

M. Sc. MATHEMATICS (Integrated) (Duration: 4 Years) CURRICULUM and SYLLABUS

(Applicable for Students admitted from Academic Year 2023-24)

DEPARTMENT OF MATHEMATICS SCHOOL OF LIBERAL ARTS AND APPLIED SCIENCES HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

HINDUSTAN INSTITUTE OF TECHNOLOGY & SCIENCE

VISION AND MISSION

MOTTO:

To Make Every Man a Success and No Man a Failure

VISION:

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

MISSION:

- To create an ecosystem for learning and world class research.
- To nurture a sense of creativity and innovation.
- To instill highest ethical standards and values with a sense of professionalism.
- To take up activities for the development of Society.
- To develop national and international collaboration and strategic partnership with industry and institutes of excellence.
- To enable graduates to become future leaders and innovators.

VALUE STATEMENT

• Integrity, Innovation, Internationalization

DEPARTMENT OF MATHEMATICS

VISION AND MISSION

VISION

To be a worldwide Centre for Excellence in Mathematics and scientific computing for the growth of Science and Technology

MISSION

M1: Imparting of quality mathematics education and the inculcating of the spirit of research through innovative teaching and research methodologies.

M2: To achieve high standards of excellence in generating and propagating knowledge in Mathematics.

M3: To build a community that champions and promotes the mathematician in everyone.

M. Sc. MATHEMATICS (Integrated)

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The Program Educational Objectives (PEOs) for Mathematics describe accomplishments that students are expected to attain within four years after post-graduation.

PEO I: To provide students' knowledge and insight in Mathematics and hence they are able to work as a mathematical professional.

PEO II: To prepare them to pursue higher studies and conduct research.

PEO III: To provide students with knowledge and capability in formulating & analysis of mathematical models in real life application

PEO IV: To develop teaching skills, subject knowledge in the course of their study which will help them shine in various field including Education, IT etc.

PROGRAM OUTCOMES (ALIGNED WITH GRADUATE ATTRIBUTES) (PO)

At the end of this program, graduates will be able to:

PO1: Scholarship of Knowledge: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate evaluate, analyze and synthesize existing and new knowledge, and integration of the same for enhancement of knowledge.

PO2: Critical Thinking: Analyze complex mathematical problems critically, apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in a wider, theoretical, practical and policy context.

PO3: Problem Solving: Think laterally and originally, conceptualize and solve mathematical problems, evaluate a wide range of potential solutions for those and arrive at feasible, optimal Solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

PO4: Research Skill: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually / in group(s) to the development of scientific/ technological / programming knowledge in one or more domains of mathematics

PO5: Usage of Modern Tools: Create, select, learn, and apply appropriate techniques, resources, and IT tools, including prediction and modeling, to complex mathematical activities with an understanding of the limitations.

PO6: Collaborative and Multidisciplinary Work: Process knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborate-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision—making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7: Project Management and Finance: Demonstrate knowledge and understanding of mathematical and management principles and apply the same one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors.

PO8: Communication: Communicate with mathematical community, and with society at large, regarding complex mathematical activities confidentially an effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9: Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10: Ethical Practices and Social Responsibility: Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11: Independent and Reflective Learning: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback.

PO12: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge and need for sustainable development.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Apply the knowledge of mathematical concepts in interdisciplinary fields.

PSO2: Appreciate the nature of abstract mathematics and explore the concepts in further details.

PSO3: Recognize the need to engage in lifelong learning through continuing education and research.

M.Sc. Mathematics (Integrated) (160 CREDIT STRUCTURE)

	SEMESTER – I												
S. No.	COURSE CATEGO RY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН				
		GLS51008	Tamil										
		GLS51009	Hindi										
		GLS51010	Telugu										
		GLS51011	French										
1.	HS	GLS51012	German	2	0	0	2	2	2				
		GLS51013	Spanish										
		GLS51014	Korean										
		GLS51015	Mandarin	_									
		GLS51016	Japanese										
2.	HS	ALS02001	Communication Skills	2	0	1	2	1	3				
3.	PC	AIM02001	Classical Algebra	3	1	0	4	1	4				
4.	PC	AIM02002	Differential and Integral Calculus	3	0	2	4	1	5				
5.	BS	APH02001	Applied Physics	3	1	0	4	0	4				
6	SE	ACA02001	Python Programming and MATLAB	2	1	2	4	0	5				
	Total 17 1 4 20 4 22												
	L – Lectur		al; P – Practical; C – H – Total Contact Ho		t; S	– Sel	lf Stuo	ły;					

			SEMESTER – II						
S. No.	COURSE CATEGO RY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН

1.	PC	AIM02003	Vector Calculus and Fourier Series	3	0	2	4	1	5
2.	РС	AIM02004	Differential Equations and Transforms	3	0	2	4	1	5
3.	SE	AIM02005	Mathematical Statistics with R	3	1	0	4	1	4
4	PC	AIM02006	Mathematical Social Science	3	1	0	4	1	4
5	PC	AIM02007	Financial Mathematics	3	1	0	4	0	4
			Total	15	3	4	2 0	4	22
	L – Lectu	· ·	al; P – Practical; C –		t; S –	Self	fStuc	ly;	
		TC	H – Total Contact Hou	ırs					

			SEMESTER – III						
S. No.	COURSE CATEGO RY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН
1.	PC	AIM02008	Modern Algebra	3	1	0	4	1	4
2.	PC	AIM02009	Mathematical Analysis	3	1	0	4	1	4
3.	PC	AIM02010	Complex Functions	3	1	0	4	1	4
4.	PC	AIM02011	Probability and Statistics	3	0	2	4	1	5
5.	SE	ACA02002	Object Oriented Programming Using C++	3	0	2	4	0	5
			Total	15	3	4	20	4	22
	L – Lect	,	rial; P – Practical; C – Cre CH – Total Contact Hours	dit; S	- S	elf S	tudy;		

SEMESTER – IV

S. No.	COURSE CATEGOR Y	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн
1.	PC	AIM02012	Linear Algebra	3	0	2	4	1	5
2.	PC	AIM02013	Real Analysis	3	1	0	4	1	4
3.	PC	AIM02014	Complex Analysis	3	1	0	4	1	4
4.	AE	AIM02015	Advanced Statistics	3	1	0	4	1	4
5.	HS	ACA02003	Basics of Data Science	3	1	0	4	0	4
			Total	15	4	2	20	4	21
	L – Lecture; T – Tutorial; P – Practical; C – Credit; S – Self Study; TCH – Total Contact Hours								

			SEMESTER – V						
S. No.	COURSE CATEGO RY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн
1.	PC	AIM02016	Discrete Mathematics	3	1	0	4	1	4
2.	PC	AIM02017	Three-Dimensional Analytical Solid Geometry	3	1	0	4	1	4
3.	PC	AIM02018	Numerical Analysis	3	1	0	4	1	4
4.	DE	AIM025**	Elective – I	3	1	0	4	0	4
5.	DE	AIM025**	Elective – II	3	1	0	4	0	4
			Total	15	5	0	20	3	20
	L – Lectu	· ·	al; P – Practical; C – C H – Total Contact Hour		S – S	Self \$	Study	;	

SEMESTER – VI

S.	COURSE	COURSE	NAME OF THE	L	Т	Р	C	S	TC
No.	CATEGO	CODE	COURSE						Н
	RY								
		AIM02019	Operations Research	3	1	0	4	1	4
1.	PC								
		AIM02020	Number Theory	3	1	0	4	1	4
2.	PC								
		AIM02021	Advanced Numerical	3	0	2	4	1	5
3.	AE		Analysis						
		AIM025**	Elective – III	3	1	0	4	0	4
4.	DE								
		AIM025**	Elective – IV	3	1	0	4	0	4
5.	DE								
			Total	15	4	2	20	3	21
	L-I	Lecture; T – T	utorial; P – Practical; C – C TCH –Total Contact Hour	,	5 – Self	Study	/;		

			SEMESTER – VII						
S. No.	COURSE CATEGO RY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн
1.	РС	AIM02022	Real integral using Complex Analysis	3	1	0	4	1	4
2.	РС	AIM02023	Advanced Operations Research	3	1	0	4	1	4
3.	PC	AIM02024	Classical Mechanics	3	1	0	4	1	4
4.	DE	AIM025**	Elective – V	3	1	0	4	0	4
5.	DE	AIM025**	Elective – VI	3	1	0	4	0	4
			Total	15	5	0	2 0	3	20
			Total	15	5	0		3	20

L – Lecture; T – Tutorial; P – Practical; C – Credit; S – Self Study; TCH –Total Contact Hours

			SEMESTER – VIII						
S. No.	COURSE CATEGO RY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН
1.	PC	AIM02025	Topology and Advanced Functional Analysis	3	1	0	4	1	4
2.	PC	AIM02026	Commutative Algebra	3	1	0	4	1	4
3.	PJ	AIM02800	Project	0	0	24	12	0	24
			Total	6	2	24	20	2	32
	L – Le	,	ıtorial; P – Practical; C – C TCH – Total Contact Hou		; S – S	Self St	udy;		

TOTAL CREDITS – 160

LIST OF DEPARTMENTAL ELECTIVES WITH GROUPING - SEMESTER WISE

			Elective I						
SE M	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН
5	DE	AIM02500	Numerical Solution of Partial Differential Equations	3	1	0	4	0	4
5	DE	AIM02501	Stochastic Processes	3	1	0	4	0	4
5	DE	AIM02502	Fourier Analysis	3	1	0	4	0	4
			Elective II						
5	DE	AIM02503	Mathematical Physics	3	1	0	4	0	4
5	DE	AIM02504	Basics of Graph Theory	3	1	0	4	0	4
5	DE	AIM02505	Representation Theory of Finite Groups	3	1	0	4	0	4
			Elective III		-				
SE M	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн
6	DE	AIM02506	Special Theory of Relativity and Analytical Mechanics	3	1	0	4	0	4
6	DE	AIM02507	Theory of Fuzzy Subsets and its Models	3	1	0	4	0	4
6	DE	AIM02508	Neural Networks	3	1	0	4	0	4
			Elective IV						
6	DE	AIM02509	Functional Analysis	3	1	0	4	0	4
6	DE	AIM02510	Fluid Mechanics	3	1	0	4	0	4
6	DE	AIM02511	Control Theory	3	1	0	4	0	4
			Elective V						
SE M	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн
7	DE	AIM02512	Advanced Number Theory	3	1	0	4	0	4
7	DE	AIM02513	Electromagnetic theory	3	1	0	4	0	4
7	DE	AIM02514	Number Theory and Crptography	3	1	0	4	0	4
			Elective VI						
7	DE	AIM02515	Genetic Algorithm	3	1	0	4	0	4
7	DE	AIM02516	Applications of Graph Theory	3	1	0	4	0	4
7	DE	AIM02517	Financial Calculus	3	1	0	4	0	4

	URSE	E		CI	LASSI	CAL	ALGE	EBRA			CRE	DIT		4	
	OURSI ODE	E A	AIM02	001		COUF ATEG			РС		L-	T-P-S		3-1-	0-1
V	ersion		1.()	Арр	roval	Detail	ls				RNIN EVEL		BTI	 3
					A	SSES	SME	NT SC	CHEM	Έ					
Per	First iodica essme		Seco Period Assess	lical		Semin signm Proje	nents/		Surpr est / Q		Atte	endan	ce	ES	E
1	15%		15%	%		10%	6		5%			5%		509	%
	ourse criptio	on	To expose the students to the theory of equations and series												
Ob C Ou	ourse jective ourse itcome	3 U 1. 2. 2. 3. 4. 5.	 To serie To c trans Upon c Anal appli Find Obta Calce 	study i es. lemon scende omple yze the cation the con in the a ulate the tify mu	ntensiv strate to ental ty tion of e conce to sum nvergen absolut ne appro- ltiple r Limit	the sta <u>pe equ</u> this c pt of B mation nce or c e conve oximat <u>oots us</u> s and s	inomia of seri diverge ergence e roots sing Ho Sequer	vergen metho s. the stu l, Expo ies. ence of e series of the <u>rner's</u> nces	ods to s udents onentia an infi s using equation methoo	solve t will t al, Loga inite se Cauch on. d	both po be able arithmi ries.	blynon to c serie:	nial an	d neir	of
						/	AND F								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	-	3	-	-	3	-	-	-	-	-	-	-
CO2	-	2	3	-	3	-	-	3	3	-	-	-	-	-	3
CO3 - 2 3 - 3 -															
CO4	-	2	3	-	3	-	-	3	-	-	-	-	-	-	-
CO5	-	2	3	-	3	-	-	3	2	-	-	-	-	-	2
		1:	Weak	ly rela	ted, 2	: Mod	eratel	y rela	ted an	d 3: S	trong	ly rela	ted		

SEMESTER I

MODU	ULE 1: Summation of Series using Binomial and Exponential Theorem (DL+3T=12)
applica	al, exponential theorems-their statements only- their immediate tion to summation and approximation only. udy: Proof of Binomial and Exponential Theorems	CO-1 BTL-3
MODU	ULE 2: Logarithmic Series, Convergence and Divergence of Series (9)	L+ 3T=12)
summa definiti	hmic series theorem-statement and proof-immediate application to tion and approximation only. Convergency and Divergency of series – ons, elementary results comparison tests-De-Alembert's and Cauchy's tests. udy: Divergence of series	CO-2 BTL-3
MODU	JLE 3: Absolute Convergence of Series (9L+3T=12)	
Raabe'	te convergence-series of positive terms-Cauchy's condensation test- s test. udy: Series of positive terms	CO-3 BTL-3
MODU	JLE 4: Theory of Equations (9L	+3T=12)
transfor signs-sy	of an equation- Relations connecting the roots and coefficients- rmations of equations-character and position of roots- Descartes's rule of ymmetric function of roots-Reciprocal equations. udy: Reciprocal equations	CO-4 BTL-3
		DL+3T=12)
-	e roots-Rolle's theorem - position of real roots of $f(x) = 0$ – Newton's of approximation to a root – Horner's method.	CO-5 BTL-3
TEXT	BOOKS	
1.	T. K. ManikavasagamPillai, T. Natarajan and K.S Ganapathy (2013), <i>Alge</i> Viswanathan Printers and Publishers Private Ltd, Chennai.	ebra,
REFEI	RENCE BOOKS	
1	P. Kandasamy and K. Thilagavathy (2014), <i>Mathematics</i> for B.Sc. Branch I - Vol. I, S. Chand and Company Ltd, New Delhi.	
E BOO	DKS	
1	N. P. Bali (2010), Algebra, Laxmi Publications-New Delhi Edition.	
MOOO	2	
1.	https://www.brainkart.com/article/Introduction-to-Binomial,-Exponential- Logarithmicseries_35107/2	and-
2.	http://www.jjernigan.com/172/ConvergenceDivergenceNotes.pdf	
3.	http://home.iitk.ac.in/~psraj/mth101/lecture_notes/Lecture11-13.pdf	

4.	https://maths4uem.files.wordpress.com/2015/09/1028-infinite-series.pdf
5.	https://ocw.mit.edu/high-school/mathematics/exam-prep/concept-of-series/series-

COURSE	DIFFER	ENTIAL AND I	NTEGRAL	CDEDITS		4				
TITLE		CALCULUS		CREDITS	4	4				
COURSE CODE	AIM02002	COURSE CATEGORY	РС	L-T-P-S	3-0	-2-1				
Version	1.0	Approval Details		LEARNING LEVEL	BT	'L-3				
		ASS	ESSMENT SCH	EME						
		CIA			E	SE				
First Periodical Assessment (Theory)	Second Periodical Assessment (Theory)	Practical Assessments	Observation / Lab records as approved by the Department Examination Committee "DEC"	Attendance	End Semester Examination (Theory)	End Semester Examination (Practical)				
15%	15%	10%	5%	5%	25%	25%				
Course Description	To expose the students to the basics of real analysis.									
Course Objective	 To find the the the the the the the the the the	orm partial differe ify definite and in	ng first princip entiation of a fu ndefinite integr	le, chain rule an inction of two v als	d Leibnitz's					
Course Outcome	3 Obtain partial derivatives and apply Fuler's theorem									
Prerequisites	s: Basic of se	ts and functions								
_										

					CC), PO	AND F	PSO M	APPIN	NG					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	-	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	2	-	3	-	-	-	-	-	-	-	-	-	-	-
CO3	1	2	-	3	-	-	-	-	-	-	-	-	-	-	-
CO4	1	2	-	3	-	-	-	-	-	-	-	-	-	-	-
CO5	-	2	-	3	-	-	-	-	-	-	-	-	-	-	1
		1	: Wea	kly rel	ated, 2	2: Mod	eratel	y relat	ed and	3: Str	ongly	related	ł		
MODU Constan	-			-										(9L	4+6P)
Continu Self Stu Lab: Ba MODU Slope ar the Diff Derivati Differer	 Number – Limit of a Function - Theorems on limit – List of important results – Continuous Function. Self Study: Limit of a Function Lab: Basic Representation of MATLAB MODULE 2:DIFFERENTIATION Solope and Rate of Change – Derivative [First Principle] – Method for Evaluating the Differential Coefficient using the First Principle and Standard Results – Derivative of Logarithmic function and Exponential Function – Chain rule – Differentiation of an Implicit Function – Logarithmic Differentiation – Successive Differentiation – Definition and Notations – Leibnitz's Theorem on Successive Differentiation. 								(9L+6P)						
Self Stu Lab: Di MODU	fferent LE 3:H	iation (PARTI	of sing AL DI	FFER	ENTL			• .•						(9L	+6P)
Derivati function (Note: S Self Stu Lab: Pa	- Euler Simple	's theo Probler omoger	orem – m only neous f	Partial) unction	deriva 1	tives o						CO-3 BTL-3			
MODU	LE 4:I	NTEG	RATI	ON TI	ECHN	IQUE	5							(9L	+6P)
Integrati Integrati Self Stu Lab: Int	ion usin dy: De	ng part efinite i	ial frac integra	tion –					Integra	tion by	v parts	_		CO-4 BTL-3	
MODU	LE 5:]	MULT	TPLE	INTE	GRAL	r								(9L	+6P)
Integral Self Stu Lab: Int	IODULE 5: MULTIPLE INTEGRAL ouble integral – Triple integral- Change of order of integration - Improper itegral – Gamma function – Beta function. elf Study: Improper Integral ab: Integration of multi variable EXT BOOKS											CO-5 BTL-3			
1. 2.	S. Vi Bhup	swanat	thanPv Singh,	t. Ltd, S.K.Pi	India.				14), Ca Calculu				<i>ılus</i> , Pr	agathi	

CO2

2

-

1

-

2

-

-

-

-

-

-

REFER	ENCE BOOKS
1.	Dr P. Mariappan (2015), <i>Business Mathematics</i> , Pearson Indian Education Service Pvt. Ltd, India.
2.	Dr.P.R. Vittal&Dr.V.Malini (2014) Calculus, Margham Publication, India.
E BOO	KS
1.	http://www.themathpage.com
2.	http://mathworld.wolfram.com
3.	http://www.analyzemath.com/calculus
MOOC	
1.	https://itemspro.eu/2020/12/15/mooc-differential-and-integral-calculus-2021/
2.	https://openlearning.aalto.fi/course/view.php?id=168

	URSE		APPLIED PHYSICS								CRED	ITS		4	
	URSE ODE	I	APH02	001		URSE EGOR	Y	B	S		L-T-]	P-S		3-1-0-	0
Ve	ersion		1.0			proval etails				I	LEARNIN(LEVEL			BTL-	3
						ASSES	SME	NT SCI	HEME	, ,					
Per	First iodical essmen		SecondSeminar/Surprise Test /PeriodicalAssignments/QuizAssessmentProject								Attend	ance		ESE	
1	15%		15%	•	1	0%		5%	0		5%)		50%	
	Course To expose the students to the basics of Applied Physics.														
_	ourse jective	2.	To stu	dy inte	e studer nsively trate th	on gra	vitatio	nal for	es and	sound.		-		sticity.	
	3. To demonstrate the standard methods adopted in geometrical optics.Upon completion of this course, the students will be able to1. Develop an understanding on the concept of Simple Harmonic Motion, Angular Momentum, Moment of Inertia, Kinetic Energy.CourseOutcome3. Apply the concepts of transverse waves in Melde's experiment, production of ultrasonic waves and its applications.4. Apply Newton's rings in determination of wave length and refractive index of liquid.5. Understand the basic laws in electrostatics and its significance in capacitors.														
Prere	equisite	s: Kno	owledge	e of Ph	ysical S	Science									
					C	D, PO A	AND F	PSO M	APPIN	G					
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	3	-	1	-	2	-	-	-	-	-	2	-	1

-

2

1

-

CO3	1	2	-	-	2	-	3	-	-	-	-	-	2	1	3
CO4	2	-	1	-	-	-	1	-	-	-	-	-	-	3	-
CO5	-	1	2	-	3	-	2	-	-	-	-	-	1	3	2
MOD	1: Weakly related, 2: Moderately related and 3: Strongly related MODULE 1: Mechanics													(9L	2)
of sus – Rad	Simple harmonic motion, phase-equations of wave motion-compound pendulum- center of suspension-interchangeability center of oscillation and suspension.Moment of Inertia – Radius of gyration – Angular Momentum – torque – Theorems of M.I - M.I. of uniform rod, disc, circular ring, solid sphere.													CO-1 BTL-	_

MODULE 2: Gravitation and Elasticity	
(9L)	
Law of gravitation–constant G - Kepler's laws-relation between G and g – earth's mass and density -variation of the acceleration due to gravity - orbital velocity - escape velocity. Types of module - Hooke's law - Stress-strain relation - Poisson's ratio relation between Y, η and K.	CO-2 BTL-3
MODULE 3: Sound (9L)	
Transverse waves – velocity along a stretched string-laws of transverse vibration of strings -verification of laws - Melde's experiment. Ultrasonics-generation - piezo-electric effect - Detection of ultrasonics-applications (SONAR & NDT).	CO-3 BTL-3
MODULE 4: Optics (9L)	
Geometrical Optics: Spherical aberration of a thin lens – Methods of reducing spherical aberration – Coma – Aplanatic surface – Astigmatism – Curvature of the field – Distortion. Interference: Introduction – Air wedge – Newton's rings – Colors of thin films. Diffraction : Plane diffraction Grating – Theory of plane transmission Grating	CO-4 BTL-3
MODULE 5: Electrostatics	
(9L)	
Coulomb's inverse square law – Gauss theorem and its applications (Intensity at a point due to a charged sphere & cylinder), Principle of a capacitor – Capacity of a spherical and cylindrical capacitors – Energy stored in a capacitor – Loss of energy due to sharing of charges - Capacitors in series and parallel – Types of capacitors. Self-Study: Gauss Theorem	CO-5 BTL-3
TEXT BOOKS	
1. V. K. Mehta (2014), <i>Principles of Electrostatics</i> , S. Chand and Company Delhi.	Ltd, New
REFERENCE BOOKS	
1. A. S. Vasudeva (2013), <i>Modern Engineering Physics</i> , S. Chand and Compa Delhi.	ny Ltd, New
E BOOKS	
1. Allied Physics (Paper I and II), 1/e S Chand Publishing	
MOOC	
1. <u>https://nptel.ac.in/courses/115103108/</u>	

	URSE		РҮ	THO	ON PROGRAMMING AND MATLAB					CF	REDIT	S		4	
CO	URSE ODE	; A	ACA02	001		URSE EGOR		S	E		L-T-	P-S		2-1-2	-0
Ve	ersion		1.0			proval etails]	LEARI LEV			BTL-	-3
		·				ASSES	SSME	NT SCI	HEME						
				(CIA							I	ESE		
Per Asse	First iodical essmen heory)	t	Secor Period Assessr (Theor	ical nent		actical ssment	8	Observ Lab rec approve Depar Exami Comr "DF	ords as d by th tment nation nittee	e	tendanc	e		nd Sem Examina (Theor	tion
1	15%		15%	,	1	0%		59	%		5%	6		25%	•
	Course It is a discipline that helps to make better decisions in complex scenarios by the Description application of a set of advanced analytical methods. 1. To understand the Python Programming environment														
	ourse jective	2.	Able Able	to do s	imple o y out si	calcula	tions	using N	IATL.	AB		lyses			
_	ourse tcome	1 2 3 4	. Demo 2. Desi 3. Defir 4. Acqu MAT	onstrat gn Com ne class ire the LAB.	ion of the an un ntrol St ses and knowl ble algo	dersta ructure functi edge o	nding es usir ons of basi	on Bas ng Pyth s in MA	ic prin on pro ATLAI	ciples ogramn	of con ning	puters		-	
Prere	equisit	es: Kr	nowled	ge of n	natrices	s and v	vectors								
			I		CO), PO A	AND I	PSO M	APPI	NG	I	I	I	I	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
CO1	-	3	3	3	3	-	-	2	-	-	-	-	3	-	3
CO2	-	3	3	3	3	-	-	2	3	-	-	-	3	-	3
CO3	-	- 3 3 3 3 2		3	-	3									
CO4	-	3	3	3	3	-	-	2	-	-	-	-	3	-	3
CO5	CO5 - 3 3 3 - - 2 2 - - 3 - 3														
		1	: Weal	kly rel	ated, 2	: Mod	erate	y relat	ed an	d 3: St	rongly	relate	ed		

MOD	ULE1: Introduction to Python Programming	(6L+3P=9)
	onship between computers and programs Basic principles of computers -	
	systems Using the Python interpreter Introduction to binary	CO-1
	utation Input / Output	BTL-3
MOD	ULE 2: Data types and Control Structures	(6L+3P=9)
Opera	tors (unary, arithmetic, etc.) Data types, variables, expressions, and	CO-2
statem	ents Assignment statements Strings and string operations Control	BTL-3
Struct	ures: loops and decision	DIL-5
MOD	ULE 3: Modularization and Classes	(6L+3P=9)
Standa	ard modules Packages Defining Classes Defining functions	CO-3
Functi	ons and arguments (signature)	BTL-3
MOD	ULE 4: MATLAB Basics, Matrices and vectors in MATLAB	(6L+3P=9)
The M	IATLAB environment- Basic computer programming- Variables and	
consta	nts, operators and simple calculations - Formulas and functions-	CO-4
MATI	LAB toolboxes. Matrix and linear algebra review- Vectors and matrices in	BTL-3
MATI	LAB- Matrix operations and functions in MATLAB.	
MOD	ULE 5: MATLAB programming	(6L+3P=9)
Algor	ithms and structures- MATLAB scripts and functions (m-files)	
-	ble sequential algorithms - Control structures (ifthen, loops) Reading and	CO-5
	g data, file handling - Personalized functions- Toolbox structure -	BTL-3
	LAB graphic functions	
TEXT	T BOOKS	
1.	Stephen J. Chapman (2001), MATLAB Programming for Engineers, Net	elson Education
1.	Limited, USA.	
2	Wesley Chun (2001), Core Python Programming, Prentice Hall.	
REFE	CRENCE BOOKS	
1.	RudraPratap (2016), Getting Started with MATLAB, Oxford University Press	
2.	R NageshwaraRaoda (2016), Core Python Programming, Dreamtech Press.	
E BO	OKS	
1	Learn Python, Break Python: A Beginner's Guide to Programming, by Break	ing Stuff Books
1.	(learnpythonbreakpython.com)	
MOO	C	
1.	Python 3.4.3 - Course (swayam2.ac.in)	
2	Training - Courses in MATLAB, Simulink, and Stateflow - MATLAB & Sin	<u>nulink</u>

	URSE	2	VEC	FOR (CALCU SE	JLUS ERIES		IER	CR	EDIT	S		4		
	URSE ODE	2	AIM02	003	COU CATE	URSE EGOR		P	С		L-T-]	P-S		3-0-2	-1
Ve	ersion		1.0			oroval tails				I	LEARN LEV			BTL-	3
						ASSES	SSME	NT SCI	HEME						
				(CIA							ŀ	ESE		
Per Asse	First iodical essmer heory)		Secon Period Assessi (Theoi	ical nent		ctical	I tl	Observ Lab rec approv he Dep Exami Comr "DF	ords as yed by artmen nation nittee	s	tendan	ce	E	nd Sem xamina (Theor	ation
1	15%		15%	,	10	0%		5%	/0		5%	D		25%	,
	ourse criptio		Designed to develop an understanding of topics which are fundamental to the Study of calculus, Fourier series and multiple integrals.												
	ourse jective		Fo enab function						-		-		c, hyp	erbolic	
CourseUpon completion of this course, the students will be able to1. Evaluate the expansion of trigonometric functions and hyperbolic functions.2. Acquire the basic knowledge of logarithm of complex quantities.3. Determine and apply the important quantities associated with vector fieldssuch as the divergence, curl and scalar potential.4. Examine line integral, surface integral, volume integral and inter-relations among them.5. Find Fourier series of a given periodic function										ong					
Prer	equisit	es: Ki	nowled	ge in V		Ų					gration				
со	PO1	PO2	PO3	PO4	P05	, PO A PO6	AND I PO7	PSO M PO8	1	NG PO10	PO11	PO12	PSO-1	PSO-2	PSO-3
C01		2	3	-	3	100	107	2	107	1010	1011	1012	- 50-1	- 50-2	- 50-5
CO1 CO2		2	3		3	-	-	2	- 3	-	-	-	-	-	-
	-			-		-	-			-	-	-	-	-	-
CO3	-	2 3		-	3	-	-	2	-	-	-	-	-	-	-
CO4 CO5	-	2	3	-	3	-	-	2	- 2	-	-	-	-	-	-
0.05	-		: Weal	- clv rol		- Mod	- oratol				- ronaly	- relate		-	-
		1	. wear	My I Ch	ancu, 2	. 1910û	ci atel	y i ciat	cu ailt	1 J. BL	ongry	iciate	u		

