

M.Sc., CHEMISTRY

Curriculum and Syllabus (Regulations 2018)

DEPARTMENT OF CHEMISTRY School of Science and Humanities

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE, PADUR M.Sc., (CHEMISTRY)

CURRICULUM 2018

S N	Course Code	Course Category	Course Title	L	т	Ρ	С	тсн
1.	CYA2701	СС	Chemical and Statistical Thermodynamics	3	1	0	4	4
2.	CYA2702	CC	Essentials of Organic Chemistry	3	1	0	4	4
3.	CYA2703	CC	Chemical Bonding and Molecular Geometry	3	1	0	4	4
4.	CYA2704	CC	Quantum Chemistry and Group Theory	3	1	0	4	4
5.	CYA2705	CC	Analytical Chemistry	3	0	0	3	3
			Practical					
6.	CYA2731	СР	Physical Chemistry Practical	0	0	6	3	6
	Total Credits for the Seme						22	25

SEMESTER – I

SEMESTER – II

S N	Course Code	Course Category	Course Title L T P			Ρ	С	тсн
1.	CYA2711	CC	Chemical Kinetics and Catalysis	3	1	0	4	4
2.	CYA2712	CC	Organic Reactions	3	1	0	4	4
3.	CYA2713	СС	Inorganic Elements and Solid State Chemistry	3	1	0	4	4
4.	CYA2714	CC	Molecular Spectroscopy	3	0	0	3	3
5.	CYA2715	CC	Nuclear chemistry and Biomolecules	3	0	0	3	3
			Practical					
6.	CYA2741	СР	Inorganic Chemistry Practical	0	0	6	3	6
	•	•	Total Credits for the S	Sen	nes	ter	21	24

S N	Course Code	Course CategoryCourse TitleLTP		С	ТСН			
1.	CYA2801	CC	Electrochemistry and Electrodics	3	1	0	4	4
2.	CYA2802	CC	Reagents and Organic Synthesis	3	1	0	4	4
3.	CYA2803	СС	Coordination and Organometallic Chemistry	3	1	0	4	4
4.	CYA2804	CC	Spectroscopy - Applications in Organic and Inorganic Chemistry300		3	3		
			Practical					
5.	CYA2831	СР	Organic Chemistry Practical	0	0	6	3	6
6.	CYA2832	MP	Project Phase-I 0 0 3		3	1	3	
	Total Credits for the Semester							24

SEMESTER - III

	SEMESTER – IV							
S N							С	тсн
1.	CYA285*	CE	Group 1 – Core Elective I	3	0	0	3	3
2.	CYA286*	CE	Group 2 – Core Elective II	3	0	0	3	3
3.	B. CYA287* AE Group 3 – Allied Elective 2				0	0	2	2
	Practical							
4.	CYA2841	SE	Seminar	0	0	0	1	0
5.	CYA2842	СМ	Comprehensive Viva-voce	0	0	0	1	0
6.	CYA2843FPProject Phase-II0016		16	8	17			
	Total Credits for the Semester							25
			TOTAL CREDITS FOR THE F	RO	GR	AM	80	

Abbreviations CC - Co

- Core Course
- CP Core Practical -
- Core Elective CE -
- Comprehensive СМ -
- Allied Elective AE -
- SE Seminar -
- Mini Project MP -
- Final Project FP -
- Lecture hours L -
- Т -**Tutorial hours**
- Ρ **Practical Hours** -
- С Credits offered -
- ТСН -**Total Contact Hours**

ELECTIVE COURSES – SEMESTER IV

S.N.	Subject Code	SUBJECT NAME	L	т	Р	С	тсн
GRO	UP 1 – Core I	Elective					
1.	CYA2851	Photochemistry	3	0	0	3	3
2.	CYA2852	Homogeneous & Heterogeneous Catalysis	3	0	0	3	3
3.	CYA2853	Organometallic Chemistry For Organic Synthesis	3	0	0	3	3
GRO	UP 2 – Core I	Elective					
4.	CYA2861	Synthetic Methodology In Organic Chemistry	3	0	0	3	3
5.	CYA2862	Heterocyclic Chemistry	3	0	0	3	3
6.	CYA2863	Polymer Chemistry	3	0	0	3	3
GRO	UP 3 – Allied	Elective					
7.	CYA2871	Fertilizer Technology	2	0	0	2	2
8.	CYA2872	Pharmaceutical Chemistry	2	0	0	2	2
9.	CYA2873	Chemistry of Nanomaterials	2	0	0	2	2

	rse Code CIA	CYA2701	Course			
	CIA		Category	CC	L-T-P-S	3-1-0-0
(CIA 40% ESE					
	ARNING EVEL		BTL-5		ASSESSMENT MODEL	ТА
			COURSE OUT	COMES		РО
1. A	in heat engine	1				
		•	s isotherm, isochetaneous reaction.	ore -Gibb Heln	nholtz equation for	1
 Able to calculate change in thermodynamic properties, equilibrium constants, partial molar quantities, chemical potential. Identify factors affecting equilibrium constant 						
		-	ynamic properties and techniques of	-	-	2,3
d	dynamics,			•	equilibrium thermo- open systems, and	3,4,5
Prere	equisites :	Basic knowled	ge in thermodynam	nics		
MOD	DULE 1 – (CHEMICAL 7	THERMODYNAM	MICS	(1)	2L)
enthal II nd la sponta zero.	lpy-bond e w of therm aneity of p	nergies - Hess's odynamics -en rocesses–Maxv	a law and Kirchoff tropy, heat engine vellsRelations- III ^r	's law - heat ca (Carnot cycle) ^d law of thermo	processes - internal pacities - Joule Thon and its efficiency -en dynamics and entrop	nson effect. tropy and
Sugge	ested Read	ling: Terminol	ogies of thermody	namics		
MOD	DULE 2 – 0	CHEMICAL F	QUILIBRIA		(12L)	
energ Van't	gy of form Hoff's iso	nation as a fun therm and iso	nction of pressure	and temperatur mholtz equatio	ns and properties - s re equilibrium consta on criteria for spontan	ant -
Sugge	ested Read	ling: Helmholt	z and Gibbs free	energies and e	quilibrium constant	

MODULE – 3 : APPLICATIONS OF THERMODYNAMICS

(12L)

Partial molal quantities - Chemical potential - Fugacities of gases and their determinationactivity and activity coefficients - Gibbs Duhem equation - Entropy and free energy of mixing standard states of substances - osmotic pressure and its determination.

Suggested Reading: Chemical potential, Fugacities, activity coefficients

MODULE – 4 : STATISTICAL THERMODYNAMICS

(12L)

Terminology of statistical thermodynamics - Maxwell Boltzmann distribution - thermodynamic properties in terms of partition functions. Heat capacity of solids - Debye and

Einstein models. Thermodynamic functions for gaseous systems-

translational, vibrational and rotational contributions to thermodynamic properties - Fermi Dirac and Bose Einstein statistics - Application of statistical thermodynamics - concepts to ortho para hydrogen - internal rotation - calculation of equilibrium constants.

Suggested Reading: Terminology of statistical thermodynamics

MODULE 5 – NON-EQUILIBRIUM THERMODYNAMICS

(12L)

Steady state – conservation of energy and mass-entropy production and entropy flow in open system – fluxes and forces – transformation of properties of rates and affinity – microscopic reversibility and Onsager reciprocal relation am dots experimental verification.

Suggested Reading: principles of non-equilibrium thermodynamics

TEXT BOOKS 1. Peter Atkins, Julio de Paula, Elements of Physical Chemistry, fourth edition, W.H. Freeman & Company, 2005 2. G. M. Barrow, Physical Chemistry (V Edition), Tata McGraw Hill Education, 2007 **REFERENCE BOOKS** 1. Puri Br, Sharma Lr, Madan S Pathania; Principles of Physical Chemistry, Vishal Publishing Co. 2008. 2. S. Glasstone, Thermodynamics for chemists, Narahari Press, 2007. **E BOOKS** 1. Introductory Physical Chemistry by David Ronis - McGill University, 2011 2. Physical Chemistry in Brief by J.P. Novak, S. Labik, I. Malijevska - Institute of Chemical Technology, Prague, 2005 MOOC 1. https://www.my-mooc.com/en/mooc/introduction-to-physical-chemistry/

	OURSE FITLE		ALS OF ORG HEMISTRY	ANIC	CREDITS	4	
Cou	urse Code	CYA2702	Course Category	CC	L-T-P-S	3-1-0-0	
	CIA		40% ESE		60%		
LEARNING LEVEL		BTL-5		L-5 ASSESS MOD		ТА	
	COURSE OUTCOMES						
1.	Students will learn about molecular symmetry and molecular structural configurations						
2.	Students y mechanis	will learn substituti ms.	on, elimination	and coupling 1	reactions,	1,2	
3.	Students	will learn about arc	matic compour	nds, its properti	es and reactions	4	
Pre	-requisites:	Knowledge of Ch	emistry in unde	ergraduate leve	1.	1	
MO	DULE 1 –	MOLECULAR S	YMMETRY A	ND POINT G	ROUPS (12 L)		
hete of a	rotopic liga lbsolute ster	ands and NMR spe	ctroscopy - Cer rules, axial chi	ntre of chirality	e ligands and faces - 7- assignment hirality and helicity		
MO	DULE 2 –	CONFORMATIO	ONAL ANALY	SIS AND ST	EREOCHEMISTRY	(12L)	
reac	tivity with e	examples from mol	ecular rearrang	ements-neighb	ns - conformation an oring group particip	ation-	

elimination reactions- formation and cleavage of epoxides-quantitative correlation between conformation and reactivity-Winstein Eliel equation- Curtin Hammett principle. Classification, terminology - principle of stereoselectivity - examples of Diastereoselectivity

and enantioselectivity including few examples from pericyclic reactions- Circular dichroism - ORD - cotton effect - application of ORD and CD in steroids - examples for the illustration of usefulness of cotton effect.

(12L)

MODULE 3 – SUBSTITUTION REACTIONS

Nucleophilic substitution: Various types-stability and reactivity of carbocationsnucleophilicity and basicity- neighboring group participation and rearrangementssteric effects in substitution reaction-classical and nonclassical carbocations- Nucleophilic aromatic substitution- various types.

Aromatic electrophilic substitution: Intermediates and orientation - electrophiles - reactivity and selectivity-

discussion of electrophilic substitution with reference to Hammett plot- kinetic isotopic

effects. Nitration- halogenations- sulfonation- Friedel Crafts reaction- protonation.

MODULE 4 – ELIMINATION AND COUPLING REACTIONS (12L)

Synthesis of alkenes -Wittig and related reactions - modern methods of synthesis-Peterson, McMurry, Shapiro reaction - stereoselective synthesis of tri - and tetra substituted alkenes- synthesis from 1,2-diols- pyrolytic elimination of sulfoxides and selenoxides- synthesis of alkynes, allenes and cumulenes- Pd catalysed coupling reactions- Heck, Suzuki, Glazer- Eglington coupling.

MODULE 5 - AROMATICITY AND REACTION MECHANISM (12L)

Basic definition of aromaticity - Huckle's rule- NMR as a tool-diamagnetic anisotropyaromatic and anti-aromatic compounds – paratropy – Annulenes - some basic synthetic strategies and discussion of spectral data- alternate and nonalternate hydrocarbons.

Reaction mechanism: Definition of reaction mechanism- transition state theory- kineticsqualitative picture - Substituent effects- linear free energy relationships- Hammett equation and related modifications- Basic mechanistic concepts like kinetic vs thermodynamic control- Hammond postulate- Curtin Hammett principle- isotope effectsgeneral and specific acidbase catalysis- and nucleophilic catalysis.

