO -12	PSO-1	PSO-2
CO-1 1 1 2 1 - 2 2 - 1 2 - -											-	-		
CO-2 2 - 1 3 1 2 - 1 2 - 1 -											-	-		
CO-3	1	2	1	2	1	1	2	-	1	-	-	-	-	-
CO-4	2	-	-	3	-	-	1	-	-	2	1	-	-	-
CO-5	1	2	-	2	3	2	1	-	1	2	1	-	-	-
			1: Wea	akly re	lated,	2: Moder	ately ı	related	d and 3	3: Stro	ngly re	lated		
MODU	LE 1:	INTRO	DUCT	ΙΟΝ ΤΟ	D MEC	HATRONI	CS SYS		DESIGN	N			I	9
Types	of De	sign –	- Tradi	itional	and	– Key el Mechatro e, industria	onics c	design	s – A	dvance	ed app	proach		CO-1 BTL-3
MODU	LE 2: IN	NTERF	ACING		ΟΑΤΑ	ACQUISITI	ON							9
			-			Elements signals, a		•					rview	CO-2 BTL-3
MODU						AND DIS								9
system for Au Displac	Case studies on Data Acquisition: Introduction – Cantilever Beam Force Measurement system–Testing of Transportation bridge surface materials – Transducer calibration system for Automotive applications – Strain gauge weighing system – Solenoid Force- Displacement calibration system – Rotary optical encoder – Controlling temperature of a hot/cold reservoir – pick and place robot.													
-	MODULE 4: CASE STUDIES – TEMPERATURE AND MOTION 9													
MODULE 4: CASE STUDIES – TEMPERATURE AND MOTION Case studies on Data Acquisition and control: Introduction – Thermal cycle fatigue of a ceramic plate – pH control system – Dc-Icing Temperature Control system – Skip control of a CD Player – Autofocus Camera, exposure control. Case studies of design of mechatronic products – Motion control using D.C.Motor & Solenoids – Car engine management systems.											ntrol n of	CO-4 BTL-3		

MODU	E 5: ARTIFICIAL INTELLIGENCE	9
Contro	ced applications in Mechatronics: Sensors for condition Monitoring – Mechatronic in Automated Manufacturing – Artificial intelligence in Mechatronics – Fuzzy Logic tions in Mechatronics – Microsensors in Mechatronics	CO-5 BTL-3
TEXT B	DOKS	
1	Devadas shetty, Richard A. Kolk, (2001), Mechatronics System Design, Thomson Lear Publishing Company, Vikas publishing house,	ning,
REFERE	NCE BOOKS	
1	Bolton, (1999), -Mechatronics - Electronic Control systems in Mechanical and Electr Engineering-, Addison Wesley Longman Ltd., 2nd Edition.	ical
E BOOK	S	
1	https://engineeringstudymaterial.net/ebook/essentials-of-mechatronics-by-john/ Billingsley	- John
2	https://engineeringstudymaterial.net/ebook/mechatronics-introduction-by-robert/ H. Bishop	- Robert
MOOC		
1	http://nptel.ac.in/courses/112105047/	
2	http://nptel.ac.in/courses/112102011/	

COURSE TITLE	V	IRTUAL INSTRUMENTATIO	N	CREDITS	3	
COURSE CODE	MED4394	L-T-P-S	3-0-0-0			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3	
ASSESSMENT S	СНЕМЕ					
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE	
15%	15%	10%	5%	5%	50%	
Course Description	-	is to give an extensive for all types of measureme		• •	of virtual	
Course Objective	2. To learn abo	out the basics of the Virtual out the architecture of LABV out programming in LABVIEV	IEW			
Course Outcome	 Upon completion of this course, the students will be able to Demonstrate the basics of the Virtual instrumentation Describe the basic functions and architecture of LABVIEW Develop a program for various measurements in LABVIEW Acquire data from various environmental conditions Apply the advanced features like motion control in the application 					