SEMESTER II

MODULE 1: Expansion in Series	(9L+3T=12)
Expansion in Series – Expansion of $\cos n\theta$, $\sin n\theta$ in a series of $\cos n\theta$ and $\sin \theta$ of multiples of θ –Expansions of $\cos n\theta$, $\sin n\theta$ and $\tan n\theta$ in powers of sines, $\cos n\theta$ and $\tan \theta$ in powers of θ – hyperbolic functions and inverse hyperbol functions. Self-Study: Inverse hyperbolic functions. Mat Lab: Expansion of $\cos n\theta$, $\sin n\theta$.	
MODULE 2: Logarithm of Complex Quantities and Summation of Series	(9L+3T=12)
Logarithm of complex quantities - summation of series – when angles are in arithmetic progression, method of summation – method of differences. Mat Lab : Summation of Series	CO-2 BTL-3
MODULE 3: Vector Differentiation	(9L+3T=12)
Scalar and vector fields – Differentiation of vectors – Gradient, Divergence and Curl- Solenoidal and irrotationalvectors-Laplacian Operator. Self-Study : Laplacian Operator. Mat Lab : Gradient, Divergence, Curl, Irrotational, and Solenoidal.	CO-3 BTL-3
MODULE 4: Vector Integration	(9L+3T=12)
Integration of vectors – line integral – surface integral – Green's theorem in the plane – Gaus divergence theorem – Stake's theorem - verification of the above said theorems. Self-Study: Surface Integral Mat Lab: Solutions of Problems on Gauss Divergence Theorem, Stoke's theorem, Green's theorem	CO-4 BTL-3
MODULE 5: Fourier Series	(9L+3T=12)
Periodic functions – Fourier series of periodicity 2π – half range series, Change of Interval and Harmonic Analysis. Self-Study: Periodic Functions Mat Lab: Solution of Fourier Series. TEXT BOOKS	CO-5 BTL-3
1. P. Kandasamy and K. Thilagavathi (2004), <i>Mathematics for B.Sc. Branch I, Volume I,</i> Chand and Company Ltd, New Delhi.	II and IV, S.
REFERENCE BOOKS	
1. P. Duraipandian and Laxmi durai pandian (2005), <i>Vector Analysis</i> , Emerald Publishers	s. India.
2. K. Manichavasagam Pillai and S.Narayanan (2009), <i>Trigonometry</i> , Viswanathan Publi Pvt. Ltd. New Delhi	shers and Printers
E BOOKS	
1. <u>http://www.freebookcentre.net/maths-books-download/Calculus,-Applications-and-Theorem</u>	•
2. vhttp://www.freebookcentre.net/maths-books-download/Fourier-Analysis-by-Gustaf-	Gripenberg.html
MOOC	
1. <u>http://www.nptelvideos.in/2012/11/mathematics-iii.html</u> 2. <u>http://www.math.mit.adu/dik/18_01/abantar20/saction03_html</u>	
 <u>http://www-math.mit.edu/~djk/18_01/chapter20/section03.html</u> <u>https://www.whitman.edu/mathematics/calculus_online/chapter16.html</u> 	
4. <u>http://www.mecmath.net/calc3book.pdf</u>	

COURSE	DIFFEREN	TIAL EQUATI	4	1							
TITLE	Т	RANSFORMS		CREDITS		•					
COURSE CODE	AIM02004	COURSE CATEGORY	РС	L-T-P-S	3-0	-2-1					
Version	1.0	Approval Details		LEARNING LEVEL	BT	'L-3					
	ASSESSMENT SCHEME										
	CIA ESE										
First Periodical (Theory)Second Periodical Assessment (Theory)Practical Assessment (Theory)Observation /Lab the AssessmentsEndEndAssessment (Theory)Practical AssessmentsAssessments 											
15%	15%	10%	5%	5%	25%	25%					
Course Description	-	wledge on the m rential Equations		-	rential equation	ons, and					
Course Objective	differential	includes the study equations, Laplace problems, qualita	e transforms, n	umerical methods	s, boundary va	lue and					
CourseUpon completion of this course, the students will be able to1. Solve higher order linear differential equations.2. Demonstrate the solution of higher order using Euler's homogeneous3. Demonstrate competency to solve linear PDE by Lagrange's method.4. Analyze the concepts of Laplace transforms and inverse Laplace transforms.5. Identify the inverse Laplace transform.											
Prerequisites	Knowledge of	ordinary and Par	rtial Derivativ	/es							

					CO	, PO A	ND P	SO M	APPIN	NG					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
		1:	Weak	ly rela	ted, 2	: Mod	erately	v relate	ed and	3: Str	ongly	relate	d		

MODULE 1: Linear First Order Differential Equation	(9L+3T=12)		
Ordinary Differential Equations: Equations of First Order and of Degree Higher than one –Solvable for p, x, y– Clairaut's Equation – Simultaneous Differential Equations with constant coefficients of the form (i) $f_1(D)x + g_1(D)y = \emptyset_1(t)$ (ii) $f_2(D)x + g_2(D)y =$ $\emptyset_2(t)$ where f_1 , g_1 , f_2 and g_2 are rational functions D=d/dt with constant coefficients and \emptyset_1 , \emptyset_2 explicit functions of t. Self-Study: Clairaut's Equation LAB: Solution of first order differential equations	CO-1 BTL-3		
MODULE 2: Higher Order Linear Differential Equation	(9L+3T=12)		
Finding the solution of Second and Higher Order with constant coefficients with Right Hand Side is of the form where V is a function of x – Euler's Homogeneous Linear Differential Equation. LAB: Solution of first second differential equations	CO-2 BTL-3		
MODULE 3: Partial Differential Equations	(9L+3T=12)		
Partial Differential Equations: Formation of equations by eliminating arbitrary constants and arbitrary functions –Solutions of P.D Equations – Solutions of Partial Differential Equations by direct integration – Methods to solve the first order P.D. Equations in the standard forms –Lagrange's Linear Equations. Self-Study: Solutions of Partial Differential Equations by direct integration LAB: Solution of Lagrange's and Standard PDE differential equations	CO-3 BTL-3		
MODULE 4: Laplace Transforms	(9L+3T=12)		
Laplace Transforms: Definition – Laplace Transforms of standard functions – Linearity property –First Shifting Theorem – Transform of tf(t), f (t)/t, f'(t), f''(t), Inverse Laplace Transforms – Applications to solutions of First Order and Second Order Differential Equations with constant coefficients. Self-Study: First Shifting Theorem LAB: To find Laplace and Inverse Laplace of elementary function	CO-4 BTL-3		
MODULE 5: Fourier Transforms	(9L+3T=12)		
Fourier Integral Theorem (without proof) - Fourier transform pair - Sine and Cosine transforms - Properties - Transforms of Simple functions - Convolution theorem - Parseval's identity. LAB:To find Fourier Transform of elementary function	CO-5 BTL-3		
TEXT BOOKS			
1. P. Kandasamy and K. Thilagavathi (2004), Mathematics <i>for B.Sc – Branch –</i> I V. Chand and Company Ltd, New Delhi.	olumeIII , S.		
2. Dr. J. K. Goyal and K.P. Gupta (2004), <i>Laplace and Fourier Transforms</i> , Pragate Publishers, Meerut.	iPrakash		
REFERENCE BOOKS			
	an ath an		
1.S. Narayanan and T. K. ManickavasagamPillai (2009), Calculus Vol III, S. Visw Printers and Publishers Pvt. Ltd, Chennai.	anathan		

E BOC	NKS
1.	https://www.math.hkust.edu.hk/~machas/differential-equations.pdf
2.	http://www.mmcmodinagar.ac.in/econtent/physics/DifferentialEquationsAndTheirApplications.pd
MOOC	
1.	https://nptel.ac.in/courses/111105035/
2.	http://www.nptelvideos.in/2012/11/mathematics-iii.html
3.	https://www.digimat.in/nptel/courses/video/111108081/L02.html
4.	https://www.math.ust.hk/~machas/differential_equations.pdf.
5.	https://www.ijsr.net/archive/v2i1/ijsron2013331.pdf
6.	https://www.whitman.edu/mathematics/calculus_online/chapter17.html

	URSE ITLE		MATH	IEMA'	TICA	L STA	TIST	ICS W	ITH F	R CR	REDIT	S		4	
	OURSH ODE	E A	AIM02	005		COURS TEGO			SE]	L-T-P	·S		3-1-0-1	L
Version			1.0)		Approv Detail					CARNI LEVE			BTL-3	5
						ASSES	SSME	NT SC	HEM	E					
Per	First 'iodica essmei		Seco Period Assess	lical	Ass	Semina Signme Projec	ents/		rprise / Qui	A1	ttenda	nce	ESE		
1	15%		15%	/o		10%		4	5%		5%			50%	
CourseThis course discusses the basic Mathematical statistics which provides studentsDescriptionwith decision theory, estimation, confidence intervals, and hypothesis testing.															
	ourse jective	2	. To stu . To lea	•		-		0		•				U	
Course Outcome		1 2 3 4	Jpon co . Demo . Apply . Analy . Acqui . Demo	onstrate the te ze sim ire the	e an un est of h aple an knowl	dersta ypothe d mult edge o	nding esis for iple re on time	on con sampl gressic series	cepts o ing on , forec	of prob asting	ability and de		theory	7	
Prere	equisit	es: Ba	asic def	inition	is and	concep	ots of s	tatistic	s, prog	gramm	ing kn	owledg	ge		
					CC), PO	AND I	PSO M	IAPPI	NG					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO-1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO-2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO-3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO-4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: DESCRIPTIVE STATISTICS

MODULE 1: DESCRIPTIVE STATISTICS	(9L+3T=12)
Grouping and displaying data – Measures of central tendency and dispersion in frequency distribution – Introduction to probability – Probability distribution.	CO-1 BTL-3

MODU	LE 2: INFERENTIAL STATISTICS	(9L+3T=12)
Sampli	ng and Sampling distribution – estimation – test of hypothesis – one	CO-2
sample	- 2 sample test - quality and quality control- chi square and analysis	BTL-3
of varia	ince.	DIL-5
MODU	LE 3: CORRELATION AND REGRESSION	(9L+3T=12)
Correla	ation and partial correlation – simple & multiple and partial	CO-3
correlat	ion analysis – simple and multiple regression analysis.	BTL-3
MODU	LE 4: TIME SERIES, FORECASTING AND DECISION THEO	RY (9L+3T=12)
NT		CO-4
Non pa	rametric test – time series and forecasting – decision theory	BTL-3
MODU	LE5: DATA VISUALIZATION	(9L+3T=12)
	ction to GGPlot2 - Factors - Aesthetics - Plotting with Layers -	CO-5
	ling Aesthetics – Mapping vs Setting – Histograms – Density Charts	BTL-3
	tical Transformation – Facets – Coordinates – Themes.	
TEXT	BOOKS	
1.	Gupta, S. C. and Kapoor, V. K. (2020). <i>Fundamentals of Mathemat</i> Chand & Sons, New Delhi, 11 th Edition.	<i>fical Statistics</i> , Sultan
2.	Mark Gardener. (2013). Beginning R – The Statistical Programming	g Language, Wiley.
3.	Ross, S. M. (2014). Introduction to Probability and Statistics, Acade	emic Foundation.
REFEI	RENCE BOOKS	
1.	Papoulis, A. and Pillai, S. U. (2010). <i>Probability, Random Variable Processes</i> , TMH.	es and Stochastic
2.	Hastie, Trevor, et al. (2017). The elements of Statistical Learning, S	pringer.
3.	Robert Knell. (2013). Introductory R: A Beginner's Guide to Data V Analysis and Programming in R, Amazon Digital South Asia Servic	
E BOO	KS	
1.	https://www.e-booksdirectory.com/details.php?ebook=12097	
2.	https://www.e-booksdirectory.com/details.php?ebook=9332	
MOOC		
1.	https://www.edx.org/course/statistics-and-r	
2.	https://ocw.mit.edu/courses/mathematics/18-655-mathematical-stat	istics-spring-2016/#
3.	https://www.coursera.org/browse/data-science/probability-and-stati	stics

	DURSE TITLE		M	ATHE	MATIC	CAL SC	OCIAI	L SCIEI	NCES		CR	EDIT	S	4						
	DURSE CODE	A	[M020	06)URSE EGOR			PC		L-T-P-S			3-1-0-1						
v	Version 1.0			Approval Details							ARNIN EVEL		BTL	3						
						ASSE	SSME	ENT SC	HEMI	Ξ										
Pe	First riodical sessment		Second Periodical Assessment		Periodical		Periodical		Periodical		Seminar/ Assignments/ Project		Surr	ırprise Test / Quiz		First I Asse	Periodi essmer		Seco Period Assessi	lical
	15%		15%			10%			5%		1	15%		15%	6					
	Course scription		To make the student understand the basic concepts of Mathematical social science and its application																	
	Course Djective	an	-	ze the s			-				-			cs to stu	÷					
-	Course Outcome		 Upon completion of this course, the students will be able to 1. Recognize fuzzy logic membership function and fuzzy Inference systems 2. Determine the graph theoretic tools / techniques 3. Apply statistical techniques in real time problems 4. Apply the optimization techniques in networks 5. Derive statistical approach using fuzzy models 																	
Prei	requisite	s: Bas	sics of s	tatistic	8															
					C	CO, PO	AND	PSO M	APPI	NG										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO 1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-					
CO 2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-					
CO 3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-					
CO 4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-					
CO 5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-					
			1: W	eakly	related,	, 2: Mo	derate	ely relat	ed and	1 3: Stro	ongly re	elated								
MO	DULE 1	: IN	TROD	UCTI	ON TO	SOCIA	AL SC	IENCE					(9	L+3T=1	12)					
expe	e fundar eriment- arch- Ex	Hypot	hesis in	social	researcl				•	-		cial		CO- BTL						
MO	DULE 2	: G	RAPH	THEO	RETIC	TOOI	LS / T	ECHNI	QUES				(9L+3T=	=12)					

M.Sc., Mathematics (Integrated)

Conversion of issues to graphs- weighted graphs- popular models- Examples from case	CO-2
studies-Techniques used in Numerical Methods- Examples from case studies.	BTL-3

MO	DULE 3: STATISTICAL TOOLS / TECHNIQUES	(9L+3T=12)
Sam	pling and types of sampling-Standard measures in statistics Examples from case studies.	CO-3 BTL-3
MO	(9L+3T=12)	
Assi Dete Sho	nulating the Linear Programming Problem-Simplex method Transportation Problem- gnment Problem -Necessity for maintaining inventory-E.O.Q Problems with erministic and Probabilistic Demand-Networks-Graphs-Spanning Tree problem rtest Route Problem-Maximal Flow problem - Examples from case studies.	CO-4 BTL-3
	DULE 5: FUZZY TOOLS / TECHNIQUES	(9L+3T=12)
cogi Stat	zy models –fuzzy cognitive maps –combined overlap fuzzy cognitive maps-Neutrosophic nitive maps- combine overlap Neutrosophic cognitive maps- Neutrosophic relational maps- istical approach using fuzzy models and Neutrosophic models.	CO-5 BTL-3
TEX	KT BOOKS	
1.	Mojumdar, P. K. (2011). <i>Research Methods in Social Sciences</i> , Viva Books Pvt. Ltd., cha and 3 (full), 4.5 and 8.1, 8.2, 8.8, 17.4-17.7 and 8.11 General outlook from Chapters 9, 10,	.
2.	Bart Kosko, (2003). <i>Neural Networks and Fuzzy systems</i> , Prentice Hall of India, New Del 4 and 8	
3.	Bondy and Murthy, (2013) Graph Theory with Applications, Chapters 14,15	
RE	FERENCE BOOKS	
1.	KanthiSwaroop, et.al., (2014). Operations Research, Sultan Chand & Sons, Reprint	
2.	VasanthaKandasamy,W. B., FlorentinSmarandache, K. and Ilanthenral. (2007). <i>Elemental theory and fuzzy models for social scientists</i> , Published by Automaton, Los Angeles, USA.	ry fuzzy matrix
3.	GopalLal Jain. (2010). Research methodology, Mangal Deep Publications.	
4.	Kapoor, J. N. (2010). Statistical methods, S Chand & Co Ltd.	
E B	OOKS	
1.	Jonathan - Kropko - Mathematics - Social-Scientists -eBook/dp/B016ILJ5WI	
MC	OC	
1.	https://online-learning.harvard.edu/subject/social-sciences	

	URSE	,	FI		TAT	MATI	HEMA	TICS	!	CRI	EDITS	5		4			
CO	ITLE DURSE ODE		IM020		C	COUR	SE		PC	I	-T-P-	S	-	3-1-0-()		
Ve	ersion		1.0	1		approv Detail					ARNI LEVE			BTL-3			
					A	ASSES	SME	NT SC	HEM	Έ							
Per	First iodica essmen		Secon Period Assessr	ical	Ass	emina ignme Projec	ents/	Te	prise est / uiz	At	tenda	nce	ESE				
1	15%		15%	o		10%		5	%		5%			50%			
_	ourse criptio	n T	To expose the students to the basics of Financial Mathematics														
Course Objective1. To understand the concepts of Financial Mathematics 2. To have a clear idea of stocks, Futures forward and swaps 3. To understand Markowitz theory of portfolio 4. To understand about Future options 5. To perceive the concept of Martingales																	
Course Outcome		1. 2. 3. 4. 5.	Anal Appl Class	tify the lyze pr ly the c sify the ly brov	e need esent a concep e futur vnian 1	for fin and fut ot of m re option motion	ancial ture va inimu ons and	mathe lue of n varia	matics cash fl ance po	s low ortfolio)					
TICI	cquisit	LS. D		11100), PO	AND I	PSO N	IAPPI	NG							
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1	PSO2	PSO3		
CO1	_	2	3	3	3	-	-	2	-	-	-	-	3	-	-		
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-		
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-		
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-		
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-		
		1:	Weak	ly rela	nted, 2	: Mod	leratel	y rela	ted an	d 3: S	trongl	y relat	ted	_			
MO	DULE	1: FI	NANO		MAR	KETS,	BON	DS AN	ND ST	OCK	8		(9L-	+ 3T=1	2)		
	duction tets and											ncial		CO-1 BTL-3			

MOD	ULE 2: FUTURES FORWARD, SWAPS AND OPTIONS	(9L+3T=12)
Introdu Introdu and fut	CO-2 BTL-3	
MOD	ULE 3: PORTFOLIO THEORY	(9L+3T=12)
Marko discus varian	CO-3 BTL-3	
MOD	ULE 4: FUTURE OPTIONS	(9L+3T=12)
	bitrage principle and pricing of forward contracts – Future options and put rity – Bounds on options – Examples and discussion.	CO-4 BTL-3
MOD	ULE 5: MARTINGALES, ITO INTEGRAL	(9L+3T=12)
Marko	e period binomial model – Multi period binomial model – Martingales – ov process – Brownian motion – Discussion – Integral and its properties – peess – Ito formula.	CO-5 BTL-3
	BOOKS	
1.	Capinski, M. and Zastawniak, T. (2011). <i>Mathematics for Finance: A Financial Engineering</i> , Springer, Second Edition.	n Introduction to
3.	Cvitanic, J. and Zapatero, F. (2004). <i>Introduction to the Economics and Financial Markets</i> , The MIT Press.	l Mathematics of
REFE	RENCE BOOKS	
1.	Steven Shreve. (2015). <i>Stochastic Calculus for Finance I: The Bino</i> . <i>Pricing Model</i> , Springer Finance.	mial Asset
2.	Steven Shreve. (2010). <i>Stochastic Calculus for Finance II: Contin</i> <i>Models</i> , Springer Finance.	uous-Time
E BOO		
1.	Robert Buchanan. (2012). An undergraduate introduction to Finance Millersville University, USA, Third Edition, <u>https://doi.org/10.1142/849</u>	
2.	Richardson, Clarence, H., Leslie Miller Isaiah. (2005). Financial Mat	hematics, D. Va

MOOO	С
1.	https://www.classcentral.com/course/swayam-financial-mathematics-13024
2.	https://www.openlearning.com/courses/introduction-to-financial-mathematics/?cl=1
3.	https://onlinecourses.nptel.ac.in/noc19_ma26/preview
4.	https://www.coursera.org/courses?query=mathematical%20finance

COURSE TITLE			MODERN ALGEBRA								CREDITS			4		
	OURSE ODE	A	IM02	2008 COURSE CATEGORY				PC		L-T-P-S			3-1-0-1			
Ve	ersion		1.0			Approval Details			LEARNING LEVEL			L	BTL-3			
						ASSE	SSME	ENT S	CHEN	1E						
Per	First 'iodical essmen		Seco Perio Assess	dical	As	Seminar signmer Project	nts/	Surprise Test / Quiz		Attendance				ESE		
1	15%		15%			10%			%		5%			50%		
Deso Co	ourse cription ourse jective	n F	The course discusses how algebra allows us to abstract out the geometric objects and numbers. Focuses on the concepts of algebraic structures which is one of the pillars of modern Mathematics and emphasis on their properties and applications.													
Course Outcome Prerequisites: 1		2 3 4 5	 Compare the properties and extend group structure to finite permutation groups. Evaluate subgroups an its types. Evaluate the concepts of homomorphism, isomorphism and automorphism. Demonstrate ring from groups. Obtain ideals and quotients from rings Knowledge of basic Algebra. 													
						0,10	AND	1301	VIAFF	ING						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO-9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-	
			ips and	Weakly d its Bas	sic Pro	perties		-						9L+3T=		
Sets – mappings – Relations and binary operations – Groups: Abelian group, Symmetric group -Definitions and Examples – Basic properties. Self-Study:Sets											CO-1 BTL-3					

SEMESTER III

MODU	ILE 2: Subgroups and Normal Subgroups	(9L+3T=12)					
Subgro A, Cou Self-St	CO-2 BTL-3						
MODU	ILE 3: Automorphisms	(9L+3T=12)					
Homor automo Self-St	CO-3 BTL-3						
MODU	ULE 4: Rings	(9L+3T=12)					
Definiti Integral	CO-4 BTL-3						
MODU	ILE 5: Ideals and Quotient Rings	(9L+3T=12)					
Ideals and Quotient Rings – More Ideals and Quotient Rings – Maximal ideal - The field of Quotients of an Integral Domain.CO- BTL							
TEXT	BOOKS						
1. I.N. Herstein (2006), <i>Topics in Algebra</i> , John Wiley and Sons, New York.							
REFERENCE BOOKS							
1.	Surjeet Singh and QaziZameeruddin (2013), Modern Algebra, Vikas Publishing house, Ahmedabed.						
2.	A. R. Vasishtha (2019), Modern Algebra, Krishna PrakashanMandir, Meerut, India.						
E BOOKS							
1.	1. <u>https://www.dymocks.com.au/book/advanced-modern-algebra-by-joseph-j-rotman-9781470411763</u>						
MOOC							
1.	https://www.classcentral.com/course/swayam-modern-algebra-14201						
2.	https://nptel.ac.in/courses/111/106/111106113/						
	https://nptel.ac.in/courses/106/104/106104149/						

COURSE								C	REDITS		4				
TITLE		MATHEMATICAL ANALYSIS									•				
	URSE ODE		AIM02	2009		COURSE CATEGORY PC				L-T-P-	S	3	-1-0-1		
Ve	ersion		1.	.0		Approv Detail]	LEARNI LEVEI		BTL-			
			ASSESSMENT SCHEME												
F	First		Sec	ond		Semina	ar/	Surpri	ise						
Per	iodica	l	Periodical		As	Assignments/		Test	/	Attendance		ESE			
Asse	essmen	t	Asses	sment		Proje	et	Quiz	:						
1	5%		15		10%				5%		50%				
	Course Description		This course covers the fundamentals of mathematical analysis.												
Course Objective		1	 To present a deeper and rigorous understanding of fundamental concepts like continuity, Connectivity, derivative, monotonic functions with properties and Riemann - integral. 												
Course Outcome			 Upon completion of this course, the students will be able to 1. Demonstrate the understanding of continuity, uniform continuity, compactness, and connectedness. 2. Determine monotonic functions. 3. Evaluate algebra of derivatives using some methods. 4. Obtain properties of monotonic functions. 5. Determine the Riemann integrability and the Riemann-Stieltjes integrability of abounded function. Knowledge in Mappings and Properties of Real Numbers 												
					С	0, PO	AND	PSO MA	PPIN	G					
СО	PO1	РО	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	101	2					10/	2		1010		1012		1001	
CO1	-			3	3	-	-		-	-	-	-	3	-	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	
			1: W	eakly r	elated,	2: Mo	derate	ly relate	d and a	3: Strong	ly relat	ed			
MOD	ULE 1	l:T	opologic	al Mar	pings							(9)	L+3T=1	12)	
Examples of continuous functions –continuity and inverse images of open or closed sets –functions continuous on compact sets –Topological mappings –Bolzano's theorem.CO-1 BTL-3Self-Study: Topological mappingsCO-1 BTL-3															

	MODULE 2: Monotonic Functions (9L+3T=12)						
MOL	JULE 2. MONOLOHIC FUNCTIONS	(9L+31=12)					
contin functi		CO-2 BTL-3					
	Study: Uniform continuity DULE 2: Monotonic Functions	(9L+3T=12)					
WIOL	JULE 2: Monotonic Functions	(9L+31=12)					
contin functi	ectedness –components of a metric space – Uniform continuity - Uniform nuity and compact sets –fixed point theorem for contractions –monotonic ions. Study: Uniform continuity	CO-2 BTL-3					
	DULE 3: Derivatives	(9L+3T=12)					
chain deriva theore	hition of derivative –Derivative and continuity –Algebra of derivatives – the rule–one sided derivatives and infinite derivatives –functions with non-zero atives –zero derivatives and local extrema –Rolle's theorem –The mean value em for derivatives – Taylor's formula with remainder. Study: Rolle's theorem	CO-3 BTL-3					
	OULE 4: Functions of bounded variation	(9L+3T=12)					
-addi bound functi	Properties of monotonic functions –functions of bounded variation –total Variation –additive properties of total variation on (a, x) as a function of x – functions of bounded variation expressed as the difference of increasing functions –continuous functions of bounded variation. Self-Study: Monotonic functions						
MOL	MODULE 5: The Riemann- Stieltjes integral(9L+3T=12)						
prope	duction –Notation –The definition of Riemann –Stieltjes integral –linear erties –Integration by parts –change of variable in a Riemann –Stieltjes ral –Reduction to a Riemann integral.	CO-5 BTL-3					
	T BOOKS						
1. M. Apostol (2005), <i>Mathematical Analysis</i> , Narosa Publishing Company, Chennai							
REF	ERENCE BOOKS						
1.	R.R.Goldberg (2009), Methods of Real Analysis, NY, John Wiley, New York.						
2.	G.F.Simmons (2011), Introduction to Topology and Modern Analysis, McGraw – Hill, New York						
	G. Birkhoff and MacLane (2017), A survey of Modern Algebra, Macmillian, 3 rd Edition, NewYork.						
3.	G. Birkhoff and MacLane (2017), A survey of Modern Algebra, Macmillian,						
3. 4.	G. Birkhoff and MacLane (2017), <i>A survey of Modern Algebra</i> , Macmillian, J.N.Sharma and A.R.Vasistha (2017), <i>Real Analysis</i> , Krishna Prakashan Med	3 rd Edition, NewYork.					
4.		3 rd Edition, NewYork.					
4.	J.N.Sharma and A.R.Vasistha (2017), Real Analysis, Krishna Prakashan Med	3 rd Edition, NewYork.					
4. E B	J.N.Sharma and A.R.Vasistha (2017), <i>Real Analysis</i> , Krishna Prakashan Mec OOKS Mathematical Analysis, Second Edition (ru.ac.bd)	3 rd Edition, NewYork.					
4. E B	J.N.Sharma and A.R.Vasistha (2017), <i>Real Analysis</i> , Krishna Prakashan Mec OOKS Mathematical Analysis, Second Edition (ru.ac.bd)	3 rd Edition, NewYork.					
4. E B 1. MO 1. 2.	J.N.Sharma and A.R.Vasistha (2017), <i>Real Analysis</i> , Krishna Prakashan Mec OOKS Mathematical Analysis, Second Edition (ru.ac.bd) OC	3 rd Edition, NewYork.					
4. E B 1. MO 1.	J.N.Sharma and A.R.Vasistha (2017), <i>Real Analysis</i> , Krishna Prakashan Mec OOKS <u>Mathematical Analysis, Second Edition (ru.ac.bd)</u> OC <u>https://www.whitman.edu/Documents/Academics/Mathematics/grady.pdf</u>	3 rd Edition, NewYork.					

