

M.Sc. Computer Science

(Duration: 2 Years)

CURRICULUM

(Applicable for Students admitted from Academic Year 2023-24)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

ΜΟΤΤΟ

To Make Every Man a Success and No Man a Failure

VISION

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research, and strategic partnership blended with values and commitment to society.

MISSION

- To create an ecosystem that promotes learning and world-class research.
- To nurture creativity and innovation.
- To instill highest ethical standards and values with a sense of professionalism.
- To take up activities for the development of Society.
- To develop national and international collaborations and strategic partnerships with industry and institutes of excellence.
- To enable graduates to become future leaders and innovators.

VALUE STATEMENT

• Integrity, Innovation, and Internationalization.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

To excel in Computer Science and Engineering education, research, and project management by empowering the students with strong conceptual knowledge.

MISSION

M1: To educate the students with basic foundation blocks of core and allied disciplines of Computer Science.

M2: To provide practical skills in the advancements of the Computer Science field required for the growing dynamic IT and ITES industries.

M3: To sculpt strong personal, technical, research, entrepreneurial, and leadership skills.

M4: To inculcate knowledge in lifelong learning, professional ethics and contribution to the society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The Program Educational Objectives (PEOs) of B.Sc. Computer Science are listed below:

The graduate after 3 years of program completion will

PEO1: Excel in his/her professional career or pursue higher education including research by applying the knowledge of Computer Science

PEO2: Demonstrate the technical skills to analyze and design appropriate solutions for problems with social consciousness and ethical values.

PEO3: Adapt themselves to organizational needs by understanding the dynamically changing technologies.

PROGRAM OUTCOMES (ALIGNED WITH GRADUATE ATTRIBUTES) (PO)

(To be achieved by the student after every semester/year/and at the time of graduation)

At the end of this program, graduates will be able to

PO1: Computational knowledge: Apply the knowledge of mathematics, science, fundamentals, and an engineering specialization to the solution of complex problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex problems reaching substantiated conclusions using the first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based

knowledge and research methods including the design of experiments, analysis, and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling of complex engineering activities with an understanding of the limitations.

PO6. Professional Ethics: Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practice.

PO7. Life-long learning: Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.

PO8. Project management and finance: Demonstrate knowledge and understanding of the computing and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO9 Communication Efficacy: Communicate effectively with the computing community, and with society, about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.

PO10: Societal and Environmental Concern: Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.

PO11: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO12: Innovation and Entrepreneurship: Identify a timely opportunity and use innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.

5

PROGRAMME- SPECIFIC OUTCOMES (PSO'S)

PSO 1: Understand and develop programming skills in the areas of full stack and web development.

PSO 2: Use appropriate AR / VR tools to provide working professionals with the essential Unity3D skills/tools needed to build VR/AR apps with a better understanding of emerging technologies.

PSO3: Ability to develop problem-solving skills through programming techniques for addressing real-life problems using appropriate principles and concepts of the Internet of Things.

M.Sc. Computer Science-Curriculum												
			SEMESTER-I									
S.NO	COURSE	COURSE	NAME OF THE	L	T	P	С	S	ТСН			
	CATEGORY	CODE	COURSE									
1	BS	CMA02003	Mathematical Concepts	2	0	ر ا	4	0	5			
			for Computer Science	5	0	2	4	0	5			
2	PC	CAD02003	Advanced Algorithms	2	1	2	4	2	5			
			and Analysis	2		2	4	2	5			
3	PC	ACS02001	Communication	ommunication 2				0	4			
			Networks	5	1	0	4	0	4			
4	PC	ACS02002	Advanced Data Base	3	0	0	2	1	3			
			Management Systems	5	U	U	3	1	5			
5	PC	ACS02004	Advanced Computer	3	0	2	4	0	5			
			Architecture	5	0	2	4	0	5			
			PRACTICAL									
6	PC	ACS02400	Advanced Data Base	0	0	2	1	0	2			
			Management Systems									
			Lab									
			Total	14	2	8	20	3	24			
L – L	ecture; T – Tutoria	al; P – Practical	; C – Credit; S- Self Study	; TC	H- T	'otal	Con	tact	Hours			