Prerequ	isites	: Nil												
со, ро	AND	PSO N	1APPIN	IG										
со	РО -1	РО -2	РО -3	РО -4	РО -5	PO-6	РО -7	РО -8	РО -9	РО -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	1	1	2	3	- 2 2 - 1 2 - 1 -							-	-	
CO-2	CO-2 2 1 - 3 3 2 2 - 1 - 1 -										-	-		
CO-3	3 1 - 1 2 1 1 2 - 1 2								-	-				
CO-4	2	2 2 - 3 2 1							-	-				
CO-5	1	2	-	2	3	2	1	-	1	2	1	-	-	-
			1: Wea	akly re	lated,	2: Moder	ately ı	related	and 3	B: Stro	ngly re	lated		
MODU	LE 1:	INTRO	DUCT	ION										9
description of a digital instrument- Block diagram of a Virtual Instrument – Physical quantities and analog interfaces- Hardware and Software – User Interfaces – Advantages of Virtual Instruments over conventional instruments – Architecture of a Virtual Instruments and its relation to the operating system.								es of	CO-1 BTL-3					
MODUL	E 2: B	ASIC F	UNCTI	ONS										9
types –	data f	flow p	rograr	nming	–Editi	controls ng Debu pols – Fro	gging a	and Ru	unning	a Vir	tual In	strume	ent –	CO-2 BTL-3
MODUL	.E 3 L(DOPS /	AND A	RRAYS									·	9
structu	res- An Ie, gra	rrays a iphs a	nd Clu nd cha	isters- arts –	Array string	gisters, C operation and file les.	ns – Bi	undle,	Unbui	ndle –	Bundle	e/Unbi	undle	CO-3 BTL-3
MODUL	.E 4: D	ΑΤΑ Α		ITION	SYSTE	MS								9
Basics of DAQ Hardware and Software – Concepts of Data Acquisition and terminology – Installing Hardware, Installing drivers -Configuring the Hardware – addressing the hardware in LabVIEW- Digital and Analog I/O function – Buffered I/O – Real time Data Acquisition.							the	CO-4 BTL-3						
MODUL	.E 5: A	DVAN	ICED C	ONCE	PTS								9	
other e	elemer	nts of	Virtua	al Inst	rumen	ncepts in tation – on Contro	Bus e		-		•			CO-5 BTL-3
TEXT BO	OOKS													

1	Garry M. Johnson, LabVIEW Graphical Programming, Tata McGraw-Hill, Edition, 1996
2	Lisa.K.Wills, LabVIEW for Everyone Prentice Hall of India, 1996.
REFERE	NCE BOOKS
1	Labview Basics I and II Manual, National Instruments, 2003.
2	Barry Paton, Sensor, Transducers and Lab VIEW, Prentice Hall, 2000
E BOOK	S
1	https://www.elektor.com/pic-cookbook-for-virtual-instrumentation-ebook
2	https://www.worldcat.org/title/virtual-instrumentation-using-labview/oclc/743395421
MOOC	
1	https://www.udemy.com/course/introduction-to-process-control-and-instrumentation/

SEMESTER – VII

COURS	E TITLE		DESIC	GN OF	BUILD	ING A	итом	ATION	l	(s	3
COURS	E CODE	MED4	MED4481 COURSE CATEGORY NE L-T-P-S 3-0-0-0										3-0-0-0
Ver	sion	1.0Approval Details23 ACM,LEARNING06.02.2021LEVEL									BTL-3		
ASSESS	MENT S	CHEME											
First Pe Assess	riodical sment	Period	SecondSeminar/Surprise TestAttendanPeriodicalAssignments/ Project/ Quiz									ance	ESE
15	5%	159	%		10	0%			5%		5%)	50%
Cou Descri			This course is intended to expose the students in the design of sophisticated building environment for comfortable living.							cated building			
Cou Obje	irse ctive	1. To e 2. To u ene	Inderst	and ho	w serv	vices ir	ntegra	tion ca	n trans	late i		intellige structu	
Cou Outc		 Desi Desi Desi Den built 	cribe th gn the gn the nonstra dings	ne Cond mecha efficien Ite the	cepts o inical s nt eleo e safe	of Inte system ctrical ty and	lligenc is such systen d seci	e Arch as air ns for b urity s	condit ouilding systems	e and ioning s pro	Buildir g and v vided	entilatio	ous types of
Prerequ	isites: N	es: Nil											
CO, PO	AND PS	Ο ΜΑΡΡΙΝ	IG										
со	РО	PO PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO-	PSO-2