	OURSE ITLE	r		COM	PLEX	FUNC	TION	S		CREDI	TS			4				
CO	OURSE	,	AIM02		C	OURS TEGO	E	РС	1	L-T	-P-S		3-1	l -0-1				
Ve	ersion		1.0			pprov Details					NING VEL		BI	TL-3				
						ASSES	SSME	NT SCI	HEMI	E								
Per	First riodica essmer		Perio	ond odical sment		Semina ssignm Proje	ents/		rise T Quiz	est /	est / Attendance ES			ESE				
1	15%		15%	6		10%		5%	•	5	%		5	0%				
Course To expose the students about Complex analysis																		
Course ObjectiveTo equip the students with the understanding of the fundamental concepts of complex functions, analyticity, power series and complex integration.																		
Course Outcome1. Obtain the cross ratio using bilinear transformation.2. Calculate a function for its analyticity and find it series development.3. Determine power series and elementary functions.4. Obtain the relationship between conformal mapping and harmonic functions.5. Compute contour integrals directly and by the fundamental theorem.Prerequisites: Knowledge of Calculus and its types																		
					C	0, PO	AND I	PSO M	APPI	NG								
CO	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-			
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-			
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-			
CO4	-	2		3	3	-	-	2	-	-	-	-	- 3					
CO5											-							
				-	lated,	2: Moo	lerate	y relat	ed and	1 3: Str	ongly r	elated						
			omplex P		-		-				-		(9L	∠+ 3 T=1	2)			
Argur points Defin	ment – s -cros ition of	Elen s-rat	r –Field on nentary T tio-invaria ended cor near Trans	ransform ance of nplex p	mation f cros lane– S	s i) w⁼ s-ratio	=z +α under	ii) w =	az iii) ar tra	w = 1/z	z. Fixed	1		0-1 TL-3				

MODULE 2: Analytic Functions (9L+3T=12)								
Complex Functions- Limit of a function –continuity –differentiability – Analytical function defined in a region –necessary conditions for differentiability –sufficient conditions for differentiability –Cauchy-Riemann equation in polar coordinates – Definition of entire function. Self-Study: Entire Function	CO-2 BTL-3							
MODULE 3: Power Series and Elementary Functions	(9L+3T=12)							
Absolute convergence –circle of convergence –Analyticity of the sum of power series in the Circle of convergence (term by term differentiation of a series) Elementary functions: Exponential, Logarithmic, Trigonometric and Hyperbolic functions. Self-Study: Trigonometric Functions	CO-3 BTL-3							
MODULE 4: Harmonic Functions and Conformal Mapping	(9L+3T=12)							
Definition and determination. Conformal Mapping: Isogonal mapping – Conformal Mapping-Mapping $z \mathbb{E}f(z)$, where f is analytic, particularly the mappings, $w = e^z$, $w = z^2 \cdot w = \sin z$, $w = \cos z$, $w = z + 1/z$.	CO-4 BTL-3							
MODULE 4: Harmonic Functions and Conformal Mapping	(9L+3T=12)							
Definition and determination. Conformal Mapping: Isogonal mapping – Conformal Mapping-Mapping $z \mathbb{P}f(z)$, where f is analytic, particularly the mappings, $w = e^{z}$, $w = z^2 \cdot w = \sin z$, $w = \cos z$, $w = z + 1/z$.CO-4 BTL-3								
MODULE 5: Complex Integration	(9L+3T=12)							
Simply and multiply connected regions in the complex plane. Integration of $f(z)$ from definition along a curve joining z_1 and z_2 . Proof of Cauchy's Theorem (using Goursat's lemma for a simply connected region). Statement of Cauchy's BTL-3CO-5 BTL-3								
TEXT BOOKS 1. P. Duraipandian and LaxmiDuraipandian (2006), <i>Complex Analysis</i> , Emerald	1 Publishers Chennai							
REFERENCE BOOKS	a i donisiteris, citeninai.							
1.Churchill (2008), Complex Variable and Applications, Tata McGraw Hill Pu Ltd. New Delhi.								
2. Swaminarayan (2005), <i>Theory of functions of Complex Variable</i> , S. Chand an India.	na Company, Meerut,							
3. Tyagi B.S (2004), <i>Functions of Complex Variable</i> , 17th Edition, PragatiPrakasham Publishing Company Ltd, Meerut, New Delhi.								
E BOOKS								
1. UG_B.ScMathematics_113 63 COMPLEX ANALYSIS_8718.pdf								
MOOC								
1. https://nptel.ac.in/courses/111/103/111103070/								
2. https://nptel.ac.in/courses/111/107/111107056/								
3. https://nptel.ac.in/courses/122/103/122103012/								

COURSE TITLE	PROBABI	LITY AND STA	ATISTICS	CREDITS	2	1				
COURSE CODE	AIM02011	COURSE CATEGORY	РС	L-T-P-S	3-0	-2-1				
Version	1.0	Approval Details		LEARNING LEVEL	ВТ	L-3				
		ASSESS	SMENT SCHE	ME						
		CIA		-	E	SE				
First Periodical Assessment (Theory)	Periodical AssessmentPeriodical AssessmentPractical Assessmentapproved by the DepartmentSemester ExaminationSemester Examination									
15%	15%	10%	5%	5%	25%	25%				
Course Description	To expose th	e students about	Complex ana	lysis						
Course Objective										
Course OutcomeUpon completion of this course, the students will be able to 1. Develop an understanding of the concept of population and samples.2. Apply the basic probability for simple problems in real time. 3. Prove Baye's theorem and compute the conditional probabilities. 4. Derive the mean, variance and moment generating function for probability distributions. 5. Apply the methods of sampling										
Prerequisites	Knowledge c	of Calculus and it	s types							

	CO, PO AND PSO MAPPING														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	3	2	2	-	-	-	-	-	-	2	-	3
CO2	-	3	-	3	-	2	-	-	-	-	-	-	1	2	-
CO3	3	2	3	3	3	2	2	-	-	-	-	-	3	2	-
CO4	3	-	3	3	2	2	2	-	-	-	-	-	-	3	2
CO5	3	2	-	3	-	2	2	-	-	-	-	-	3	1	-

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1:Measures of Central Tendency	(9L+6P=12)
Introduction and Overview – Distinction between population and sample, and between population parameters and sample statistics –Frequency Distribution – Graphical and Tabular Representation of Data – Measures of Central Tendency (Arithmetic Mean, Geometric Mean, Harmonic Mean, Median, Mode, and their properties, Percentiles, Quartiles, Deciles) Self-Study: Measures of Central Tendency Lab:Mean, Median, Mode	CO BTL-3
MODULE 2: Measures of Dispersion	(9L+6P=12)
Measures of Dispersion (Range, Quartile Deviation, Mean Deviation, Standard Deviation, Coefficient of Variation, Coefficient of Mean Deviation, Coefficient of Quartile Deviation, Lorenz Curve, and Gini Coefficient) – Population moments and their sample counterparts – Skewness and Kurtosis – Correlation and Regression. Self-Study : Skewness and Kurtosis Lab :Quartile Deviation, Standard Deviation	CO-2 BTL-3
MODULE 3: Probability Theory	(9L+6P=12)
Elementary Probability Theory – Sample spaces and events –Probability axioms and properties - Counting techniques –Conditional probability – Theorem of Compound Probability – Bayes Theorem and Applications – Random Variable (Discrete and Continuous) Self-Study: Random variables Lab:Conditional probability	CO-3 BTL-3
MODULE 4: Probability Distributions	(9L+6P=12)
Probability Distributions – Expected values of Random Variables – Properties of commonly used discrete and continuous distributions – Binomial, Poisson, and Normal distributions (derivation of pmf/pdf, mean, variance, moments, moment generating functions, problems) – Joint distribution functions of random variable. Self-Study: Joint distribution functions of random variable. Lab: Binomial, Poisson, and Normal distribution	CO-4 BTL-3
MODULE 5: Sampling (9L+6P=12)	
 Principal steps in sample survey – Methods of sampling – SRSWR – SRSWOR – Stratified Sampling – Multistage Sampling – Sampling distribution of sample mean and sample proportion – Mean and standard error – Standard normal, chi-square, Student's t and F distributions- Definitions and important properties (mean and variance). Self-Study: Methods of sampling Lab: Mean and standard error, chi-square test and t – test 	CO-5 BTL-3
TEXT BOOKS	
	tistics, Volume I,
1. David C. M A.M.Gun, M.K. Gupta, and B. Dasgupta (2016), <i>Fundamentals of Sta</i> World Press.	
I. World Press. REFERENCE BOOKS	amaticians
1. World Press.	nematicians,
World Press. REFERENCE BOOKS 1 Derek Rowntree (2018), Statistics Without Tears: An Introduction for Non-Math	nematicians,
Image: Non-Mathematical System Image: Non-Mathematical System 1. Derek Rowntree (2018), Statistics Without Tears: An Introduction for Non-Mathematical System Penguin.	nematicians,
Image: Non-Mathematical System REFERENCE BOOKS 1. Derek Rowntree (2018), Statistics Without Tears: An Introduction for Non-Mathematical Penguin. E BOOKS	nematicians,

2. https://nptel.ac.in/courses/110/107/110107114/

COURSE TITLE		BJECT ORIEN RAMMING USI		CREDITS	4	ļ					
COURSE CODE	ACA02002	COURSE CATEGORY	SE	L-T-P-S	3-0-	-2-0					
Version	1.0	Approval Details		LEARNING LEVEL	BTL-3						
		ASSE	SSMENT SCHI	EME							
		CIA			ES	SE					
First Periodical Assessment (Theory)	eriodical Periodical Practical by the Attendance Semester Semester Examination Examination										
15%	15%	10%	5%	5%	25%	25%					
Course Description	-	applications for ng techniques.	a range of pro	blems using ob	ject-oriented						
Course Objective	2.To enab polymor	the principles of the students phism.	to understand	the principles							
 Upon successful completion of this course, the student should be able to Identify and implement the simple Object-Oriented programming concepts using classes. Develop applications using friend functions, constructors and overloading mechanisms. Build re-usable code using Inheritance and Runtime Polymorphism. Implement exception handling, streaming and file handling mechanisms. Solve real time problem using templates and Standard Template Library (STL). 											
Prerequisites	: Knowledge	of C program									

	CO, PO AND PSO MAPPING														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	2	3	3	3	-	-	2		-	-	-	3	-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-

CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
		1	: Weal	kly rel	ated, 2	: Mod	erately	y relate	ed and	3: Str	ongly	related	1		

MODULE 1: Introduction to C++ and OOP	(6L+6P=12)
 Object-Oriented Paradigm – Features of Object-Oriented Programming – C++ Fundamentals – Variables - Data types – Operators - Arrays - Strings – Default arguments -Inline Functions, Reference Variables and Pointers, Dynamic Memory Management. Introduction to C++ classes –Class Objects- Access Specifiers – Accessing Class Members- Defining Member functions–Arrays of Objects - Objects as Arguments. LAB: Search a given number in an array. Perform various string manipulation functions. Swap two numbers using call by value and call by reference (Using pointers and reference variables). Create a class to read and display student/account/employee details. Handle multiple student/account/employee records using array of objects. 	CO-1 BTL-3
MODULE 2: Functions and Compile-Time Polymorphism	(6L+6P=12)
 Working with Friend functions and Friend Classes – Static Data and Member Functions -Constructors - Parameterized Constructors - Constructors with Default Arguments- Copy Constructors- Constructor overloading- Destructors. Polymorphism- Types of Polymorphism – Compile time and Runtime - Function Overloading - Rules of Operator Overloading- Overloading of Unary and Binary Operators as Member function/Friend function. LAB: Add two complex numbers using friend function. Calculate the area of different shapes using various constructor types. Find average of variables with different types using function overloading. Overload unary arithmetic operators using member and friend function. 	CO-2 BTL-3
MODULE 3: Inheritance and Run Time Polymorphism	(6L+6P=12)
 Inheritance- Types of Inheritance – Single, Multilevel, Hierarchical, Multiple, Hybrid, Multipath and Virtual base class - Accessing Overridden Function - Constructors and Destructors in derived classes. Understanding Runtime polymorphism - Memory Management operators, Pointers to objects, Virtual Functions (concept of VTABLE), pure virtual functions, Abstract Class. LAB: (i) Manipulate employee/account/student information using various Inheritance types. (ii) Implement constructors and destructors in derived classes. (iii) Read and display book details using pointers to objects. (iv) Implement the concept of virtual and pure virtual functions. 	CO-3 BTL-3
MODULE 4: Exception Handling, Streams and Files	(6L+6P=12)
 C++ streamUnderstanding of working and implementation of Exception Handling. Streams- Unformatted and formatted console I/O operations – Manipulators, User-Defined Manipulators - Implementation of Files, Writing and Reading Objects. Practical C LAB: (i) Handle arithmetic and array index out of bounds exceptions. (ii) Read and display the given text using unformatted I/O operations. Create a user-defined manipulator function. 	CO-4 BTL-3

(iv)Ha	ite details of n number of books to a file, then read and display the same. ndle two files simultaneously to copy/append the content of one file to	
	other ILE 5: Templates and Standard Template Library	(6L+6P=12)
Generic with M Class T Compo	Programming with Templates - Function Templates - Function Templates ultiple Arguments - Overloaded Function Templates - Class Templates - Cemplates with Multiple Arguments. Standard Template Library (STL) – nents of Standard Template Library - Containers, Algorithms and Iterators nentation of Sequence and Associative containers for different Algorithms	CO-5 BTL-3
(ii) Per	t n numbers using function template. form stack operations using class template.	
	form queue operations using containers in STL. form searching and sorting using algorithms in STL.	
TEXT	BOOKS	
1.	K. R. Venugopal and RajkumarBuyya (2017), <i>Mastering C++</i> , McGraw H Edition.	ill Education, 2 nd
2.	Herbert Schildt (2017), C++: The Complete Reference, McGraw Hill Educ	ation, 4 th Edition.
REFE	RENCE BOOKS	
1.	BjarneStroustrup (2013), <i>The</i> $C++$ <i>Programming Language</i> , Professional, 4 th Edition.	Addison-Wesley
2.	Nell Dale and Chips Weems (2015), <i>Programming and Problem S</i> Jones and Bartlett Learning, 5 th Edition.	Solving with C++,
3	Nicolai M. Josuttis (2012), <i>The</i> C ++ <i>Standard Library: A Tutori</i> Addison Wesley, 2 nd Edition.	ial and Reference,
E BOC		
1.	http://fac.ksu.edu.sa/sites/default/files/ObjectOrientedProgramminginC4thH	Edition.pd
MOOO		
1.	https://www.edx.org/course/introduction-c-microsoft-dev210x-5	
2.	https://www.coursera.org/learn/c-plus-plus-a#syllabu	

COI	URSE																
	TLE			LI	NEAR	ALG	EBRA	L	CR	EDITS	5		4	ļ			
	URSE DDE	AI	M0201	2	COUR ATEG]	PC]	L-T-P-	S		3-1-	-0-1			
Ve	rsion		1.0		Appro Detai					ARNI LEVE			BT	L-3			
						ASSE	SSME	NT SCH	IEME								
					CI	A	-						E	SE			
Peri Asse	First odical essment neory)	A	(Theory)			ractical essments						Er Seme Exami (The	ester nation	Er Sem Exami (Prac	nation		
1	5%		15%		10%	, 0		5%		5%		25% 25%					
Course DescriptionTo make the student understand the basic concepts of functional analysisCourseTo develop understanding in the domain of matrix theory, vector spaces, linear																	
	ective																
Out	Course Upon completion of this course, the students will be able to 0utcome 1. Analyze the basic concepts of matrices. 2. Evaluate the types of matrices. 3. Learn the concepts of base and dimension of vector space 4. Apply the Gram-Schmidt process to construct an orthonormal set of vectors in an inner product space. 5. Demonstrate competence with the basic ideas of Matrix theory and linear transformation.											ors in					
Prere	equisit	es: Ba	sics K	nowled	dge of 1	matric	es										
					CO	, PO	AND I	PSO M	[APP]	NG							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	2	2 3 3 3 2 3										-				
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-		
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-		
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-		
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-		
		1	: Weal	kly rel	ated, 2	: Mod	leratel	y rela	ted an	d 3: St	trongly	y relat	ed				

SEMESTER IV

MODULE 1:	Matrices	(9L+6P=12)
Matrices – Tra Symmetric Ma Self-Study: In	verse of Matrices and Scalar Multiplication of Matrices, Transpose of a	CO-1 BTL-3
•	Conjugate and Rank of Matrices	(9L+6P=12)
Rank of a Mat Matrix.	I Skew-Hermitian Matrices – Orthogonal and Unitary Matrices – trix – Characteristic Roots and Characteristic Vectors of a Square Tharacteristics Roots	CO-2 BTL-3
Lab: Orthogo		
	Vector Spaces	(9L+6P=12)
Isomorphism Independence Self-Study: H	asic Concepts – Subspace of a Vector space - Homomorphism – -Internal and External direct sums - Linear span - Linear and Bases. Iomomorphism and External direct sums	CO-3 BTL-3
MODULE 4:	Dual Spaces	(9L+6P=12)
Vector –Ortho Orthonormal s Self-Study:Or		CO-4 BTL-3
	Linear Transformations	(9L+6P=12)
of T – Rank o Self-Study:O	near Transformations – Regular, Singular Transformations – Range f T - Characteristic Roots – Characteristic Vectors – Matrices. rthogonal set ristic Roots and Characteristic Vectors	CO-5 BTL-3
TEXT BOOK	ζS	
1. R.Bala New D	krishnan and M. Ramabadran (2005), <i>Modern Algebra</i> , Vikas Publishi Delhi.	ng House Pvt. Ltd,
2. I.N. He	erstein (2006), Topics in Algebra, John Wiley and Sons, New York.	
REFERENC	E BOOKS	
I. Hill, N	t Singh and QaziZameeruddin (2004), <i>Modern Algebra</i> , Vikas Publishin lew Delhi.	ng house
	asishtha (2015), Modern Algebra, Krishna PrakashanMandir, Meerut.	
E BOOKS		
	bookauthority.org/books/best-abstract-algebra-ebooks	
MOOC		
1. https://	/nptel.ac.in/courses/111/106/111106135/	
	/nptel.ac.in/courses/111/101/111101115/	
-		
1	/nptel.ac.in/courses/111/108/111108066/	

Version First Periodical Assessment	1 Sec Perio	.0		Appr Det	IRSE GORY coval ails		РС	C	REDI' L-T-			4	-1						
COURSE CODE Version First Periodical Assessment	1 Sec Perio	.0 cond		CATE Appr Det	GORY roval ails	7	РС		L-T-	P-S		3-1-0	-1						
VersionFirst Periodical Assessment	Sec Perio	cond		Appr Det	coval ails		AIM02013 CATEGORY PC L-T-P-S												
Assessment	Perio		4	ASSES	Details LEVEL														
Assessment	Perio		ASSESSMENT SCHEME																
		sment		Semi Assign Pro	ments	/	Surpris est / Qu		Attendance			ESE							
15%	15	5%		10	%		5%		5%	6)							
Course This course covers the fundamentals of mathematical analysis. Description Image: Course covers the fundamentals of mathematical analysis.																			
Course ObjectiveAimed at exposing there a number systems that underpin the development of real analysis and in understanding various physical phenomena.													1						
Course OutcomeUpon completion of this course, the students will be able to 1. Evaluate real and complex number systems. 2. Derive set theory. 3. Obtain elements of points set topology. 4. Demonstrate covering and compactness. 5. Apply skills in finding the limits and continuity in metric spaces.Prerequisites: Basics of real and complex numbers																			
			•			PSO M	APPIN	NG											
CO PO1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3						
CO1 . 2	3	3	3	-	-	2	-	-	-	-	3	-	-						
CO2 . 2	3	3	3	-	-	2	3	-	-	-	3	-	-						
CO3 . 2	3	3	3	-	-	2	-	-	-	-	3	-	-						
CO4 . 2	3	3	3	-	-	2	-	-	-	-	3	-	-						
CO5 . 2	3	3	3	-	-	2	2	-	-	-	3	-	-						
	1: Weak	-				-	ed and	l 3: Str	ongly	relate									
	ODULE 1: The Real and Complex Number Systems(9L+3T=12)										12)								
Introduction -the field axioms, the order axioms –integers –the unique Factorization theorem for integers –Rational numbers –Irrational numbers –Upper bounds, maximum Elements, least upper bound –the completeness axiom –some properties of the supremum –properties of the integers deduced from the completeness axiom- The Archimedean property of the real number system –Rational numbers with finite decimal representation of real numbers –absolute values and the triangle inequality – the Cauchy-Schwarz inequality –plus and minus infinity and the extended real number system. Self-Study: –Rational numbers –Irrational numbers																			

MODU	LE 2: Basic Notions of a Set Theory	(9L+3T=12)
Notatio further function sets –un countab Self-St	CO-2 BTL-3	
MODU	LE 3: Elements of Point Set Topology	(9L+3T=12)
The str	ts of point set topology: Euclidean space \mathbb{R}^n -open balls and open sets in \mathbb{R}^n . ucture of open sets in \mathbb{R}^n -closed sets and adherent points-The Bolzano – rass theorem –the Cantor intersection Theorem.	CO-3 BTL-3
MODU	LE 4: Covering and Compactness	(9L+3T=12)
Compac subsets	ng –Lindal of covering theorem –the Heine Borel covering theorem – ctness in \mathbb{R}^n –Metric Spaces –point set topology in metric spaces –compact of a metric space –Boundary of a set. udy: Boundary of a set.	CO-4 BTL-3
	LE 5: Limits and Continuity in Metric Spaces	(9L+3T=12)
-compl	gent sequences in a metric space –Cauchy sequences –Completeness sequences ete metric Spaces. Limit of a function –Continuous functions –continuity of ite functions. Continuous complex valued and vector valued functions.	CO-5 BTL-3
TEXT	BOOKS	
1.	T.M.Apostol (2011), <i>Mathematical Analysis</i> , Narosa Publishing Company, 2 nd E	dition, Chennai.
REFE	RENCE BOOKS	
1	R.R. Goldberg (2010), Methods of Real Analysis, John Wiley, New York.	
	K.K. Goldberg (2010), memous of Keu marysis, John Whey, New Tork.	
2.	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York.	– Hill, New
2.	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw	
	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York.J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia	
3	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York. J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia DKS <u>http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherbert,%209 oduction%20to%20Real%20Analysis.pdf</u>	Ltd. New Delhi.
3 E BOC	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York. J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia DKS http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherbert,%20% oduction%20to%20Real%20Analysis.pdf http://bayanbox.ir/view/6039605503262807876/Problems-In-Real-Analysis-A	Ltd. New Delhi.
3 E BOC 1.	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York. J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia DKS http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherbert,%209 oduction%20to%20Real%20Analysis.pdf http://bayanbox.ir/view/6039605503262807876/Problems-In-Real-Analysis-A With-Solutions-Aliprantis.pdf	Ltd. New Delhi.
3 E BOO 1. 2.	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York. J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia DKS http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherbert,%209 oduction%20to%20Real%20Analysis.pdf http://bayanbox.ir/view/6039605503262807876/Problems-In-Real-Analysis-A With-Solutions-Aliprantis.pdf	Ltd. New Delhi.
3 E BOO 1. 2. MOOO	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York. J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia DKS http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherbert,%209 oduction%20to%20Real%20Analysis.pdf http://bayanbox.ir/view/6039605503262807876/Problems-In-Real-Analysis-A With-Solutions-Aliprantis.pdf	Ltd. New Delhi.
3 E BOO 1. 2. MOOO 1.	G.F.Simmons (2017) Introduction to Topology and Modern Analysis, McGraw York. J.N.Sharma and A.R.Vasistha (2019), Real Analysis, Krishna PrakashanMedia DKS http://www.uop.edu.pk/ocontents/G.%20Bartle%20,%20R.%20Sherbert,%209 oduction%20to%20Real%20Analysis.pdf http://bayanbox.ir/view/6039605503262807876/Problems-In-Real-Analysis-AWith-Solutions-Aliprantis.pdf C https://nptel.ac.in/courses/111/105/111105069/#	Ltd. New Delhi.

	OURSE FITLE			CO	MPLE	X ANA	ALYSI	[S		CREI	DITS			4		
С	OURSE CODE		AIM02	014		OURS FEGO		Р	С	L-	T-P-S		3.	-1-0-1		
	Version		1.0		A	pprova Details	ıl				RNIN EVEL	G	BTL-3			
					А	SSESS	SMEN	T SCH	EME							
	: Periodic sessment		Seco Period Assessi	lical	Assi	eminar ignmer Project	nts/	Surp Test /		Atte	endanc	æ	ESE			
	15%		15% 10% 5% 5% 50%													
	Course This course covers the fundamentals of complex analysis.															
	Course ObjectiveTo familiarize the students with fundamental theorems, singularity, residues in complex functions, integrations of complex functions, meromorphic functions and their applications.												nplex			
0	CourseUpon completion of this course, the students will be able toCourse1. Apply the integral value using Cauchy's theorem.Outcome2. Compute Taylor's series and Laurent's series.3. Apply residue theorem to compute integrals.4. Find the calculus of residues.5. Determine meromorphic functions.															
CO	PO1			DO 4				SO MA	PO9	1	DO11	DO12	DSO1	DEO2	DSO2	
CO CO1	PO1	PO2		PO4 3	PO5	PO6	PO7	PO8	P09	POIU	POII	POIZ	3	PSO2	PS03	
CO1	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-	
MOR	1: Weakly related, 2: Moderately related and 3: Strongly related															
	MODULE 1: Integral Theorems (9L+3T=12)															
theore value	Results based on Cauchy's theorem (I)-Zeros-Cauchy's Inequality – Liouville's theorem –Fundamental theorem of algebra –Maximum modulus theorem –Gauss mean value theorem for a harmonic function on a circle.CO-1 BTL-3Self-Study: Gauss mean value theoremCO-1 BTL-3															
MOD	MODULE 2: Taylor's Series & Laurent's Series(9L+3T=12)															
	ts based o Study: Ta		-	heorem	і (II)-Т	aylor's	series	–Laure	ent's se	eries.				CO-2 STL-3		

MODU	LE 3: Singularities and Residues	(9L+3T=12)
	singularities (Removable Singularity, pole and essential singularity) – s –Residue theorem.	CO-3 BTL-3
MODU	LE 4: Real Definite Integrals	(9L+3T=12)
Evaluat	ion using the calculus of residues – Integration on the unit circle –	
Integra	I with $-\infty$ and $+\infty$ as lower and upper limits with the following	
integra	ls:	CO-4
ii) (sin a	Q(x) where the degree of Q(x) exceeds that of P(x) at least 2. ax).f(x), (cos ax).f(x), where a>0 and f(z) $\rightarrow 0$ as $z \rightarrow \infty$ and f(z) does not have on the real axis.	BTL-3
iii) f(x)	where f(z) has a finite number of poles on the real axis. Idy: Definite Integrals	
MODU	LE 5: Meromorphic Functions	(9L+3T=12)
Rouche extende	n on number of zeros minus number of poles –Principle of argument- 's theorem– Theorem that a function which is meromorphic in the d plane is a rational function.	CO-5 BTL-3
TEXT	BOOKS	
1.	David C. P.Durai Pandian and Laxmi Durai Pandian (2016), Complex analysi	s, Emerald
1.	Publishers.	
REFER	ENCE BOOKS	
1.	Churchill (2016), <i>Complex Variable and Applications</i> , Tata Mc-Graw Hill Pu Ltd, New Delhi.	blishing Company
2.	Swaminarayan (2008), <i>Theory of functions of Complex Variable</i> , S.Chand and Delhi.	l Company. New
3.	Tyagi B. S. (2009), <i>Functions of Complex Variable</i> , PragatiPrakasham Publis Meerut.	hing Company Ltd,
E BOC	DKS	
1.	Mathematical Analysis, Second Edition (ru.ac.bd)	
MOOO		
1.	https://nptel.ac.in/courses/111/103/111103070/	
2	https://nptel.ac.in/courses/111/106/111106094/	
3	https://nptel.ac.in/courses/122/103/122103012/	

	URSE	2				р ст і	mam	.00		CRE	DITS			4	
	ITLE DURSE	,		ADVA		D STA		CS						_	
	ODE	-	AIM02	015		FEGO		A	E	L-	T-P-S		3-	1-0-1	
V	ersion		1.0		-	pprova Details					RNIN EVEL	G	В	TL-3	
						ASSES	SSME	NT SC	HEMI	E					
Per	First 'iodica essmer		Secon Period Assessi	lical	Assi	eminar ignmeı Project	nts/	Surp Test /		Atte	endanc	æ	ESE		
1	15%		15%			10%		5%	-		5%		4	50%	
	Course1. Identify areas where ethical issues may arise in statistics.Description2. Demonstrate preparedness to provide guidance in statistical design and analysis.1. Understand basic theoretical and applied principles of statistics peeded to enter the														
	Course1. Understand basic theoretical and applied principles of statistics needed to enter the job force.Objective2. Communicate key statistical concepts to non-statisticians. 3. Gain proficiency in using statistical software for data analysis												he		
Ou	CourseUpon completion of this course, the students will be able to1. Understand the basics of statistical inference2. Constructed index numbers3. Analyze the forecasting4. Apply the basics of non-parametric tests in real time problemsdesign sample frameworks and carry out surveys														
Prere	equisit	es: K	nowledg	e in Ca			• •								
CO	DO1	DO	2 PO3	DO4		1		PSO M			DO11	DO12	DCO1	DGO1	DCO2
CO	POI					PUo	P07		P09	POIU	POII	POIZ		P502	P503
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2 CO3	-	2 2	3	3 3	3	-	-	2 2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
			1: Wea	kly re	lated, 2	2: Mod	leratel	y relat	ed and	l 3: Str	ongly	related	1		
			tistical										(9L-	+ 3T=1 2	2)
Point Estimation – Properties of a good estimator – Basic principles of Ordinary Least Square, Maximum Likelihood Method, Method of Moments – Interval estimation – Confidence level and Confidence interval – Testing of hypothesis – Null and Alternative hypotheses – Type I and Type II errors – Power of a test – p- Value Self-Study: Testing of Hypotheses															