			SEMESTER-II						
S.NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН
1	РС	ACS02005	Software Engineering Methodologies	3	0	0	3	0	3
2	PC	ACS02006	Advanced Operating Systems		1	2	4	1	5
3	PC	ACS02007	Wireless Communications	3	0	0	3	0	3
4	PC	ACS02008	Advanced Network Security	3	0	2	4	0	5

5	DE	ACS025**	Elective-I	3	0	2	4	0	5				
	PRACTICAL												
6	РС	ACS02401	Mobile Communication LAB	0	0	4	2	0	4				
			Total	14	1	10	20	1	25				

L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study; TCH- Total Contact Hours

		S	EMESTER-III						
S.NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	$ \begin{bmatrix} \mathbf{F} \mathbf{T} \mathbf{H} \mathbf{E} \\ \mathbf{L} \end{bmatrix} \mathbf{L} \begin{bmatrix} \mathbf{T} \\ \mathbf{T} \end{bmatrix} $		Р	С	S	ТСН
1	PC	ACS02009	Cognitive Computing	3	1	0	4	1	4
2	PC	ACS02010	Information Security	n Security 3 0 0				1	3
3	PC	ACS02003	Research Paper Reviews	3	3 0 0			2	3
4	PC	ACS02011	Cyber Forensics	3	0	2	4	1	5
5	DE	Elective-II	Elective-II	3	0	2	4	0	5
]	PRACTICAL						1
6	PC	ACS02801	Internship*	* 2 *		*			
			15	1	4	20	5	20	
L – Leo	cture; T – Tutorial; P	P – Practical; C	C – Credit; S- Self Study;	TCI	I- To	tal (Conta	ct H	ours

• 15 days Internship carried out in the end of SEM II and evaluated in the SEM III

	SEMESTER-IV												
S.No	Course Category	Course Code	Name of the course	L	Т	Р	С	S	ТСН				
1	РС	ACS02012	Virtualization and Cloud Computing	3	1	0	4	1	4				
2	РС	ACS02013 Cyber Security Essentials 3		3	1	0	4	1	4				
			PRACTICAL										
3	PC	ACS02802	Project	0	0	24	12	2	24				
			Total	0	0	24	20	0	32				

TOTAL CREDITS: 80

		DEPARTMENT ELEC	TIV	ES									
SEM	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	ТСН					
		FULL STACK DEVELO	PMI	ENT									
2	ACS02500	Typescript	3	0	2	4	0	5					
2	ACS02501	Back End Development		0	2	4	0	5					
3	ACS02502	Web Development	3	0	2	4	0	5					
3	3 ACS02503 MEAN Stack development 3 0 2 4 0 5												
	AUGUMENTED REALITY/VIRTUAL REALITY												
2	ACS02504	AR/VR Tools and	3	0	2	4	0	5					
		Techniques											
2	ACS02505	Emerging trends in AR/VR	3	0	2	4	0	5					
3	ACS02506	3D Texturing and Sculpting	3	0	2	4	0	5					
3	ACS02507	Unity for AR/VR	3	0	2	4	0	5					
		ΙΟΤ											
2	ACS02508	5G & IOT Technologies	3	0	2	4	0	5					
2	ACS02509	Cognitive Iot	3	0	2	4	0	5					
3	ACS02510	Wearable Computing	3	0	2	4	0	5					
3	ACS02511	IOT Security	3	0	2	4	0	5					