TEXT	ΓBOOKS						
1.	J. March, Advanced Organic Chemistry, 6th edition, Wiley Interscience, 2007						
2.	F. A. Carey and R. I. Sundberg, Advanced Organic Chemistry, Part A, 5th edition, Plenum Press, 2007						
3.	I. L. Finar, Organic chemistry, Vol-1, 6th edition, Pearson Education Asia. 2004.						
4.	L.F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing House, Bombay, 2000						
E BO	OKS						
1.	https://books.google.co.in/books/about/Organic_Reaction_Mechanisms.html?id=K HIvAQAAIAAJ						
2.	http://www.chem.ucla.edu/~harding/notes/notes.html						
MOO	MOOC						
1	https://www.mooc-list.com/tags/reaction-mechanisms						

	COURSE		AL BONDING JLAR GEOMI		CREDITS	4			
	ourse Code	CYA2703	Course Category	CC	L-T-P-S	3-1-0-0			
0	CIA		40%		ESE	60%			
	ARNIN EVEL		BTL-5		ASSESSMENT MODEL	ТА			
COURSE OUTCOMES						РО			
1.Understanding the structure of atoms is a fundamental knowledge, which will make students to understand forthcoming topics.1, 2, 3									
2.		dents can get an ide an chemical bondin		of forces preval	ent in compounds,	1, 2, 3			
3. A study on the different types of crystals will make student to understand the basics of material structure, which will help in synthesis of novel materials.									
4.		re to indepth knowleand different proper			educate students to	1, 2, 3			
5.	to carry	ng the students on t out chemical reaction hemistry.	-	-	-	3, 4, 5			
Prere	equisites	: Knowledge in fund	damentals of ch	emistry at unde	r graduate level.				
MOL	O ULE 1	– ATOMIC STRU	CTURE	(12L)					
polye	electron a ic size-ior	toms - electronic co	nfiguration and	term symbols -	el diagram of hydroger periodic properties of -covalent and ionic rad	elements –			
Sugg	ested Rea	ading: Atomic theor	y – Atomic moc	lel- De Brogue'	s Equation -periodic ta	ıble.			
MOL	MODULE 2 – NON-VALENCE FORCES (12L)								
solids radii	Van deer Waals' forces - hydrogen bond – metallic bond – free electron theory of metals - ionic solids – common structures and properties of ionic compounds-ionic radius -Pauling's univalent radii - lattice energy – Born-Haber cycle - Defects structures- Band theory of solids, p-type & n-type semiconductors-superconductivity								
Sugg	ested Rea	ading: Crystal lattice	e - unit cell - lat	tice point - chei	nical bonding.				

MODULE – 3 : CRYSTAL STRUCTURE

(12L)

Radius ratio rules- structures of AX (ZnS, NaCl, CsCl), AX₂ (TiO₂, SiO₂) A₂X₃, ABX₃ and A₂BX₄

type solids – layer structure – cadmium iodide - covalent solids – diamond, graphite.

Suggested Reading: Coordination number - Structure of metallic crystals.

MODULE 4 - COVALENT BOND

(12L)

Valence bond theory – hybridization – types of hybridization- Molecular Orbital theory- symmetry and overlap – bonding in homonuclear diatomic molecules; O_2 , $B_2 N_2$ and C_2 – bonding in heteronuclear diatomic molecules; CO and HCl - Molecular orbital of triatomic molecules; BeH₂ and NO₂ - VSEPR theory – methane, ethylene, acetylene, ammonia, water, PCl₃F₂ (Bent's rule), SF₄, BrF3, TeF₅ -, ICl₂ -, ICl₄ -, XeF₂, XeF₄, XeF₆, XeO₃, XeO₄, phosphorus trihalides bond angle, ammonia & NF₃ dipole moments, H₂O, OF₂ angle, NH₃, XeO₃ angle, CoF₂.

Suggested Reading: Concept of resonance - Concept of Promotion of Electrons - Hybridisation.

MODULE 5 – AQUEOUS CHEMISTRY

(12L)

Acid base concepts -Bronsted, Lowry, Lux-Flood, Usanovich, Lewis - solvent system and generalised acid base concepts -Measures of acid -base strength -steric effect and solvation effects - Hard and soft acids and bases (HSAB) concept - Types of solvents - Liq. NH₃, alkali metals in liq. NH₃, SO₂, and HF - types of reactions - autoionisation and neutralisation, precipitation, solvation, solvolysis, and complex formation.

Suggested Reading: Acidity and Basicity of Molecules.

TEXT BOOKS

- 1. F.A. Cotton, G. Wilkinson and P. L. Gaus, Basic Inorganic Chemistry, 5th Edn. John Wiley & Sons, 2004.
- 2. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry, 5th Edn. Pearson Education, 2005.

REFERENCE BOOKS

- 3. J. D. Lee, Concise Inorganic Chemistry, 5th Edn. Blackwell Science, 2006.
- ^{4.} S. K. Basu, R. D. Madan, Prakash Satya, G. D. Tuli, Advanced Inorganic Chemistry-Vol. I, 19th Edn. S. Chand, 2006.

E BOOKS

3.	http://www.freebookcentre.net/chemistry-books-download/Introduction-to-Inorganic- chemistry.html
4.	http://www.freebookcentre.net/chemistry-books-download/Advanced-Inorganic-Chemistry- by-Robert-LCarter.html
MO	OC
2.	https://swayam.gov.in/courses/249-inorganic-chemistry-ii
3.	https://www.mooc-list.com/course/inorganic-chemistry-saylororg

	DURSE TITLE	QUANTUM CH	IEMISTRY A THEORY	ND GROUP	CREDITS	4			
	rse Code	CYA2704	Course Category	CC	L-T-P-S	3-1-0-0			
	CIA		40%		ESE	60%			
LEA	ARNING		BTL-5		ASSESSMENT	ТА			
	EVEL				MODEL				
		CC	URSE OUT	COMES		РО			
1.	The stude	nts will be able to s	olve the mode	l problems in q	uantum mechanics.	1,2			
2.	Relate con	ncepts in modern at	omic physics t	o molecular sys	stems	2,3			
3.	Determine	e the symmetry ope	rations and ap	ply point group	theory to study the	4,5			
	properties.								
Pre-	requisites	Knowledge of Ch	emistry in und	lergraduate leve	el.				
		REVIEW OF OLI			(12 L)				
					ties Operators, Matri	X			
					linger for exactly so				
					oscillator and rigid				
Solu	tion of the	Schroedinger equat	ion for the hyd	lrogen atom.	-				
MO	DULE 2 –	TIME INDEPEN	DENT PERT	URBATION T	HEORY (12L)				
Dege	enerate state	es- Variational met	hod- Helimann	- Feynman the	orem-Spectra and s	tructure of			
Heliu	um atom- T	erm symbols for at	oms-Hartree -	foch equation	s- the self consistent	t method and			
coup	ling schem	nes.							
MO	DULE 3-	CHEMICAL BO	NDING	(12L)				
bond 7t-sy	and molestems and	ecular orbital met	hods- Polyato rontier orbital	mic molecules	ydrogen molecule: and hybridization- (empirical CNDO an	Conjugated			
		GROUP THEOR		(12L)					
					elements in molecul	es-Matrix			
	esentations				le representations a				
		APPLICATIONS	OF GROUP	THEORY	(12L)				
					olecular orbitals- hyb	oridization -			
	-			-	brational and electro				
	troscopy.								
	T BOOKS	5							
1.			mmetry and G	roup Theory. A	Programmed Introd	luction to			
-		Applications. John	•	1 1	U				
2.		ine, Quantum Che							
3.		Mc Quarrie, Quar							
4.									
5.									
E BO	E BOOKS								
1.		re.doverpublication	s.com/048643	2475.html					
MO	-			, c					
1		llinecourses.nptel.a	c.in/noc16_cv()7/preview					
1	Incps.//01	innecourses.npter.a	e.m/noe10_ey(, provident					

	OURSE FITLE	ANA	LYTICAL CHE	MISTRY	CREDITS	3	
Cou	ırse Code	CYA2705	Course Category	CC	L-T-P-S	3-0-0-1	
	CIA		40%		ESE	60%	
	ARNING LEVEL		BTL-4		ASSESSMENT MODEL	ТА	
			COURSE OU	TCOMES		РО	
1.	Apply the statistical method to assess the data quality.						
2.	Acquires knowledge on the quantitative estimation of analyte by gravimetric method.						
3.	Gains an understanding on the general principles and theory of spectroscopy.						
4.	Understanding the basic reaction involved in different types of titrations.						
5.	Understar	nds the various	separation technic	ques and purification	on techniques.	2,4	
Prer	requisites :	Knowledge of	instruments and a	nalysis in undergrad	luate level.		
MO	DULE 1 – 1	ERRORS IN M	IEASUREMENI		(9 L)		
error distr distr	rs-significar ibution- fre- ibution, crit	nt figures and co quency distribu teria for rejectio	omputation-mean of tions, the binomial n of data, Q-test, T	deviation and standa distribution, the Po	on of errors-minimization ard deviation-Gaussian bisson distribution and ntrol chart, sampling n s.	normal	
MO	DULE 2 – (GRAVIMETR	Y		(9L)		
preci anal	ipitation me ysis(TGA),	ethods - Princip	les – instrumentat ermal Analysis (D	ions and application	oduct-common ion efforts of thermogravimetry al Scanning Calorimetry	/	
	gested Read ishers, 2009		M. Calvin and S.C	. Bhatia, Instrument	al Methods of Analysi	s, CBS	
MO	DULE 3 - T	FITRIMETRY		(9L))		
indic react	cators – ur tions.	niversal indicat	ors -neuturalization	on curves -choice	-naturalization indica of indicators in neu	ıtralizatio	

Complexometric titrations: Stability of complexes – factors influencing the stability of complexesstability constants of EDTA complexes-titration curves-selectivity-masking and demasking agentsmetal ion indicators.

Precipitation titrations: Theory of precipitation reactions -determination of end point in precipitation reactions.

Oxidation reduction titration: Theory-change of electrode potential during the titration of a reductant with an oxidant-formal potentials-detection of end points in oxidation reduction titrations-titrations in non aqueous media

Suggested Reading: G. D. Christian, Analytical Chemistry, 6th Ed., Wiley, 2007.

MODULE 4 – COLORIMETRY&SPECTROPHOTOMETRY (9L)

Standard series method -duplication method -balancing method -photoelectric colorimeter - spectrophotometer – single beam-double beam -determination of pKa value of an indicator-simultaneous spectrophotometric determination.

Flame spectrometry: Instrumentation, combustion flames-nebuliser burner system-resonance line sources – monochromator -detector – types of interferences –comparison -single beam AAS -double beam AAS nonflame techniques -cold vapour AAS.

Suggested Reading: G. D. Christian, Analytical Chemistry, 6th Ed., Wiley, 2007.

MODULE 5 – ANALYTICAL SEPARATION AND PURIFICATION TECHNIQUES (9L)

Precipitation, distillation, solvent extraction and separation processes, partition chromatography, column chromatography, thin layer chromatography (TLC), paper chromatography and their applications. Ion exchange chromatography: principle, instrumentation with special reference to separation and suppressor columns and applications. Principles, instrumentation and applications of GC, LC, and HPLC, signal to noise ratio, sources of noise in instrumental analysis.

Suggested Reading G. D. Christian, Analytical Chemistry, 6th Ed., Wiley, 2007.