MOD	ULE 2: Index Numbers	(9L+3T=12)
Office a Seri Quant	tics in Practice –Economic Statistics in India – Role of Central Statistics e – Price Indices – Consumer Price Index – Price Indices in India – Deflating ies – Selection of Items – Selection of a Base Period – Quality Changes – tity Indexes Study: Price Indices	CO-2 BTL-3
MOD	ULE 3: Forecasting	(9L+3T=12)
Comp Weigl – Tre Index Identi	bonents of a Time Series: Trend Component – Cyclical Component – Seasonal bonent – Irregular Component – Smoothing Methods: Moving Averages – hted Moving Averages – Exponential Smoothing Averages – Trend Projection nd and Seasonal Components: Multiplicative Model – Calculating Seasonal es – Deseasonalising the Time Series – Using Depersonalized Time Series to fy Trend – Seasonal Adjustments – Models Based on Monthly Data – Cyclical bonent.	CO-3 BTL-3
MOD	ULE 4: Non-Parametric Methods	(9L+3T=12)
Media	Test: Small-Sample Case – Large-Sample Case – Hypothesis Test About a an – Mann Whitney-Wilcoxon Test – Kruskal-Wallis Test – Rank lation.	CO-4 BTL-3
MOD	ULE 5: Sample Survey	(9L+3T=12)
Metho Rando Propo Popul Samp Popul	inology used in Sample Surveys – Types of Surveys and Sampling ods – Survey Errors: Non-sampling Error – Sampling Error – Simple om Sampling: Population Mean – Population Total – Population ortion – Determine Sample Size – Stratified Random Sampling: ation Mean – Population Total – Population Proportion – Determining le Size – Cluster Sampling: Population Mean – Population Total – ation Proportion – Determining Sample Size – Systematic Sampling. Study: Sample Survey	CO-5 BTL-3
	F BOOKS	
2.	 David C. David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffred James J. Cochran (2019), <i>Statistics for Business and Economics</i>, Cengage, 13⁴⁰ A.M. Gun, M.K. Gupta and B. Dasgupta (2016), <i>Fundamentals of Statistics</i>, Weress. A.M. Gun A.M. Gun, M.K. Gupta, and B. Dasgupta (2016), <i>Fundamentals of II</i>, World Press. 	^h Edition. Volume I, World
REF	ERENCE BOOKS	
1	Lind, Marchal, and Wathen (2017), <i>Basic Statistics for Business and Economic</i> McGraw Hill Education.	cs, 7 th Edition,
E B	OOKS	
1.	https://www.coursera.org/specializations/business-statistics-analysis	
2.	https://www.coursera.org/specializations/social-science	
3.	https://nptel.ac.in/courses/110/107/110107114/	
MOO		
1.	https://www.coursera.org/courses?query=statistics	
2	https://www.edx.org/learn/statistics	
3	https://www.udemy.com/topic/statistics/	

	URSE ITLE		В	ASICS	5 OF D	ATA S	SCIEN	CE		CREDI	TS		2	4					
	OURSE	;	ACA020	003	_	OURS TEGO		HS	5	L-T-	P-S								
Ve	ersion		1.0)		pprova Details				LEARI LEV		G BTL-3							
						ASSES	SSME	NT SC	HEME	E									
Per	First riodical essmen		SecondSeminar/SurprisePeriodicalAssignments/Test /AssessmentProjectQuiz									ESE							
1	15%		15% 10% 5% 5% 50%																
-	ourse criptio		Fundamental coursework on the standards and practices for collecting, organizing, managing, exploring, and using data.																
	ourse jective		 To use applied statistical knowledge to analyze data, derive data summaries, build predictive models, and make scientific inference. To interpret modeling results and communicate their findings to both a general and a technical audience. 																
_	ourse Itcome	 Upon completion of this course, the students will be able to Develop relevant programming abilities Demonstrate skill in data management. Execute statistical analyses with professional statistical software Develop the ability to build and assess data-based models. Apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively 											ts						
Prere	equisite	es: Ba	sics of f	orces															
					C), PO	AND H	PSO M	APPIN	١G									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3				
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3				
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3				
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3				
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	3				
					-		leratel	y relat	ed and	3: Stro	ongly r	elated							
MOD	OULE 1	l: Int	roductio	on to D	ata Sci	ence							(9L-	+3T=12	2)				
– Stag	Introduction to Data Science – Evolution of Data Science – Data Science Roles – Stages in a Data Science Project – Applications of Data Science in various fields – Data Security IssuesCO-1 BTL-3																		

M.Sc., Mathematics (Integrated)

MOD	ULE 2: Data Collection and Data Pre-Processing	(9L+3T=12)								
	Data Collection Strategies – Data Pre-Processing Overview – Data Cleaning – Data Integration and Transformation – Data Reduction – Data DiscretizationCO-2 BTL-3									
MOD	MODULE 3: Exploratory Data Analytics (9L+3T=12)									
Descriptive Statistics – Mean, Standard Deviation, Skewness and Kurtosis – BoxCO-3Plots – Pivot Table – Heat Map – Correlation Statistics – ANOVA.BTL-3										
MOD	MODULE 4: Model Development (9L+3T=12)									
Residu	e and Multiple Regression – Model Evaluation using Visualization – nal Plot – Distribution Plot – Polynomial Regression and Pipelines – nes for In -sample Evaluation – Prediction and Decision Making.	CO-4 BTL-3								
	ULE 5: Model Evaluation	(9L+3T=12)								
Overfi	Generalization Error – Out-of-Sample Evaluation Metrics – Cross Validation – Overfitting – Under Fitting and Model Selection – Prediction by using Ridge Regression – Testing Multiple Parameters by using Grid Search.CO-5 BTL-3									
ТЕХТ	TEXT BOOKS									
1.	David Dietrich, Barry Heller and Beibei Yang (2013), Data Science and B Discovering, Analyzing, Visualizing and Presenting Data, Indianapolis, IN	° .								
2.	JojoMoolayil (2016), Smarter Decisions: The Intersection of IoT and Data	Science, PACKT.								
REFE	RENCE BOOKS									
1.	Cathy O'Neil and Rachel Schutt (2013), Doing Data Science, O'Reilly Me	dia.								
2.	Pethuru Raj and Ganesh Chandra Deka (2014), <i>Handbook of Research on Big Data Analytics</i> , IGI Global, United States.	Cloud Infrastructures for								
E BO	OKS									
1.	(PDF) The Field Guide to Data Science (researchgate.net)									
MOO	C									
1.	Introduction to Data Science Coursera									
2.	A Crash Course in Data Science Coursera									

CO	URSE										CRED	лтс		4		
TI	TLE			DISC	RET	E MA'	THEN	AATI	CS		_RED	115		-		
	URSE ODE	2	AIM02016 COURSE CATEGORY PC L-T-P-S										3-1-()-1		
Ve	ersion		1	.0		Appr Deta]		NING VEL	, F	BTL	3	
					Α	SSES	SMEN	T SC	HEM	E						
First P Asse	Period ssmen		Peri	cond odical ssmen		Semin ssignn Proj	nents/		urpri st / Q		Atten	dance		ESE		
1	5%		15% 10% 5% 5%										50%	6		
	Course To make the student understand the basic concepts of Insurance															
Course ObjectivePrepare students to develop mathematical foundations to understand, create mathematical arguments and focuses on the Formal languages, Automata Lattices, Boolean Algebra and Graphs																
	Course OutcomeUpon completion of this course, the students will be able to 1. Analyze the mathematical logical operations. 2. Demonstrate an understanding of relations and functions. 3. Determine formal languages and automata. 4. Analyze about partially ordered sets, Boolean algebra, lattices and their types. 5. Acquire the knowledge of basis in graphs										ir					
Trereq			, wieug	0114				SO M	APPI	NG						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C01	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-	
L		1: \	Weakly	y relat	ed, 2:	Mode	erately	v relat	ed an	d 3: St	rongl	y relat	ted			
MODU	ULE1:	Mat	hemati	ical lo	gic								(9L	+ 3T =2	12)	
Connec Tautolo Quantif Self-Stu	gical-i iers, F	implio ree ar	cations nd bour	, Dua	lity la	w, No	ormal	forms	, Prec	licates	, Vari	ables,		CO- BTL		

SEMESTER V

MODULE 2: Relations and Functions	(9L+3T=12)
Composition of relations, Composition of functions, Inverse functions, one-to-	()[] 31-12)
one, onto, one-to-one& onto functions, Hashing functions, Permutation	
	CO-2
function, Growth of functions. Algebra -structures: Semi groups, Free semi	BTL-3
groups, Monoids.	
Self-Study: Functions.	
	(9L+3T=12)
Regular expressions, Types of grammar, Regular grammar and finite state	CO-3
automata, Context free and sensitive grammars.	BTL-3
Self-Study: Formal Languages.	
MODULE 4: Lattices and Boolean Algebra	(9L+3T=12)
Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions, Theorems, Minimization of Boolean functions (Karnaugh Method only). Self-Study: Boolean Algebra	CO-4 BTL-3
MODULE 5: Graphs	(9L+3T=12)
Directed and undirected graphs, Paths, Reachability, Connectedness, Matrix	~
representation, -Euler paths, Hamiltonian paths, Trees, Binary trees -	CO-5
theorems, and applications.	BTL-3
TEXT BOOKS	
J. P Tremblay and R.P Manohar (2000), Discrete Mathematical Structure	es with
1. <i>Applications to Computer Science</i> , Mc. Graw Hill.	
REFERENCE BOOKS	
1. Oscar Levin (2016), <i>Discrete Mathematics</i> , Northern Colorado.	
E BOOKS	
1. mth202.pdf (iitk.ac.in)	
MOOC	
1. Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1. https://nptel.ac.in/courses/106/106/106106094/	
2. https://nptel.ac.in/courses/111/107/111107058/	

TITLESOLID GEOMETRYDirectionCOURSE CODEAIM02017COURSE CATEGORYPCL-T-P-S3-1Version1.0Approval DetailsLEARNING LEVELBTASSESSMENT SCHEMEFirst Second Periodical AssessmentSeminar/ Assignments Test / Assignments Test / QuizSurprise Test / Attendance15%15%10%5%5%Course Description1. To enable students to deepen the knowledge in various concepts of Analytic Geometry.1. To understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Straight line	4 1-0-1 FL-3 CSE 0% cal Soli									
CODEAIM02017CATEGORYPCL-T-P-S3-1Version1.0Approval DetailsLEARNING LEVELBTFirstSecondSeminar/ AssignmentsSurprise Test / QuizAttendanceEXFirstSecond Periodical AssessmentSeminar/ / ProjectQuizAttendanceEX15%15%10%5%5%50Course DescriptionTo enable students to deepen the knowledge in various concepts of Analytic Geometry.In To understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Straight line	ГL-3 СSE 0%									
Version1.0ProjectLEVELBTASSESSMENT SCHEMEFirstSecondSeminar/ AssignmentsSurprise Test / QuizAttendanceExFirstSecondSeminar/ AssignmentsSurprise Test / QuizAttendanceEx15%15%10%5%5%50CourseTo enable students to deepen the knowledge in various concepts of Analytic 	SE 0%									
First Periodical AssessmentSecond Periodical 	0%									
Periodical Assessment Periodical Assessment Assignments /Project Test / Quiz Attendance Est 15% 15% 10% 5% 5% 5% Course Description To enable students to deepen the Geometry. Into understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Variability in the straight line	0%									
AssessmentAssessment/ ProjectQuizOut15%15%10%5%5%Course DescriptionTo enable students to deepen the knowledge in various concepts of Analytic Geometry.1. To understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Plane	0%									
15%15%10%5%5%Course DescriptionTo enable students to deepen the knowledge in various concepts of Analytic Geometry.1. To understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Straight line										
Course To enable students to deepen the knowledge in various concepts of Analytic Description Geometry. 1. To understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Straight line										
Description Geometry. 1. To understand the basic concepts of three-dimensional object like Plane 2. To understand the concepts of three-dimensional object like Straight line	cal Sol									
1. To understand the basic concepts of three-dimensional object like Plane2. To understand the concepts of three-dimensional object like Straight line		id								
2. To understand the concepts of three-dimensional object like Straight line										
Course	es									
5. To inderstand the concepts of three-dimensional object like Sphere										
Objective 4. To understand concepts of three-dimensional object like Cone										
5. To perceive the concept of three-dimensional object like Cylinder	1 5									
Upon completion of this course, the students will be able to										
1. Obtain equation of Plane										
Course 2. Determine the shortest distance between straight lines										
Outcome 3. Find equation of Sphere										
4. Derive a condition for the general equation of the second degree to repres	sent a	cone								
5. Classifying the right circular cylinder and enveloping cylinder	sent u	cone								
Prerequisites: Basics of Analytical Solid Geometry										
CO, PO AND PSO MAPPING										
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01	PSO2	PSO3								
CO1 . 2 3 3 . . 2 - . . 3	-	-								
CO2 .<	-	-								
CO3 .<	-	-								
CO4 _ 2 3 3 3 _ 2 - _ 3	-	-								
CO5 . 2 3 3 3 . . 2 2 . . 3	-	-								
1: Weakly related, 2: Moderately related and 3: Strongly related										
MODULE 1: PLANE (9L-	+3T=1	12)								
General equation of a plane – Equation of a plane in the normal form – Angle										
between planes – Plane through three given points – Equation of a plane through	0-1									
the line of intersection of two planes.										
Self-Study: Angle between of a plane.	-									

MODULE 2: STRAIGHT LINE	(9L+3T=12)						
Symmetrical form of a straight line – Image of a point with respect to a plane – Image of a line with respect to a plane – Length and equation of the shortest distance between two skew lines - Coplanar lines. Self-Study: Coplanar lines.	CO-2 BTL-3						
MODULE 3: SPHERE (9L+3T=12)							
Equation of the sphere – Length of the tangent – Tangent plane – Section of a sphere by a plane – Orthogonal spheres – Equation of a sphere through a given circle.	CO-3 BTL-3						
MODULE 4: CONE	(9L+3T=12)						
Equation of a cone with a given vertex and a given guiding curve - Equation of a cone with its vertex at the origin - Condition for the general equation of the second degree to represent a cone - Right circular cone – Enveloping cone - Tangency of a plane to a cone. Self-Study: Right circular cone.	CO-4 BTL-3						
MODULE5: CYLINDER	(9L+3T=12)						
Equation of a cylinder with a given generator and a given guiding curve - Right circular cylinder - Enveloping cylinder – Enveloping cylinder as a limiting form of an enveloping cone.	CO-5 BTL-3						
TEXT BOOKS	-						
1. T. K. Manicka Vachagom Pillay (2011), <i>Analytical Geometry (Three Dir</i> Viswanathan Printers and Publishers Pvt. Ltd. Chennai.	nensions), S.						
REFERENCE BOOKS							
1. P. R. Vittal (2014), <i>Coordinate Geometry</i> . Margham Publishers, Chenna							
2. P. Duraipandian and Lakshmi Duraipandian (2011), <i>Analytical Geometry</i> Publishers, Chennai.	y - 3D, Emerald						
EBOOKS							
1. <u>https://www.amazon.in/Textbook-Analytical-Geometry-Three-Dimension</u>	· · · · · · · · · · · · · · · · · · ·						
2. <u>https://ebook.mediadata.website/a-textbook-of-analytical-geometry-of-theory 2nd.pdf</u>	ree-dimensions-						
MOOC							
1. <u>https://www.doubtnut.com/iit-solutions/chapter-three-dimensional-geom</u>	etrytopic-plane-1						
2. <u>https://edurev.in/studytube/Introduction-to-Three-Dimensional-Geometry</u> 3146-40cd-8e56-d79c03d3c7f7_v	yClass-/e4532cc8-						

COUR TITI			N	NUME	ERICA	AL AN	ALY	SIS		CRED	OITS			4				
COUH COE		A	IM02	018		OURS TEGO		PC	2	L-T	-P-S		3-	1-0-1				
Versi	ion		1.0)		pprova Details				LEAR LE	NING VEL	÷	B	ГL-3				
					A	SSES	SME	NT SC	CHEN	IE								
Firs Period Assessi	lical		SecondSeminar/ Assignments / ProjectSurprise Test / QuizAttendanceESE15%10%5%5%50%															
15%	/o		15	%		10%	D		5%		5 %	%		50%)			
Cour Descriț		Т	To make the student understand the basic concepts of numerical analysis															
Cour Objec Cour Outco Prerequ	rse	1. 2. 3. 4. 5.	To r To r To e To f pon co Com Dete meth Appl Eval Com	relate a recall s explair find pro- pomplet pomplet prmine nods ly the l uate di opute the erical s	algebra skills i the for edicto tion of the solution he solution the solution	aic and n solvior orward r correct this continuer this continue this	l diffe ing pro l diffe ector p ourse, of alg s of sy olatior n and i of ord rdinar	rence p roblen the stu ebraic stem c stem c n meth- ntegra inary c	equat using proble ns. udents and tr of equ ods fo tion n differe erentia	numer ms will b anscen ations or equal umeric ential e al equat	e able dental using d l and u cally quation	to equat direct a nequa	ions n and ind	direct vals.	ally			
			DOD	PO 4		-					PO11	DO1	DCOI	DGOO	DGOO			
	01 P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2				
CO1 .	•	2 3 3 3 2 3								-	3							
CO2 .	•	2	2 3		3	-	-	2	3	-	-	-	3	-	3			
CO3 .	-	2	3	3	3	-	-	2	-	-	-	- 3 -			3			
CO4 .	-	2	3	3	3	-	-	2	-	-	-	-	- 3 - 3					
CO5 .	-	2	3	3	3	-	-	2	2	-	-	-	3	-	3			
		1: V	Veakl	ly rela	ted, 2	: Mod	eratel	y rela	ted ar	nd 3: S	trong	y rela	ted					

MODULE 1: INTRODUCTION TO NUMERICAL ANALYSIS	(9L+3T=12)
Introduction to numerical analysis – The solution of algebraic and transcendental equations – Bisection method – Iteration method – Regula-False method- Newton- Raphson method. Self-Study: Transcendental equations.	CO-1 BTL-3
MODULE 2: LINEAR SYSTEM OF EQUATIONS	(9L+3T=12)
Linear System of Equations– Gauss elimination method – Gauss- Jordan method– Iterative methods – Jacobi method – Gauss-Seidel method. Self-Study: Linear system of equations.	CO-2 BTL-3
MODULE 3: FINITE DIFFERENCES	(9L+3T=12)
Finite differences –Interpolation - Introduction – Gregory-Newton interpolation formulae – Interpolation with unequal intervals – Lagrange's interpolation formula. Self-Study: Interpolation	CO-3 BTL-3
MODULE 4: NUMERICAL DIFFERENTIATION AND INTEGRATION	ON (9L+3T=12)
Numerical differentiation and integration – Newton's formulae to compute the derivative – Numerical integration – A general quadrature formula – Trapezoidal rule -Simpson's one third rule – Simpson's three-eighth rule.	CO-4 BTL-3
MODULE 5: NUMERICAL SOLUTION OF ORDINARY DIFFEREN	TIAL EQUATION (9L+3T=12)
Numerical solution of ordinary differential equation – Taylor series method –Euler's method – Runge-Kutta methods – Adam's Moulton Method – Milne's Predictor corrector method. Self-Study: Ordinary Differential Equations. TEXT BOOKS	CO-5 BTL-3
D. Kondosomy, K. Thilogovathy, K. Cunavathy (2002) New second	Mathada S. Chand e-
P. Kandasamy, K.Thilagavathy, K. Gunavathy (2003), Numerical company limited, 2 nd Revised Edition New Delhi.	wieinoas, S. Chand &
2. S.S Sastry (2012), Introductory Methods of Numerical Analysis, Limited, New Delhi.	PHI Learning Private

	OURSI ITLE	E	OP	PERA 7	FION	S RES	EAR	CH		CR	REDIT	S		4		
	DURS CODE	E	AIM02	2019		COUF ATEG			РС]	L-T-P	-S		3-1-0-1	L	
V	ersion	ı	1	.0	1	Appro Detai					LEVE		BTL-3			
					A	SSES	SME	NT SC	CHEM	IE						
Per	First riodica essme		Sec Perio Assess			Semin signm Proje	ents/	T	rprise 'est / Juiz		tenda	nce		ESE		
-	15%		15	%		10%	<i>,</i>		5%		5%			50%		
	Course To expose the students to the basics of descriptive statistics.															
	'ourse ojectiv		To familiarize students with the basic concepts, models and techniques for effective decision making, model formulation and applications													
Ou	course itcom equisi	e		Demo in var Obtai Find Deter Calcu	onstrat rious f n the sol the sol mine a ilate th	e the bields. solution an und ne opti	oasic c on of L of LPI lerstan	oncep PP by Pusing ding o	ts and simpl g Big I f dual	applic	ation of thod. phase LPP.	of oper	od.	s resea	rch	
					CO	, PO A	AND I	PSO M	IAPP	ING						
со	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	3	
		1	: Weak	ly rela	ted, 2	: Mod	eratel	y rela	ted an	nd 3: S	strong	ly rela	nted			

SEMESTER VI

MOD	ULE 1: Basics of Operations Research & Formulation Of L.P.P	(9L+3T=12)								
method – Scope Program	Basics of O.R – Definition of O.R – Characteristics of O.R – Scientific methods in O.R –Necessary of O.R in Industry – O.R and Decision Making – Scope of O.R in Modern Management–Uses and limitations of O.R. Linear Programming Problem – Formulation of L.P.P. Self-Study: Basics of O.R									
MODU	JLE 2: Linear Programming Problem -Simplex method	(9L+3T=12)								
	cal solutions of L.P.P – Problems. Simplex Method – Problems. udy: Linear Programming Problem	CO-2 BTL-3								
MODU	JLE 3: Big-M & Two-Phase Method	(9L+3T=12)								
	's Penality Method (or) Big – M Method – Two Phase Simplex – Problems.	CO-3 BTL-3								
MODU	JLE 4: Duality In L.P.P	(9L+3T=12)								
Duality Probler	in L.P.P – Concept of duality – Duality and Simplex Method – ns.	CO-4 BTL-3								
MODU	JLE 5: Transportation Model	(9L+3T=12)								
VAM- Self-St	nsportation Problems – Basic feasible solution by L.C.M – NWC- optimum solutions – unbalanced Transportation problems. udy: Optimum solutions.	CO-5 BTL-3								
ТЕХТ	BOOKS									
1.	Kantiswarup, P. K. Gupta and Man Mohan (2003), <i>Operations Res</i> Chand and Sons Education Publications, New Delhi.	search, S.								
2.	S. DharaniVenkata Krishnan. (2014), <i>Operations Research Principl</i> Keerthi publishing house PVT Ltd. Chennai.	es and Problems,								
REFE	RENCE BOOKS									
1.	Prem Kumar Gupta and D. S. Hira (2014) <i>Operations Research</i> , S. Ch Ltd. New Delhi.	and & Company								
E BOC	DKS									
1.	https://nptel.ac.in									
2.	http://ebooks.lpude.in.operation research									
MOOO										
1.	https://nptel.ac.in/courses/111/102/111102012/									
2.	https://nptel.ac.in/courses/111/104/111104027/									

	URSE	,		NU	MBEI	R THE	ORY			CREI	DITS			4	
	OURSE ODE		AIM020	20		OURSE FEGOR		PC	C	L-7	Г -Р- S		3.	-1-0-1	
Ve	ersion		1.0)	-	pproval Details	l				RNIN VEL	G	B	TL-3	
		•			A	ASSESS	SME	NT SC	CHEM	E		·			
Per	FirstSecondSeminar/SurprisePeriodicalPeriodicalAssignments/Test /AttendanceAssessmentAssessmentProjectQuizESE15%15%10%5%5%50%														
1	15% 10% 5% 5%														
_	Course To study of the integers, their additive and multiplicative structures and their properties that set them apart from other rings. Course To all all all all all all all all all al														
_	Descriptionproperties that set them apart from other rings.CourseTo enhance the knowledge in the basic concepts of number theory, fundamental definitions, theoremsObjectiveUpon completion of this course, the students will be able to														
Ou	ourse itcome requisit		2. Analy 3. Desc 4. Dem 5. Prov	yze and ribe th onstrat e ferm	d apply e fund te an u atas th	ledge of y the con- lamental nderstan eorem.	ncept l theo nding	ts of di orem o g on the	visibi f Arith	lity and	d primo				
					CC), PO A	ND I	PSO N	IAPP	ING					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
		1	: Weak	dy rela	ated, 2	2: Mode	erate	ly rela	ted ar	nd 3: S	trong	y rela	ted		
			arly Nu			·							(9L-	+ 3T =1	2)
Num	ber Th	eory				ction - Theory		Binon	nial Th	neorem	ı - Ear	ly		CO-1 TL-3	

MODU	JLE 2: Divisibility Theory in Integers	(9L+3T=12)
Euclide Equation	wility Theory in Integers - The Division Algorithm - The G.C.D ean Algorithm - Extended Euclidean Algorithm - The Diophantine on $ax + by = c$.	CO-2 BTL-3
	udy: The Division Algorithm. JLE 3: Primes and their Distributions	(9L+3T=12)
Primes The sie	s and their Distributions - The fundamental Theorem of Arithmetic - eve of Eratosthenes - The Gull Conjecture. tudy: Primes.	CO-3 BTL-3
MODU	JLE 4: The Theory of Congruence	(9L+3T=12)
Divisib	neory of Congruence - Basic Properties of Congruence - Special bility test – Linear Congruence- Chinese Reminder Theorem-Prime us- Power residues.	CO-4 BTL-3
MODU	JLE 5: Fermat's Theorem	(9L+3T=12)
	's Theorem - Fermat's factorization method - The Little theorem - 's theorem.	CO-5 BTL-3
TEXT	BOOKS	
1. 2.	David M. Burton (2000), <i>Elementary Number theory</i> - Brown Publish Neville Robbins,(2007), <i>Beginning Number Theory</i> , Narosa Publication	
	Edition, Delhi.	
REFE	RENCE BOOKS	
1.	Ivan Nivan and H (2001), An Introduction to theory of Numbers, Zuc	kerman, Wiley.
2.	S.Kumaravelu and SusheelaKumaravelu(2002), <i>Elements of Number</i> offset Printers.	<i>Theory</i> , Raja Sankar
E BOC	DKS	
1.	https://www.e-booksdirectory.com/listing.php?category=138	
2.	https://www.kobo.com/us/en/ebooks/number-theory	
MOO		
	https://nptel.ac.in/courses/111/103/111103020/	
2.	https://nptel.ac.in/courses/111/101/111101137/	

COURSE	ADVA	NCED NUMER	RICAL	CREDITS	2	1									
TITLE		ANALYSIS	1	CREDITS											
COURSE CODE	AIM02021	COURSE CATEGORY	AE	L-T-P-S	3-0	-2-1									
Version	1.0	Approval Details		LEARNING LEVEL	BT	L-3									
		ASSES	SMENT SCHE	EME											
	CIA ESE ESE														
First Periodical Assessment (Theory)	Second Periodical Assessment (Theory)	Second Periodical Assessment/ Lab records as approved by theEndEndMathematical AssessmentPractical AssessmentAttendanceSemester Examination													
15%	15%	10%	5%	5%	25%	25%									
Course	To make the	e student underst	and the basic	concepts of Ad	vanced Nume	rical									
Description	Analysis														
Course Objective	 problema 2. To expose problema 3. To enable numerica 4. To empore numerica 	se the students to s. le the students to al problems. ower the students al problems.	use numerica apply ordinar to apply syste	al integration in ry differential ec em of linear equ	solving nume quations in so lations in solv	erical lving ving									
Course Outcome	 5. To enable the students to apply the methods in a computer and social environment. Upon completion of this course, the students will be able to 1. Compute the linear system of equations using direct and indirect method 2. Interpolate the solutions, differentiate and integrate numerically 3. Evaluate the polynomial approximations 4. Compute the ordinary differential equations numerically 5. Determine the solution of partial differential equations numerically 														
Prerequisites	Basics of nu	umerical methods	5												

	CO, PO AND PSO MAPPING														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	3
	1: Weakly related, 2: Moderately related and 3: Strongly related														