	SEMESTER-I															
COU	JRSE	I	MATH	EMAT	TICAL	CONC	CEPTS	OF	CI	REDITS			4	4		
TI	ΓLE		(COMP	UTER	SCIEN	NCE									
COL CO	JRSE DDE	CI	MA020	003	COU	RSE C	ATEG	ORY		BS		L-T	-P-S		3-0-2	2-1
VER	SION		1.0		APPR	ROVAI	L DET	AILS	38 13-	8-ACM -05-2023	LI	EARNIN	IG LEV	EL	BTL	-3
						A	SSESS	MEN	SCH	EME						
							CIA								ESI	E
Fi Perio	irst odical sment	Sec Per	ond iodical essmer	l i	Semina Project	a r/ assi t	gnmen	its/	Sur	prise Tes / Quiz	st	Atten	dance		ES	E
15	5%	100	15%	11		10	%			5%		5		50%	6	
Cours	e.	The	course	focuse	es on th	e statis	tical m	odellin	g for co	omputer	science	and the	applicat	ions of	statisti	cs in
Descri	ption	the field of areas like artificial intelligence and Data Analytics. Formal languages and automata theory deals with the concepts of automata, formal languages, grammar, computability and decidability. The reasons to study Formal Languages and Automata Theory are Automata Theory provides a simple, elegant view of the complex machine that we call a computer. Automata Theory possesses a high degree of permanence and stability, in contrast with the ever-changing paradigms of the technology, development, and management of computer systems.														
Course Object	e tive		 To understand the concepts of Statistics Methods and probability distribution. To understand the sampling inference and testing of hypothesis. To learn correlation and regression in nonparametric method To understand curve fitting and decision theory To Understand the analysis of variance in statistical problems. 													
Outco	e me	1. A 2. A 3. 1 para 4. C 5. A	Apply the company the company of the	Null a ne conc Null a te the metho te the c s the si	cepts of and Alte relatio d urve fit gnificar	Statisti ernative n betw ting equ	the suite ics met hypoth veen tw uation	hod and hesis in vo vari based o betwee	ables on the second the second	able to ability dis atistical p by using tatistical classificat	tribution roblem correl data.	on. s. ation ar data.	ndregress	sion in	not	
Prerec	quisites	:Maths	8		0											
CO,F	PO,PSC) MAP	PING	r -	1 -	1 -	г	1 -	г					T	1	1
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1	PSO	PSO	PS 03	PSO
CO	1	1	-	-	-	-	,	0		U	1		-	-	1	1
1																
CO 2	-	-	-	-	-	-							-	-	-	-
CO 3	1	-	2	-	-	2							-	-	-	2
CO 4	1	-	2	-	-	2					:					2
CO 5	1	-	2	-	-	2							-	-	-	2
MOD	ULE 1:	STAT	<u>TISTIC</u>	CAL M	ETHO	DS								(9L+3P)
Introd disper	Introduction – steps of statistical methods – Measures of central tendency – Measures of CO-1 BTL-2 dispersion – coefficient of variation – skewness – kurtosis. Introduction – Definition of															
probał	bility –	- additi	ion and	<u>d mu</u> lt	iplicati	on law	of pr	<u>obab</u> ili	ty - co	ondition	al prot	ability	- Theor	rem		