TEXT BOOKS

1.	D. A. Skoog, F. J. Holler and S. R. Crouch, Principles of Instrumental Analysis, Thomson					
	Learning, 2007.					
2.	H. H. Willard, L. Jr. Merritt., J. A. Dean and F. A. Settle, Instrumental Methods of					
	Analysis, 7th Ed., CBSPublishers, 2007.					
3.	R.M. Verma, Analytical Chemistry Theory and Practice, 3rd Ed., CBS Publishers, 1994.					
	B. K. Sharma, Instrumental Methods of Analysis, 28th Ed., GOEL Publishing House, 2012.					
4.	D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Fundamentals of Analytical					
	Chemistry,9th Ed., Brooks Cole, 2013.					
5.	N. Gray, M. Calvin and S.C. Bhatia, Instrumental Methods of Analysis, CBS Publishers,					
	2009.					
6.	G. D. Christian, Analytical Chemistry, 6th Ed., Wiley, 2007.					
E BC	OOKS					
1.	http://www.freebookcentre.net/Chemistry/Analytical-Chemistry-Books.html					
MOC	MOOC					
1.	https://www.mooc-list.com/tags/analytical-chemistry					

COURSE TITLE		PHYSICAL CH	PHYSICAL CHEMISTRY PRACTICAL			3			
Course Code		CYA2731	Course Category	СР	L-T-P-S	0-0-6-0			
	CIA		60%		ESE	40%			
	ARNING LEVEL		BTL-4		ASSESSMENT MODEL	ТА			
		COURSE OUTCOMES							
1.	The stude	nts will learn to do	instrument bas	ed estimations	and analysis.	3,4			
2.	Students 1	earn to calculate ki	netics of chem	ical reactions.		3,4			
3.	Students 1	earn to create phase	e diagram of 2	component sys	tems	4,5			
Pre-	requisites	Knowledge of Ch	emistry in und	ergraduate leve	el.				
LAF	B / MINI P	ROJECT/FIELD	WORK						
 P p p 1 C C	otentiometr H metric tit Determination Determination Determination pectrophoto Degree of hy Dasicity of a dissocia Determination Determination Study of prin Phase diagra	on of pK value of an on of activity co-eff nts ometric estimation of adrolysis of aniline n acid. Verification ation constant. on of order - acetor on of rate constant- mary salt effect on am of ternary system actometer- Percenta	ation of ferrous of purity of as on temperature a acid base ind icient of an ele of iron, Mn in a hydrochloride. of Ostwald di ae-iodine reaction saponification the kinetics of n (nitrobenzen	corbic acid. of heterogeneo icator and saltin ectrolyte at diffe solutions lution law using on; of ethyl acetate ionic reaction e-acetic acid-w	erent concentrations g weak acid and dete e; eater)	by emf			
1.			Garland Expa	riments in Phys	vical Chemistry 6th	Edition			
1.	 D. P. Shoemaker and C. W. Garland, Experiments in Physical Chemistry, 6th, Edition, McGraw- Hill, 1996. 								
2.	Daniels, F., R. A. Alberty, J. W. Williams, C. D. Cornwell, P. Bender, and J. E. Harriman, Experimental Physical Chemistry, McGraw-Hill Inc., New York, 1975								
E B	OOKS								
1.	https://pu	lbs.acs.org/doi/abs/	10.1021/ed008	p1009.2					
MO	OC								
1	https://ww	ww.mooc-list.com/	tags/chemistry						

COURSE TITLE		CHEM	ICAL KINETI CATALYSIS	CS AND	CREDITS	4		
Co	ourse Code	CYA2711	Course Category	CC	L-T-P-S	3-1-0-0		
	CIA		40%		ESE	60%		
	EARNING LEVEL		BTL-5		ASSESSMENT MODEL	ТА		
			COURSE OUT	FCOMES		РО		
1.	Strengthen th	he basics of kin	netics and to app	ly the concept	to complex reactions	1		
2.	analyze react		ns and changes in		nemical kinetics and perties of chemical	1		
3.	carryout pho		actions, and to c		will enable student to alysts which are active	2		
4.	Able to calculate the rate equation for acid-base catalyzed reactions and enzyme catalyzed reaction.							
5.	student to	understand an		catalysts for	atalysis will make the industrially important	4,5		
Prer	requisites : Ba	sic knowledge	in Kinetics in u	ndergraduate le	vel			
MO	DULE 1 – KI	NETICS OF I	REACTIONS		((12L)		
para Stud meth	Terminologies- Order of reaction - determination - Complex reactions: opposing reactions, parallel reactions and consecutive reactions – chain reactions - flame and explosion temperatures - Study of fast reactions, flow technique, stopped flow technique, temperature and pressure jump methods, shock tubes. Suggested Reading: Terminologies							
MO	MODULE 2 – THEORY OF REACTION RATES (12L)							
activ coll therr Hins	Effect of temperature on reaction rates, Arrhenius equation for simple reactions, Energy of activation. Potential energy surfaces, an introduction, Kinetic theory of collisions- collision cross section, comparison with Arrhenius equation, Conventional transition state theory, thermodynamic treatment, Eyring equation, - Elementary gas phase reactions: Lindemann - Hinsheldwood mechanism and Rice Ramsperger Kassel (RRK) theory.							
Sug	Suggested Reading: Rate equation , rate law							
MO	DULE – 3 KI	NETICS OF I	PHOTOCHEM	ICAL REACT	TIONS (12)			

Kinetics in the excited electronic states-Jablonskii diagram-kinetics of unimolecular photophysical and photochemical processes-Photostationary states-photoisomerisation-bimolecular photophysical and photochemical processes-excimers, exciplexes and sensitization-Mechanism of fluorescence quenching SternVolmer equation.

Suggested Reading: Physical and chemical processes in photochemical reactions

MODULE – 4 : HOMOGENEOUS CATALYSIS

(12L)

Acid-Base Catalysis: Specific and general catalysis- Skrabal diagram- prototropic and protolytic mechanisms- secondary salt effect- examples- Acidity function: Ho H-scales- Overlap method - Enzyme catalysis- Michaelis-Menten equation - Lineweaver-Burk and Eadie plots-Effect of temperature and pH, transient - phase kinetics

Suggested Reading: Effect of catalyst, catalyst activity

MODULE 5 – SURFACE CHEMISTRY & HETEROGENEOUS CATALYSIS (12L)

Adsorption – gas on solid – types of adsorption – Freundlich, Langmuir, B.E.T adsorption isotherms, applications: adsorption chromatography, purification of water by zeolites, etc. Surface Reactions: thermodynamics of surface reactions, Langmuir Hinshelwood and EleyRideal mechanisms. General aspects, co adsorption, poisoning and promotion effects, model reactions. Industrially important surface catalyzed reactions -examples CO oxidation and methanation, ammonia synthesis, epoxidation reactions

Suggested Reading: Adsorption, gas on solid, types of adsorption

TEX	TEXT BOOKS							
1.	Peter Atkins, Julio de Paula, Elements of Physical Chemistry, fourth edition, W.H. Freeman & Company, 2005							
2.	G. M. Barrow, Physical Chemistry (V Edition), Tata McGraw Hill Education, 2007							
REF	ERENCE BOOKS							
	Keith J. Laidler, Chemical Kinetics, Third Edition, Pearson Education, 2004.							
2.	J. Rajaram and J. C. Kuriacose, "Kinetics and Mechanisms of Chemical Transformations". Macmillan India; 1993, reprint 2011.							
E BO	OOKS							
1.	Introductory Physical Chemistry by David Ronis - McGill University, 2011							
2.	Physical Chemistry in Briefy J.P. Novak, S. Labik, I. Malijevska - Institute of Chemical Technology, Prague , 2005							
MOC	DC							
1.	https://www.my-mooc.com/en/mooc/introduction-to-physical-chemistry/							

COURSE TITLE		ORGANIC REACTIONS			CREDITS	4
Course Code		CYA2712	CYA2712 Course CC Category CC		L-T-P-S	3-1-0-0
CIA			40%		ESE	60%
LEARNING LEVEL		BTL-5		ASSESSMENT MODEL	ТА	
	COURSE OUTCOMES					
1.	Students will learn about pericyclic and condensation reactions					
2.	Students will learn about carbonyl compounds, preparation and reactions					2,3
3.		will learn about add	lition reaction a	and photochem	ical reaction of	4,5

Pre-requisites : Knowledge of Chemistry in undergraduate level.

MODULE 1 – PERICYCLIC REACTIONS (12 L)

Classification-electrocyclic, sigmatropic, cycloaddition, chelotropic and ene reactions-Woodward - Hoffmann rules- Frontier orbital and orbital symmetry correlation approaches, examples- Mechanism – General mechanistic considerations - nature of migration - migratory aptitude - nucleophilic, electrophilic and free radical rearrangements-Wagner Meerwein, Dienone –phenol, Wolf, Lossen, Schmidt, Bayer-Villiger, Stevens, Wittig, Favorski rearrangements.

MODULE 2 – CARBONYL COMPOUNDS (12L)

Modern methods of synthesis from alcohols- Swern and Dess Martin oxidations- Reactions of carbonyl compounds, addition of N,O, and S nucleophiles-Reduction using hydride reagents – chemo - and stereoselectivity - formation of enols and enamines-kinetic and thermodynamic enolates.

MODULE 3 – CONDENSATION REACTIONS

(12L)

Lithium and boron enolates in aldol and Michael reactions- stereoselective aldol condensations-alkylation and acylation of enolates - Claisen, Dieckman, Knoevenagel, Stobbe and Darzen glycidic ester, acyloin, emphasis on synthetic utility of these reactionsrearrangement reactions involving electron deficient carbon, nitrogen, oxygen centers, the synthetic utility of these rearrangements.

MODULE 4 – ADDITION REACTIONS

Reactions of alkenes and alkynes – stereo and enantioselective hydroborationhydrogenation, Epoxidation (Sharpless, Jacobson methods)- hydroxylation- oxymercurationhalolactonisation- Preparation and synthetic uses of lithium and copper acetylides.

(12L)

MODULE 5 - PHOTOCHEMICAL REACTIONS (12L)

Photofragmentation- photoaddition- Type I and Type II cleavage- photosubstitution, cycloaddition, Paterno Buchi reaction, isomerization and rearrangement reactions-photoreduction and photooxidation reactions- singlet oxygen and chemiluminescence – Photoinduced electron transfer reactions – application to solar energy conservation and artificial photosynthetic systems- Photochemical substitution in transition metal complexes- organometallic photo chemistry- substitution of metal carbonyls.

LAB / MINI PROJECT/FIELD WORK

NA

1.	S. Warren, Organic Synthesis, The disconnection Approach, John Wiley & Sons, 2004.				
2.	F. A. Carey and R. I. Sundberg, Advanced Organic Chemistry, Part A, 5th edition, Plenum Press, 2007				
3.	SM. B. Smith, Organic Synthesis, 2 nd Edition, 2005				
4.	L. Kuerti and B. Czako, Strategic Applications of named Reactions in Organic Synthesis, Elsevier Academic Press, 2005.				
E BC	OOKS				
1.	http://www.freebookcentre.net/Chemistry/Organic-Chemistry-Books.html				
MOO	MOOC				
1.	https://www.mooc-list.com/tags/organic-chemistry				
2.	https://www.cliffsnotes.com/study-guides/chemistry/organic-chemistry-ii				