	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	
CO-1	2	2	1	-	1	2	2	2	-	-	-	1	-	-
CO-2	2	2	1	1	2	-	1	-	1	-	-	-	-	-
CO-3	2	1	2	2	2	-	-	2	-	2	-	2	-	-
CO-4	1	2	1	2	2	-	1	1	-	1	-	1	-	-
CO-5	2	2	-	-	2	-	-	1	-	1	-	2	-	-
		1	1: Wea	ıkly rel	ated,	2: Moo	derate	ly rela	ted an	nd 3: St	rongly	relate	ed	
MODU	LE 1: I	NTRO	DUCTIO	ON										9
Standar Building Building High Ri Archited	gs; Intr gs; Som se Bu	oducti ne exa ildings	ion to mples 5. Aspe	variou of Buil ects a	s serv dings nd Int	ices; tl and se	heir si rvices	gnifica used i	nce w n then	ith reg n A bri	ards t ef on e	o High evolutio	Rise on of	CO-1 BTL-3
MODU	LE 2: N	IECHA	NICAL	SYSTE	MS									9
Natural estimati Plannin Manage	on- g an	d de	sign f						• •				nergy	CO-2 BTL-3
MODUL	E 3: H	VAC A	ND EL	ECTRIC	CAL SY	STEMS	5						Į	9
Natural Plannin Glazing design-	g and syster	Design for	gn for natura	energ al light	y effici ing. T	ciency ypes c	- Auto of elev	matio vators,	n- bas syster	sic cor ms and	icepts, d servi	Glass ices- L	and	CO-3 BTL-3
MODUL				•	-			,						9
Security Passive Some la	fire sat	fety- F											C	CO-4 BTL-3
MODUL	E 5: C	ASE ST	UDIES	5										9
	Case Studies of High Rise buildings and skyscrapers through appropriate examples-CO-5Norman Foster; Ove Arup; Ken Yeang, etc.BTL-3													
TEXT BC	EXT BOOKS													
1			Acguini for Bui		-				-	olds, (2001),	Mech	anical a	nd Electrical
REFERE			.er bu		,	y ne y	<u>a 5011</u>	.,	•					
1			Electrio Manua			anical	Servic	es in F	ligh Ri	se Buil	dings [Design	and	
2	Yahya	a Moh	amad `	Yatim,	Fire Sa	•		-				uilding	s: escap	e
3			n and le and									ers for a	Archited	cture, 2003

E BOOK	S
1	Building Automation System A Complete Guide - 2020 Edition
2	Intelligent Buildings and Building Automation - Shengwei Wang
MOOC	
1	https://www.smeclabs.com/automation-plc-scada-training-online-course-tutorials- certification/?utm_source=slga-Auto&utm_medium=adwords&gclid=CjwKCAjw4qCKBhAVEiw Ak TYsPGRBbCnkJApJr4falzA26WMVUO1HCVwq7r2-slJPKFvEuk60vPZEsBoCMdcQAvD_BwE
2	https://www.coursera.org/lecture/industrial-iot-markets-security/segment-3-building- automation-9PMxA

COURSE TITLE	INDUSTRIAL	SAFETY AND MAINTENA	NCE ENGINEERING	CREDITS	3			
COURSE CODE	MED4482	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3			
ASSESSMENT SO	CHEME							
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE			
15%	15%	10%	5%	5%	50%			
Course Description		ntended to provide the kn e engineering field especi	• ,		ing			
Course Objective	 To understand To understand To understand 	 To understand the prevention and protective equipment in the industry To understand the Basics safety acts To understand the principles and practices of maintenance planning. 						
Course Outcome	 Upon completion of this course, the students will be able to Describe about the fundamentals of industrial safety and management Demonstrate an understanding on the prevention and protective equipment in the industry Describe information on various basics of safety acts Apply the principles and practices of maintenance planning Demonstrate ability to frame maintenance policies and schedule preventive maintenance. 							
Prerequisites: N	il							
	Ο ΜΑΡΡΙΝG							

СО, РО	AND	PSO M	APPIN	IG										
со	PO	РО	РО	РО	РО	PO	PO	PO	PO	РО	PO	PO-	PSO-1	PSO-2
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	P30-1	P30-2
CO-1	1	-	-	-	2	2	2	1	1	1	-	-	-	-