	pility – Bayes' theorem – RV – Discrete & continuous probability distributions –	
Binomial, Poi	sson, uniform & normal distribution. Practical Component: Implement calculation	
MODULE 2: S	SUCAI measures using MATLAB	(0I + 3P)
MODULE 2. S	AWI LING INFERENCE AND TESTING OF ITTOTILESIS	(3L+3I)
Introduction – coefficient of va sample test – t-t	steps of statistical methods – Measures of central tendency – Measures of dispersion – ariation – skewness – kurtosis. Introduction – One sample test– Two sample tests – Small test – Ftest – Chi-square test.	CO-2 B1L-2
MODULE 3 C	ORRELATION AND REGRESSION	(9L+3P)
Simple, Multipl – Decision The forecasting. Im	le Regression and correlation – Nonparametric methods-Empirical laws and Curve Fitting eory. Analysis of variance – one way & Two-way classification – Time series and plement analysis of variance and time series analysis.	CO-3 BTL-2
MODULE 4 F	INITE MACHINE	(9L+3P)
Turing Machin Functions, Te Church's Hyp- to The Basic M Languages, Re representation Coloring – Cli matching	ne : Introduction, The Turing Machine Model, Computable Languages and chniques Turing Machine Construction, Modification of Turing Machines, othesis, Turing Machine As Enumerators, Restricted Turing Machine Equivalent Model. Chomsky: Regular Grammars, Unrestricted Grammars, Context Sensitive elation between Classes of Languages Tree Structures – Graph structures – graph s – regular graph structures –random graphs – Connectivity – Cycles – Graph iques, Vertex Covers, Independent sets – Spanning Trees – network flows –	CO-4 BTL-2
MODULE 5: H	FINITE AUTOMATA	(9L+3P)
Finite Automa	ation and Regular Expression: Finite State Systems, Basic Definitions, Non -	CO-5 BTL-2
Finite Automa Regular Sets: Algorithms for	Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets.	
Deterministic Finite Automa Regular Sets: ' Algorithms for	Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets.	
Deterministic Finite Automa Regular Sets: 7 Algorithms for 1. 2.	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. 	Springer. rentice -Hall
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE	Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS	Springer. rentice -Hall
Deterministic Finite Automa Regular Sets: 7 Algorithms for 1. 2. REFERENCE 1.	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, Fichard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman "Theory of Computation & Formal Languages", TMH. 	Springer. rentice -Hall
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE 1. 2. 3.	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, A Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman "Theory of Computation & Formal Languages", TMH. Anand Sharma, "Theory of Automata and Formal Languages", Laxmi Publisher. Formal Languages And Automata Theory, H S Behera, Janmenjoy Nayak , Hadibandhu P Vikash Publishing, New Delhi. 	Springer. rentice -Hall Pattnayak,
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE 1. 2. 3. E-BOOKS	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman " Theory of Computation & Formal Languages", TMH. Anand Sharma, "Theory of Automata and Formal Languages", Laxmi Publisher. Formal Languages And Automata Theory, H S Behera, Janmenjoy Nayak , Hadibandhu P Vikash Publishing, New Delhi. 	Springer. rentice -Hall Pattnayak,
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE 1. 2. 3. E-BOOKS 1.	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, I Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman "Theory of Computation & Formal Languages", TMH. Anand Sharma, "Theory of Automata and Formal Languages", Laxmi Publisher. Formal Languages And Automata Theory, H S Behera, Janmenjoy Nayak , Hadibandhu P Vikash Publishing, New Delhi. https://www.datasciencecentral.com/forum/topics/free-book-probabilistic-andstatistical-m computerhttps://files.boazbarak.org/introtcs/Inotes_book.pdf 	Springer. Prentice -Hall Pattnayak,
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE 1. 2. 3. E-BOOKS 1. 2.	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, , Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman "Theory of Computation & Formal Languages", TMH. Anand Sharma, "Theory of Automata and Formal Languages", Laxmi Publisher. Formal Languages And Automata Theory, H S Behera, Janmenjoy Nayak , Hadibandhu P Vikash Publishing, New Delhi. https://www.datasciencecentral.com/forum/topics/free-book-probabilistic-andstatistical-m computerhttps://files.boazbarak.org/introtcs/lnotes_book.pdf https://machinelearningmastery.com/statistics-books-for-machine-learning/ 	Springer. rentice -Hall Pattnayak,
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE 1. 2. 3. E-BOOKS 1. 2. MOOC	 Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, , Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman " Theory of Computation & Formal Languages", TMH. Anand Sharma, "Theory of Automata and Formal Languages", Laxmi Publisher. Formal Languages And Automata Theory, H S Behera, Janmenjoy Nayak , Hadibandhu P Vikash Publishing, New Delhi. https://www.datasciencecentral.com/forum/topics/free-book-probabilistic-andstatistical-m computerhttps://files.boazbarak.org/introtcs/lnotes_book.pdf https://machinelearningmastery.com/statistics-books-for-machine-learning/ 	Springer. rentice -Hall Pattnayak,
Deterministic Finite Automa Regular Sets: ' Algorithms for 1. 2. REFERENCE 1. 2. 3. E-BOOKS 1. 2. MOOC 1.	Finite Automata, Finite Automata with Moves, Regular Expressions, Two Way ata, Finite Automata with Output, Application on Finite Automata. Properties of The Pumping Lemma for Regular Sets, Close Properties of Regular Sets, Decision r Regular Sets. Dirk P.Kerose, Joshua C.C.Cla(2016), Statistical Modeling and Computation ,Publisher, Richard I. Levin, David S. Rubin (2017), Statistics for Management, Pearson Education P 8th Edition. BOOKS Hopcroft, Ullman "Theory of Computation & Formal Languages", TMH. Anand Sharma, "Theory of Automata and Formal Languages", Laxmi Publisher. Formal Languages And Automata Theory, H S Behera, Janmenjoy Nayak , Hadibandhu P Vikash Publishing, New Delhi. https://www.datasciencecentral.com/forum/topics/free-book-probabilistic-andstatistical-m computerhttps://files.boazbarak.org/introtcs/Inotes_book.pdf https://www.mooc-list.com/tags/statistical-modelinghttps://www.whitman.edu/mathematics/cgt_online/cgt.pdf	Springer. Frentice -Hall Pattnayak, odeling-in-