Code Category ESE 60 LEARNIN G LEVEL BTL-5 ASSESSMENT MODEL T CUMerror COURSE OUTCOMES P 1 Understanding the s-block and p-block elements are very much essential for students to carryout research in inorganic materials and for ceramic industries. 1, 2, 1, 2, 2 The students can get an idea to prepare transition metal catalysts, since they have variable oxidation states. 1, 2, 3 Educating the students on the chemistry of f-block elements will make them to understand the compounds formed by these elements and their uses in strategic sectors. 2, 3 4 A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc. 3, 4 5 Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications. 3, applications. 7 MODULE 1 - CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS (12) 1 General characteristics of s-block elements: atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of lithium and beryllium. General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties of Bo		URSE TLE	INORGANIC E STAT	LEMENTS AN E CHEMISTR		CREDITS	4			
LEARNIN G LEVEL BTL-5 ASSESSMENT MODEL T COURSE OUTCOMES Pression Pression Pression 1 Understanding the s-block and p-block elements are very much essential for students to carryout research in inorganic materials and for ceramic industries. 1, 2, 2 The students can get an idea to prepare transition metal catalysts, since they have variable oxidation states. 1, 2 3 Educating the students on the chemistry of f-block elements will make them to understand the compounds formed by these elements and their uses in strategic sectors. 2, 1 4 A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc. 3, 4 5 Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications. 3, 3 Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometry 12 General characteristics of s-block elements - tractions with oxygen, hydrogen and halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens. Alkal earth metals: physical and chemical properties are actions with oxygen, hydrogen and halogens. Alkal earth metals: physical and chemical properties areactionis with oxygen, phydrogen and halogens. An			CYA2713		CC	L-T-P-S	3-1-0-1			
G LEVEL MODEL COURSE OUTCOMES P 1 Understanding the s-block and p-block elements are very much essential for students to carryout research in inorganic materials and for ceranic industries. 1, 2, 2 The students can get an idea to prepare transition metal catalysts, since they have variable oxidation states. 1, 2 3 Educating the students on the chemistry of f-block elements will make them to understand the compounds formed by these elements and their uses in strategic sectors. 2, 3 4 A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc. 3, 4 5 Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications. 3, applications. Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometry (12) General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, and palogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen, and halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen, and halogens. General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties and chemical properties - and p-block element properties of B	(CIA		40%		ESE	60%			
1 Understanding the s-block and p-block elements are very much essential for students to carryout research in inorganic materials and for ceramic industries. 1, 2, 2 2 The students can get an idea to prepare transition metal catalysts, since they have variable oxidation states. 1, 2 3 Educating the students on the chemistry of f-block elements will make them to understand the compounds formed by these elements and their uses in strategic sectors. 2, 3 4 A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc. 3, 4 5 Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications. 3, 3 Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometry MODULE 1 - CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS (12 General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Annalous properties of lithium and beryllium. 10 General characteristics of p-block elements: atomic and physical properties of manufactory is compounds (borax, boric acid). Carbon: Allotropes, properties, of Carbon. Nitrogen: properties and chemical reactivity. 11 General characteristics of p-block elements: atomic and physical properties, of manufactory properties and chemical reactivity. 11				BTL-5			ТА			
students to carryout research in inorganic materials and for ceramic industries. 1, 2, 2 a The students can get an idea to prepare transition metal catalysts, since they have variable oxidation states. 1, 2 a Educating the students on the chemistry of f-block elements will make them to understand the compounds formed by these elements and their uses in strategic sectors. 2, 3 4 A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc. 3, 4 5 Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications. 3, 3 Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometry. MODULE 1 - CHEMISTRY OF s-BLOCK & p-BLOCK & ELEMENTS (12 General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens. Anomalous properties of lithium and beryllium. General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties and chemical reactivity. General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties and chemical reactivity. General characterist			COURSE OUTCOMES							
have variable oxidation states. 1, 2 3 Educating the students on the chemistry of f-block elements will make them to understand the compounds formed by these elements and their uses in strategic sectors. 2, 3 4 A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc. 3, 4 5 Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications. 3, applications. Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometry MODULE 1 – CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS (12 General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens. Alkal earth metals: physical and chemical properties are demits: atomic and physical properties - Physical and chemical properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manufac properties and uses. Oxygen: properties and chemical reactivity. Suggested Reading: Occurrence and abundance - Periodic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation,	1									
understand the compounds formed by these elements and their uses in strategic sectors.2, 34A study on the chemistry of non-metals will make the students to understand the preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc.3, 45Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications.3, Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometryMODULE 1 - CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS(12General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, o of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manuface properties and uses. Oxygen: properties and chemical reactivity.(12)Electronic configuration and general characteristics - metallic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and properties (121)(121)	2									
preparation methods of industrially important chemicals like boranes, silanes, phosphanes, etc.3, 45Exposure to solid-state chemistry is an important topic to understand basics of crystals and the students can do research on crystal growth for various applications.3,Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometryMODULE 1 – CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS(12General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of lithium and beryllium.General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties and chemical reactivity. Ammonia: Haber process of manufac properties and uses. Oxygen: properties and chemical reactivity.Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block elementMODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS(12L)Electronic configuration and general characteristics -metallic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and properti KMnO4, K2Cr2O7.	3	underst	understand the compounds formed by these elements and their uses in strategic 2, 3, 4							
crystals and the students can do research on crystal growth for various applications.3,Prerequisites: Knowledge in periodic properties of elements, bonding and molecular geometryMODULE 1 – CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS(12)General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of lithium and beryllium.General characteristics of p-block elements: atomic and physical properties - Physical and chem properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, o of Carbon. Nitrogen: properties and chemical reactivity.Must and beryllium.Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block element(12)MODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS(12L)Electronic configuration and general characteristics -metallic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and properti KMnO4, K2Cr207.	4	preparation methods of industrially important chemicals like boranes, silanes, 3, 4, 5								
MODULE 1 – CHEMISTRY OF s-BLOCK & p-BLOCK ELEMENTS (12 General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkali earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of lithium and beryllium. General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, o of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manufact properties and uses. Oxygen: properties and chemical reactivity. Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block element MODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS Electronic configuration and general characteristics -metallic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, conformation, magnetic properties, interstitial compounds and alloys. Preparation and properties	5	crystals and the students can do research on crystal growth for various								
General characteristics of s-block elements - atomic and physical properties - Alkali metals: physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of lithium and beryllium.General characteristics of p-block elements: atomic and physical properties - Physical and chem properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, o of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manufac properties and uses. Oxygen: properties and chemical reactivity.Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block elementMODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS(12L)Electronic configuration and general characteristics -metallic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and properti KMnO4, K2Cr2O7.	Prer	equisite	s: Knowledge in peri	iodic properties	of elements, bo	onding and molecular ge	cometry.			
physical properties and chemical properties - reactions with oxygen, hydrogen, halogens. Alkal earth metals: physical and chemical properties - reactions with oxygen, hydrogen and halogens Anomalous properties of lithium and beryllium.General characteristics of p-block elements: atomic and physical properties - Physical and chem properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, o of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manufact properties and uses. Oxygen: properties and chemical reactivity.Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block elementMODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS(12L)Electronic configuration and general characteristics -metallic properties, coloured ions, com formation, magnetic properties, interstitial compounds and alloys. Preparation and properties KMnO4, K2Cr2O7.	MO	DULE 1	– CHEMISTRY O	F s-BLOCK &	p-BLOCK EI	LEMENTS	(12L)			
properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, o of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manufac properties and uses. Oxygen: properties and chemical reactivity.Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block elementMODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS(12L)Electronic configuration and general characteristics -metallic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and propertie KMnO4, K2Cr2O7.	phys earth Anor	ical prop 1 metals: malous p	perties and chemical physical and chemic physical and chemic properties of lithium a	properties - reac al properties - re and beryllium.	tions with oxygetions with o	gen, hydrogen, halogens xygen, hydrogen and ha	. Alkaline logens -			
MODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS (12L) Electronic configuration and general characteristics -metallic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and properties, KMnO ₄ , K ₂ Cr ₂ O ₇ .	prop of C	General characteristics of p-block elements: atomic and physical properties - Physical and chemical properties of Boron and its compounds (borax, boric acid). Carbon: Allotropes, properties, oxides of Carbon. Nitrogen: properties and chemical reactivity. Ammonia: Haber process of manufacture, properties and uses. Oxygen: properties and chemical reactivity.								
Electronic configuration and general characteristics -metallic properties, ionization en electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and propertie KMnO ₄ , K ₂ Cr ₂ O ₇ .	Suggested Reading: Occurrence and abundance - Periodic properties of s- and p-block elements.									
electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, con formation, magnetic properties, interstitial compounds and alloys. Preparation and propertie KMnO ₄ , K ₂ Cr ₂ O ₇ .	MO	MODULE 2 – CHEMISTRY OF d-BLOCK ELEMENTS (12L)								
Suggested Reading: Occurrence and abundance - Periodic properties of d-block elements.	elect form	Electronic configuration and general characteristics -metallic properties, ionization energy, electrode potential, oxidation states, ionic radii, catalytic properties, coloured ions, complex formation, magnetic properties, interstitial compounds and alloys. Preparation and properties of KMnO ₄ , K ₂ Cr ₂ O ₇ .								
	Sugg	gested Re	eading: Occurrence a	nd abundance -	Periodic prope	rties of d-block element	s			

MODULE 3 – CHEMISTRY OF f-BLOCK ELEMENTS

Lanthanides – occurrence-isolation-lanthanide contraction-oxidation states-spectral and magnetic properties-coordination complexes-actinides-configuration, properties-nuclear reactions of uranium, thorium and plutonium-power generation by nuclear reactors-breeder reactor-fusion reaction-radioisotopes and their applications.

Suggested Reading: Abundance and number of isotopes – Electronic structure - Periodic properties of f-block elements.

MODULE 4 – CHEMISTRY OF NON-METALS

B, Si, P & S compounds - E-H, E-X, E-O & E-N bond types in different molecules - chemistry of simple boranes, silanes, phosphanes and sulphanes borazine, boron and silicon nitrides. P-N & S-N rings: Synthesis, structure & bonding reactions of $N_3P_3Cl_5$ & S_4N_4 -Halogen and noble gas chemistry: Interhalogen, pseudohalogen ionic oxyhalogen species, xenon-oxides & fluoxides.

Suggested Reading: Occurrence and structure of the elements – Physical and chemical properties.

MODULE 5 – SOLID-STATE CHEMISTRY

Cyrstallography-laws of crystal structures, crystal systems, X-Ray crystallography -X-Ray, neutron and electron diffraction, types of crystalline solids -Preparative methods: Solid state reaction - precipitative reactions, sol-gel route – Superconductivity and recent high Tc materials -spinels, gamets and perovskites-glasses and refractories.

Suggested Reading: Metallic bond and metallic structure – theories of bonding in metals.

TEXT BOOKS

- ¹ F. A. Cotton, G. Wilkinson and P. L. Gaus, Basic Inorganic Chemistry, 5th Edn. John Wiley & Sons, 2004.
- ² J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry, 5th Edn. Pearson Education, 2005.

REFERENCE BOOKS

 1
 J. D. Lee, Concise Inorganic Chemistry, 5th Edn. Blackwell Science, 2006.

 2
 S. K. Basu, R. D. Madan, Prakash Satya, G. D. Tuli, Advanced Inorganic Chemistry-Vol. I, 19th Edn. S. Chand, 2006.

E BOOKS

1	http://www.freebookcentre.net/chemistry-books-download/Advanced-Inorganic-Chemistry-I.html
2	http://www.freebookcentre.net/chemistry-books-download/Principles-of-Inorganic-Chemistry-III.html
MO	OC
1	https://swayam.gov.in/courses/249-inorganic-chemistry-ii
2	https://www.mooc-list.com/course/inorganic-chemistry-saylororg

(12L)

(12L)

(12L)

COURSE TITLE		MOLECULAR SPECTROSCOPY			CREDITS	3			
Course Code		CYA2714	Course Category	CC	L-T-P-S	3-0-0-1			
	CIA 40% ESE								
	LEARNING LEVEL BTL-4 ASSESSMENT MODEL				ТА				
		COURSE OUTCOMES							
1.	Students g	ain knowledge i	n the interaction o	f radiation with matter	r.	1			
2.		Able to use the quantum mechanics and group theory principle to 1 understand the molecular spectra.							
3.	Students ad	Students acquires knowledge on the principle and application of NMR.							
4.	Determines the structure of compounds based on the spectra.					2,3			
5.			mass and identify	Able to find the molecular mass and identify the structure of compound using mass 3,4 spectroscopy.					

Prerequisites : Basic knowledge of spectroscopy in undergraduate level.

MODULE 1 – INTERACTION OF ELECTROMAGNETIC RADIATION WITH MATTER (9L)

Interaction of matter with radiation-time dependent perturbation theory-Einstein coefficients-Energy levels and transition probabilities for the rigid rotor harmonic oscillator model -Potential energy surfaces in the ground and excited electronic states-Franck Condon principle

Suggested Reading: C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000.

MODULE 2 – ROTATIONAL AND VIBRATIONAL SPECTROSCOPY

(9L)

Rotational and vibrational spectroscopy of polyatomic molecules-angular momentum operator matrix elements, energy levels and transition probabilities for symmetric and asymmetric top molecules-normal modes of vibration and their classification by group theory-Coupling between rotational and vibrational degrees of freedom-Elementary introduction-Electronic spectra of poly-atomic molecules-absorption and emission spectroscopy-charge transfer spectra-effect of solvent-Raman Spectroscopy.

Suggested Reading: C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000.

MODULE – 3 : NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

(9L)

General introduction and definition - Chemical shift, spin-spin interaction, shielding mechanism,

chemical shift values and correlation for protons bonded to carbon complex spin-spin interaction between two, three, four and five nuclei (first order spectra), spin Fourier transform technique. Carbon-13 NMR Spectroscopy – General considerations, chemical shift - coupling constants. nuclear overhauser effect (NOE).

Suggested Reading: C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000.

MODULE – 4 : ELECTRON SPIN RESONANCE SPECTROSCOPY

(9L)

Electronic Zeeman and hyperfine interactions-hydrogen atom in a magnetic field-election rules in ESRanisotropy and hyperfine constants-hybridization-ESR of organic free radicals in solution-McConnel's relations.

Suggested Reading: K. V. Raman, R. Gopalan and P. S. Raghavan, Molecular Spectroscopy, Thomson and Vijay Nicole, Singapore, 2004.