CO-2	1	1	1	1	2	-	1	1	-	-	-	-	-	-
CO-3	3	1	-	-	2	2	2	-	1	1	1	1	-	-
CO-4	1	-	1	1	1	1	-	-	-	-	-	-	-	-
CO-5	3	1	-	-	-	2	2	-	1	1	1	1	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODU	LE 1:	INTRO	DUCT) THE	DEVEL	OPME	NT OF	INDU	STRIAL	SAFE	TY AND	MANAGM	ENT 9
Implem	entati	on of	factor	ies ac	t, Fori	matior	nofv	arious	cound	cils, Sa	fety a	and pro	oductivity,	
Safety o	organi	zations	s. Safe	ty con	nmitte	es, sa	fety co	ommit	tee str	ucture	e, Roll	of mai	nagement	CO-1
and roll	of Go	vt. in iı	ndustri	ial safe	ety, Sal	fety ar	nalysis							BTL-3
Suggest	ted Re	ading:	Indus	try Ma	nager	nent, I	manda	atory r	equire	ments	on sa	fety		
MODU	LE 2: A	ACCIDE	INT PR	EVENT	'IONS,	PROT	ECTIV	E EQUI	PEMT	S AND	THE A	CTS	9	
	-					-	-						of body to	
•													accident,	CO-2
				-	-			cident	repor	ting, In	ivestig	ations,	Industrial	BTL-3
psychol Sugges	•••		•			•		studv a	on indi	ustrial	accide	nts		
MODUL		-			<u>o ao pi</u>	00000	Cube						9	
Feature	es of	Factor	y Act,	Intro	ductio	n of I	Explosi	ive Ac	t, Boil	er Act	t, ESI	Act, W	/orkman's	
comper	nsatior	n Act. I	ndustr	ial hyg	giene,	Occup	ationa	l safet	y, Dise	ases p	revent	ion, Er	gonomics,	
Occupa	tional	disea	ises. S	Stress,	fatig	ue, he	ealth,	safety	and	the	physic	al env	ironment,	CO-3
Enginee	ering n	nethoo	ds of c	ontroll	ing ch	emica	l haza	rds, sa	fety a	nd the	physi	cal env	ironment.	BTL-3
Control	of inc	dustria	l noise	and p	rotect	ion ag	gainst i	it <i>,</i> Cod	e and	regula	tions f	or wor	ker safety	
and hea	alth. Su	uggest	ed Red	ading:	Role o	of Pollu	ution C	ontrol	Board	and Ir	spect	or of Fa	ctories	
MODUL	.E 4:	PRIN	CIPLES		PRACT	ICES O	F MAI	NTEN	ANCE F	PLANN	ING		·	9
Basic P	rincipl	es of n	nainte	nance	planni	ng, Ob	ojective	es and	princi	oles of	plann	ed maiı	ntenance	
activity	. Impo	ortance	e and l	benefit	ts of s	ound	Maint	enance	e syste	ems, Re	eliabili	ty and	machine	
availabi	ility, E	quipm	ient Li	fe cyc	le. Me	easure	s for	Maint	enance	e Perfo	orman	ce: Equ	uipments	CO-4
breakdo	owns,	Mean	Time	betwe	en Fa	ilures,	Mean	n Time	To Re	epair, I	Factor	s of av	ailability,	BTL-3
Maintenance organization, Maintenance economics Suggested Reading : Principles of														
Mainte			<u> </u>											
MODUL														9
		-							-				ntenance.	
				•			•					ition, F	ault Tree	CO-5
Analysis									•					BTL-3
Sugges		eading	: conc	epts of	tribol	ogy, ca	ase stu	idy on	fault a	nalysis	5			
TEXT BO	DOKS													

1	L M Deshmukh, (2017), "Industrial safety Management ", Mcgraw Hill, Second edition.
2	Willie Hammer "Occupational Safety Management and Engineering" Prentice Hall
3	R.C Mishra, K K.Pathak "Maintenance Engineering and Management" Prentice Hall
REFERE	NCE BOOKS
1	Amit gupta, (2006) " industrial Safety and environment" Firewall Media,
2	Higgins, L.R., "Maintenance Engineering Hand book", 5th Edition, McGraw Hill.
3	B.S Dhilon (2002)" Engineering Maintenance – A modern approach" CRC press,
E BOOK	S
1	https://www.osha.gov/pls/publications/publication.athruz?pType=Types&pID=10412
2	https://www.kopykitab.com/Industrial-Safety-And-Environment-by-Er-A-K-Gupta
3	https://www.amazon.com/Plant-Equipment-Maintenance-Engineering-Handbook-ebook/
4	https://www.worldcat.org/title/industrial-safety-management-21st-century-perspectives-of-
4	asia/oclc/1009175845
моос	
1	https://www.iti.com/safety
2	https://swayam.gov.in/courses/4817-july-2018-industrial-safety-engineering
3	https://www.oshatrain.org/
4	https://www.tpctraining.com/collections/mechanical-maintenance-training
5	https://www.iti.com/maintenance
6	https://www.lifetime-reliability.com/cms/training/online-training-courses/