	ULE 1: SYSTEMS OF LINEAR EQUATIONS AND ALGEBRAIC EIG BLEMS	GENVALUE (9L+3T=12)								
Gauss Proble	Method: Gauss elimination method - Error Analysis - Iterative methods: Jacobi and Gauss-Seidel - Convergence considerations - Eigenvalue m: Power method. tudy: Error Analysis	CO-1 BTL-3								
MODULE 2: INTERPOLATION, DIFFERENTIATION AND INTEGRATION (9L+3T=12) (9L+3T=12)										
Optima - Num Error i	olation: Lagrange's and Newton's interpolation - Errors in interpolation - al points for interpolation - Numerical differentiation by finite differences erical Integration: Trapezoidal, Simpson's and Gaussian quadrature - n quadrature. tudy: Error in quadrature.	CO-2 BTL-3								
MOD	ULE 3: APPROXIMATION OF FUNCTIONS	(9L+3T=12)								
approx	s of functions - Best Approximations: Least squares polynomial simation - Approximation with Chebyshev polynomials - Piecewise Linear ic Spline approximation.	CO-3 BTL-3								
MOD	ULE 4: ORDINARY DIFFERENTIAL EQUATIONS	(9L+3T=12)								
metho	-Step methods: Euler's method - Taylor series method - Runge-Kutta d of fourth order - Multistep methods: Adams-Bashforth and Milne's ds - Stability considerations - Linear Two-point BVPs: Finite Difference d.	CO-4 BTL-3								
MOD	ULE 5: PARTIAL DIFFERENTIAL EQUATIONS	(9L+3T=12)								
Trunca Nichol Hyper Self-St	c equations: Five-point finite difference formula in rectangular region - ation error; One-dimensional Parabolic equation: Explicit and Crank- son schemes; Stability of the above schemes - One-dimensional bolic equation: Explicit scheme. tudy: Stability of partial differential equations.	CO-5 BTL-3								
IEAI										
1.	Jain, M. K. Iyengar, S. R. K and Jain, R. K. (2019). <i>Numerical M</i> <i>and Engineering Computation</i> (Multi Colour Edition), New Age Limited, New Delhi, Fifth Edition.	0 0								
2.	Gupta, D. Gupta, S. (2017). Numerical Methods, McGraw Hill Educ	cation.								
REFE	RENCE BOOKS									
1.	Pundir, S. K. (2017). Numerical Methods in Science and Engineerin	0								
2.	Froberg, C. E. (2016). <i>Introduction to Numerical Analysis</i> , Addison-Wesle Company, Second Edition.	ey Publishing								
E BO	OKS									
1.	Nita-Shah - Numerical-Methods-Programming- eBook /dp/B01FHAZOUI									
MOO										
1.	https://www.mooc-list.com/tags/numerical-methods									

	URSE TLE	F	REAL	INTE		L USI		COMPL	LEX	CRE	DITS			4		
	URSE ODE	A	IM020	22	CC CAT	URS EGO		P	С	L-7	Г-Р-Ѕ		3.	-1-0-1		
Ve	ersion		1.0		-	prova etails					RNIN EVEL	G	В	BTL-3		
					A	SSE	SSME	ENT SC	CHEM	E		•				
F	First		Secon	d	Se	mina	r/	Surp	rise							
Peri	iodical	P	eriodi	cal	Assig	gnmei	nts/	Tes	t /	Atte	ndanc	e		ESE		
Asse	ssmen	t As	ssessm	ent	P	roject	ţ	Qu	iz							
1	5%		15%			10%		5%	6	5	5%		4	50%		
	Course Description To expose the students to the basics of complex Analysis. 1. To introduce analytic functions.															
Obj Co Out	ourse jective ourse tcome	4. 5. UI 1. 2. 3. 4. 5.	To int Hadau To int Cons Evalu Evalu Evalu Deriv	roduce mard's roduce mpleti- truct the truct the truct the truct the nd the ve map	e and e theory e the fu on of t ne anal e conto functi e defin ping th vtic fun	mpha em. indam his co lytic f our int on usi ite int heorem hction	size o nental ourse, unctic tegrals ing Ta tegrals ms s	on via ro n Riema concep the stud ons s for con sylor an s using :	ann ma ts of ea lents w mplex d Laur residue	apping ntire at vill be valuec rent ser e theor	nd men able to 1 funct ries	romorj)		inction	15	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	-	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-	
		1:	Weak	ly rela	nted, 2	: Mo	derate	ely rela	ted an	d 3: S	trong	y rela	ted			
MOI	DULE	l: AN	ALYI	TIC FU	UNCT	IONS	5						(9L-	-3T=1	2)	
	ctions vatives		Comp equat				mappi ctions	U	limits-	cont	tinuity	-		CO-1 TL-4		

SEMESTER VII

MOD	ULE 2: COMPLEX INTEGRATION	(9L+3T=12)
theor	plex valued functions- contours- contour integrals- Cauchy- Goursat rem, Cauchy integral formula- Morea's theorem- Liouville's theorem- amental theorem of algebra.	CO-2 BTL-3
	Study: Contours	DIL-5
MOD	ULE 3: POWER SERIES	(9L+3T=12)
Tayle integ repre beha	vergence of sequences and series- power series and analytic functions- or series- Laurent's series- absolute and uniform convergence- ration and differentiation of power series- uniqueness of series essentation- zeros of an analytic function classification of singularities- vior of analytic function at an essential singular point. Study : Zeros of an analytic function	CO-3 BTL-3
MOD	ULE 4: RESIDUES AND POLES	(9L+3T=12)
impr	dues, Cauchy – Residue theorem, residues at poles- evaluation of oper integrals- evaluation of definite integrals- the argument tiple- Roche's theorem- Schwarz lemma- maximum modules tiple.	CO-4 BTL-3
MOD	ULE5: SPACES OF ANALYTIC FUNCTIONS	(9L+3T=12)
mapp princi	es of analytic functions-spaces of meromorphic functions, Riemann ing theorem-Weiresstrass factorization theorem-Schwarz reflection ple-Hadamard's product representation-Jensen's theorem- Phragment el of theorem- Hadamard's three circle theorem	CO-5 BTL-3
TEX	Г BOOKS	
1.	R. V. Churchill and J. W. Brown (2017). <i>Complex Variables and Ap</i> Hill Series, 8 th edition.	pplications, McGraw
2.	S. Kumaresan (2021). A Pathway to Complex Analysis, Techno World	Publication.
REFI	ERENCE BOOKS	
1.	L. V. Alfors (2017). <i>Complex Analysis</i> , McGraw Hill, Third Edition.	
2.	Ian Stewart and David Tall. (2018). <i>Complex Analysis</i> , Cambridge Second edition.	e University Press,
3.	Sobhakar, G. (2020). Elements of Complex Analysis, Academic Publish	ners, 3rd Edition.
E BO	OKS	
1.	https://www.springer.com/gp/book/9781441972873	
2.	https://www.oulu.fi/sites/default/files/151/complex_book.pdf	
MOO 1.		
1. 2.	https://www.coursera.org/learn/complex-analysis https://nptel.ac.in/courses/111/103/111103070/	
∠.	<u>nups.//npte1.ac.nl/courses/111/105/1111050/0/</u>	

	JRSE FLE			ADVA		D OPI SEAR		IONS		CR	EDIT	S		4		
	URSE DDE	A	IM020	023		OURS TEGO]	PC	I	L-T-P-	·S	3.	-1-0-1		
Ver	rsion		1.	0		pprov Detail					ARNI LEVE		B	TL-3		
					AS	SESS	MEN	Г SCE	IEME							
Perio	First eriodical ssessmentSecond Periodical Assignments/ ProjectSecond Surprise Test / QuizAttendanceESE15%15%10%5%5%50%															
15	5%															
	ourse criptio		To make the student understand the basic concepts of Operation research and its application													
	urse ective	2. 3. 4	 To provide the students mathematical techniques to model and analyze decision problems, with effective application to real life in optimization of objectives. To impart knowledge in concepts and tools of Operations Research To understand mathematical models used in Operations Research To apply these techniques constructively to make effective business decisions 													
	urse come uisites	1. 2. 3. 4. 5.	Iden prog Com Dete App Ana	tify an gramm pute t ermine ly vari lyze th	d deve ing. he solu the in ous m e deci Progra	elop op ution o ventor odels i sion-m	oeratic of dyna y cond in line naking	nal resources and resources	dents v search rogram n the v nonlin sses in	model ming arious ear projec	s using in opti probal ogram	g integ mizati bilistic ming.	on pro mode	blems		
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1	PSO2	PSO	
						1.00	10/	2	107	1010	1011	1 012		1502	3	
CO1 CO2	-	2 2 2	3	3	3	-	-	2	-	-	-	-	3	-	3	
C02 C03	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO5	1	2	3	3	3	-	-	2	2	-	-	-	3	3	3	
		1: W	Veakly	relate	ed, 2: 1	Mode	rately	relate	d and	3: Str	ongly	relate	d		<u> </u>	

MODULE 1: INTEGER LINEAR PROGRAMMING AND GAME	× /
Pure and mixed integer programming problems and applications – plane algorithm – The branch and bound algorithm – Maximin – M principle –saddle point and value of the game –Arithmetic Graphical method for 2xn or mx2 games. Self-Study: Saddle point.	Minimax CO-1
MODULE 2: DYNAMIC PROGRAMMING AND REPLACEMEN	T MODELS (9L+3T=12)
Dynamic Programming- Characteristics of dynamic program models in dynamic programming – Capital budgeting problem – re problem – shortest route problem - suboptimal problem. Replac individual replacement-group replacement. Self-Study: Characteristics of dynamic programming.	eliability CO-2
MODULE 3: INVENTORY MODELS	(9L+3T=12)
Inventory models-Purchasing model –manufacturing model- w without shortage — probabilistic models— A continuous review period models – multiple period models-ABC analysis of inventor	w single y. BTL-3
MODULE 4: ADVANCED TOPICS IN LINEAR PROGRAMMING PROGRAMMING	G, NON LINEAR (9L+3T=12)
Goal programming – Stochastic programming – Lagrangian m method- Quadratic Programming by Wolfe's Method.	nultiplier CO-4 BTL-3
MODULE5: PROJECT MANAGEMENT AND DECISION THEO	RY (9L+3T=12)
Introduction to PERT and CPM- Terms used in network analysis- of float- PERT- Project cost analysis: Crashing of network- making under certainty-under risk-under uncertainty-under confli- Study: Terms used in network analysis.	Decision CO-5
TEXT BOOKS	
1. Hamdy A. Taha, (2016). <i>Operations Research</i> , Tenth Editions, 8 th Edition.	ition, Pearson Education Asia
3. Taha, H.A. (2017). <i>Operations Research: An Introduction</i> Edition.	n, Prentice Hall of India, 10 th
REFERENCE BOOKS	
1. Srinivasan, G. (2017). Operations Research: Principles a	und Applications, PHI Learning.
2. Richard, B and Govindasami, N. (2017).Schaum's Ou McGraw Hill Education.	utline of Operations Research,
E-BOOKS	
1. <u>https://www.eolss.net/ebooklib/bookinfo/optimization-op</u>	perations-research.aspx
MOOC	
1. <u>https://onlinecourses.nptel.ac.in/noc19_ma29/preview</u>	
2. https://digitaldefynd.com/best-operational-research-cour	ses/

	URSE ITLE	2		CLAS	SSICA	AL ME	CF	REDIT	S		4				
	URSH ODE	E A	AIM02024 COURSE CATEGORY					PC		L-T-P	-S		3-1-0-	1	
Ve	ersion		1.0		1.0 Approval Details					LEARNING LEVEL		BTL-		3	
ASSESSMENT SCHEME															
Per	First riodica essme		Periodical Assignments/					rprise / Qui		ttenda	nce		ESE		
1	15%		15	5%		10%	, 0		5%		5%			50%	
	ourse criptio	n T	To make the student understand the basic concepts of AI and its application												
	ourse jective	2 2 3	 Relative motion. Inertial and non-inertial reference frames. Parameters defining the motion of mechanical systems and their degrees of freedom. Study of the interaction of forces between solids in mechanical systems. Centre of mass and inertia tensor of mechanical systems. 												
	4. Centre of mass and inertia tensor of mechanical systems Upon completion of this course, the students will be able to 1. Apply the concept of mechanics in D'Alembert's principle and Lagrange's equations. 2. Apply the Hamilton's principle to systems with constraints 3. Analyze the equations of motion in reduction to the equivalent one body problem. 4. Determine Euler angles using Euler's theorem on the motion of a rigid body 5. Compute the solutions of rigid body problems using the Euler equations of motion.												1		
Prere	Prerequisites: Basics of dynamic system														
					CO), PO	AND]	PSO M	IAPPI	ING					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	2
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	2

CO, PO AND PSO MAPPING															
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	2
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	2
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	2
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	2
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	2
	1: Weakly related, 2: Moderately related and 3: Strongly related														

MODULE 1: MECHANICS OF A PARTICLE	(9L+3T=12)								
Mechanics of a particle, Mechanics of a system of particles- Constraints- D'Alembert's principle and Lagrange's equations- Velocity dependent potentials and the dissipation function- Simple applications of the Lagrangian formulation. (Chapter 1 of text) Self-Study: Velocity dependent potentials.	CO-1 BTL-3								
MODULE 2: HAMILTON'S PRINCIPLE	(9L+3T=12)								
Hamilton's principle- some techniques of the calculus of variations- derivation of Lagrange's equation from Hamilton's principle- Extending Hamilton's principle to systems with constraints- Conservation theorems and symmetry properties. (Sections 2.1, 2.2, 2.3, 2.4 and 2.6)	CO-2 BTL-3								
MODULE 3: EQUATIONS OF MOTION	(9L+3T=12)								
Reduction to the equivalent one body problem- the equations of motion and first integrals- the equivalent one-dimensional problem and classification of orbits- the Virial theorem- the differential equation for the orbits and integrable power law potentials- the Kepler problem: Inverse square law of force. (Sections 3.1, 3.2, 3.3, 3.4, 3.5 and 3.7) Self-Study: Differential equation for the orbits.	CO-3 BTL-3								
MODULE 4: ORTHOGONAL TRANSFORMATION	(9L+3T=12)								
The independent coordinates of a rigid body- orthogonal transformation- the Euler angles- the Cayley – Klein parameters and related quantities- Euler's theorem on the motion of a rigid body- the Coriolis effect. (Sections 4.1, 4.2, 4.4, 4.5, 4.6, 4.10)	CO-4 BTL-3								
MODULE 5: ANGULAR MOMENTUM	(9L+3T=12)								
Angular momentum and kinetic energy of motion about a point- tensors- the inertial tensor and the moment of inertia- Eigen values of the inertial tensor and the principal axis transformation- solving rigid body problems and the Euler equations of motion. (Sections 5.1 to 5.5) Self-Study: Eigen values of the inertial tensor.	CO-5 BTL-3								
TEXT BOOKS									
1. P. C. Deshmukh. (2022). <i>Foundations of Classical Mechanics</i> , Cam	bridge University Press.								
2. Goldstein, H. (2018). <i>Classical Mechanics</i> , Narosa Publishing House, New Delhi, Second Edition.									
REFERENCE BOOKS									
1.Greenwood, D. (2012). Classical Dynamics, Prentice Hall of India, New Delhi, Revised ed. Edition, Kindle Edition									
2. Rane, N. C. and Joag, P. S. (2015). <i>Classical Mechanics</i> , Tata McG	raw Hill.								
E BOOKS									
1. <u>Classical Mechanics - Book – IOP science</u>									
1. <u>NPTEL :: Mechanical Engineering – Engineering Mechanics</u>									

	URSH ITLE	E	Т	OPOI FUN		AND	CI	REDIT	ſS		4				
	OURSI CODE	E A	AIM02025 COURSE CATEGORY PC					L-T-P-S			3-1-0-1				
V	ersion		1.0			1.0 Approval Details				L	EARN LEV		BTL-3		
						ASSE	SSME	ENT S	CHE	ME					
Per	First riodica essme		Test / Ouiz									ESE			
	15%		15% 10% 5% 5% 50%												
Course DescriptionTo make the student tostudy certain topological-algebraical structures, functional analysis and the methods by which the knowledge of these methods can be applied to analytic problems															
	ourse jectiv		The objective of this course is to equip the student with basics of topology and functional analysis so that the student is capable of higher learning.												
	Course OutcomeUpon completion of this course, the students will be able to1. Demonstrate an understanding of the concept of topological spaces2. Derive the properties of connected spaces and compact spaces3. Analyze the structure of topological spaces4. Recognize the fundamental properties of normed spaces and their transformations5. Apply the standard theorems on bounded linear functionals														
Prer	equisi	tes: B	asics o	f sets a	and spa	aces									
					C	0, PO	AND	PSO	MAPI	PING					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	3	3	3	-	•	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	•	•	2	-	-	-	-	3	-	-
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
		1	: Wea	kly re	lated,	2: Mo	derate	ely rel	ated a	nd 3:	Strong	gly rela	ted		

SEMESTER VIII

	JLE 1: TOPOLOGICAL SPACES	(9L+3T=12)
neighb continu Topolo	ion and Examples of Topological spaces: open sets- closed sets- orhoods- bases- sub bases- limit points- closures- interiors- ious functions- homeomorphisms and properties-Subspaces- Relative ogy-Product topology- Quotient topology. udy: Subspaces.	CO-1 BTL-3
	JLE 2: CONNECTEDNESS AND COMPACTNESS	(9L+3T=12)
local o Borel point (acted spaces, Connected subspaces of the real line- Components and connectedness. Compactness and finite intersection property-Heine- Theorem-Bolzano-Weierstrass property- Local –compactness- One- Compactification. udy: One-point Compactification.	CO-2 BTL-3
	JLE 3: HOMEOMORPHISM AND SEPARATION AXIOMS	(9L+3T=12)
space- spaces	nuous functions and homeomorphism- first and second countable Lindel of spaces- separable space-Separation axioms: Hausdorff - Regularity- Complete Regularity- Normality- Urysohn Lemma and an Metrization Theorem.	CO-3 BTL-3
MOD	JLE 4: NORMED AND BANACH SPACES	(9L+3T=12)
Dual	ed spaces- Banach spaces- Subspaces- Metric spaces with examples- spaces and transposes- Hahn-Banach Extension and Separation ems- Spaces of bounded linear operators.	CO-4 BTL-3
MOD	JLE5: BOUNDED LINEAR FUNCTIONALS	(9L+3T=12)
Unifor Hilber Repres	Mapping Theorem-Closed Graph Theorem and their applications- m Boundedness Principle and its applications- Inner product spaces- t spaces- Orthonormal basis- Projection theorem and Riesz centation Theorem. tudy: Inner product spaces.	CO-5 BTL-3
	BOOKS	
1. 2.	Walter Rudin. (2017). Functional Analysis, McGraw-Hill, In.Munkres, J. R. (2015). Topology, Pearson Education, India.	
REFE	RENCE BOOKS	
	Limayee, B. V. (2014). Functional Analysis, First Edition.	
1.		
1. 2.	Conway, J.B. (2007). A Course in Functional Analysis, Springer, Be	erlin.
	Conway, J.B. (2007). <i>A Course in Functional Analysis</i> , Springer, Be Armstrong, M. A. (2004). <i>Basic Topology</i> , Springer, India.	erlin.
2.	Armstrong, M. A. (2004). <i>Basic Topology</i> , Springer, India.	erlin.
2. 3.	Armstrong, M. A. (2004). <i>Basic Topology</i> , Springer, India.	erlin.
2. 3. E BOO	Armstrong, M. A. (2004). <i>Basic Topology</i> , Springer, India. DKS <u>https://nptel.ac.in/courses/111/106/111106054/</u> <u>https://www.youtube.com/watch?v=kOFtfmCpNg0</u> <u>http://jde27.uk/tg/topsp02.html</u>	erlin.
2. 3. E BOO 1.	Armstrong, M. A. (2004). <i>Basic Topology</i> , Springer, India. DKS <u>https://nptel.ac.in/courses/111/106/111106054/</u> <u>https://www.youtube.com/watch?v=kOFtfmCpNg0</u> <u>http://jde27.uk/tg/topsp02.html</u>	
2. 3. E BOO 1. MOO	Armstrong, M. A. (2004). Basic Topology, Springer, India. DKS <u>https://nptel.ac.in/courses/111/106/111106054/</u> <u>https://www.youtube.com/watch?v=kOFtfmCpNg0</u> <u>http://jde27.uk/tg/topsp02.html</u>	

	OURSE ITLE	2	С	OMM	UTA	FIVE .	ALGE	EBRA		CRE	DITS			4	
CC	OURSI CODE	E A	COMMUTATIVE ALGEBRACKEDITSAIM02026COURSE CATEGORYPCL-T-P-S									5	3	6-1-0-1	
V	ersion		1.)		pprov Details					RNIN EVEL				
					A	ASSES	SME	NT SC	CHEM	Έ					
Per	First 'iodica essmer		SecondSeminPeriodicalAssignmentAssessmentProje				nts/	Surp Tes Qu	st /	Atte	endan	ce	ESE		
1	15%		15% 10% 5% 5%								5%			50%	
Deso C	criptio criptio ourse jective	n a	To expose the students to variables, algebraic expressions, inequalities, functions, and all their multiple representations. To understand the concepts groups, rings, polynomial rings and field.												
Course OutcomeUpon completion of this course, the students will be able to 1. Demonstrate an understanding on basic concept of groups 2. Analyze the group of symmetries in Cayley's and Sylow's theorem 3. Apply the concept of rings in various domains 4. Apply Eisenstein's criterion for reducibility and irreducibility of por rings over a field 5. Able to derive separable and inseparable extensions.Prerequisites:Basics of Vector Space													iial		
					CC), PO	AND I	PSO M	IAPP	ING					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2					-	-	3	-	-				
CO4	-	2	2 3 3 3 2						-	-	3	-	-		
CO5	CO5 - 2 3 3 3 - 2 2 - -									-	-	3	-	-	
1: Weakly related, 2: Moderately related and 3: Strongly related															
	MODULE 1: BASIC CONCEPTS OF GROUPS(9L+3T=12)											2)			
A brief review of groups, their elementary properties and examples, subgroups, cyclic groups, homomorphism of groups and Lagrange's theorem; permutation groups, permutations as products of cycles, even and odd permutations, normal subgroups, quotient groups; isomorphism theorems, correspondence theorem. Self-Study: Normal subgroups.															

MODULE 2: SYLOW'S THEOREM	(9L+3T=12)
Group action, Cayley's theorem, group of symmetries, dihedral groups and their elementary properties; orbit decomposition; counting formula; class equation, consequences for p-groups; Sylow's theorems (proofs using group actions). Applications of Sylow's theorems, conjugacy classes in Sn and An, simplicity of An. Direct product; structure theorem for finite abelian groups; invariants of a finite abelian group (Statements only) Self-Study:Consequences for p-groups.	CO-2 BTL-3
MODULE 3: RINGS	(9L+3T=12)
Basic properties and examples of ring, domain, division ring and field; direct products of rings; characteristic of a domain; field of fractions of an integral domain; ring homomorphisms (always unitary); ideals; factor rings; prime and maximal ideals, principal ideal domain; Euclidean domain; unique factorization domain.	CO-3 BTL-3
MODULE 4: POLYNOMIAL RINGS	(9L+3T=12)
A brief review of polynomial rings over a field; reducible and irreducible polynomials, Gauss' theorem for reducibility of $f(x) Z x$; Eisenstein's criterion for irreducibility of $f(x) Z x$ over Q, roots of polynomials; finite fields of orders 4, 8, 9 and 27 using irreducible polynomials over Z2 and Z3.	CO-4 BTL-3
MODULE 5: FIELD THEORY	(9L+3T=12)
Characteristic of a field, extensions, degree of an extension, primitive elements for an extension - Algebraic extensions, finitely generated field extensions, compositum of two fields - Splitting fields and algebraic closure – Separability - Separable and Inseparable extensions - Fields of characteristic $p > 0$ - Finite fields Perfect fields - Separable and inseparable degrees. Self-Study: Separable and inseparable degrees.	CO-5 BTL-3
TEXT BOOKS	
1.Vijay, K. K and Bhambri, S. K. (2017). Basic A Course In A Publishing, Fifth Edition.	bstract Algebra, Vikas
2. Musili, C. (2018). <i>Rings and Modules</i> , Narosa Publishing House, Se	econd Revised Edition.

REFE	RENCE BOOKS
1.	Fraleigh, J. B. (2013). A First Course in Abstract Algebra, Narosa Publishing House, New Delhi, 7th edition.
2.	Jacobson, N. (2009). Basic Algebra I, Dover Publications Inc.; 2nd edition
3.	Herstein, I. N. (1995). <i>Topics in Algebra</i> , John Wiley and Sons, New York, Second Edition.
E BOC	DKS
1.	http://math.uga.edu/~pete/integral2015.pdf
2.	http://www.jmilne.org/math/xnotes/CA.pdf
MOOC	
1.	https://nptel.ac.in/content/storage2/111/106/111106113/MP4/mod08lec44.mp4
2.	https://nptel.ac.in/content/storage2/111/106/111106113/MP4/mod08lec45.mp4
3.	https://nptel.ac.in/content/storage2/111/106/111106131/MP4/mod08lec39.mp4
4.	https://nptel.ac.in/content/storage2/111/106/111106131/MP4/mod08lec42.mp4

	URSE TLE	E	PROJECT							CRE	DITS	•	12				
	URSH ODE	E Al	IM028	800		COURSE CATEGORY				L-T-P-S			0-0-24-0				
Ve	ersion		1.()	I	Approval Details					ARNI (EVE)	. –	BTL-3				
	ASSESSMENT SCHEME																
CIA 80% ESE 20%																	
	ourse tcome	2.	Deriv	ve prac	ctical s mport	em an solutio ance o , PO A	ns to t of Eng	the soc	cietal p ng con	problem cepts	m		-		on		
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	-	-	-	2	-	3	3	3	3	3	-	3	3	-		
CO2	3	3 2 2 - 3 3 3 3 3							3	-	3	3	-				
CO3 3 - - 2 - 1 3 3 3 3 -										3	3	-					
1: Weakly related, 2: Moderately related and 3: Strongly related																	
PROJECT																	
		ject, ea				xpecte		-		-	-				ıl life		

In this project, each individual is expected to design and develop practical solutions to real life problems related to Industry and Information Technology research. Software usage should be followed during the development. The theoretical knowledge gained from the subject in the current and previous semesters should be applied to develop effective solutions to various applications. At the end of the project the individual should submit a complete report of the project work carried out.