MODULE 5 – MASS SPECTROMETRY

(9L)

Basic principle-ionization methods, isotope abundance, molecular ions, fragmentation processes of organic molecules and deduction of structural information-high resolution MS-introduction to soft ionization techniques and illustrative examples in Macromolecular and supra molecular chemistry.

Suggested Reading: I. N. Levine, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.

LAB / MINI PROJECT/FIELD WORK

N/A

TEX	T BOOKS
1.	K. V. Raman, R. Gopalan and P. S. Raghavan, Molecular Spectroscopy, Thomson and Vijay Nicole, Singapore, 2004.
2.	
۷.	C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata
	McGraw Hill, New Delhi, 2000.
3.	Colin N. Banwell, Elaine M. McCash Edition: Paperback (4th), Mcgraw-Hill College, 2006.
4.	I. N. Levine, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.
E BO	OOKS
1.	https://www.elsevier.com/books/molecular-spectroscopy/rao/978-0-12-580640-4
MOC	DC
1.	https://www.mooc-list.com/course/introduction-molecular-spectroscopy-coursera

COURSE TITLE			AR CHEMISTI OMOLECULE		CREDITS	3
Cour	rse Code	CYA2715	Course Category	CC	L-T-P-S	3-0-0-1
	CIA		40%		ESE	60%
	RNING EVEL		BTL-4		ASSESSMENT MODEL	ТА
			COURSE OU	TCOMES		РО
1	radioacti	2			m and its	1, 2, 3
2		learn different typ				1, 2, 3
3	Students	learn about the an	alytical techniq	ues using nuclear	chemistry.	2, 3, 4
4		ge on lipids and or catalysis and mem	•		idents to learn about	3, 4, 5
5		ge on the differen student to unders	V 1		in human body can	4, 5
Prere	equisites:]	Knowledge in fund	damentals of str	ucture, properties	s and functions of bior	nolecules.
MOD	DULE 1 –	THE NUCLEU	S	(9L)		
MOD	DULE 2 –	shell model, fermi RADIOCHEMI	STRY		(9L)	
decay doubl resona	theory of beta deca ance absor	emission, alpha-r ay-Gamma ray: th	ay energy spect eory of emission of Mossbauer sp	ra-Beta-decay: d n, internal conver pectroscopy-Cour	ermination of half –liv ecay theory, electron c rsion, the Auger effect nters: Geiger counters, ors.	capture, , nuclear
		NUCLEAR REA			PL)	
Types of nuclear reactions: reaction cross section-compound nucleus theory, high energy nuclear, direct nuclear, photonuclear and thermonuclear reactions- Source of nuclear bombarding particles: Charged particle accelerators, gamma ray, X ray and neutron sources- Fission: Fission products and Fission yield curve, Fission energy, theory of nuclear fission, nuclear reactor, breeder reactor - nuclear reactors in India. Fusion reactions hydrogen bomb and energy of sun - Transuranium elements: Synthesis, separation and properties of Tranuranium elements- Reprocessing of spent fuels. Solvent Extraction - Specific sequestering agents for Transuranium elements.						
MODULE 4 - LIPIDS AND ENZYMES(9L)Common class of lipids-self association of lipids-Formation of micelles-membranes-bilayer and						
hexag Enzyn consie Sugge	gonal phas mes – cla derations - ested Read	ses-Membrane bo ssification – cha enzyme kinetics -	ound proteins s racteristics - f Michelis Mento functions of lip	structure-properti unctions- cataly on equation -inhit pids – membrane	es and transport pho sis- thermodynamic a pition of enzyme action transport mechanism -	enomena – and kinetic n.

MODULE 5 – PHYSIOLOGICAL BIOCHEMISTRY

Minerals – classification - biological roles of minerals - calcium biochemistry-oxygen transport and storage-carbonic anhydrase-carboxypeptidases- FeS proteins and non-heme iron-cytochromes of the electron transport chain- oxidative phosphorylation - cytochrome P-450 enzymes-coenzyme B12-nitrogen fixation and photosynthesis.

Suggested Reading: Common class of minerals - Biological importance of minerals – Hemoglobin –structure and functions.

LAB / MINI PROJECT/FIELD WORK

TEX	T BOOKS
1.	Albert L. Lehninger, David L. Nelson, Michael M. Cox. Principles of Biochemistry, CBS Publishers and Distributors, 1 st Indian Edition, Delhi, 1993.
2.	Satyanarayana, U, Chakrapani, U. Biochemistry, 3 rd Edition, Books and Allied Pvt. Ltd, 2006.
3.	H. J. Arnikar, "Essentials of Nuclear Chemistry", Wiley Eastern Ltd., New Delhi, 2012.
4.	A.K. Srivatsava and P. Jain, "Essential of nuclear Chemistry", S.Chand, N.Delhi, 2009.
REF	ERENCE BOOKS
1.	A. L. Lehninger, Biochemistry: The molecular Basis of cell structure and function, Worth Publishers, 1982.
2.	1. R. J. Simond, Chemistry of Biomolecules, Royal Society of Chemistry, U.K. London, 1992.
E BO	OOKS
1.	http://www.freebookcentre.net/chemistry-books-download/Macromolecules.html
2.	http://www.freebookcentre.net/chemistry-books-download/Membranes.html
3.	http://www.freebookcentre.net/Chemistry/Nuclear-Chemistry-Books.html
MOC	DC
1.	https://www.mooc-list.com/course/principles-biochemistry-edx
2.	https://www.edx.org/course/principles-biochemistry-harvardx-mcb63x-1
3.	https://www.mooc-list.com/tags/nuclear

(9L)

COURSE TITLE		INORGANIC CI	HEMISTRY F	PRACTICAL	CREDITS	3	
Course Code		CYA2741	Course Category	СР	L-T-P-S	0-0-6-0	
	CIA		60%		ESE	40%	
	ARNING EVEL		BTL-4		ASSESSMENT MODEL	ТА	
	COURSE OUTCOMES					РО	
1.	The students learn to analyze water quality parameters.						
2.	Students 1	earn determination	of anions and	cations in the g	iven salt.	4,5	
3.	Students 1	earn technical anal	ysis of inorgan	ic compounds		4,5	
Pre-r		Knowledge of Cho	-	-	1.		
	-	U	•	0			
LAB / MINI PROJECT/FIELD WORK1.Qualitative inorganic semi micro analysis- Detection of four cations in a mixture of salt.2.Total dissolved solids3.Carbonate and non-carbonate hardness by EDTA4.Dissolved oxygen, BOD, COD5.Alkalinity in the given water6.F, Cl, SO4 ²⁻ , Fe ³⁺ 7.Turbidity8.Iodimetry9.Alloys: ferrous and nonferrous alloys-brass and solder10.Spectrophotometry- estimation of copper, nickel, iron and manganese11.Active CaO in lime12.Chlorine in bleaching powder13.Analysis of cement -silica, mixed oxide – Fe ₂ O ₃ , Al ₂ O ₃ & CaO/MgO.							
	EXT BOO						
1.		Vogel's Textbook ongman, New Delh		Semimicro Qua	llitative Inorganic Ar	nalysis,	
2.	J.Basset, R.C.Denny, C.H.Jeffery and Mendham, Vogel's Textbook of Quantitative Inorganic analysis, including Elementary Instrumental Analysis, ELBS, London, 1978						
E BC	OOKS						
1.	https://pu	bs.acs.org/doi/abs/	10.1021/ed011	p62.2			
MOC	DC						
1.	https://ww	ww.mooc-list.com/	tags/inorganic-	chemistry			

COURSE TITLE Course Code		ELEC	TROCHEMISTE ELECTRODICS		CREDITS	4			
		CYA2801	Course Category	CC	L-T-P-S	3-1-0-0			
CIA			40%		ESE	60%			
	ARNING LEVEL		BTL-5		ASSESSMENT MODEL	ТА			
			COURSE OUT	COMES		РО			
1.	The learners should be able to: Write equations representing1electrochemical cell, explain various overpotential involved during the operation of the cell. Calculate electrochemical cell parameters, amount of corrosion and its rate1								
2.	students to		ernate energy sou		es will enable the need of the hour,	1,5			
3.	The learne electrode k		ble to apply theori	es in electroche	emistry to analyze	2			
4.	the learners should be able to Plot potential vs current, surface coverage vs.2,3potential, potential vs. pH, concentration profile vs. distance from the electrode2,3								
5.	5. Educating the students on the various types of electroanalytical techniques, will make them to understand the basics of analytical methods, so that they can easily work in any analytical laboratories.								
Prer	equisites : Ba	asic knowledg	e in undergraduate	e level electroch	nemistry.				
MO	DULE 1 – E	LECTROCH	IEMISTRY AND	CORROSION	1	(12L)			
appli Corre diagi preve	ications of er osion: Differ ram; corrosic ention of cor	nf measureme ent types of co on rate measur rosion.	nts. orrosion; influence	of environmer ry equation; mi	de-Liquid junction j at; Evans diagram, P xed potential theory	ourbaix			
MO	DULE 2 – E	NERGY STO	DRAGE DEVICE	S		(12L)			
of en CH ₃ (const photo	hergy options OH – O_2 , mo truction and ochemical m	and energy n olten carbonat applications -] ethods – stora	eeds – fuel cells – e – solid polymer	classification – electrolyte-bioc production – the id applications		ells – H ₂ -O ₂ , principles,			
	-	0	TIC CONDUCT	0	(12L)				
					ance, Transference temperature and p				

ionic conductance- Walden's equations - Abnormal ion conductance. Suggested Reading: Conductance, its determination and applications MODULE 4 - ELECTRODICS & DYNAMIC ELECTROCHEMISTRY (12L)Thermodynamics of electrified interface, Lippmann equation, electrocapillary curves, surface excess, determination of surface excess, structure of electrical double layer, Helmholtz-Perrin model, Guoy-Chapman model, Stern model. Butler Volmer equation for simple electron transfer reaction, current density, Tafel equation, Theories of overvoltage and its determination, factors affecting overvoltage, exchange current density, polarization. Suggested Reading: Basics in electrodics **MODULE 5 - ELECTRO ANALYTICAL TECHNIQUES** (12L)Reference electrodes: polarizable and non-polarizable systems. Types of reference and working electrodes. Polarography - principles and applications. Electrogravimetry and coulometry-Voltammetry – amperometric titrations and anodic stripping voltammetry – polarography-AC polarography – square wave polarography – RF polarography – normal and differential pulse polarography -principles-practice and applications. Suggested Reading: polarizable and non-polarizable systems LAB / MINI PROJECT/FIELD WORK N/A **TEXT BOOKS** 1. Peter Atkins, Julio de Paula, Elements of Physical Chemistry, fourth edition, W.H. Freeman & Company, 2005 2. G. M. Barrow, Physical Chemistry (V Edition), Tata McGraw Hill Education, 2007 **REFERENCE BOOKS** 1. S. Glasstone, Introduction to Electrochemistry, Affiliated East West Press, New Delhi 2003. 2. Puri Br, Sharma Lr, Madan S Pathania; Principles of Physical Chemistry, Vishal Publishing Co, 2008. **E BOOKS** 1. Introductory Physical Chemistry by David Ronis - McGill University, 2011 2. Physical Chemistry in Brief by J.P. Novak, S. Labik, I. Malijevska - Institute of Chemical Technology, Prague, 2005 MOOC 1. https://www.my-mooc.com/en/mooc/introduction-to-physical-chemistry/

COURSE TITLE			TS AND ORG YNTHESIS	GANIC	CREDITS	4		
Course Code		CYA2802	Course Category	CC	L-T-P-S	3-1-0-0		
	CIA		40%		ESE	60%		
LEARNING LEVEL				ASSESSMENT MODEL	ТА			
	COURSE OUTCOMES							
1.	Chemistry of retro synthetic analysis, for understanding the synthesis of pharmaceutical drugs							
2.	Knowledge on the reagents in organic synthesis to understand the mechanism, functions and suitability for various types of organic reactions under different conditions.							
3.	Exposure important	4						
4.	-	on the terpenoids ar ng important drugs		t are very essen	tial in	4,5		

Pre-requisites: Knowledge of Chemistry in undergraduate level.