COURSE TITLE	QUALITY CO	ONTROL AND RELIABLITY	ENGINEEING	CREDITS	3				
COURSE CODE	MED4483	COURSE CATEGORY	NE	L-T-P-S	3-0-0-0				
Version	1.0	Approval Details	23 ACM,	LEARNING	BTL-3				
Version	1.0	Approvar Details	06.02.2021	LEVEL	DIL-3				
ASSESSMENT SCH	EME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Surprise Test Periodical Assignments/ Project / Quiz							
15%	15%	10%	5%	5%	50%				
Course	To expose the	students to the conce	ots of quality, st	andards followe	d, sampling				
Description		mprove reliability							
	1. To introduce the concept of SQC								
Course Objective	To understand process control and acceptance sampling procedure and their application.								
	3. To learn the concept of reliability.								

	Upon completion of this course, the students will be able to
	1. Describe the attributes in process control and basics of quality
Course Outcome	2. Demonstrate the basics of control charts on attributes
Course Outcome	3. Demonstrate the sampling plans
	4. Demonstrate the basics of reliability
	5. Illustrate the independent judgment in quality and reliability problems.

Prerequisites: Applied Mathematics

СО, Р	O AND	PSO N	1APPIN	G										
со	РО	РО	PO-	PO-	РО	РО	РО	РО	РО	PO -	РО	PO-	PSO-1	PSO-2
co	-1	-2	3	4	-5	-6	-7	-8	-9	10	-11	12	P30-1	F30-2
CO- 1	1	1	-	3	-	2	1	-	1	2	-	-	-	-
CO- 2	2	1	-	3	-	2	2	-	1	-	-	-	-	-
CO- 3	-	-	-	2	-	1	2	-	-	2	-	-	-	-
CO- 4	1	2	-	3	-	-	-	-	-	2	-	-	-	-
CO- 5	1	2	-	2	3	-	1	-	1	2	-	-	-	-
				•								•		

1: Weakly related, 2: Moderately related and 3: Strongly relatedMODULE 1:INTRODUCTION AND PROCESS CONTROL FOR VARIABLES9Introduction, definition of quality, basic concept of quality, definition of SQC, , Quality
assurance, Quality cost-Variation in process- factors - process capability- process capability
studies and simple problems - Theory of control chart- uses of control chart -Control chart
for variables - X bar chart, R chart and S chart. Suggested Reading: benefits and limitation of
SQC and SPCCO-1
BTL-3MODULE 2:PROCESS CONTROL OF ATTRIBUTES9Control chart for attributes -control chart for proportion or fraction defectives - p chart and
np chart control chart for defects - C and U charts, State of control and process out of controlCO-2

identification in charts. Suggested Reading: control and process Attributes of Quality and
ReliabilityBTL-3MODULE 3: ACCEPTANCE SAMPLING9Lot by lot sampling - types - probability of acceptance in single, double, multiple sampling
techniques - O.C. curves - producer's Risk and Consumer's Risk. AQL, LTPD, AOQL concepts-
standard sampling plans for AQL and LTPD- uses of standard sampling plans.CO-3
BTL-3Suggested Reading: Acceptance sampling types and probability of acceptanceBTL-3