Assessment is made as follows

Assessment Model: LE

Revi	ew / Exam	Weightage
First	Review	20%
Seco	nd Review	20%
Third Review	10%	
Project Report & Viva- Vo	oce 50%	
TOTAL	100%	

	OURSI ITLE	E	NUMI I					OF PA ATIO		L	CRED	ITS		4	
	OURS CODE	E	AIM02	CATEGORY									3-1-0	-0	
V	ersion	ı	1.0 Approval Details								LEAR LEV		÷	BTL	-3
					A	SSES	SME	NT SC	CHEM	E					
Per	First riodic: essme		SecondSeminar/PeriodicalAssignments/AssessmentProject						Atten	dance	:	ESI	E		
	15%		15	%		10%	•		5%		59	%		50%	ó
	ourse criptio			To make the student understand the basic concepts of partial differential equations.											
Ob C Ou	ourse ojectiv ourse itcom	e	 To To To To To To To To Sol Sol Sol Sol Sol Sol App 	uation perces under under on cor ve the tain th ve the ve the ply fin	s. ive the stand stand stand npletic linear e finite parab ellipti ite dif	e conce the con the co on of the system e diffe olic ec c equa ference	ept of a ncept of ncept his cou m of e rence quation ations e meth	iterativ of para of ellip of hyp urse, th quatio approx ns expl numer nods ir	ve met ibolic ptic eq erboli ne stuc ns by kimatic licit ar ically	hods t equation c equa lents w indirec ons to id imp	o linea on tion vill be et meth deriva licit m	able to nods tives ethods	em of t	equati	
	Prerequisites: Basics of partial differential equations CO, PO AND PSO MAPPING														
СО	PO1	PO2	2 PO3	PO4	P05	, 1 O I PO6	PO7	PO8	1	1	PO11	PO12	PSO1	PSO2	PSO3
C01	-	2											-	2	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	2
CO3	-	2									-	2			
CO4	-	2	3 3 3 2 3 -									2			
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	2
	1	1	: Weak	ly rela	ted, 2	: Mod	leratel	y rela	ted ar	nd 3: S	trong	ly rela	ated		·

LIST OF DEPARTMENTAL ELECTIVES WITH GROUPING - SEMESTER WISE

MODU	LE 1: INITIAL & BOUNDARY VALUE PROBLEMS	(9L+3T=12)
SOR-M problem	of iterative methods to linear system of equations: Jacobi- Gauss-seidel- atrix form of indirect methods and their convergence-Initial value as-Initial boundary value problems and their analysis of convergence- ency and stability- Lax theorem- Von Neumann criterion for stability.	CO-1 BTL-3
MODU	LE 2: DIRICHLET & NEUMANN PROBLEMS	(9L+3T=12)
	ication of PDEs- finite difference approximations to derivates- truncation boundary conditions: Dirichlet- Neumann and Robin type boundary ons.	CO-2 BTL-3
MODU	LE 3: SOLUTION OF PARABOLIC EQUATIONS	(9L+3T=12)
parabol	lic equations: explicit and implicit methods for one- and two-dimensional ic equations- Crank-Nicolson method- numerical examples- weighted approximation- consistency- convergence and stability.	CO-3 BTL-3
MODU	LE 4: SOLUTION OF ELLIPTIC EQUATIONS	(9L+3T=12)
problem ordinate the solu	equations: Numerical examples: a torsion problem- a heat conduction a with derivative boundary conditions. Finite differences in polar co- es- techniques near a curved boundary- improvement of the accuracy of tions. Analysis of the discretization error of the five-point approximation on's equation.	CO-4 BTL-3
MODU	LE 5: SOLUTION OF HYPERBOLIC EQUATIONS	(9L+3T=12)
equatio dimens Wendor approxi	olic equations: Finite difference methods for first and second order wave n- Lax- Wendorff explicit method- CFL condition for one and two ions- ADI schemes for two dimensional hyperbolic equations- Lax- rff method for a system of hyperbolic equations- Wendorff's implicit mation- reduction of a first order equation to a system of ordinary ticl equations.	CO-5 BTL-3
	tial equations - numerical examples.	
	BOOKS	
TEXT 1. 2.	BOOKS Zhilin, L. Zhonghua, Q. Tao, T. (2017). Numerical solution of partial differential equations, introduction to finite difference methods and finite element method, Cambridge University Press. Thomas, J. W. (2010). Numerical partial differential equations: Finite difference methods, Springer.	
TEXT 1. 2.	BOOKS Zhilin, L. Zhonghua, Q. Tao, T. (2017). Numerical solution of partial differential equations, introduction to finite difference methods and finite element method, Cambridge University Press. Thomas, J. W. (2010). Numerical partial differential equations: Finite difference methods, Springer. RENCE BOOKS	
TEXT 1. 2.	BOOKS Zhilin, L. Zhonghua, Q. Tao, T. (2017). Numerical solution of partial differential equations, introduction to finite difference methods and finite element method, Cambridge University Press. Thomas, J. W. (2010). Numerical partial differential equations: Finite difference methods, Springer.	differential
TEXT 1. 2. REFEH 1. 2.	 BOOKS Zhilin, L. Zhonghua, Q. Tao, T. (2017). Numerical solution of partial differential equations, introduction to finite difference methods and finite element method, Cambridge University Press. Thomas, J. W. (2010). Numerical partial differential equations: Finite difference methods, Springer. RENCE BOOKS Morton, K. W. and Mayers, D. F. (2011). Numerical solution of partial equations, Cambridge, Second Edition. Smith, G. D. (2010). Numerical solution of partial differential equations difference methods, Ox ford, Third Edition. 	
TEXT 1. 2. REFEH 1. 2. E BOO	 BOOKS Zhilin, L. Zhonghua, Q. Tao, T. (2017). Numerical solution of partial differential equations, introduction to finite difference methods and finite element method, Cambridge University Press. Thomas, J. W. (2010). Numerical partial differential equations: Finite difference methods, Springer. RENCE BOOKS Morton, K. W. and Mayers, D. F. (2011). Numerical solution of partial equations, Cambridge, Second Edition. Smith, G. D. (2010). Numerical solution of partial differential equations difference methods, Ox ford, Third Edition. 	
TEXT 1. 2. REFEF 1. 2.	 BOOKS Zhilin, L. Zhonghua, Q. Tao, T. (2017). Numerical solution of partial differential equations, introduction to finite difference methods and finite element method, Cambridge University Press. Thomas, J. W. (2010). Numerical partial differential equations: Finite difference methods, Springer. RENCE BOOKS Morton, K. W. and Mayers, D. F. (2011). Numerical solution of partial equations, Cambridge, Second Edition. Smith, G. D. (2010). Numerical solution of partial differential equation difference methods, Ox ford, Third Edition. KS https://www.springer.com/gp/book/9783764389390 	

	OURSI ITLE	E	S	STOCI	HAST	IC PF	ROCE	SSES		CRE	DITS			4			
	DURS CODE	E	AIM02501 COURSE CATEGORY DE L-T-P-S									3-1-0-	0				
V	ersion	ı	1	1.0 Approval Details							ARNI		BTL-3				
ASSESSMENT SCHEME																	
Per	FirstSecondPeriodicalPeriodicalAssessmentAssessmen		odical	dical Assignments Test / At				At	tendaı	ıce		ESE					
	15%											50%					
Course The goal is to introduce the stochastic processes which is used in solving hard problems that have wide variability in their characteristics.																	
CourseThis course aims at providing the necessary basic concepts in stochastic processCourseKnowledge of fundamentals and applications of random phenomena will greatObjectivehelp in the understanding of topics such as signals and systems, pattern recognitiesvoice and image processing and filtering theory.											reatly						
_	Course atcom	e	 Ap De dis Ap Ap Ge 	ply the monstr crete a ply the neraliz	e conc rate an ind conc e conc xe the	ept of under ntinuo ept of concep	Marko rstandi us timo Marko ot of cl	ov and ng of e ov Ren assica	Static the co newal a 1 Galt	onary H ncept and Se on and	be able Process of Ren emi – M Watso equation	es ewal p Iarkov on proc	Proce				
Prer	equisi	tes: S	ome ba	ackgro	und in	proba	bility	and ra	ndom	variat	oles.						
					CC), PO	AND	PSO I	MAPI	PING							
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	2	2 3 3 3 2 3 -										-				
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-		
CO3	-	2	3	3	3	-	-	2		-	-	-	3	-	-		
CO4	-	2	3	3	3	-	-	2		-	-	-	3	-	-		
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-		
		1:	Weak	aly rela	ated, 2	2: Moo	lerate	ly rela	ated a	nd 3:	Strong	ly rela	ated				

MODU	LE 1: ARKOV AND STATIONARY PROCESSES	(9L+3T=12)
Specifi	cation of Stochastic Processes - Stationary Processes - Poisson	CO 1
Process	G-Generalizations - Birth and Death Processes - Martingales - Erlang	CO-1
Process	5.	BTL-3
MODU	L2: RENEWAL PROCESSES	(9L+3T=12)
Renew	al processes in discrete and continuous time - Renewal equation -	
Stoppir	ng time - Wald's equation - Renewal theorems - Delayed and	CO-2
Equilib	rium renewal processes - Residual and excess life times - Renewal	BTL-3
reward	process - Alternating renewal process	DIL-J
- Reger	nerative stochastic process.	
MODU	LE 3: MARKOV RENEWAL AND SEMI – MARKOV PROCES	SSES (9L+3T=12)
	ion and preliminary results - Markov renewal equation - Limiting	CO-3
behavio	our - First passage time.	BTL-3
MODU	LE 4: BRANCHING PROCESSES	(9L+3T=12)
	ting functions of branching processes - Probability of extinction -	
	ution of the total number of progeny - Generalization of classical	CO-4
	- Watson process - Continuous time Markov branching process - Age	BTL-3
	ent branching process. LE 5: MARKOV PROCESSES WITH CONTINUOUS STATE SPACE	(9L+3T=12)
		()[[]]=12)
Browni	an motion - Wiener process - Diffusion and Kolmogorov equations	CO-5
-First p	assage time distribution for Wiener process - Ornstein - Uhlenbeck	BTL-3
process		DIL-5
ТЕХТ	BOOKS	
1.	Medhi, J. (2017). <i>Stochastic Processes</i> , New Age International (P) I Third Edition.	Ltd., New Delhi,
•	Ionuthttps://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field	
2.	<u>author=Ionut+Florescu&search-alias=stripbooks</u> Florescu. (2014). <i>Stochastic Processes</i> , Wiley, 1 st edition.	Probability and
REFEI	RENCE BOOKS	
1.	Peter Watts Jones, Peter Smith. (2020). <i>An introduction Stochastic P</i> and Hall/CRC.	Processes, Chapman
2	Robert G. Gallager. (2013). <i>The Theory of Stochastic Pro</i> Stochastic	c Processes: Theory
2.	for Applications. Cambridge University Press, 1 st edition	Incor y
E BOO		
1.	https://www.amazon.in/Stochastic-Processes-Dover-Books-Mathem	atics-
1.	ebook/dp/B00Y3Q8RIO	
2.	https://www.amazon.in/Introduction-Stochastic-Processes-Dover-M	lathematics-
۷.	ebook/dp/B00GEA9OO8	
M000		
1.	https://nptel.ac.in/courses/111/102/111102098/	
2.	https://www.elsevier.com/books/stochastic-processes/najim/978-1-9	903996-55-3

	URSH TLE	E		FOU	RIER	ANA	LYSI	S		CREI	DITS			4	
CO	URSH ODE	E .	AIM02		C	DURS	E	Dł	E	L-7	C-P-S		3-1	-0-0	
Ve	ersion		1.0			oprova Details				LEARNING LEVEL		J.	BTL-3		
					AS	SSESS	SMEN	T SC	HEM	E					
F	First		Sec	ond	S	Semin	ar/	Su	Irprise						
	iodica		Perio			signm			t / Qu		Atten	dance	:	ESE	
Asse	essme	nt	Assess	sment	1	' Proje	ect	105	i v						
1	5%		15	%		10%)		5%		59	%		50%	
	ourse criptio	on	It is a d	iscipli	ne tha	t helps	s to ma	ake bet	tter de	cision	s in Fo	ourier A	Analys	sis.	
Course ObjectiveThe course will help the Learner to: 1. Study the concept of Banach spaces. 2. Understand the concept of seperability. 3.Analyse the concept of Hahn Banach space. 4.Study the concept of Hilbert's space. 5. Understand the concept of adjoint of an operator, dual, double dual convergence.															
Course OutcomeUpon completion of the course students will be able to: 1. Apply the concept of Banach spaces. 2.Solve problems in seperability. 3. Use the concept of Hahn Banach Space. 4. Perform the concept of Hilbert's space. 5. Relate the concept of adjoint of operator and dual, double dual convergence.Prerequisites:Differential equation, linear algebra and real analysis.															
					CO,	PO A	ND P	SO M	APPI	NG					
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	-	-	2	-	-	-	-	3	1	-
CO2	2	3	1	3	1	-	-	2	3 -		1	2	3	2	2
CO3	3	2	2	1	2	-	1	2	-			-	2	-	3
CO4	2	3	2	2	3	-	1	2	-	-	-	1	3	2	-
CO5	3	2	3	3	3	-	-	2	2	-	-	-	3	-	2
		1: `	Weakly	v relat	ed, 2:	Mode	erately	y relat	ed an	d 3: St	rongl	y rela	ted		

MODULE 1: LINEAR SPACES	(9L+3T=12)
Normed linear spaces, Banach spaces; Classical examples: $C([0,1])$, l_p , c, c_0 , c_{00} , $L_p[0,1]$; Continuity and boundedness of linear operator; Quotient spaces.	CO-1 BTL-3
MODULE 2: FINITE DIMENSONAL NORMED SPACES	(9L+3T=12)
Finite dimensional Normed spaces; Riesz lemma, (non)compactness of unit ball; Seperability with examples.	CO-2 BTL-3
MODULE 3: EXTENDED SPACES	(9L+3T=12)
Hahn Banach extension theorem, Open mapping theorem, Closed graph theorem, Uniform boundedness principle.	CO-3 BTL-3
MODULE 4: HILBERT SPACE	(9L+3T=12)
Hilbert spaces, Projection theorem; Orthonormal basis, Bessel inequality, Parseval equality; Dual, Duals of classical spaces-c ₀ , l _p , L _p [0,1];	CO-4 BTL-3
MODULE 5: ADJOINT OPERATOR	(9L+3T=12)
Riesz representation theorem, Adjoint of an operator; Double dual, Weak and weak* convergence.	CO-5 BTL-3
TEXT BOOKS	
1. M. Fabian, P. Habala, P. Hajek, V. M. Santalucia, J. Pelant and V. Z analysis and infinite-dimensional geometry. (Canadian Math. Soc, S	pringer 2001).
2. M. T. Nair, Functional analysis. (PHI-Learning, New Delhi, Fourth	Print 2014).
REFERENCE BOOKS	
1. B. Bollobas, Linear analysis (Cambridge Univ. Press 1999).	
2. Conway, A course in functional analysis. (Springer 2007).	
3. P. D. Lax, Functional analysis (Willey interscience 2002).	
E BOOKS	
1. <u>http://www.freebookcentre.net/maths-books-download/Fourier-Ana</u> <u>Gripenberg.html</u>	<u>lysis-by-Gustaf-</u>
MOOC	
I. https://ocw.mit.edu/courses/18-103-fourier-analysis-fall-2013/	

	URSE ITLE	E	I	MATH	IEMA	TICA	L PH	YSIC	S	CI	REDIT	ſS		4	
	OURSI ODE	E	AIM02	503	-	COUR TEGO			DE		L-T-P	-S		3-1-0-()
V	ersion		1.	0		Approv Detail					EARN LEVI			BTL-3	3
		-			A	SSES	SME	NT SC	CHEM	Έ					
Per	First 'iodica essmei		Seco Perioo Assess	dical	Ass	Semina signmo Projeo	ents/		rprise : / Qui		ttenda	ance		ESE	
1	15%		159	%	10% 5% 5% 50%										
_	ourse criptio		To make the student understand the basic concepts of Mathematical Physics and its application											and	
Course Objective1. To equip the students with a sample of available tools/techniques in Mathematics to study and analyze the math and to give a first-hand experie using / experimenting with the techniques. 2. To expose the students to areas of mathematics having applications in physics									xperien	ice in					
_	ourse itcome	e 3	I. Ana 2. Der 3. Exp 4. Fino	on com alyze the ive reconnection oand the d the L d Four	ne beh currenc e Four aplace	avior o ce rela rier sen e trans	of serie tions f ries foi form f	es solu or spec perio or peri	tions cial fur dic fur odic a	nctions actions nd nor	S S		nctions	S	
Prere	equisi	tes: B	Basics of physics												
CO, PO AND PSO MAPPING															
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO4	-	2	3	3	3	•	-	2	-	-	-	•	3	-	-
CO5	-	2	3	3	3	•	-	2	2	-	-	•	3	-	-
		1:	Weak	ly rela	ted, 2	: Mod	leratel	y rela	ted an	d 3: S	trong	y rela	ted		

MODU	LE 1: DIFFERENTIAL EQUATIONS	(9L+3T=12)						
	y differential equations-Series solutions and behaviour of series as-Singularity – Frobenius method - Hypergeometric Functions.	CO-1 BTL-3						
MODU	LE 2: SPECIAL FUNCTIONS	(9L+3T=12)						
	Legendre- Hermite and Laguerre equations - Properties of their ns-Recurrence Relations-Orthogonal properties.	CO-2 BTL-3						
MODU	LE 3: FOURIER SERIES	(9L+3T=12)						
	series for periodic functions- Dirichlet conditions- Half range series- ex form of Fourier series	CO-3 BTL-3						
MODULE 4: LAPLACE TRANSFORMS(9L+3T=12)								
functio	e transform – Conditions of existence – Transform of elementary ns – properties – Transforms of derivatives – Initial and final value ns – Transform of periodic functions.	CO-4 BTL-3						
MODULE 5: FOURIER TRANSFORMS (9L+3T=12)								
Fourier Cosine Convol	CO-5 BTL-3							
TEXT	BOOKS							
1.	Pipes and Harvill. (2014). <i>Applied Mathematics for Engineers and</i> Hill International Book Company, Third Edition.	Physicists, McGraw						
2.	Erwin Krysigz. (2011). Advanced Engineering Mathematics, John York, Tenth edition.	Wiley& Sons, New						
REFERENCE BOOKS								
1.Suresh Chandra, Mohit Kumar Sharma. (2013). Introduction to Mathematical Physics.								
2. Zill. (2016). <i>Advanced Engineering Mathematics</i> , Jones & Bartlett Learning, Six Edition.								
E BOO	KS							
1.	Mathematical-Physics-H-K-Dass - ebook/dp/B00QUYKS34							
MOOC								
1. <u>https://www.coursera.org/specializations/social-science</u>								

	OURSI ITLE	E]	BASIC	CS OF	GRA	PH T	HEOI	RY	(CRED	ITS		4		
	OURS CODE	E	AIM02	504		COUR ATEG			DE		L-T-	-P-S		3-1-0-0		
V	ersion	l	1.	0	1	Approval Details					LEAR LEV		ŕ	BTL-3		
					A	SSES	SME	NT SC	CHEM	E						
-	First		Sec	ond	5	Semin	ar/	Sı	irpris	0						
	riodica			odical		ssignn			st / Qu		Atten	endance		ESF	2	
Ass	essme	nt	Asses	sment		/ Proj	ect	105								
	15%		15	5%		10%	, D		5%		59	/0		50%)	
	'ourse criptio		To make the student understand the basic concepts of Graph Theory													
	^t ourse ojectiv			To int To tra								-	-		ry.	
Ou	Course Itcom equisi	e	2. 3. 4.	Demo Devel Analy Detern Devel dge of	op pro ze the mine a op an	blem nature minir unders	solving e of ac nal spa standir	g skill yclic c anning ng on p	s and t connec tree f planar	hereby ted gra or a gi graphs	y solve aphs. ven w s and c	e real l eighte colorin	ife pro d grapi g.	blems		
					CO	, PO <i>A</i>	AND I	PSO M	IAPP	ING						
со	PO1	РО	2 PO3	PO4	PO5	PO6	PO7	PO8	PS9	PS10	PS11	PS12	PSO1	PSO2	PSO3	
CO1 - 2 3 3 3 - 2										-	-	-	3	-	3	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	3	
		1	: Weak	ly rela	ted, 2	: Mod	eratel	y rela	ted an	d 3: S	trong	ly rela	ted			
MO	DULF	E 1: 1	Basic Co	oncept	ts								(9L-	+3T=1	2)	
comp opera		nt of on gr	-											CO-2 BTL-		

MODULE 2: Connectivity of a Graph	(9L+3T=12)					
Paths and cycles – connectedness and connectivity – components of a graph – cut points and bridges – blocks – Menger's theorem – matrices related to a graph. Self Study: Paths & Cycles	CO-2 BTL-3					
MODULE 3: Trees and Properties	(9L+3T=12)					
Trees – characteristics of trees – center of a tree – spanning tree in graph – minimum spanning tree algorithm – diameter of graph – average distance of graph. Self Study: Trees	CO-3 BTL-3					
MODULE 4: Various Graphs	(9L+3T=12)					
Eulerian graphs – Konigsberg bridge problem – Hamiltonian graphs – chordal graph – weighted graph – Cayley graph, hypercube network and their properties.	CO-4 BTL-3					
MODULE 5: Planarity and Colourability	(9L+3T=12)					
Planarity – colourability – chromatic number – five colour theorem – four colour problem – matching – independent sets and coverings – perfect graphs. Self Study: Planarity						
TEXT BOOKS						
1.JunmingXu (2001), Topological Structure and Analysis of InterconnelKluwer Academic Publishers, The Netherlands.	ection Networks,					
2. Douglas B. West (2002), <i>Introduction to Graph Theory</i> , Prentice Hall Edition.	of India, Second					
REFERENCE BOOKS						
1. Arumugam and Ramachandran (1994), <i>Invitation to Graph Theor</i> publishing house, Palayamkottai.	ry, New gamma					
2. NarsinghDeo (2016), <i>Graph Theory with Applications to Engineeric Science</i> , Dover publications, New York.	ing & Computer					
E BOOKS						
1. https://b-ok.asia/book/3289235/25da6f						
MOOC						
1. <u>https://www.coursera.org/learn/graphs</u>						
2. <u>https://www.coursera.org/specializations/data-structures-algorithms</u>						

	OURSI ITLE	E	RE			ATIO FE GF		EORY S	OF	C	REDI	TS		4	
	URSI ODE	E	AIM02	2505		DURS TEGO]	DE		L-T	-P-S		3-1-0	-0
Ve	ersion		1.0		-	pprova Details]	LEAR LEV	NING VEL	Ĵ	BTL	-3
					AS	SSESS	SMEN	T SC	HEM	E					
Per	First riodica essme		Seco Period Assess	lical	Ass	emina ignme Projec	ents/		rpriso t / Qu		Atten	dance	2	ESF	E
1	15%		15%	%		10%			5%		59	%		50%	, D
	ourse criptic	on	It is a d	iscipli	ne tha	t helps	s in un	dersta	nding	the the	eory of	finite	grou	ps	
Course1. The concept of linear groups.Objective2. Impart knowledge on group representation.Objective3. Enable the students to analyze the concept of group algebra.4. Understand Orthogonal relation of characters.5. Make the students to understand the concept of finite abelian group.									group.						
CourseUpon completion of the course students will be able to:1.Solve linear groups problems.2.Solve concepts under group representation.Outcome3. Apply the concept of group algebra.4.Learn about Orthogonal relation of Characters.5. Apply the concept of finite abelian group.															
Prer	equisi	usites: Algebra I and II													
					CO,	PO A	ND P	SO M	APPI	NG					
СО	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	•	-	2	-	-	1	-	3	2	1
CO2	3	3	3	3	3	-	1	2	3	-	-	1	3	2	2
CO3	3	3	2	3	2	-	-	3	-	2	-	2	2	-	3
CO4	3	3	3	2	3	1	-	3	-	-	1	-	3	2	-
CO5	3	2	3	3	3	-	-	2	2	-	-	-	3	-	2
		1:	Weakly	y relat	ed, 2:	Mode	erately	relat	ed and	d 3: St	rongl	y rela	ted		

MOI	OULE 1: CLASSICAL GROUPS	(9L+3T=12)						
Class	ical groups: General linear group, Orthogonal group, Symplectic	CO-1						
group	o, Unitary group.	BTL-3						
MOI	DULE 2: GROUP REPRESENTATION	(9L+3T=12)						
	p representation, conjugate representation, G-invariant spaces -	CO-2						
	acible representations - Schur's lemma.	BTL-3						
	MODULE 3: GROUP ALGEBRA (9L+3T=12)							
	Group Algebra - Maschke's theorem - characters. Orthogonality	CO-3						
relations for characters – Number of irreducible representations. BTL-3								
MODULE 4: PERMUTATION REPRESENTATION(9L+3T=12)								
Perm	utation representation-Regular representation. Representation-	CO-4						
symm	netric groups.	BTL-3						
MODULE 5: REPRESENTATION OF FINITE ABELIAN GROUPS (9L+3T=12)								
Rep	resentation of Finite Abelian groups - Dihedral groups.	CO-5 BTL-3						
TEXT BOOKS								
1.C.W. Curtis and I. Reiner., "Representation theory of finite groups and associative algebras", AMS Chelsea Publishing, Providence, Rhode Island, 2006.								
 Bruce E. Sagan., "The symmetric group. Representations, combinatorial algorithms, and symmetric functions", The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. 								
3.	Eting of Pavel, Golberg Oleg, Hensel Sebastian, Liu Tiankai, Schwer Vaintrob Dmitry, Yudovina Elena,, <i>Introduction to representation th</i> <i>historical interludes by Slava Gerovitch</i> , Student Mathematical Libr Mathematical Society. 2011.	heory. With						
REF	ERENCE BOOKS							
 William Fulton, "Young tableaux, with applications to representation theory and geometry", London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997. 4. 								
 G. James and A. Kerber., "The Representation theory of the symmetric group", Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass., Boston, 1981. 								
3.	J. P. Serre, <i>Linear representations of finite groups</i> , Graduate Texts i 42. Springer-Verlag. New York-Heidelberg. 1977.	n Mathematics. Vol.						
E BC	OOKS							
1.	https://link.springer.com/book/10.1007/978-3-030-21792-1							
MOO	DC							
1.	https://faculty.math.illinois.edu/~rezk/Finite%20Group%20Reps/sho	ort-course-finite-						
	group-representations.html							
2.	http://math.iisc.ac.in/all-courses/ma220.html							

	URSH ITLE	B	SPECI ND A							CRE	DITS			4	
	URSI ODE	E A	AIM02	506		OUR TEG(Γ	ЭE]	L-T-P	-S		3-1-0-	-0
Ve	ersion		1.0 Approval Details								ARN LEVE			BTL-	-3
					A	SSES	SSME	NT SO	CHEM	IE					
Per	First iodica essme		Seco Perio Assess	dical	As	Semin signn ' Proj	nents	Te	prise st / uiz	At	tenda	nce		ESE	
1	15%		15	%		10%	/ 0	5	%		5%			50%	•
_	ourse criptic		 This course is conceptual and exploratory, a course that describes the relative motion of different bodies in different frame of references. It compares different theories and establishes the most reliable one, identified through valid and consequential experimental investigations. 												
_	Course The objectives of this course are to: introduce students to the concept of speci relativity and its applications to Physical Sciences; and provide students with knowledge and proof of the validity of Physical Laws and nonexistence of the hypothetical stationary anther.										with				
	CourseUpon completion of this course, the students will be able to1. Derive Einstein's formulation of special relativity2. Analyze the Lorentz transformations in three dimensions3. Demonstrate an understand on the concept of the four-vector formulationspecial relativity4. Derive the Doppler shift in special relativity5. Derive Maxwell's equations and formulate the four vector Maxwelequations														
Prer	equisi	ites: B	es: Basics of relativity theory												
					CO	, PO .	AND I	PSO N	APP	ING					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	-	1	-	-	3	-	-	-	-	3	3	-
CO2	1	1	-	1	-	-	-	3	-	-	-	-	3	3	-
CO3	3	2	2	-	-	2	-	3	-	-	-	-	3	3	-
CO4	2	-	2	-	2	-	-	3	-	-	-	-	3	3	-
CO5	3	-	2	-	-	-	-	3	-	-	-	-	3	3	-
		1: `	Weakl	ly rela	ted, 2	: Mod	lerate	ly rela	ited ar	nd 3: S	trong	ly rela	nted		

MODU	LE 1: DERIVATION OF SPECIAL RELATIVITY (9L+3T=12)						
Fundan	nental concepts - Einstein's formulation of special relativity - The	CO-1						
Lorentz	transformations.	BTL-3						
MODU	LE 2: DERIVATION OF SPECIAL RELATIVITY	(9L+3T=12)						
Length	contraction, Time dilation and simultaneity - The velocity addition	n CO-2						
formula	ae - Three dimensional Lorentz transformations.	BTL-3						
MODU	LE 3: THE FOUR-VECTOR FORMULATION OF SPECIAL REL	ATIVITY						
		(9L+3T=12)						
The fo	ur-vector formalism - The Lorentz transformations in 4-vectors - The	CO-3						
Lorentz	and Poincare groups - The null cone structure - Proper time.	BTL-3						
MODU	LE 4: APPLICATIONS OF SPECIAL RELATIVITY	(9L+3T=12)						
	istic kinematics - The Doppler shift in relativity - The Compton effect -	CO-4						
Particle	BTL-3							
MODULE 5: ELECTROMAGNETISM IN SPECIAL RELATIVITY(9L+3T=12)								
	v of electromagnetism - The electric and magnetic field intensities - The	CO-5						
	current - Maxwell's equations and electromagnetic waves - The four- formulation of Maxwell's equations.	BTL-3						
	BOOKS							
	Einstein, A. (2017). Relativity: The Special and the General Theorem	pry. Fingerprint						
1.	Publishing.	, ingerprine						
2	Goldstein, H., Poole, C. P. and Safko, J. L. (2003). Classical Mechanics	s, Addison-						
2.	Wesley Publishing Co.							
REFE	RENCE BOOKS							
1. Freund, J. (2008). Special Relativity for Beginners, World Scientific.								
2. Ringler, W. (2006). <i>Introduction to Special Relativity</i> , Oxford University Press.								
E BOO	KS							
1.	https://b-ok.asia/book/837243/1f3a69.							
MOOC								
1.	https://www.coursera.org/learn/engineering-mechanics-statics							
2.	https://www.coursera.org/learn/physics-101-forces-kinematics							

	URSI ITLE	E	THE	ORY (ZZY MOD		ETS A	AND	CRE	DITS			4	
	OURS CODE	E	AIM02	2507		OUR TEG(Ľ	ЭE	I	L-T-P	-S		3-1-0-	-0
V	ersion	l	1.	0		pprov Detail					ARNI LEVE			BTL·	.3
					A	SSES	SME	NT SC	CHEM	Έ					
Per	First riodica essme		Seco Perio Assess	dical	Ass	emina ignmo Projeo	ents/	Te	prise st / uiz	At	tenda	nce		ESE	}
	15%		15	%		10%	I	5	%		5%			50%	
	ourse criptio			To make the student understand the basic concepts of Fuzzy logic and its application 1. The theory of fuzzy subsets is a step forward a rapprochement between the											
Ob C Ou	ourse jectiv ourse itcom	e	prea rea un 2. To 3. To 4. To	ecisior al worl derstat o impar o under o apply cisions comple nonstr oly the ermine mulate oly stat	of cla d a raj nding rt knov rstand these s etion o ate an conce e crips fuzzy istical	ssical pproch of men wledge mathe techn f this of under pts of and fu cogni	mathenemen ntal pr e in co ematica iques course standi fuzzy uzzy s itive n	ematic t born ocesse ncepts al mode constr , the s ng on graph ets nodels	es and to of the es and to s and to lels us uctivel tudent the con- s and to and it	the per incess cogniti ools of ed in fu by to m s will to ncept of fuzzy r s appli	vasive ant hu ion. Fuzzy uzzy le ake ef oe able of fuzz elation cation	e impre man q 7 mode ogic fective e to y sets ns s	ecision uest fo els	n of th or a be	e
CO, PO AND PSO MAPPING															
СО	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3
CO4	-	2	3	3	3	-	-	2	-	-	•	·	3	-	3
CO5	-	2	3	3	3	-	-	2	2		-	-	3	-	3
		1:	Weakl	y rela	ted, 2	: Mod	eratel	y rela	ted an	nd 3: S	trong	ly rela	ited		