MODULE 1 – RETRO SYNTHESIS AND PROTECTING GROUPS (12 L)

Retrosynthetic Analysis: Basic principles and terminology of retrosynthesis, synthesis of aromatic compounds, one group and two group C-X disconnections, one group C-C and two group C-C disconnections, amine and alkene synthesis, important strategies of retrosynthesis, functional group transposition, important functional group interconversions

Protecting groups: Protection and deprotection of hydroxy, carboxyl, carbonyl, carboxy amino groups and carbon-carbon multiple bonds; chemo- and regioselective protection and deprotection; illustration of protection and deprotection in synthesis.

MODULE 2 – OXIDATIONS (12L)

Oxidation: Metal based and non-metal based oxidations of (a) alcohols to carbonyls (Chromium, Manganese, aluminium, silver, ruthenium. DMSO, hypervalent iodine and TEMPO based reagents). (b) phenols (Fremy's salt, silver carbonate) (c) alkenes to epoxides (peroxides/per acids based), Sharpless asymmetric epoxidation, Jacobsen epoxidation, Shi epoxidation.(d) alkenes to diols (Manganese, Osmium based), Sharpless asymmetric dihydroxylation, Prevost reaction and Woodward modification, (e) alkenes to carbonyls with bond cleavage (Manganese, Osmium, Ruthenium and lead based, ozonolysis) (f) alkenes to alcohols/carbonyls without bond cleavage (hydroboration-oxidation, Wacker oxidation, selenium, chromium based allylic oxidation) (g) ketones to ester/lactones (Baeyer-Villiger).

MODULE 3 – REDUCTIONS

(12L)

Reduction: (a) Catalytic hydrogenation (Heterogeneous: Palladium / Platinum / Rhodium / Nickel etc; Homogeneous: Wilkinson). Noyori asymmetric hydrogenation. (b) Metal based reductions using Li/Na/Ca in liquid ammonia, Sodium, Magnesium, Zinc, Titanium and

Samarium (Birch, Pinacol formation, McMurry, Acyloin formation, dehalgenation and deoxygenations) (c) Hydride transfer reagents from Group III and Group IV in reductions. (i) NaBH₄ triacetoxyborohydride, L-selectride, K-selectride, Luche reduction; LiAlH₄, DIBAL-H, and Red-Al, Trialkylsilanes and Trialkylstannane, Meerwein-Pondorff-Verley reduction) (ii) Stereo/enantioselectiviey reductions (Chiral Boranes, Corey-Bakshi-Shibata).

MODULE 4 – CURRENT SYNTHETIC METHODS (12L)

Baylis-Hillman reaction, Henry reaction, Nef reaction, Kulinkovich reaction, Ritter reaction, Sakurai reaction, Tishchenko reaction and Ugi reaction. Brook rearrangement; Tebbe olefination. Metal mediated C-C and C-X coupling reactions: Heck, Stille, Suzuki, Negishi and Sonogashira, Nozaki-Hiyama, Buchwald-Hartwig, Ullmann coupling reactions, directed ortho metalation. Aza-Cope rearrangement (Overman rearrangement), ene reaction (metallo-ene; Conia ene); Prins

reaction.

MODULE 5 - TERPENOIDS AND STEROIDS

Classification – isolation of terpenes – isoprene rule- methods of structural elucidation -Synthesis and structure of monoterpines and sesquiterpenes- bisabolene, transchrysanthamic acid, logifolene, taxines, caryophyilene – Steroids- Structural elucidation and stereochemistry cholestrol, ergosterol, estrone, progestereone, androstereone, cortisone - Prostaglandins, F21 and E2, thromboxane Tx, B2.

(12L)

LAB / MINI PROJECT/FIELD WORK

NA

TI	TEXT BOOKS							
1.	S. Warren, Organic Synthesis, The disconnection Approach, John Wiley & Sons, 2004.							
2.	F. A. Carey and R. I. Sundberg, Advanced Organic Chemistry, Part A, 5th edition, Plenum Press, 2007							
3.	SM. B. Smith, Organic Synthesis, 2 nd Edition, 2005							
4.	L. Kuerti and B. Czako, Strategic Applications of named Reactions in Organic Synthesis, Elsevier Academic Press, 2005.							
E BC	DOKS							
1.	http://www.freebookcentre.net/Chemistry/Organic-Chemistry-Books.html							
MOO	MOOC							
1.	https://www.mooc-list.com/tags/organic-chemistry							

COURSE TITLE			RDINATION A		CREDITS	4			
Course Code		CYA2803	Course Category	CC	L-T-P-S	3-1-0-1			
	CIA		40%		ESE	60%			
	ARNING EVEL		BTL-5		ASSESSMENT MODEL	ТА			
			COURSE OUT	COMES		РО			
1	1 The students would have understood the chemistry of coordination compounds so that they can learn about their stability, and analytical methods.								
2		ge on the theor d and design new			ill make students to	1, 2, 3			
3		o understand the n			n compounds will help and to understand their	3, 4, 5			
4	-	on the reactivity on the reactivity on the reactivity of the second second second second second second second s		-		3, 4, 5			
5		ge on bioinorganic nic materials in bio	•	-	o understand the role	1, 2, 3			
Prer	equisites: 1	Knowledge in che	mical bonding a	nd molecular g	eometry.				
MOI	DULE 1 – 0	COORDINATIO	N COMPOUN	DS	(12L)				
const Sugg numt	tants -exper gested Read ber - Chelat	imental methods	– polarography ompounds – Lig	and potentiome ands or Coordin	- successive and overal stry-thermodynamic aspon nating Groups – Coordin (12)	ects.			
stabil effec	lization ene t-ligand fie	• •	amic, structural, ar orbital theory	spectral and n – pi bonding.	crystal field splitting-c nagnetic characteristics-	•			
	DULE 3-			•	DORDINATION COM	IPOUNDS			
Free ion terms-transformations in crystal field, energy diagrams in weak and strong field cases – Tanabe-Sugano diagrams-selection rules-magnetic properties – Van Vleck equation-magnetic susceptibility – Guoy and Faraday methods-ESR spectra of transition metal ions. Suggested Reading: Crystal field effect - Electron spin resonance (<i>ESR</i>) spectroscopy.									
MOI	DULE 4 –	REACTIVITY	OF COORDIN	ATION COM	POUNDS (12L)				
facto mech	ors affectin	MODULE 4 – REACTIVITY OF COORDINATION COMPOUNDS (12L) nert and labile complexes-substitution reactions in square-planar and octahedral complexes – actors affecting reactivities - electron transfer reactions-outer sphere and inner sphere nechanisms-photochemical reactions of coordination compounds – substitution, redox and							

Suggested Reading: Ligand substitution reaction – redox reactions – photochemical reactions.

MODULE 5 – BIOINORGANIC CHEMISTRY

(12L)

Transport proteins: Oxygen carriers, metalloenzymes, carboxy peptidase, carbonic anhydrase, redox process, iron-sulphur proteins, chlorophyll, salient features of the photo synthetic process, vitamin B12 role of sodium, potassium, calcium, zinc and copper; fixation of nitrogen, nitrogen cycle. Anti-cancer drugs and their mechanism of action, Natural and manmade radio isotopes and their application.

Suggested Reading: Storage and transportation of O_2 and CO_2 by hemoglobin - electron transport chain- oxidative phosphorylation.

LAB / MINI PROJECT/FIELD WORK

N/A

TEXT BOOKS

1.	F.A. Cotton, G. Wilkinson and P. L. Gaus, Basic Inorganic Chemistry, 5 th Edn. John Wiley & Sons, 2004.
2.	J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry, 5 th Edn. Pearson Education, 2005.
REF	ERENCE BOOKS
1.	W. L. Jolly, "Modern Inorganic Chemistry", 2 nd Edn., Tata McGraw-Hill Pub.Co., 2007.
2.	G. E. Rodgers, Introduction to Coordination, Solid State and Descriptive Inorganic Chemistry, McGraw-Hill International Edition, 1994.
E BO	DOKS
1.	http://www.freebookcentre.net/chemistry-books-download/A-text-book-of-inorganic-chemistry.html
2.	http://www.freebookcentre.net/chemistry-books-download/Introduction-to-Inorganic-

	chemistry.html
MOC	OC
1.	https://swayam.gov.in/courses/249-inorganic-chemistry-ii
2.	https://www.mooc-list.com/course/inorganic-chemistry-saylororg

COURSE TITLE Course Code				- APPLICATIONS CREDITS ND INORGANIC IISTRY		3	
		CYA280 4	Course Category	CC	L-T-P-S	3-0-0-1	
	CIA 50% ESE				ESE	50%	
	ARNING EVEL		BTL-4		ASSESSMENT MODEL	T TA	
			COURSE OUT	COMES		РО	
1.	Understand	s the basic co	oncepts of instrum	entation in spec	ctroscopy.	1,2	
2.	Able to inte the organic		actural information	and determine	the structure of	1,2,3	
3.			ious spectroscopic he problem solvii		erating	1,2	
4.			s in Mossbauer spe ation of organic an			2,3,4	
Prere	quisites : Kn	owledge in f	fundamentals of ch	emistry at high	er secondary level		
MOD	ULE 1 – UV	VIS SPEC	TROSCOPY		(9L)		
electro compo carbor in bipl Sugge	onic transiti ounds, diene nyl compoun henyls. ested Readin	ons, ultravi s, conjugate ds, ultraviolo g: K. V. Ra	olet bands for d polyenes. Fiese et spectra of arom	carbonyl com erWoodward ru atic and hetero	t law – Effect of pounds, unsaturate iles for conjugated cyclic compounds. navan, Molecular Sp	d carbonyl dienes and Steric effect	
MOD	ULE 2 – NU	CLEAR M	AGNETIC RESO	NANCE SPEC	CTROSCOPY	(9L)	
and fa resona compl Introd Syster Sugge	ctors contribu- ince, Chemic exes. Experin- uction, use of ns with coord ested Readin	uting to the r al exchange, mental techn f NMR in its dination num ag: K. V. Ra	magnitude of chem Lanthanide shift r ique(CW and FT). detection, its pres aber six (Ti(acac) ₂	ical shift, Nucl reagents and NM Stereochemica ence in trigonal Cl ₂ , Ti(acac) ₂ B	echanism of electron ear overhausser effe MR spectra of param l non-rigidity and flucture bipyramidal molector r_2). navan, Molecular Sp	ct, Double agnetic uxionality: ıles(PF5),	
	• •		AN SPECTROSC	COPY		(9 L)	

Infrared and Raman spectroscopy of simple inorganic molecules, predicting number of active modes of vibrations, analysis of representative spectra of metal complexes with various functional groups at the coordination sites; application of isotopic substitution, organic functional group identification through IR spectroscopy. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds.

Suggested Reading: K. V. Raman, R. Gopalan and P. S. Raghavan, Molecular Spectroscopy, Thomson and Vijay Nicole, Singapore, 2004.

MODULE – 4 : MOSSBAUER SPECTROSCOPY

Mossebauer effect, recoilless emission and absorption, hyperfine interaction, chemical isomer shift, magnetic hyperfine and quadruple interaction and interpretation of spectra.

Structure elucidation problems using the above spectroscopic techniques.

Suggested Reading: Colin N. Banwell, Elaine M. McCash Edition: Paperback (4th), Mcgraw-Hill College, 2006.

(9L)

MODULE 5 – ESR SPECTROSCOPY

Introduction, Similarities between ESR and NMR, Behaviour of a free electron in an external Magnetic Field, Basic Principle of an Electron Spin 30 Resonance Spectrometer, Presentation of the spectrum, Hyperfine coupling in Isotropic Systems (methyl, benzene and Naphthalene radicals). Factors affecting the magnitude of g-values. Zero field splitting and Kramer s Degeneracy, Line width in solid state ESR, Double resonance technique in e.s.r. (ENDOR) Experimental method. Applications of ESR to the following: 1. Bis-Salicylaldiimine - Copper II 2. CuSiF6.6H₂O & (NH₃)₅Co-O.Co(NH₃)₅

Suggested Reading: Colin N. Banwell, Elaine M. McCash Edition: Paperback (4th), Mcgraw-Hill College, 2006.