MODULE 4: LIFE TESTING-RELIABILITY

time k - simp based	Life testing - Objective - failure data analysis, Mean failure rate, mean time to failure, mean time between failure, hazard rate, system reliability, series, parallel and mixed configuration - simple problems. Maintainability and availability - simple problems. Acceptance sampling based on reliability test - O.C Curves. Suggested Reading: Failure data analysisCO-4MODULE 5: QUALITY AND RELIABILITY9							
Reliability improvements - techniques- use of Pareto analysis - design for reliability - redundancy unit and standby redundancy - Optimization in reliability - Product design - Product analysis - Product development - Product life cycles.CO-5 BTL-3Suggested Reading: Study the recent trends of quality and reliability systemBTL-3								
TEXT I	BOOKS							
1	Grant, Eugene .L,(2006), Statistical Quality Control, McGraw-Hill, 7 th Edition.							
2	L .S. Srinath,(2009), Reliability Engineering, Affiliated East west press, 4 th Edition.							
REFER	ENCE BOOKS							
1	Monohar Mahajan, (2001), Statistical Quality Control, Dhanpat Rai & Sons.							
2	R.C.Gupta, (2003), Statistical Quality control, Khanna Publishers, 6 th Edition.							
3	Besterfield D.H., (1993), Quality Control, Prentice Hall.							
4	Sharma S.C., (2002), Inspection Quality Control and Reliability, Khanna Publishers.							
5	Danny Samson, (1991), Manufacturing & Operations Strategy, Prentice Hall.							
E BOO	KS							
1	Quality Control Applications (Springer Series in Reliability Engineering) 2013 Edition, Kindle Edition							
2	2 http://www.a-zshiksha.com/forum/viewtopic.php?f=148&t=61562							
MOO	C C							
1	https://learn.org/articles/Online_Courses_in_Quality_Control_Answers_to_Your_Ques	tions.html						
2	https://www.udemy.com/statistical-quality-control-sqc/							
3	https://ocw.mit.edu/courses/nuclear-engineering/22-38-probability-and-its-application	ns-to-						
	reliability-quality-control-and-risk-assessment-fall-2005/download-course-materials/							

COURSE TITLE	APPLIED HYDRAULICS & PNEUMATICS CREDITS 3										
COURSE CODE	MED4484	COURSE CATEGORY	L-T-P-S	3-0-0-0							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3						
ASSESSMENT SC	HEME										
First Periodical	Second	Seminar/	Surprise Test								
Assessment	Periodical Assessment	Assignments/ Project	/ Quiz	Attendance	ESE						
Assessment 15%		•	•	Attendance 5%	ESE 50%						

	urse ctive	1. 2.	2. To understand the fundamentals, components and designing of pneumatic systems.												
-			Upor	n comp	letion	of thi	s cours	se, the	stude	nts wil	l be ab	le to			
		1.	1. Demonstrate the fluid power system and fundamentals. Physics of Pascal's law, laminar and turbulent flow, Reynolds number and Darcy's equation.												
			lamiı	nar an	d turb	ulent f	low, R	eynold	s num	ber an	d Darc	y's equ	uation.		
		2.	2. Illustrate the concept of hydraulics system and various components of hydraulics												
system like pumping theory, cylinders and Actuators.															
Coι	Course 3. Design a hydraulic circuits and understanding the concept of hydr									hydrauli	aulic valves and				
Outo	ome		accumulators and its type.												
		4.	4. Demonstrate pneumatics systems like compressor, valves, filter regulator and												
			lubricant units and able to design a pneumatic and hydraulic circuit and												
			unde	erstand	l a syn	nbols a	nd sta	ndard							
		5.	Desi	gn a pi	neuma	tic cir	cuit sy	stem v	with se	ervo m	otor a	ind un	derstand	ing the logic	
			circu	it and	ladder	diagra	am ano	d PLC ι	inits.						
Prerequ	isites:	Fluid I	Vecha	nics ar	nd Ma	chiner	y, Mec	hatror	ics an	d Pneu	imatic				
CO, PO	AND F	PSO M	APPIN	G											
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PSO-	PSO-2	
co	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	1	P30-2	
CO-1	3	2	-	-	2	2	2	1	1	1	-	-	-	-	
CO-2	3	2	1	1	2	-	-	-	1	1	-	-	-	-	
CO-3	3	2	-	-	2	2	2	-	1	1	-	-	-	-	
CO-4	-	-	1	1	2	2	2	-	-	-	-	-	-	-	
CO-5	3	2	1	1	2	2	2	-	1	1	-	-	-	-	
		1	L: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed		
MODU	LE 1: F	LUID	POWE	R SYST	EMS A	ND FL	INDAN	ΛΕΝΤΑ	LS					9	
Introdu	ction	to flui	d pow	ver, Ao	dvanta	ges of	f fluid	powe	r, App	olicatio	n of f	fluid p	ower		
system.	Types	of flu	id pov	ver sys	stems,	Prope	rties c	of hydr	aulic f	luids -	Gene	ral typ	es of	CO-1	
fluids -	Fluid p	ower	symbo	ols. Bas	sics of	Hydra	ulics-A	pplica	tions o	of Pasc	al's La	w- Lar	ninar	BTL-3	
and Tur	bulent	t flow	- Reyr	nolds r	umbe	r - Dai	rcy's e	quatio	n - Lo	sses in	ı pipe,	valves	s and	DILJ	
fittings.	Sugge	sted R	eading	g: Fluid	powe	r Indu	stry in	India,	Compa	arison	of Pro	perties	5.		
MODUL	E 2: H	YDRA	JLIC S	YSTEM	& CO	MPON	IENTS							9	
Sources	s of Hy	/drauli	c Pow	er: Pui	mping	theor	y - Pui	mp cla	ssifica	tion -	Gear p	oump,	Vane		
Pump, F	Piston	pump,	const	ructior	n and N	workin	g of pı	umps -	pump	o perfo	rmanc	e - Var	riable		
displace	ement	pump	s. Flui	id Pov	ver Ao	tuato	rs: Lin	ear hy	/drauli	c actu	ators	- Туре	es of	CO-2	
hydraul	ic cylin	nders -	Single	acting	g, Dou	ble act	ting, sp	pecial o	cylinde	ers like	Tande	en, Roo	dless,	BTL-3	
Telesco	-		-						ouble	acting	cylind	der, R	otary		
actuato	rs - Flu	iid mo	tors, G	ear, Va	ane an	d Pisto	on mot	ors.							