MODU	JLE 1: INTRODUCTION TO FUZZY SUBSETS	(9L+3T=12)							
Introdu	ction- Review of the notion of membership-The concept of a fuzzy								
subset-	Dominance relations-Simple operations on fuzzy subsets-Set of	CO-1							
fuzzy s	ubsets for E and M finite-Properties of the set of the fuzzy subsets-	BTL-3							
Produc	t and algebraic sum of two fuzzy subsets.								
MODU	JLE 2: FUZZY GRAPHS AND FUZZY RELATIONS	(9L+3T=12)							
Fuzzy	graphs-Fuzzy relations-Composition of fuzzy relations -Fuzzy								
subsets	induced by a mapping -Conditioned fuzzy subsets -Properties of	CO-2							
fuzzy b	inary relation -Transitive closure of a fuzzy binary relation-Paths in	BTL-3							
a finite	fuzzy graph.								
MODU	JLE 3: FUZZY PREORDER RELATIONS	(9L+3T=12)							
Fuzzy	preorder relations -Similitude sub relations in a fuzzy preorder-								
	mmetry - Fuzzy order relations-Ant symmetric relations without								
-	Ordinal relations- Ordinal functions in a fuzzy order relation-	CO-3							
	ilitude relations -Resemblance relations -Various properties of	BTL-3							
	ude and resemblance Various properties of fuzzy perfect order ns-Ordinary membership functions.								
	JLE 4: FUZZY COGNITIVE MODELS AND FUZZY RELAT	TIONAL							
MODI		(9L+3T=12)							
Fuzzy cognitive maps-combined fuzzy cognitive maps-combined overlap CO-3									
fuzzy cognitive maps-Fuzzy relation maps-combined fuzzy relational BTL-3									
maps.	maps.								
	JLE 5: NEUTROSOPHIC COGNITIVE MODELS AND NEUTI								
	TIONAL MODELS	(9L+3T=12)							
	sophic cognitive maps- combine overlap Neutrosophic cognitive Neutrosophic relational maps- Stasticial approach using fuzzy	CO-4							
-	and Neutrosophic models.	BTL-3							
	BOOKS								
1.	Kaufmann, A. (2017). <i>Introduction to the Theory of Fuzzy Subsets</i> , New York.	Academic Press,							
2	Hans, J. Z. (2020). Fuzzy Set Theory—And Its Applications,								
2.	, Springer Nature (Sie).								
REFE	RENCE BOOKS								
1.	VasanthaKandasamy, W. B., FlorentinSmarandache, Ilanthenral, Fuzzy Neutrosophic Models for Social Scientists.	K. (2013).							
	VasanthaKandasamy,W.B., FlorentinSmarandache, Ilanthenral, K	. (2020).							
2.									
	Books, Kindle edition.								
E BOC									
1.	https://cours.etsmtl.ca/sys843/REFS/Books/ZimmermannFuzzySet	Theory2001.pdf							
MOOO									
1.	https://www.classcentral.com/course/swayam-introduction-to-fuzz	y-set-theory-							
1.	arithmetic-and-logic-14149								
	https://nptel.ac.in/courses/111/102/111102130/								

	URSI ITLE	£		NEU	RAL I	NETW	VORK	S		CREE	DITS			4	
	URSI ODE	E	AIM02	508		DURS TEGO		DI	E	L-I	-P-S		3-	1-0-0	
Ve	ersion		1.0		-	oprova Details				LEARNING LEVEL BTL-3			TL-3		
			ASSESSMENT SCHEME												
Per	First riodica essme		Sec Perio Asses	dical	As	Semina signm ′ Proje	ents	Surprise Test / QuizAttendanceESE						2	
1	15%		15	%		10%)	5%			59	%		50%	•
C	ourse						U	g the fundamentals of Neural Networks. To							
Dese	Description expose the students to basics of Neural Networks The course will help the learner to: The course will help the learner to:														
Course Objective1. To know them an in fundamental principles and techniques of neural network systems and investigate the principal neural network models and application 2. Acquire in-depth knowledge in Non-linear dynamics 3. Apply neural network to classification and generalization problems. 4. To acquire knowledge about Back Propagation Algorithm. 5. To know the fundamental principles of directional derivativesOn successful completion of the course, the students should be able to 1. Understand and analyze different neutron network models 2. Understand the basic ideas behind most common learning algorithms															
Ou	ourse itcome	 multilayer perceptions, radial-basis function networks. 3. Describe Hebbrule and analyze back propagation Algorithm with examples. 4. Study convergence and generalization and implement common learnin algorithm. 5. Study directional derivatives and necessary conditions for optimality and evaluate quadratic functions. tes: Statistics and basic mathematics. 									rning				
	- 1		CO, PO AND PSO MAPPING												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	-	-	2	-	-	-	1	3	2	-
CO2	3	2	2	3	1	-	-	2	3	-	1	-	3	2	2
CO3	3	3	2	2	2	-	2	2	-	2	-	•	3	-	3
CO4	3	2	3	2	3	-	-	2	-	-	1	-	3	2	-
CO5	3	2	3	3	3	-	-	2	2	-	-	-	3	-	2
			1: W	eakly	relate	ed, 2: I	Mode	rately	relate	ed and	3: Str	ongly	relate	ed	

MODULE 1: NEURON MODEL AND NETWORKARCHITECTUR	ES (9L+3T=12)							
MathematicalNeuronModel-NetworkArchitectures-Perceptron-	CO-1							
HammingNetwork-HopfieldNetwork-LearningRules.	BTL-3							
MODULE 2: PERCEPTRON ARCHITECTURES (9L+3)								
PerceptronArchitecturesandLearningRulewithProofofConvergence.Su CO								
pervisedHebbianLearning-Linear Associator.	BTL-3							
MODULE 3: SUPERVISED HEBBIANLEARNING	(9L+3T=12)							
TheHebbRule-PseudoinverseRule-VariationsofHebbianLearning-	CO-3							
BackPropagation-MultilayerPerceptrons.	BTL-3							
MODULE 4: BACK PROPAGATION (9L+3T=12)								
BackpropagationAlgorithm-ConvergenceandGeneralization-	CO-4							
PerformancesSurfacesandOptimumPoints-Taylor series.	BTL-3							
MODULE 5: PERFORMANCE SURFACES AND PERFORMANCE OPTIMIZATIONS								
	(9L+3T=12)							
DirectionalDerivatives-Minima-NecessaryConditionsforOptimality-	CO-5							
QuadraticFunctions-PerformanceOptimizations-SteepestDescent- Newton'sMethod-ConjugateGradient.BTL-3								
TEXT BOOKS								
1. Introduction to Artificial Neural systems – Jacek M. Zurada, 1994, J	aico Publ. House							
2. Laurene Fausett, "Fundamentals of Neural Networks", Pearson Education, 2006								
REFERENCE BOOKS								
1. Simon Haykin, "Neural Networks- A comprehensive foundation", Pearson Education, 2003.								
2. S.N.Sivanandam, S.Sumathi,S. N. Deepa "Introduction to Neural Networks using MATLAB 6.0", TATA Mc Graw Hill, 2006.								
3. S. Rajasekharan and G. A. Vijayalakshmipai, "Neural Networks, Fuzzy logic,								
E BOOKS								
E BOOKS								
E BOOKS 1. https://www.inf.ed.ac.uk/teaching/courses/nlu/assets/reading/Gurney	y_et_al.pdf							
	<u>y_et_al.pdf</u>							
1. <u>https://www.inf.ed.ac.uk/teaching/courses/nlu/assets/reading/Gurney</u>	y_et_al.pdf							

	URSE TLE	E		FUNC	TIO	NAL A	ANAL	YSIS		CI	REDI	ГS		4	
	OURSH ODE	E A	AIM02	AIM02509 COURSE CATEGORY DE L-T-P-S 3-1-0-0											
Ve	ersion		1.	0		approv Detail				L	EARI LEV			BTL·	-3
	ASSESSMENT SCHEME														
Per	First iodica essmei		SecondSeminar/SurprisePeriodicalAssignments/Test / QuizAssessmentProjectAttendance												2
1	15%		159	%		10%)	:	5%		5%	6		50%)
	Course DescriptionThis course is intended both for mathematics students continuing to do advanced work and for other students using mathematics at a high level in theoretical physics, engineering and information technology, and mathematical economics.								etical nics.						
	ourse jectivo	a e a	The course gives an introduction to spectral theory, compact linear operators and approximation theory which is one of the main branches of modern functional analysis. After successfully completion of course, the student will able to explore subject into their respective dimensions											ional	
	ourse tcome	1 2 3 4	Den con Det Ana Acq	ompleti nonstra vergeno ermine llyze sp juire kn cribe sj	te an ce of s the in ectral owlee	unders sequer mer pr l theor dge on	standin nce roduct ry in fi n conce	ng on t spaces nite di ept of o	the constant of the constant o	ncept o check t onal no oct line	of oper heir o ormed ar ope	rators a rthogo space erator o	onality s on norr	ned sp	
Prerequisites: Basics of real and complex analysis															
	CO, PO AND PSO MAPPING														
CO PO1 P		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	01 - 2		3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	2 3 3		3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO4	-	2									-				
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
	1: Weakly related, 2: Moderately related and 3: Strongly related														

MODULE 1: OPERATORS AND CONVERGENCE (9L+3T=12) Definitions-examples and basic properties of bounded Linear Functionals- embedding and Reflexivity of normed spaces- Unitary and normal operators- adjoint of bounded linear operations- strong and weak convergence- convergence of sequence of operators and functional. CO-1 MODULE 2: INNER PRODUCT SPACES AND ORTHOGONALITY Definitions and basic properties of inner product spaces and Hilbert space- completion of inner product spaces- orthogonality of vectors- orthogonal complete orthonormal sets. CO-2 MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES Spectral Theory in Finite Dimensional Normed Spaces- Basic Conceptis- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra. CO-3 BTL-3 MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12) CO-4 BTL-3 Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators- Further Theorem of Fredholm Type. CO-4 BTL-3 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Square Roots of a Positive Operators- Projection Operators- Further Properties of Projections of Bounded Self - Adjoint Linear Operators. CO-5 BTL-3 Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Int
embedding and Reflexivity of normed spaces- Unitary and normal operators- adjoint of bounded linear operations- strong and weak convergence- convergence of sequence of operators and functional. CO-1 MODULE 2: INNER PRODUCT SPACES AND ORTHOGONALITY (9L+3T=12) Definitions and basic properties of inner product spaces and Hilbert space- completion of inner product spaces- orthogonality of vectors- orthogonal complement and projection theorem- orthonormal sets and Fourier analysis- complete orthonormal sets. CO-2 MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra. CO-3 BTL-3 MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES Operator Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Spectral Properties of Compact Linear Operators- Further Theorem of Fredholm Type. CO-4 BTL-3 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators - Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators - Spectral Representation of Bounded Self - Adjoint Linear Operators. CO-5 BTL-3 Spectral Properties of Bounded Self - Adjoint Linear Operators. CO-5 BTL-3 Operators - Spectral Representation of Bounded Self - Adjoint Linear Operators. Still MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS BTL-3 Stidiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real Worl
adjoint of bounded linear operations- strong and weak convergence- convergence of sequence of operators and functional.BTL-3MODULE 2: INNER PRODUCT SPACES AND ORTHOGONALITY(9L+3T=12)Definitions and basic properties of inner product spaces and Hilbert space- completion of inner product spaces- orthogonality of vectors- orthogonal complete orthonormal sets.(9L+3T=12)MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12)BTL-3Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.CO-3 BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12)(9L+3T=12)Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators- Spectral Properties of a Positive Operator- Projection Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators New Delhi.CO-5 BTL-31.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduct
convergence of sequence of operators and functional. (9L+3T=12) Definitions and basic properties of inner product spaces and Hilbert space- completion of inner product spaces- orthogonality of vectors- orthogonal compliment and projection theorem- orthonormal sets and Fourier analysis- complete orthonormal sets. CO-2 MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12) BTL-3 Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Theory- Banach Algebra. CO-3 BTL-3 MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12) CO-4 Derator Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators - Further Theorem of Fredholm Type. CO-4 BTL-3 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators- Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators. CO-5 BTL-3 Spectral Properties of a Positive Operator- Projection Operators. CO-5 BTL-3 I. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. Siddiqui, A. H., (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.
MODULE 2: INNER PRODUCT SPACES AND ORTHOGONALITY (9L+3T=12) Definitions and basic properties of inner product spaces and Hilbert space- completion of inner product spaces- orthogonality of vectors- orthogonal compliment and projection theorem- orthonormal sets and Fourier analysis- complete orthonormal sets. CO-2 MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12) BTL-3 Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Theory- Banach Algebra. CO-3 BTL-3 MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12) CO-3 BTL-3 Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators Purther Theorem of Fredholm Type. CO-4 BTL-3 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators. CO-5 BTL-3 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H., (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.
completion of inner product spaces- orthogonality of vectors- orthogonal compliment and projection theorem- orthonormal sets and Fourier analysis- complete orthonormal sets.CO-2 BTL-3MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12)CO-3 BTL-3Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.CO-3 BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12)(9L+3T=12)Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Spectral Properties of Compact Linear Operators - Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators.CO-5 BTL-31.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.2.Siddiqui, A. H., (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.2.Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
compliment and projection theorem- orthonormal sets and Fourier analysis- complete orthonormal sets.BTL-3MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12)Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.CO-3 BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12)Compact Linear Operator on Normed Spaces- Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Spectral Properties of Bounded Self - Adjoint Linear Operators- Projection Operators- Projection Operators- Projection Operators- Projection Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators.CO-5 BTL-3TEXT BOOKS1.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.2.Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.2.Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
compliment and projection theorem- orthonormal sets and Fourier analysis- complete orthonormal sets.BTL-3MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12)Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.CO-3 BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12)Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Spectral Properties of Bounded Self - Adjoint Linear Operators- Projection Operators- Projection Operators- Projection Operators- Projection Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators.CO-5 BTL-3TEXT BOOKS1.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.2.Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.2.Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
MODULE 3: SPECTRAL THEORY OF LINEAR OPERATORS IN NORMED SPACES (9L+3T=12) Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra. CO-3 BTL-3 MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES Operator Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type. CO-4 BTL-3 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Square Roots of a Positive Operator- Projection Operators- Positive Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators. (9L+3T=12) Spectral Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators. (9L+3T=12) Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. BTL-3 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. Publishers, New Delhi. 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition. Publishers, Third Edition.
(9L+3T=12) Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts-Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra. CO-3 MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES (9L+3T=12) Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces-Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type. CO-4 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS (9L+3T=12) Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators. CO-5 TEXT BOOKS 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition. Publishers, Third Edition.
Spectral Theory in Finite Dimensional Normed Spaces- Basic Concepts- Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.CO-3 BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES(9L+3T=12)Compact Linear Operator on Normed Spaces- Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS(9L+3T=12)Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators.CO-5 BTL-3TEXT BOOKS1.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.2.2.Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.Siddiqui, A. H. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES(9L+3T=12)Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS(9L+3T=12)Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators.CO-5 BTL-3TEXT BOOKSI.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.2.Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.New Delhi.1.Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Spectral Properties of Bounded Linear Operators- Use of Spaces Complex Analysis in Spectral Theory- Banach Algebra.BTL-3MODULE 4: COMPACT LINEAR OPERATORS ON NORMED SPACES(9L+3T=12)Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS(9L+3T=12)Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators.CO-5 BTL-3TEXT BOOKS1.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.2.Siddiqui, A. H. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Analysis in Spectral Theory- Banach Algebra. Column Co
Compact Linear Operator on Normed Spaces- Properties of Compact Linear Operator- Spectral Properties of Compact Linear Operators on Normed Spaces-Operator Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type. CO-4 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS (9L+3T=12) Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators. CO-5 BTL-3 Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Operator- Spectral Properties of Compact Linear Operators on Normed Spaces- Operator Equations Involving Compact Linear Operators on Normed Spaces- Operators Equations Involving Compact Linear Operators- Further Theorem of Fredholm Type.CO-4 BTL-3MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS Operators- Square Roots of a Positive Operator- Projection Operators- Positive Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear OperatorsCO-5 BTL-31.Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi.2.2.Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi.Etimaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Operator Equations Involving Compact Linear Operators on Normed Spaces BTL-3 Operator Equations Involving Compact Linear Operators - Further Theorem of Fredholm Type. BTL-3 MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS (9L+3T=12) Spectral Properties of Bounded Self - Adjoint Linear Operators - Positive Operators - Square Roots of a Positive Operator - Projection Operators - Further Properties of Projections - Spectral Family of a Bounded Self - Adjoint Linear Operators. CO-5 Properties of Projections - Spectral Family of a Bounded Self - Adjoint Linear Operators. BTL-3 Operators - Spectral Representation of Bounded Self - Adjoint Linear Operators. BTL-3 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. New Delhi. Itimaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Fredholm Type. (9L+3T=12) MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS (9L+3T=12) Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive Operators- Square Roots of a Positive Operator- Projection Operators- Further Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear Operators- Spectral Representation of Bounded Self- Adjoint Linear Operators. CO-5 TEXT BOOKS BTL-3 BTL-3 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. Publishers, New Delhi. 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition. Publishers, New Age International Ltd., Publishers, New Complexition.
MODULE 5: BOUNDED SELF - ADJOINT LINEAR OPERATORS (9L+3T=12) Spectral Properties of Bounded Self - Adjoint Linear Operators- Positive CO-5 Operators- Square Roots of a Positive Operator- Projection Operators- Further BTL-3 Operators- Spectral Representation of Bounded Self - Adjoint Linear Operators. BTL-3 TEXT BOOKS I. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Operators- Square Roots of a Positive Operator- Projection Operators- Further CO-5 Properties of Projections- Spectral Family of a Bounded Self - Adjoint Linear BTL-3 Operators- Spectral Representation of Bounded Self- Adjoint Linear Operators. BTL-3 TEXT BOOKS Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. 1. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Properties of Projections - Spectral Family of a Bounded Self - Adjoint Linear Operators BTL-3 Operators - Spectral Representation of Bounded Self - Adjoint Linear Operators. BTL-3 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
Operators- Spectral Representation of Bounded Self- Adjoint Linear Operators. TEXT BOOKS 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. Provide Reference BOOKS Image B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
TEXT BOOKS 1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
1. Siddiqui, A. H., Khalil Ahmad and Manchanda, P. (2015). Introduction to Functional Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
1. Analysis with Applications, Real World Education Publishers, New Delhi. 2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
2. Siddiqui, A. H. (2015). Applied Functional Analysis, Real World Education Publishers, New Delhi. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
2. New Delhi. REFERENCE BOOKS 1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
1. Limaye B. V. (2016). Functional Analysis, New Age International Ltd., Publishers, Third Edition.
1. Third Edition.
2. Walter Rudin. (2017). <i>Functional Analysis</i> , McGraw Hill Education.
E BOOKS 1. https://www.youtube.com/watch?v=ZCq9zynbY_Y
3. https://cosmolearning.org/video-lectures/approximation-theory/
1. https://nptel.ac.in/courses/111/106/111106147/

COUR TITL			FI	LUID N	1ECH	IANI	CS			CRED	ITS		4		
COUR COD		AIM02	IM02510 COURSE CATEGORY DE L-T-P-S 3-1-0-0 Approval LEARNING												
Versie	n	1.	.0	-	oprov Details]	LEAR LEV		F	BTL	-3	
		·		AS	SESS	MEN'	T SCI	HEM	E						
Firs Periodi Assessn	cal	Perio	SecondSeminar/SurprisePeriodicalAssignments/SurpriseAssessmentProjectTest / Quiz											£	
15% 15% 10% 5% 5%												, o			
CourseThis course aims at introducing the fundamentals of fluid mechanics. This course aims at imparting the knowledge on tensors, kinematics of fluid, incompressible flow, boundary layer flows and classification of non-Newtonian fluids.															
Cour: Object		 Under Physical Familiaria 	This course will help the learner to1. Understand the basic concept of tensors and their representative2. Physics and mathematics behind the basics of fluid mechanics3. Familiar with two- or three-dimensional incompressible flows4. Classifications of non-Newtonian fluids												
CourseOn successful completion of the course, the students should be able to 1. Apply the tensor formalism 2. Apply general stresses and deformations in continuous 3. Derive the equation of motion in cartesian coordinates 4. Analyze the inviscid incompressible flow in all three dimensions 5. Analyze two dimensional viscous flows										0					
Prerequi	sites	: Calcul	us and	Differe	ntial	equat	ions.								
				CO, I	PO AN	ND PS	50 M.	APP	ING						
CO PO	PC	D2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1 -	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO2 -	2	3	3	3	-	-	2	3	-	-	-	3	-	-	
CO3 -	2	3	3	3	-	-	2	-	-	-	-	3	-	-	
CO4 -	2	2 3 3 3 2 3 -									-				
CO5 -	2	2 3 3 3 2 2 3													

MODULE 1: CARTESIAN TENSORS AND CONTINUUM HYPOTH	TELE (01 - 2T 12)
	ESIS (9L+3T=12)
Cartesian tensors: Cartesian tensors- basic properties- transpose- symmetric and skew symmetric tensors- gradient- divergence and curl in tensor calculus- integral theorems-Continuum hypothesis: deformation gradient- strain tensors- infinitesimal strain- compatibility relations- principal strains- material and local time derivatives- transport formulas- stream lines- path lines. Self Study: Path lines.	CO-1 BTL-3
MODULE 2: STRESS, STRAIN AND BASIC PHYSICAL LAWS	(9L+3T=12)
Stress and Strain: stress components and stress tensor- normal and shear stresses- principal stresses- transformation of the rate of strain and stress- relation between stress and rate of strain. Self-Study: Relation between stress and rate of strain.	CO-2 BTL-3
MODULE 3: FUNDAMENTAL BASIC PHYSICAL LAWS	(9L+3T=12)
The equation of continuity- conservation of mass- equation of motion (Navier-Stokes equations in Cartesian coordinates)- conservation of momentum- the energy -equation, conservation of energy.	CO-3 BTL-3
MODULE 4: ONE, TWO AND THREE DIMENSIONAL INVISCID INCOM	IPRESSIBLE FLOW (9L+3T=12)
Bernoulli equation- derivation of Bernoulli's equation and its applications- circulation theorems- circulation concept- Kelvin's theorem- constancy of circulation- Laplace equations- stream functions in two- and three- dimensional motion- Two-dimensional flow: rectilinear flow- source and sink- the theorem of Blasius. Self Study: Laplace equations.	CO-4 BTL-3
MODULE 5: TWO DIMENSIONAL FLOWS OF VISCOUS FLUID	(9L+3T=12)
Flow between parallel flat plates- Couette flow- plane Poiseuille flow- the Hagen-Poiseuille flow- flow between two concentric rotating cylinders.	CO-5 BTL-3
TEXT BOOKS	
1. Bruce, R. M. Alric, P. R. Theodore, H.O and Wade, W. H. (2017). <i>mechanics</i> , Wiley.	
2. Raisinghania, M. D. (2014). <i>Fluid Dynamics</i> , S. Chand and Compa	ny Ltd.
REFERENCE BOOKS	
1. Chandrasekharaiah, D. S. and Debnath, L. (2014), <i>Continuum n</i> Press, Reprint.	nechanics, Academic
2. Kundu, P. K. Ira M. Cohen and David R. Dowling, (2010). <i>Flu</i> Edition.	uid Mechanics, Fifth
3. Batchelor, G. K. (2000). An introduction to fluid mechanics, Cambri	dge University Press.
	0
E BOOKS	
E BOOKS 1. White, F. M. (2011). Fluid Mechanics, Tata McGraw Hill.	
1. White, F. M. (2011). <i>Fluid Mechanics</i> , Tata McGraw Hill.	

CC	OURS	F													
	ITLE			CO	NTRO	DL TH	IEOR	Y		CREI	DITS			4	
CC	OURS	E	AIM0	AIM0251 COURSE CATEGORY DE L-T-P-S 3-1-0-0											
C	CODE		1		CAT	rego	RY	Di		L-J	I-P-5		3-	1-0-0	
V	ersior	1	1.	0	-	oprov Details					RNIN(VEL	3	В	TL-3	
					А	SSES	SME	NT SC	HEN	/IE					
]	First		Sec	cond	5	Semin	ar/	Su	rnrig						
PeriodicalPeriodicalAssignmentsSurprise Test / QuizAttend									dance	:	ESF	C			
Ass	essme	ent	Asses	sment	t /	' Proj	ect	105	·/ ~						
15% 15% 10% 5% 50											50%	Ď			
C	Course	;	Design	ned to	develo	op an i	unders	tandin	g of (Observ	ability	, Cont	rollabi	lity,	
Des	cripti	on	Stabili	ity, Sta	abiliza	bility.									
Course Objective2. Gainknowledge about linear timevaryingsystems. 3. Developtheabilityofsolvinglinearfeedbackcontrol. 4. Acquire knowledge about stabilization using feedback and Bass mediate 5. Understand stabilization linear feedback control.Course OutcomeUpon completion of the course students will be able to: 1. Explain observability and estimate the observability of constant constant coefficient system, linear, nonlinear system, and discuss reconstruction kernel. 									coeffi ar, erturbe back.	cient					
anner	rential	equa	uon.		CO	PO #	AND I	PSO M	ГАРР	PING					
со	PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	1	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	-	-	2	-	-	-	-	3	2	-
CO2	3	2	2	3	3	-	1	2	3	-	2	-	3	2	2
CO3	3	3	2	2	2	-	-	3		-	-	-	3	-	3
CO4	3	2	3	2 3 1 - 1 - 1 - 3 2						-					
CO5	3	3	3	3	3	-	-	2	2	-	-	-	3	2	2
1		1:	Weakl	y rela	ted, 2	: Mod	eratel	y rela	ted a	nd 3: §	Strong	ly rela	ted		
MOI	DULE	1:01	BSERV	ABII	JTY								(9L	/+ 3 T=	12)
MODULE 1:OBSERVABILITY(9L+3T=12)LinearSystems-ObservabilityGrammian-Constantcoefficientsystems- Reconstructionkernel-Nonlinear Systems.CO-1 BTL-3															