LAB / MINI PROJECT/FIELD WORK

N/A							
TEXT	TEXT BOOKS						
1.	K. V. Raman, R. Gopalan and P. S. Raghavan, Molecular Spectroscopy, Thomson and Vijay Nicole, Singapore, 2004.						
2.	C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000.						
3.	Colin N. Banwell, Elaine M. McCash Edition: Paperback (4th), Mcgraw-Hill College, 2006.						
4.	N. Levine, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.						
E BO	OKS						
1.	https://pubs.acs.org/doi/abs/10.1021/ed044pA552.2						
MOO	C						
1.	http://freevideolectures.com/Course/2306/Small-Molecule-Spectroscopy-and-Dynamics						

(9L)

COURSE TITLE	ORGANIC CH	EMISTRY PI	RACTICAL	CREDITS	3			
Course Code	CYA2831	Course Category	СР	L-T-P-S	0-0-6-0			
CIA	CIA 60% ESE							
LEARNING LEVEL		BTL-4		ASSESSMENT MODEL	ТА			
	PO							
1. The stude	nts will learn to and	alyze of mixtu	es and separation	on techniques	3,4			
2. The stude	nts will learn to con	nduct various t	ypes of organic	reactions	3,4			
	nts will learn to pre				4,5			
	Knowledge of Ch	•	lergraduate leve	el.				
	ROJECT/FIELD							
-	wo component and	three compone	ent mixtures; se	paration and				
	ion of compounds.		•••••••••••••••••••••••••••••••••••••••	11 .				
	involving two or th	ree stages com	prising of the f	ollowing processes.				
a) Nitration								
b) Halogenation c) Diazotization								
d) Rearrangen								
e) Hydrolysis	hent							
f) Reduction								
g) Alkylation								
h) Oxidation								
3. Preparations	illustrating the follo	owing:						
a) Benzoin co	ondensation	C						
b) Cannizaro	reaction							
c) Perkin read								
d) Fries rearra								
· ·	emann reaction							
f) Sandmeye								
1.	thesis of organic co	-	ation, chara	cterization of the				
	pectroscopic techn							
	n of melting point-		tallization Dist	Illation Thin lawar a	nd			
column chror	-	inques- Recrys	ianisation, Dist	illation, Thin layer a	nu			
	010	idation of sim	le organic com	pounds by spectral				
Analysis	and structural clue	idation of shirt		ipounds by spectral				
TEXT BOO	KS							
		V. Rogers P	W.G. Smith ar	nd A.R. Tatchell				
E BOOKS			, e ui	~~~,				
	http://www.springer.com/gp/book/9780412282300							
MOOC	<u> </u>							
	ww.mooc-list.com/	course/organic	-chemistry-i-sa	ylororg				
1		0	j					

	COURSE PHOTOCHEMISTRY TITLE		CREDITS	3		
Course Code		CYA2851	CYA2851 Course CE Category		L-T-P-S	3-0-0-1
	CIA 40% ESE			60%		
	ARNING EVEL	BTL-4			ASSESSMENT MODEL	ТА
	COURSE OUTCOMES					
1.	The students learn about the fundamentals of photochemistry.					1,2
2.	The students learn about the tools used in photochemistry and reactions.					2,3
3.	Students 1	earn about the ener	gy efficiency o	of photochemic	al reactions.	2,3

Pre-requisites : Knowledge of Chemistry in undergraduate level.

MODULE 1 – FUNDAMENTALS OF PHOTOCHEMISTRY (9 L)

Absorption - emission of radiation – photochemical laws - Electronic transitions – lifetimes – photo physical processes in electronically excited molecules - Jablonski Diagrams - intersystem crossing – fluorescence and structure – triplet states and phosphorescence emission – emission property and electronic configuration - photophysical kinetics of unimolecular processes – State diagrams – delayed fluorescence – bimolecular processes – kinetics of collisional quenching - Stern-Volmer equation - electron transfer - energy transfer – Molecular orbital view of excitation – The geometry of excited states

MODULE 2 – TOOLS AND TECHNIQUES (9L)

Experimental techniques –photochemical reactors – excitation sources - conditions for photolysis (solvents, type of vessels used, wavelength of excitation etc.) - Quantum yield – determination of quantum yields of reaction - Detection of intermediates - Techniques for study of transient species in photochemical reactions - flash photolysis – lasers in photochemical kinetics – measurement of emission characteristics – fluorescence, phosphorescence and chemiluminescence - radiation chemistry - primary processes - effects-dosimetry - pulse radiolysis.

MODULE 3 – INORGANIC PHOTOCHEMISTRY (9L)

Photochemistry of transition metal complexes – photo physical processes - types of energy states - photoredox reactions - photosubstitution reactions – aquation – anation or ligand exchange reactions - Photosensitisation reactions – photorearrangement reactions – geometrical isomerisations, racemization, linkage isomerisation and ligand rearrangement reactions – photoredox reactions - organometallic photochemistry - metal carbonyls.

MODULE 4 – ORGANIC PHOTOCHEMISTRY (9L)

Reactions of electronically excited ketones - Norrish Type I and Type II reactions – photoreduction – Paterno Buchi reaction - Photochemistry of α , β -unsaturated ketones - cyclohexadieneones - Reactions of olefins – photochemical oxidation reduction reactions -

Reaction of oxygen with olefins - Singlet oxygen - selected reactions –cyclo addition reactions – Woodward Hoffman rule of electrocylic reactions – Photo Diels - Alder reactions - Photo Fries reaction - Barton reaction - Di-pi-methane rearrangement – photochemistry of aromatic compounds – photochemical reaction between anthracene and carbon tetrachloride chemiluminescence.

MODULE 5 – PHOTOCHEMISTRY IN ENERGY CONVERSION (9L)

Mutagenic effect of radiation – Photosynthesis - – photoelectrochemistry of excited state - redox reactions - formation of fuels - hydrogen production – semiconductor electrodes - chemically modified electrodes – solar energy conversion and storage - photo galvanic cells.

LAB / MINI PROJECT/FIELD WORK

NA

TF	TEXT BOOKS						
1.	Nicholas J Turro, Juan C. Scaiano, "Principles of Molecular Photochemistry: An Introduction, Macmillan Publishers limited, 2009.						
2.	S.Sankararaman, "Pericyclic Reactions - A Textbook: Reactions, Applications and Theory", Wiley – VCH Verlag GmbH, Paperback edition, 2005.						
3.	Griesbeck, Griesbeck G Griesbeck, Axel G Griesbeck, "Synthetic Organic Photochemistry, CRC Press, 2004.						
4.	R.Ramamurthi, V.Ramamurthi and V.Ramamurthi, "Photochemistry", CRC Press, 1997.						
E BC	OOKS						
1.	https://books.google.co.in/books?id=zQvd1hBjp						
MOO	MOOC						
1	https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.5b00118						

COURS	E		OGENEOUS		CREDITS	3	
TITLE Course Code		CYA2852	ENEOUS CAT Course	CE	L-T-P-S	3-0-0-1	
			Category				
CIA			40%		ESE	60%	
LEARNIN			BTL-4		ASSESSMENT	ТА	
LEVEL	1				MODEL		
1 0 1	. 1		DURSE OUTO			<u>PO</u>	
		earn about the prin			•	1,2	
		earn about the surf		-		2,3	
		earn characterization Knowledge of che				2,3	
MODULE	1 - 1 n - a	PRINCIPLES OF dvantages - disadva	HOMOGEN antages of cata	EOUS & HET	EROGENEOUS C. - basicity - catalyst p ass transfer limitatio	(9 L) preparation -	
conversion phase - cata in concentra catalysis by	and lysis ated <u>met</u>	electivity - catalyst s in dilute aqueous strong acid solution al ions - catalysis b	activation - de solution- gener n- catalysis by by electron tran	eactivation and a ral and specific bases - stepwise	regeneration - Cataly acid and base cataly e and concerted reac	ysis in the gas sis - catalysis	
		CATALYSIS BY		(9L)			
conversion supported r	on P netal		tion on -Al ₂ O ₃ ed metal oxide	- reactions of o es - catalysis by			
					on in zeolites –crack	ting -	
					lexes and clusters -n		
molecular s		• •		0 1			
MODULE	4 –	CHARACTERIZ	ATION OF C	CATALYSTS	(9L)		
					etc-Modern method	•	
		• •	U		nethods of preparati	ion for	
		d metals - zeolites	1 0				
		RECENT DEVEL				-	
			-		nes- applications of	-	
				is - catalysis by	enzymes - catalysis	by polymers.	
NA	NI P	ROJECT/FIELD	WUKK				
TEXT B		KS					
		Chemistry, B. C. C	Gates, John Wi	ley & Sons, Inc	. 1992.		
2. Princ 1997	-	s and Practice of H	eterogeneous (Catalysis, J. M.	Thomas and W.J. The	nomas, VCH,	
Editi	Heterogeneous Catalysis in Industrial Practice, by C. N. Satterfield, McGraw Hill, 2nd Edition, 1991.						
	4. Fundamentals of Industrial Catalytic Processes, RJ Farrauto, CH Bartholomew						
E BOOKS							
	://w	ww.kobo.com/us/er	n/ebook/cataly	sis-2			
MOOC							
1 https	://w	ww.mooc-list.com/	university-enti	ty/catalyst			

COURSE ORGANOMETALLIC CHEMIS			EMISTRY	CREDITS	3		
TITLE		FOR ORG	ANIC SYNT	HESIS			
Course Code		CYA2853	Course	CE	L-T-P-S	3-0-0-1	
			Category		DOD	<00/	
					ESE	<u>60%</u>	
	ARNING		BTL-4		ASSESSMENT MODEL	ТА	
L	LEVEL MODEL COURSE OUTCOMES						
1.	Students 1	earn about the basi			nds	PO 1,2	
2.		earn about metal ca	-			2,3	
3.		earn about boranes		•		2,3	
Pre-I		Knowledge of che			1.	,	
					ION METAL CHE	EMISTRY	
		FOR ORGANIC	SYNTHETIC	TRANSFORM	ATIONS	(9 L)	
					ps for oxy carbenes		
					otz reaction - mecha		
					on of cobalt carbony	ls in organic	
					Vollhardt reaction.		
		METAL CARBO				· · · · · · ·	
					ic synthesis of subst		
					rganic synthesis - th nd acidity of side ch		
_		um complexes and			ind acturity of side ci		
		PALLADIUM IN			(9L)		
					ation to organic synt	hasis	
		mplications - Heck				110515 -	
MOI	DULE 4–	ORGANOBORA	NES AND OR	GANOSILAN	ES IN ORGANIC	SYNTHESIS (9L)	
Hydr	oboration -	- reacations of orga	noboranes – er	nantioselecvitiv	e synthesis of secon	dary alcohols	
				_	ds - free radical rea		
					con compounds -trir		
	•	•	$rbanions - \beta -$	- silylcarbonyl o	compounds – trimet	hylsilyl iodide	
	nethylsilyl						
		METALLOCENE		11			
					reospecificity - Hyd		
	EXT BOO		ulogenation -		er catalytic processe	o	
<u> </u>			ransition Meta	l Chemistry Ar	oplication to Organi	c Synthesis	
	Pergamon	n Press, 1982.					
2.		man, L. S. Hegedus ansition Metal Che			te, Principles and Apolos, 1988	pplications of	
3.	-			-	rganic Synthesis, Pe	_	
4.		n (Editor), Compre	hensive Organ	ometallic Chem	nistry, Pergamon, 19	982	
	DOKS		• / • · ·				
1.		ww.degruyter.com/	view/product/9	9645			
1	https://ww	ww.class-central.co	m/tag/organon	netallic%20che	mistry		