	ted Reading: Hydrodynamic and hydrostatic pumps, Screw Pump, Cylinder ng Configurations, Cylinder Cushioning.							
	LE 3: DESIGN OF HYDRAULIC CIRCUITS	9						
Constru- valve - sequen valves, Accumu Intensif Sugges Regene	CO-3 BTL-3							
	E 4: PNEUMATIC SYSTEMS AND COMPONENTS	9						
Unit - A Fluid P and Hy method Sugges MODUL Servo s proport Introdu applica Sugges Hydrau	ted Reading: Mufflers, Sizing of Compressors, Air Motors, Vacuum Suction Cup.	CO-4 BTL-3 9 CO-5 BTL-3						
TEXT BO								
1	Anthony Esposito, (2014), Fluid Power with Applications, Pearson Education, 7 th	Edition.						
2	2 Majumdar S.R., (2015),Oil Hydraulics, Tata McGraw-Hill, New Delhi.							
REFERE	NCE BOOKS							
1	Majumdar S.R., (2013), Pneumatic systems - Principles and maintenance, Tata New Delhi.	a McGraw Hill,						
2	2 Srinivasan.R,(2006), "Hydraulic and Pneumatic controls", Vijay Nicole.							
3 E BOOK	Second Edition.							
L DOOK								

1	https://docs.zoho.com/file/2bvxi8191d4a73d1d4f05941a1f132f86ae1a - Fluid power with
-	Applications – Anthony Esposito
2	http://pages.hydraulicspneumatics.com/fluid-power-basics?code=UM_NX7UMB3 – Fluid
2	Power Basics
3	http://controlmanuals.com/files/Automation/Fluid-Power/TSM-363-Fluid-Power-
5	Systems~ppt908.html
4	https://www.pdfdrive.net/industrial-fluid-power-e3104018.html
MOOC	
1	https://www.mooc-list.com/course/hydraulics-%E6%B0%B4%E5%8A%9B%E5%AD%A6-edx
2	https://www.mooc-list.com/course/fundamentals-fluid-power-coursera

COURS	E TITLE	:]	NON D	ESTRL	JCTIVE	TESTI	NG M	ETHOD)S	C	REDIT	S	3
COURS	E COD	E	MED4	485	СС	COURSE CATEGORY NE						L-T-P	-S	3-0-0-0
Ver	sion		1.0)	4	pprov	al Det	ails	23 ACM, 06.02.2021			LEARNING LEVEL		BTL-3
ASSESSMENT SCHEME														
First Pe Assess		Seco Perioo Assess	dical		Seminar/ Assignments/ Project				Surprise Test / Quiz			ance	ESE	
15	5%		159	%		1	.0%			5%		5%		50%
Cou Descri	urse iption	Тс	o impar	t know	ledge	on No	on Des	tructiv	e Testi	ng pro	cedur	es		
Cou Obje	urse ctive	2.	 To understand principle behind various NDT techniques and study about NDT Equipments and accessories. To learn working procedures of various NDT techniques To learn materials that could be inspected – codes standards specifications. 											
3. To learn materials that could be inspected – codes, standards, specificati Upon completion of this course, the students will be able to 1. Demonstrate the basic principles of various NDT techniques and optical for visual inspection. Outcome 2. Describe procedure for surface testing using PI. 3. Illustrate the basics of ECT and AE 4. Apply Ultrasonic testing and various methods. 5. Compare the various NDT methods and learn about Radiography.														
Prerequ	isites:	Scien	ce Fun	damen	tals									
CO, PO	AND P	SO M	APPIN	G										
со	РО -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО -9	РО -10	PO -11	PO -12	PSO- 1	PSO-2
CO-1	1	1	-	1	2	2	2		1	1	-	-	-	-