Linearsystems-ControllabilityGrammian-Adjointsystems- Constantcoefficientsystems-steeringfunction – Nonlinear systems. CO-2 BTL-3 MODULE 3: STABILITY (9L+3T=12) Stability-Uniform Stability –Asymptotic Stability of Linear Systems. BTL-3 MODULE 4: PERTURBED LINEAR SYSTEMS (9L+3T=12) Linear time varying systems-Perturbed linear systems – Non linear systems. BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control-Bass method Controllable subspace – Stabilization with restricted feedback. BTL-3 M.Gopal,Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. BTL-3 J. M.Gopal,Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. J.Nagrath and M.Gopal,Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS I. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 I. 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. I. 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. I. Bttps://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- f53ebdfd1e03/1002170.pdf MO	MODULE 2: CONTROLLABILITY	(9L+3T=12)
Constantcoefficientsystems-steeringfunction – Nonlinear systems.BTL-3MOULE 3: STABILITY(9L+3T=12)Stability-Uniform Stability –Asymptotic Stability of Linear Systems.CO-3 BTL-3MOULE 4: PERTURBED LINEAR SYSTEMS(9L+3T=12)Linear time varying systems-Perturbed linear systems – Non linear systems.CO-4 BTL-3MOULE 5: STABILIZABILITY(9L+3T=12)Stabilization via linear feedback control-Bass method Controllable subspace – Stabilization with restricted feedback.BTL-3TEXT BOOKSI1.M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012.2.J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007.REFERENCE BOOKSI1.Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg. USA, Edition 3, 20152.Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013.E EUVESI1.https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- f53ebdfd1e03/1002170.pdfMOUCI1.https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- f53ebdfd1e03/1002170.pdfMOUCI1.https://www.classcentral.com/course/youtube-control-systems-48209/classroom		× ,
MODULE 3: STABILITY (9L+3T=12) Stability–Uniform Stability –Asymptotic Stability of Linear Systems. CO-3 BTL-3 MODULE 4: PERTURBED LINEAR SYSTEMS (9L+3T=12) Linear time varying systems–Perturbed linear systems – Non linear systems. BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control–Bass method Controllable subspace – Stabilization with restricted feedback. BTL-3 TEXT BOOKS BTL-3 1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS International Publishers, 5th Edition, 2007. 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS Inttps://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- f53ebdfd1e03/1002170.pdf MOOC Inttps://www.classcentral.com/course/youtube-control-systems-48209/classroom		
Stability-Uniform Stability -Asymptotic Stability of Linear Systems. CO-3 BTL-3 MODULE 4: PERTURBED LINEAR SYSTEMS (9L+3T=12) Linear time varying systems-Perturbed linear systems - Non linear systems. BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control-Bass method Controllable subspace - Stabilization with restricted feedback. BTL-3 TEXT BOOKS BTL-3 1. M.Gopal, -Control System - Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, -Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS Image: System	Constantcoefficientsystems-steeringfunction – Nonlinear systems.	BTL-3
BTL-3 MODULE 4: PERTURBED LINEAR SYSTEMS (9L+3T=12) Linear time varying systems-Perturbed linear systems - Non linear systems. BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control-Bass method Controllable subspace - Stabilization with restricted feedback. BTL-3 TEXT BOOKS BTL-3 1. M.Gopal,Control System - Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal,Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS Image: System State	MODULE 3: STABILITY	(9L+3T=12)
MODULE 4: PERTURBED LINEAR SYSTEMS (9L+3T=12) Linear time varying systems–Perturbed linear systems – Non linear systems CO-4 systems. BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control–Bass method Controllable subspace – Stabilization with restricted feedback. BTL-3 TEXT BOOKS BTL-3 1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS Image: Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOVKS Image: Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E MOOUC Image: Mathematical com/course/youtube-control-systems-48209/classroom	Stability–Uniform Stability –Asymptotic Stability of Linear Systems.	CO-3
Linear time varying systems–Perturbed linear systems – Non linear systems. CO-4 BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control–Bass method Controllable subspace – Stabilization with restricted feedback. BTL-3 TEXT BOOKS BTL-3 1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS International Publishers, 5th Edition, 2007. 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS Inttps://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOUC Inttps://www.classcentral.com/course/youtube-control-systems-48209/classroom		BTL-3
systems. BTL-3 MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control–Bass method Controllable CO-5 subspace – Stabilization with restricted feedback. BTL-3 TEXT BOOKS BTL-3 1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS International Publishers, 5th Edition, 2007. 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS Inttps://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdf11e03/1002170.pdf MOUC Inttps://www.classcentral.com/course/youtube-control-systems-48209/classroom	MODULE 4: PERTURBED LINEAR SYSTEMS	(9L+3T=12)
MODULE 5: STABILIZABILITY (9L+3T=12) Stabilization via linear feedback control-Bass method Controllable CO-5 subspace – Stabilization with restricted feedback. BTL-3 TEXT BOOKS I. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS I. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS I. 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC I. 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom	Linear time varying systems–Perturbed linear systems – Non linear	CO-4
Stabilization via linear feedback control–Bass method Controllable CO-5 subspace – Stabilization with restricted feedback. BTL-3 TEXT BOOKS M.Gopal, —Control System – Principles and Design , Tata McGraw Hill, 4th Edition, 2012. 1. M.Gopal, —Control System – Principles and Design , Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS Image: Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition, 2013. E BOOKS Image: Stems, 2nd, Springer Publication, USA, Edition, 2013. E MOOKS Image: Stems, 2nd, Springer Publication, USA, Edition, 2013. I. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC Image: Stems, 2nd, Springer Stems, 2nd, Stems,	systems.	BTL-3
subspace - Stabilization with restricted feedback. BTL-3 BTL-3 TEXT BOOKS 1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS Intps://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC Intps://www.classcentral.com/course/youtube-control-systems-48209/classroom	MODULE 5: STABILIZABILITY	(9L+3T=12)
TEXT BOOKS 1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS Intps://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom	Stabilization via linear feedback control-Bass method Controllable	CO-5
1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS 1. 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOUSE 1. 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOUE 1. 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom	subspace – Stabilization with restricted feedback.	BTL-3
1. 2012. 2. J.Nagrath and M.Gopal, —Control System Engineeringl, New Age International Publishers, 5th Edition, 2007. REFERENCE BOOKS 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS 1. 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom	TEXT BOOKS	
2. Publishers, 5th Edition, 2007. REFERENCE BOOKS 1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom		aw Hill, 4th Edition,
1. Brigitte d'Andréa-Novel, Michel De Lara, Control Theory for Engineers-A Primer Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom		International
1. Springer Berlin Heidelberg, USA, Edition 3, 2015 2. Eduardo D. Sontag, Mathematical Control Theory Deterministic Finite Dimensional Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7-f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom	REFERENCE BOOKS	
2. Systems, 2nd, Springer Publication, USA, Edition, 2013. E BOOKS https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- 1. https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- 53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom		neers-A Primer
https://library.oapen.org/bitstream/id/ca08ee4d-3639-43d0-81b7- f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom		inite Dimensional
1. f53ebdfd1e03/1002170.pdf MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom	E BOOKS	
MOOC 1. https://www.classcentral.com/course/youtube-control-systems-48209/classroom		
2. https://in.coursera.org/specializations/modernrobotics	1. https://www.classcentral.com/course/youtube-control-systems-482	09/classroom
	2. <u>https://in.coursera.org/specializations/modernrobotics</u>	

	URSE TLE		A	DVAN	CED	NUM	BER 1	THEO	RY	C	REDI	TS		4	
CO	URSE ODE	² A	IM02:	512		COUR			DE		L-T-	P-S		3-1-0	-0
Ve	ersion		1.	0		Appro Detai	ls				LEAR LEV			BTL	-3
							SSME	NT SO	CHEM	E					
Peri	First iodical essmen		Sec Perio Assess	dical		Semin signm Proje	ents/		irpriso t / Qu		Atten	dance		ESH	E
1	5%		15% 10% 5% 5% 50%												, D
	ourse criptio	n A F	To deve arithme unction	etical F ns and	unctio Congr	ns, Dir uence	richlet 's.	Multip	licatio	on, Ave	erages			-	of
Obj	Course Objective1. Understand the study of integers and their properties. 2. Present a rigorous development of Number Theory using axioms, definition examples, theorems and their proofs. 3. Provides students an opportunity to develop an appreciation of pure mathemati while engaged in the study of basic number theoretic results. 4. Provide students an opportunity to work with conjectures, proofs, and analyzin mathematics.Course OutcomeUpon completion of this course, the students will be able to 1. Demonstrate an understanding on the concepts of divisibility and congruence 2. Compute the solution of problems involving divisibility 3. Determine various types of congruence problems 4. Prove mathematical theorems on existence of primitive roots modulo m								natics yzing						
Prore	anisit		5. Com $\frac{1}{1}$					210							
	quist	 D	usies 0.	r cong				PSO N	IAPP	ING					
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	3	3	3	_		2					3		_
	-					-	-		-	-	-	-		-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
		1	: Wea	kly rel	ated, 2	2: Mo	derate	ly rela	ted an	d 3: S	trongl	y relat	ed		

MODULE 1: ARITHMETICAL FUNCTIONS AND DIRICHLET MULTIP	LICATION (9L+3T=12)
Introduction- The Mobius function $\mu(n)$ – The Euler totient function ϕ (n)- A relation connecting ϕ and μ - A product formula for ϕ (n)- The Dirichlet product of arithmetical functions- Dirichlet inverses and the Mobius inversion formula- The Mangoldt function $\Lambda(n)$ - multiplicative functions- multiplicative functions and Dirichlet multiplication- The inverse of a completely multiplicative function-Liouville's function λ (n) - The divisor functions, Generalized convolutions.	CO-1 BTL-3
MODULE 2: CONGRUENCES	(9L+3T=12)
Definition and basic properties of congruences- Residue classes and complete residue systems- Linear congruences- Reduced residue systems and the Euler- Fermat theorem- Polynomial congruences modulo p. Lagrange's theorem- Applications of Lagrange's theorem- Simultaneous linear congruences. The Chinese remainder theorem- Applications of the Chinese remainder theorem- Polynomial congruences with prime power module.	CO-2 BTL-3
MODULE 3: QUADRATIC RESIDUES AND THE QUADRATIC REC	CIPROCITY LAW (9L+3T=12)
Quadratic residues- Legendre's symbol and its properties- Evaluation of (- 1/p) and (2/p)- Gauss Lemma-The quadratic reciprocity law-Applications of the reciprocity law- The Jacobi symbol-Applications to Diophantine equations- Gauss sums and the quadratic reciprocity law.	CO-3
MODULE 4: PRIMITIVE ROOTS	(9L+3T=12)
The exponent of a number mod m . Primitive roots- Primitive roots and reduced residue systems-The nonexistence of primitive roots mod 2^a for $a \ge 3$ – The existence of primitive roots and p for odd primes p. Primitive roots and quadratic residues- The existence of primitive roots mod p^a - The existence of primitive roots mod 2 p^a - The nonexistence of primitive roots in the remaining cases- The number of primitive roots mod m .	CO-4 BTL-3
MODULE 5: DIRICHLET SERIES AND EULER PRODUCTS	(9L+3T=12)
Chapter- 11:- Articles 11.1 to 11.7. The halfplane of absolute convergence of a Dirichlet series- The function defined by Dirichlet series, Multiplication of Dirichlet series- Euler Products- The half-plane of convergence of a Dirichlet series- Analytic properties of Dirichlet series- Dirichlet series with non-negative coefficients.	CO-5 BTL-3
TEXT BOOKS	
1.APOSTOL, T. M. (2010). Introduction to Analytic Number Theory Springer Verlag, New York, Heidelberg, Berlin.	,
2. <u>Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery</u> (2008). <i>Theory of Numbers</i> , 5ed, Wiley.	An Introduction to the
REFERENCE BOOKS	
1. Hardy, G. H., Wright, E. M., Heath-Brown, D. R., Silverman, J. H.	An Introduction to

2.	H. Davenport. (2013). The Higher Arithmetic: An Introduction to the Theory of Numbers.								
۷.	Cambridge University Press								
E BOO	DKS								
1.	https://b-ok.asia/book/2369279/3a9676								
MOOC									
1.	https://www.coursera.org/learn/number-theory								
2.	https://www.coursera.org/specializations/discrete-mathematics								

T	ITLE		ELF	CTRO	OMA	GNEI	TIC T	HEOF	RY	CRE	DITS			4	
	OURS ODE	E	AIM02	2513		COUR TEG		D	E]	L-T-P	-S		3-1-0	-0
V	ersion	L	1.	0		Appro Detai					ARN LEVF			BTL	-3
					A	SSES	SME	NT SC	CHEN	IE					
]	First		Sec	ond	S	Semina	ar/	Sur	pris						
Per	riodica	al	Perio	dical	Ass	signm	ents/	e T	est /	A	ttenda	nce		ESI	E
Ass	essme	nt	Assess	sment		Proje	ct	Q	ıiz						
	15%		15	%		10%)	5	%		5%			50%	, O
С	ourse		To ena	bles stu	idents	s to ha	ndle e	lectroi	nagne	tic the	ory us	ing ma	athema	atical	
Des	criptio		concep												
Course Objective1. To understand the basic concepts of electromagnetic theory2. To understand different types of waves3. To understand the standard results on electromagnetic theory4. To understand about wage propagation5. To perceive the concept antennas															
Course OutcomeUpon completion of this course, the students will be able to 1. Demonstrate an understanding on the basic concepts of electromagnetic theoryCourse Outcome2. Compute the solution of helmholtz equation 3. Derive the huygen and babinet principles 4. Classify guided waves 5. Calculate and apply fundamental antenna parameters															
Prer	equisi	tes: I	Basics o	of physi	cs										
					CO	, PO /	AND I	PSO N	IAPP	ING					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	-
CO3	-	2	2 3 3 3 2 3 -								-				
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	-
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related															
MODULE 1: FUNDAMENTAL CONCEPTS OF ELECTROMAGNETICS(9L+3T=12)Fundamental concepts of electromagnetics: Maxwell equations- Lorentz force relation- electric and magnetic polarizations- constitutive relations- boundary conditions- Poynting theorem in real and complex forms- energy relations.CO-1 BTL-3															

M.Sc., Mathematics (Integrated)

Plane- o attenuat	LE 2: SOLUTION OF HELMHOLTZ EQUATION cylindrical- and spherical waves- dispersion- phase and group velocities-	(9L+3T=12)							
attenuat	cylindrical- and spherical waves- dispersion- phase and group velocities-	~~ ~							
		CO-2							
MODU	attenuation- wave propagation in anisotropic media.								
MODU	LE 3: ELECTROMAGNETIC THEOREMS	(9L+3T=12)							
Unique and Bat	CO-3 BTL-3								
MODU	LE 4: GUIDED AND WAVE PROPAGATION	(9L+3T=12)							
Mode e	expansions- metallic and dielectric waveguides- resonant cavities.	CO-4 BTL-3							
MODU	LE5: ANTENNAS	(9L+3T=12)							
Potentia	als- radiation- elementary antennas.	CO-5 BTL-3							
TEXT I	BOOKS								
1.	Lonngren, E., Savor, S. V. (2017). <i>Fundamentals of Electromagnetics wi</i> Second Edition.	th Matlab, PHI,							
2.	Hayt (Jr), W. H., Buck, J. A. (2020). Engineering Electromagnetics Edition.	, TMH, Nineth							
REFER	RENCE BOOKS								
1.	Balanis, C. A. (2012). Advanced Engineering Electromagnetics. Second	Edition.							
2.	Jordan, E. C. and Balmain, K. G. <i>Electromagnetic Waves & Radiatin</i> Second Edition, (2020).	ıg System, PHI.							
E BOO	KS								
1.	https://www.electronicsforu.com/resources/9-free-ebook-on-elecromagn	<u>ietics</u>							
2.	https://bookauthority.org/books/beginner-electromagnetism-books								

MOO	MOOC								
1.	https://www.mitmuzaffarpur.org/wp-content/uploads/2018/08/COURSE-FILE-EMFT- 2018-19.pdf								
2.	https://nptel.ac.in/courses/115/101/115101005/								
3.	https://onlinecourses.nptel.ac.in/noc21_ee83/preview_								

	OURSI ITLE	E				R THE TOG				(CRED	ITS		4				
	OURSI ODE	E	AIM02	2514		COUR TEG			DE		L-T	-P-S	P-S 3-1-0-0					
Ve	ersion		1.	0		Appro Detai]	LEAR LEV	NING VEL	,	BTL	.3			
					A	SSES	SME	NT SC	CHEM	E								
Per	First riodica essme		Seco Perio Assess	dical	As	Semin signn / Projo	ients		rprise t / Qu		Atten	dance		ESE				
1	15%		15	%		10%)		5%		59	%		50%))			
	Course It is a discipline that helps to make better decisions in Number Theory and Description Crptography .																	
Ob	Course1. Have a knowledge on divisibility.Course2. Learn congruence and solving congruence.Objective3. Know about quadratic residues4. Describe discrete laws in finite fields.5. Classify the concept of pseudoprimes.Upon completion of the course students will be able to:1. Have learnt to solve divisibility problems using binomial theorem.Course2. Determine congruence and compute power residues.																	
			4. Per	ply qua form d e Pseud	iscret oprir	te laws nes an	s in fin d stro	ite fie	ld.									
	equisi					-		PSO M	IAPPI	ING								
СО	PO1	PO	2 PO3	PO4	PO5	·	PO7	PO8	1	1	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	2	3	2	3	-	-	2	-	1	2	-	3	3	-			
CO2	3	3	1	3	3	-	-	2	3	-		-	2	2	1			
CO3	3	2	2	1	2	1	-	1	-	-	1	-	3	-	2			
CO4	3	2	3	2	3	-	-	2	-	-	-	-	3	2	-			
CO5	3	2	3	3	3	-	-	2	2	-	1	-	3	-	2			
		1	: Weakl	y relat	ed, 2	: Mod	eratel	y rela	ted an	d 3: S	trong	ly rela	ted					
MOI	DULE	1:E	LEME	NTARY	Y NU	MBE	R TH	EORY	7				(9	9L+3T	'=12)			
and	Quad	ratic	nd the Eu residue aphy, R	s, Cryp	osyst	tems, l	Encipł	nering	matric	ces, Pu	ıblic			О-1 ГL-3				

	oring.						
MOD	ULE 2: INTRODUCTION TO CRYPTOSYSTEMS	(9L+3T=12)					
Some	simple crypto systems, enciphering matrices, DES	CO-2					
		BTL-3					
MOD	ULE 3: FINITE FIELDS AND QUADRATIC RESIDUES	(9L+3T=12)					
Finit	e fields, quadratic residues and reciprocity.	CO-3					
		BTL-3					
MOD	ULE 4: PUBLIC KEY CRYPTOGRAPHY	(9L+3T=12)					
The ic	dea of a public key Cryptography, RSA, Discrete Log, Algorithms						
to fin	d discrete logs in finite Fields: Shank's giant – step - baby -step	CO-4					
algori	thm, Silver-Pohlig – Hellman's algorithm, Diffie - Hellman key -	BTL-3					
excha	nge system, ElGamal, zero – knowledge protocols.						
MOD	ULE 5: PRIMALITY FACTORING AND ELLIPTIC CURVES	S (9L+3T=12)					
Pseud	o primes and strong Pseudo primes, some methods to factor a						
comp	osite integer: Pollard's rho method, Fermat factorization and factor	CO-5					
bases,	the quadratic Sieve method, elliptic curves-basic facts, elliptic	BTL-3					
curve	cryptosystems						
TEX	Г BOOKS						
1.	Behrouz A. Forouzan, "Cryptography & Network Security", Tata M	cGraw Hill, Special					
	Indian Edition, Third Edition, New Delhi, 2015						
2.	Kenneth Ireland & Michael Rosen, "A Classical Introduction to Mod	dern Number					
4.	Theory", Springer International Edition, Second Edition, New York,	2010					
REFI	ERENCE BOOKS						
1.	Koblitz, N., "A course in number theory and Cryptography", Spring	er Verlag ,					
1.	New York, 1994						
2.	Niven.I, Herbert S.Zuckermann, Hugh L. Montgomery, "An Introdu	ction to the					
^{2.} Theory of Numbers", John Wiley, Fifth Edition, New York, 2013.							
3.	Stinson D.R., "Cryptography: Theory and Practice", CRC Press, Fou	urth Edition,					
5.	New York, 2018						
E BO	OKS						
1.	https://link.springer.com/book/10.1007/978-1-4419-8592-7						
MOO	C						
1.	https://in.coursera.org/learn/number-theory-cryptography						
2.	https://www.classcentral.com/course/number-theory-cryptography-9	210					

	OURS			GEN	NETI	IC AL	GOR	ITHM	[(CRED	ITS		4		
CO	DURS CODE	E	AIMO		C	COUR TEGO	SE		DE		L-T	-P-S		3-1-0-0		
V	ersior	ı	1.	.0		Appro Detai				I	LEAR LEV	NING /EL	ŕ	BTL-3		
	ASSESSMENT SCHEME															
First Periodical Assessment			Perio	cond odical sment	As	Semin signm / Proje	ients		ırpris t / Qu		Atten	dance		ESE		
	15%		15	5%		10%	, D		5%		59	%		50%	, D	
	CourseThe goal is to introduce the Evolutionary Computation (EC) which is used in solving hard problems that have wide variability in their characteristics.												ed in			
_	Course ojectiv			solve ł design	1				U				cal for	mulat	ions	
Oı	Course utcom	e	 De pro De 2. De 3. Ap 4. Co 	completer monstr oblems evelop p oply the opply the opply the	ate ar oopula conc the so optir	n unde ation-l cept of plution nizatio	rstand based a opera of evo on algo	ing on algorit tors or olution orithm	the ba hms an real v strate s in re	asic co nd its g valued egies	ncepts genetic repres	s of Op c repre sentatio	sentati ons	ions		
TTerv	cquisi							PSO M		ING						
СО	PO1	PO2	PO3	PO4	PO5	·	PO7	PO8	PO9		PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3	
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3	
CO5	-	2	3	3	3	-	-	2	2	-	-	-	3	-	3	
		1:	Weakl	y relat	ed, 2	: Mod	eratel	y rela	ted an	d 3: S	trong	ly rela	ted			
MOI	MODULE 1: BASICS OF OPTIMIZATION (9L+3T=12)											2)				
	cs of (-	nizatior aling.	n, Optin	mizat	ion P	roblem	ns, Po	int to	Point	Algo	rithms		CO-1 BTL-		

MOD	ULE 2: POPULATION BASED ALGORITHMS	(9L+3T=12)					
Popul Gene search	CO-2 BTL-3						
MOD	ULE 3: REAL VALUED REPRESENTATION OPERATORS	(9L+3T=12)					
-	ators on Real valued Representations, Niche and fitness sharing, Particle m Optimization, Mimetic Algorithms.	CO-3 BTL-3					
MOD	ULE 4: GENETIC PROGRAMMING	(9L+3T=12)					
	tion Strategies, Genetic Programming, Evolutionary Programming, rential Evolution.	CO-4 BTL-3					
MOD	ULE 5: OPTIMIZATION PROBLEMS	(9L+3T=12)					
Const optim Algor	CO-5 BTL-3						
TEX	Г BOOKS						
1.	D. E. Goldberg, (2008). <i>Genetic Algorithm in search, optimization & Mac</i> Addison – Pearson Education India.	hine learning,					
2.	S.N. Sivanandam, S. N. Deepa ,(2007). <i>Introduction to Genetic Algorithm</i> publication.	<i>is</i> . Springer					
REFI	ERENCE BOOKS						
1.	Lance Chambers, (2000). <i>The Practical Handbook</i> of genetic algorithm Second edition, CRC Press.	ns applications,					
2.	Kenneth A. DeJong, (2006). <i>Evolutionary Computation, A Unified Approx</i> ISBN: 0262041944	ach, MIT Press,					
E BO	OKS						
1.	https://freecomputerbooks.com/Genetic-Algorithms-in-Applications.html						
2.	2. <u>https://books.google.co.in/books/about/Introduction_to_Genetic_Algorithms.html?id=w</u> <u>onrLjj2GagC&redir_esc=y</u>						

MOO	С
1.	https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_8/M8L5_LN.pdf
2.	https://www.coursera.org/lecture/functional-mri-2/module-9-advanced-experimental-
	design-iii-optimizing-experimental-designs-with-O96gd
3.	https://www.udemy.com/course/geneticalgorithm/

	URSE TLE	2	APPLICATIONS OF GRAPH THEORY CREDITS															
CO	URSE	E	AIM0	2516		COUI ATEG	RSE GORY		DE		L-T	-P-S		3-1-0-0				
Ve	ersion		1	.0		Appr Deta						RNING VEL	J	BTL-3				
					Α	SSES	SMENT	Г SC	HEM	E								
Peri	first iodica ssmer		Perio	cond odical sment		Semi ssignr Proj	nents/		urpris st / Qı		Atten	dance		ESH	E			
1	5%		15	5%		109	/0		5%		5	%		50%	, D			
	Course DescriptionThis course makes students to learn directed and undirected graphs, paths, cycles, trees, colorings and matchings, with applications to sciences and engineering.																	
	ourse jective	e		•										e fundamental neering.				
Out	ourse tcome quisite		1. Det 2. Det 3. Det 4. Det	monstr termine velop t velop a mpute	rate an e a mi he rela in und the so	unden nimal ation b lerstan	course, rstandin spannin between ding on of matc	g on g tre dom plan	basics te for a nination ar graj	conc given and phs ar	epts of n weig minus	f graph hted g domin	raph					
					CO,	PO A	ND PS	O M	APPI	NG								
СО	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3			
CO2	-	2	3	3	3	-	-	2	3	-	-	-	3	-	3			
CO3	-	2	3	3	3	-	-	2	-	-	-	-	3	-	3			
CO4	-	2	3	3	3	-	-	2	-	-	-	-	3	3 . 3				
CO5	CO5 . 2 3 3 . . 2 2 . . 3 . 3												3					
	1: Weakly related, 2: Moderately related and 3: Strongly related																	
			ASIC C										`	BT=12)			
Vertex Dijkst	Fundamental Concepts – The incidence and adjacency matrix – Subgraphs – Vertex degree – Degree sequence – Path and cycles – Shortest path problem – Dijkstra's algorithm.CO-1 BTL-3Self-Study: Path and cycles.CO-1 BTL-3											-						

MODU	(9L+3T=12)							
Trees Connec Theorem flow pre-	CO-2 BTL-3							
MODU	LE 3: DOMINATION	(9L+3T=12)						
Introdu Relation Upper 1 Self-St	CO-3 BTL-3							
MODU	LE 4: PLANAR GRAPHS AND COLORING	(9L+3T=12)						
Planar Kuratov genus –	CO-4 BTL-3							
MODU	(9L+3T=12)							
matchir Vertex Self-St	ngs – Matchings and coverings in bipartite graphs – Perfect ngs – Edge colorings – Edge chromatic number – Independent sets – colorings – Chromatic number – Brook's Theorem. udy: Edge colorings.	CO-5 BTL-3						
TEXT	BOOKS							
1.	Vadim, Z. (2021). Modern Applications of Graph Theory, Oxford U	University Press.						
2.	Richard, J.T. (2017). Introduction to Graph Theory, Zaccheus Enter	rtainment.						
REFER	RENCE BOOKS							
1. NarsinghDeo. (2016). <i>Graph Theory with Applications to Engineering & Contempositions</i> , New York.								
2. G. A. V. Pai.(2017). <i>Data Structures and Algorithms: Concepts - Techniques Applications</i> , McGraw Hill Education.								
E BOO	E BOOKS							
1.	1. https://b-ok.asia/book/3289235/25da6f.							
MOOC								
1.	https://www.coursera.org/learn/graphs							
2.	https://www.coursera.org/specializations/data-structures-algorithms							

COURSE														
TITLE		(CRED	ITS		4								
COURSE CODE	AIM025	AIM02517 COURSE CATEGORY							L-T	-P-S		3-1-0-0		
Version	1.0	1.0 Approval Details]	LEAR LEV	NING VEL	F	BTL	.3	
	ASSESSMENT SCHEME													
First	Secor	nd	S	bemina	ar/	C	•							
Periodical	Period	lical	Ass	signm	ents/		rprise t / Qu		Atten	dance		ESE	1	
Assessment	Assessm	nent]	Proje	ct	165	t/Qu	12						
15%	15%	6		10%	,	L	5%		5%	%o		50%)	
Course DescriptionIt is a discipline that helps to make better decisions in Financial calculus.														
Course Objective Course Outcome	 motion 2. Undersand approble 3. Appred 4. Obtain 5. Under binom Upon con 1. Demo 2. Locate Finance 3. Know and Fi 	estand the pply the ems and eciate the n praction rstand nial mo ompletion onstrate e and u ce. y the ma inancia	he ba hese c d con he Ar ical k optio odels. ion of a co use in ain fe al firn	sic conception on conception of the conception o	ncepts ots towa annuit e theored edge or cing w ourse s nensive tion to s of mo	of pre ard so y prob rem in n the F vith re studen e unde o solve	esent v lving : blems. the co Portfol: spect ts will rstand probl commo	alue ar more c ontext o io sele to var be abl ing of ems in only dr pitrage	nd accur compli- of the ection p ious o le to: the pro- n intere- rawn f	umula cated Black proble ptions obabil est the rom ir gy.	ted val financ –Schol m. s via n ity cor ory and	ue ial les for nulti-p ncepts. d	mula. veriod	
	4. Under		-			-			-	ption p	ricing	•		
Prerequisites:	5. Simula Single and									ial eq	uation			
probability and	-					, `		,		1				
			СО,	PO A	ND P	SO M	APPI	NG						
CO PO1 PO	2 PO3 I	PO4 I	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1 3 2	3	2	3	-	-	2	-	-	-	-	3	2	1	
CO2 3 3	2	3	3	-	1	2	3	-	1	-	3	2	2	
CO3 3 3	2	2	2	2	-	3	-	-	-	-	3	-	3	
CO4 3 2	3	2	3	-	-	2	-	-	1	-	3	3	-	
CO5 3 2	3	3	3	1	-	2	2	-	-	-	3	-	2	
1: Weakly related, 2: Moderately related and 3: Strongly related														

MODULE 1: PROBABILITYAND RANDOMVARIABLES (9L+3								
ProbabilityandEvents-Conditionalprobability- RandomVariablesandExpectedvalues-Covariance and Correlation - Normal Random Variables - Properties of Normal Random Variables - Central Limittheorem – Geometric Brownian Motion as a limit of simpler models- Brownian motion.	CO-1 BTL-3							
MODULE 2: PRESENTVALUEANALYSISANDARBITRAGE	(9L+3T=12)							
Interest rates - Present value analysis - Rate of return - Continuously varying interest rates – Pricingcontracts viaArbitrage- Anexampleinoptionspricing.	CO-2 BTL-3							
MODULE 3: ARBITRAGETHEOREMAND BLACK-SCHOLESFOR	RMULA (9L+3T=12)							
The Arbitrage theorem–Multi-period binomial model- Black Scholes formula-Properties of Black-Scholes option cost-Delta Hedging Arbitrage Strategy-Pricing American put options.	CO-3 BTL-3							
MODULE 4: EXPECTED UTILITY	(9L+3T=12)							
Limitationsofarbitragepricing-Valuinginvestmentsbyexpectedutility- Theportfoliosectionproblem - Capital assets pricing model - Rates of return - Single period and geometric Brownian motion.	CO-4 BTL-3							
MODULE 5: EXOTIC OPTIONS	(9L+3T=12)							
Barrier options - Asian and look back options - Monte Carlo Simulation - Pricing exotic option bysimulation-Moreefficientsimulationestimators- Optionswithnon-linearpayoffs-pricingapproximationsviamulti- periodbinomialmodels.	CO-5 BTL-3							
TEXT BOOKS								
1. Martin Baxter, Andrew Rennie, Financial Calculus: An Introc Pricing 1st Edition, Cambridge University Press, USA, Kindle Editi								
2. Mark S. Joshi , The Concepts and Practice of Mathematical Fina Finance and Risk), 2nd Edition, Cambridge University Press, USA,								
REFERENCE BOOKS								
1. SheldonM.Ross, "AnElementaryIntroductiontoMathematicalFinance", Cambridge UniversityPress, 3 rd Edition, Cambridge, 2011.								
2. StevenRoman,"IntroductiontotheMathematicsoffinance",Springer- VerlagNewYork,2 nd Edition,2012.								
3. Williams,R.J., "IntroductiontotheMathematicsoffinance", AMS, UniversitiesPress Pvt.Ltd, India, 2006.								
E BOOKS								
1. https://www.kobo.com/ww/en/ebook/financial-calculus								
MOOC								
1. https://www.classcentral.com/course/swayam-financial-mathematics-13024								
 https://www.edx.org/course/mathematical-methods-for-quantitative- 								