COURSE TITLE			C METHODO		CREDITS	3			
Course Code		CYA2861	NIC CHEMIS' Course	CE	L-T-P-S	3-0-0-1			
			Category			60%			
CIA									
	LEARNINGBTL-4ASSESSMENTLEVELMODEL								
	COURSE OUTCOMES								
	 Students learn basic concepts of methodology of organic synthesis Students learn on different types of bond formation, coupling. 								
		2,3							
		earn about protecti				3,4			
		Knowledge of che BASIC RETROS							
					(9 L) io, diastereo ligands	and faces, -			
stereoselec	tive s	synthesis.							
					EACTIONS (9L)				
					um and iron - ylides				
					nic enolates - enolate				
					tobbe, Darzen glyci	dic ester.			
		CHEMISTRY O							
					nt, equivalents of ke	etene,			
RCOCH2+	, RC	OCH2CH2CH2+,	RCOCH2CH2	CH2 etc					
		C-C BOND FOR		(9L)					
					free radicals, coupli				
					nation using tin rea	gents			
		PROTECTING G				tion of			
					nino groups - Protec rotection in synthesi				
		ROJECT/FIELD		nection and dep	Totection in synthesi	18.			
NA		KOJEC I/FIELD	WUKK						
TEXT I	800	KS							
		ey and R. I. Sundb Press, 1990.	erg, Advanced	Organic Chem	istry, Part A and B, 3	3rd ed,			
		n, Designing Organ	nic Synthesis. J	ohn Wiley, 197	/8.				
			-	-	ion to Organic Syntl	hesis,			
		n Press, 1982.		J 11 11	0 ,	,			
0			ith, Guidebook	to Organic Sy	nthesis, ELBS, 1982	•			
E BOOKS									
1. http:	//ww	w.cambridge.org/g	gb/academic/su	bjects/chemistr	y/organic-chemistry	/modern-			
	ods-	organic-synthesis-	4th-edition?for	mat=PB					
MOOC									
1 https	s://w	ww.mooc-list.com/	tags/organic-re	eactions					

COURSE TITLE	COURSE TITLEHETEROCYCLIC CHEMISTRY CREDITS		CREDITS	3			
Course Code	CYA2862	Course Category	СЕ	L-T-P-S	3-0-0-1		
CIA		40%		ESE	60%		
LEARNING		BTL-4		ASSESSMENT	TA		
LEVEL	LEVEL MODEL						
	COURSE OUTCOMES						
1. To learn a							
	<u>1,2</u> 2,3						
	: Knowledge of che				2,3		
-	HETEROCCYCL		*				
	NOMENCLATUR				(9 L)		
			ered heterocycle	es - Oxirane – Thiira			
			•	- Oxetane – Thietane			
				hydro 1,2-diazete - l			
				nomenclature – exar			
	FHREE AND FOU				iipies.		
				ne - 2H-Azirine - 3	Н_		
				etane - Azete - Azeti			
	Dithiete - 1,2-Diaze				luine - 1,2-		
	FIVE MEMBERE		•				
			. ,				
				eactions of Furan –			
				ne – pyrrolidine – th			
				lrothiophene- synthe			
	-	y - fused ring s	systems - benzo:	furan – isobenzofura	un —		
dibenzofuran							
	SIX MEMBERED		· · · · ·				
				- reactions - synthe			
				guanine only – mor	pholine –		
	inoline – isoquinolir			oflavones.			
	APPLICATIONS		(=)			
1	U			ghteners – in dye ind	lustry -		
pesticides - dru	g intermediates - an	tibiotics - antib	acterial – antifu	ingals- analgesics –			
antihypertensive	Э.						
LAB / MINI P	ROJECT/FIELD	WORK					
NA							
TEXT BOO	KS						
,							
4. Alan R K	Kartritsky et al, Com	prehensive He	terocyclic Chen	nistry III, Elsvlier, 2	007.		
E BOOKS							
	ww.amazon.in/Hete	rocyclic-Chem	istry-John-Joul	e-ebook/dp/B00D42	LJ8I		
MOOC		•	-	•			
	tel.ac.in/courses/104	105034/					

	COURSEPOLYMER CHEMISTRYCREDITSTITLE				3			
Course Code		CYA2863	Course Category	CE	L-T-P-S	3-0-0-1		
	CIA		40%		ESE	60%		
LEA	ARNING EVEL		BTL-4		ASSESSMENT MODEL	ТА		
	COURSE OUTCOMES							
1.	Students 1	earn about the basi	c concepts of p	olymers		1,2		
2.	Students 1	earn about differen	t types of poly	merization reac	tions	1,2		
3.	Students 1	earn about molecul	ar weight distr	ibution of poly	mers.	2,3		
Pre-	requisites :	Knowledge of Ch	emistry in unc	lergraduate leve	el.			
class deter cryst and i	MODULE 1 – BASIC CONCEPTS OF POLYMERS(9 L)Basic concepts of polymers – classification of polymers – organic and inorganic polymers classification based on occurrence, end use, thermal properties and structure-Tacticity and its determination using ¹ H NMR-Crystalline and amorphous polymers – Factors affecting crystallinity and crystallisability- Effect of crystallinity on properties- Glass transition temperature and its determination thermal transitions- dialatometer-variation of specific volume of polymers with temperature- Factors affecting glass transition temperature.							
effec polyr MOI	t – chain tr merisation - DULE 3 –	ansfer reactions and - Ziegler-Natta cata STEP GROWTH	d constants – li lysts - iniferter POLYMERS	ving polymers rs -Atom transfo SIATION (9L)		coordination ation.		
comp ratios lengt	oositions fro s- Mayo-Le h–Metathe	om ¹ H-NMR, FT-Il wis and Fineman-I	R, UV spectra Ross methods- r, Electrochem	and chemical m significance of nical and Ring-o	-polymer equation – nethods –Monomer r reactivity ratios-Sec opening polymerizat	eactivity quence		
Polyn and s interf	merisation solid monor facial and n	techniques– homog ners), solution, sus nelt polycondensati	peneous and he pension and er on.	terogeneous po nulsion polyme	lymerization – bulk rization – merits and			
Num in Ma weig disso fracti	MODULE 5 – MOLECULAR WEIGHT AND ITS DISTRIBUTION (9L)Number, weight and viscosity average molecular weights of polymers– determination of constantsin Mark Houwink's equation-Poly dispersity index and molecular weight distribution – Molecularweight determination by GPC and viscometry- Polymer dissolution - thermodynamics of polymerdissolution –solubility parameter – Fractionation of polymers-fractional precipitation andfractional dissolution methods.TEXT BOOKS							
1. 2.	Limited, Madras (2006). 2. F.N.Billmayer, Text Book of polymer Science, 3 rd Edn. John Wiley & Sons, New York							
FR	(2002).							
<u>ев</u> (E BOOKS 1. https://bookboon.com/en/introduction-to-polymer-science-and-technology-ebook							
I.			1000001011-10-p					
1	http://ww	w.open.edu/openle /content-section-0	earn/science-m	aths-technology	//science/chemistry/	introduction-		

	OURSE FERTILIZER TECHNOLOGY C				CREDITS	2				
Course Code		CYA2871	Course Category	AE	L-T-P-S	2-0-0-2				
	CIA		40%		ESE	<u> </u>				
	LEARNING BTL-3 ASSESSMENT LEVEL MODEL									
	COURSE OUTCOMES									
1.										
2.		2,3								
3.		earn about comple			-	2,3				
		Knowledge of Ch		lergraduate leve	el.					
		AN OVERVIEW	(6L)		1.0.111					
					al fertilizer, growth					
					cesses; materials of	various				
		ses; materials of co			y.					
		NITROGENOUS		· · · ·	• • • •	•				
					monium sulphate, n					
					ethods of production	1,				
		nd specifications, s	<u> </u>	<u> </u>						
		PHOSPHATIC F								
		±	L 1		phosphates fertilizer	0				
-		_			osphate, triple super					
					ics and specification	18.				
		POTASSIC FER		<i>,</i>		• 1				
		iuction of potassiu	m chloride, poi	tassium schoeni	te, their characterist	ics and				
-	fications.									
		COMPLEX AND				•				
	-	1 1		-	phate, mono-ammon					
				-	nulated mixtures; bio	olerunzers,				
	EXT BOO	dary nutrients and a	incro nutrents							
1.			nology" Asso	ciation of India	, New Delhi, 1977.					
						2012				
2.					ey", Higginbothams					
3.	Sauchelli, V.; "The Chemistry and Technology of Fertilizers", ACS MONOGRAPH No. 148, Reinhold Publishing Cor. New York, 1980.									
4.	4. Fertilizer Manual, "United Nations Industrial Development Organisation", United Nations, New York, 1967.									
E BC	OKS									
1.										
MOO										
	1 http://nptel.ac.in/courses/103107086/									

COURSI TITLE	PHARM	ACEUTICAL CH	IEMISTRY	CREDITS	2			
Course Co	de CYA2872	2 Course Category	AE	L-T-P-S	2-0-0-2			
CIA	CIA 40% ESE							
LEARNIN	G	BTL-3		ASSESSMENT	TA			
LEVEL	LEVEL MODEL							
1 50	COURSE OUTCOMES							
	udents learn about	0			1,2 2,3			
	· 51							
					2,3			
	tes : Knowledge of 1 – ANALGESIC			(6L)				
				analgesics – Morphi	ne analogues			
and its mod Narcotic and aminopheno	fication – Codeine agonists – Nalorpl l derivatives – asp	e – synthetic narco hine – Antipyretic pirin and salol deri	otic analgesics – analgesics – pyr vatives – barbitu	Pethidines and meth cazole – salicylic aci rates – benzodiazep	odones – d – p-			
	2 – ANTIHISTA			LS (6L) amine, ethanolamine	1 .			
quinine – 4-	- phenothazine – A amino and 8-amin 3 – ANTIBIOTI	o quinolines – pyr		odium species – cla nes.	ssification –			
Sulphamera uses. MODULE Antihyperte dopa – Parg	zine – Sulpha guar 4 – ANTIHYPEI nsive and hypoten yline – Bertyline –	nidine- Sulphanila RTINSICE AND sive drugs – mech - Hydralazine – Pr	mide – Sulphadi HYPOTENSIV anism of lowerin opranolol – Anti	drugs – Sulphathiazo azine – Methanism E DRUGS (6L) ng blood pressure – G itubercular drugs – F	of action – α –methyl			
	Rifampicin – Pyr							
Antineoplas 1,2 – epoxic hormones- o	es – antimetabolit ral contraceptives	ing agents – nitrog es – folic acid and	gen mustards – a	ziridines – sulphonio agonists – vinca alka				
TEXT B								
1. Berge	er, "Medicinal Che	emistry", Wiley In	terscience, New	York, Vol. I and II,	1990.			
2. Asute	sh Kar, "Medicina	al Chemistry", Wi	ley Eastern Ltd.,	, Chennai, 1992.				
3. Bentley and Driver's, "Text book of Pharmaceutical Chemistry", revised by L.M.Artherden Oxford University Press, London, 1985.								
E BOOKS								
E BOOKS 1. http://	/www.pharmpress istry-ebook	.com/product/978	0857110725/ess	entials-of-pharmace	utical-			
E BOOKS 1. http://		.com/product/978	0857110725/ess	entials-of-pharmace	utical-			

CO	URSE	CHEMISTRY OF NANOMATERIALS CREDITS				2	
TITLE							
Cour	se Code	CYA2873	Course	AE	L-T-P-S	2-0-0-2	
			Category				
	CIA		40%		ESE	60%	
	RNING		BTL-3		ASSESSMENT	ТА	
LF	LEVEL MODEL						
1	0, 1, 1		DURSE OUTC		• 1	<u>PO</u>	
1.		earn about synthes			Tals	1,2	
		earn on different d				2,3	
		earn about the cha			.1	3,4	
	-	Knowledge of Cl		ergraduate leve	21.		
			(/	ttom up and to	n dawn anneachas	- abamiatary of	
					p-down approaches rfaces- stabilization		
					s of nano materials.	of conoidal	
		SYNTHESIS OF					
					– homogeneous nuo	cleation and	
					tance- synthesis of n		
		and metal oxide na		ctors or impor	tunee synthesis of h	lietaine	
		PROPERTIES O		ERIALS (6L)		
					alled and multi walle	d nanotubes-	
		-		-	properties- quantum		
1	1 1	1 ·			ay diffraction and Ra		
		organic nanotubes				uman	
		NANOMATERI		aproperties			
				imensional thi	n films- nano compo	sites and	
					ation and properties		
		CHARACTERIZ					
					ography, electron be	am	
					g tunneling microsco		
0	1.	-	0 1	•••	ires- Applications of	1.	
		tronic and optoele					
		ROJECT/FIELD					
NA							
TE	XT BOO	KS					
1.	1. G. Cao – Nanostructures and nanomaterials- Synthesis, properties and applications –						
	Imperial College Press, 2004.						
2.		p, Nano, The Esser	ntials, Mc Graw	Hill, 2007.			
E BO							
1.		ww.nanowerk.com	/nanotechnolog	y/periodicals/e	book_a.php		
MOO							
1.	https://ww	ww.mooc-list.com	/tags/nanotechn	ology			