CO-2	1	3	1	1	2	-	-	-	-	-	-	-	-	-			
CO-3	3	-	2	1	2	2	2	-	1	1	-	-	-	-			
CO-4	2	2	1	1	-	-	-	-	-	-	-	-	-	-			
CO-5	3	-	-	-	-	2	2	-	1	1	-	-	-	-			
		1	L: Wea	kly rel	ated,	2: Mo	derate	ly rela	ted an	d 3: St	rongly	relate	ed				
MODU	LE 1:	NON-D	DESTRI	JCTIVE	TEST	NG: A		RODUC	TION					9			
Introduc								•									
destruct				-	•					•				CO-1			
Suggest		-					-		na f	ast m	oving	cable	and	BTL-3			
Magnify								·									
MODU						-								9			
Physica	•	•	-		•			-			-		-				
Penetra		-					•					•••		CO-2			
Principle							-						MPT,	BTL-3			
Applicat	tions. S	Sugges	sted Re	eading	: Inspe	ection	and Ev	aluatio	on, ins	pectioi	1 tools	•					
MODUL	E3: ED	DY CU	RREN	T TEST	ING, A	COUS	TICEM	ISSION						9			
Principle									•			•	-				
sensitity	•	•	•	-		•						• •	ions-	CO-3			
testing		•			-					-				BTL-3			
Sugges		-		-	-	-		-			-	Tube s	sheet				
Rolled J			-	C TEST	-	o-mag	metici	Heat E	kchung	jer ruc	ies.			9			
Principl						hection	n met	hods	norma	l insci	ıdent	nulse	Echo	5			
Inspecti					•							•					
for Nori		-				-	-	•			•		-	CO-4			
Scan, B-			-						1 1	,			- /	BTL-3			
	Iggested Reading : Ultrasonic Examination Nuclear waste containers to decorrosion.																
MODUL	E 5: R	ADIOG	GRAPH	Y, COM	MPARI	SON A	ND SE	LECTIC	ON OF		1ETHO	DS	I	9			
Basic pi	rinciple	e, effe	ct of ra	adiatio	n on f	lm, ra	diogra	phic in	naging	, inspe	ction	technic	ques-				
single v	vall si	ngle ir	nage,	doubl	e wall	pene	tratior	n, mul	tiwall	penet	ration	techn	ique.	CO-5			
Compar							•							BTL-3			
Sugges		-	: Three	e view	, Nine	shot i	inspect	tion of	a larg	je cast	CF-81	M stair	nless				
steel im	-																
TEXT BC	OKS																

1	Baldev raj, T Jeyakumar, M. Thavasimuthu (2012), Practical Non Destructive Testing Narosa
	publishing house, New Delhi.
2	ASM Handbook, "Non destructive Evaluation and Quality Control", Vol. 17, ASM International.
3	Mohammed Omar, (2012), "Nondestructive testing methods and new applications", Intech,
	Croatia, First edition.
REFERE	NCE BOOKS
1	Chrales Hellier, (2012), "Handbook of Nondestructive Evaluation", McGraw-Hill company, New
	Delhi.
2	Peter J. Shull (2013), Non Destructive Evaluation: Theory, Techniques and Application Marcel
	Dekker, Inc., New York.
3	Birchan.B,(2015), Non-Destructive Testing, Oxford, London.
4	Baldev Raj and B.Venkataraman, (2014), Practical Radiology, Narosa Publishing House.
5	Krautkramer. J., (2011), Ultra Sonic Testing of Materials, Springer Verlag Publication, New York,
	First Edition.
E BOOK	S
1	https://www.nde-ed.org
2	https://www.asnt.org
MOOC	
1	https://nptel.ac.in/course.php
2	https://onlinecourses.nptel.ac.in/noc18_mm04/