C	OURS	SE E	AD	ADVANCED ALG ANALY				FHMS	S ANI)	CRI	EDITS		4				
C	OURS	SE E		CAD	02003		C	COU CATE	URSE GOR	Y]	PC		L-T-I	P-S	2	2-1-2-2	
VI	ERSIC)N		1	.0		A	PPR DET	OVAI AILS	L	38- 13-0	ACM 5-2023]	LEARN LEVI	IING EL]	BTL-3	
AS	SESS	MEN	T SC	HEM	E													
			~					CIA			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						ESE	
Pe	First riodic sessmo	cal ent	Secon Asses	nd Pei smen	riodic t	al	Ser ass Pro	ninar, ignme viect	/ ents/		Sui Test	prise / Quiz		Attenda	ance		ESE	
	15%	CIIC		15	5%			<u>10</u>)%		4	5%		5%			50%	
Co Des	CourseThis course introduces advanced methods for the design and analysis of efficient algorithmsDescriptionemphasizing methods useful in practice.Different algorithms for a given computational task are presented and their relative merits evaluated based on performance measures																	
Cor Ob	Course1. To analyze worst case and average case running times using asymptotic notation.Objective2. To identify limitation of algorithm.3. To get awareness about various algorithmic techniques and real time applications.4. To solve real world problems.5. To identify efficient algorithm for NP hard problems																	
Con Ou	Course Upon completion of this course, the students will be able to Outcome CO1. Apply the asymptotic notations to analyze worst-case and average case running times of algorithms. CO2. Identify the limitations of algorithms in problem solving. CO3. Describe the various algorithmic techniques and its real time applications. CO4. Solve the real-time problem using graphs. CO5. Determine an efficient algorithms NP hard problem																	
Pre	requi	sites	NIL															
	το,	PO , <i>I</i>		- 50 I	VIAFI	ING	Γ	I	I				I					
	C O	P 01	P 02	P 03	P 04	P 05	Р 06	Р 07	P 08	Р 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	
	C 01	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	1	
	C O2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	
	C 03	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-	2	
M)DUL	E 1 I	INTR	ODU	CTIO	N									(9L	2+6 P)		
Intr of I Ran algo var Pra 1. C Suş	Introduction – Algorithms – Analysing and Designing Algorithms - Growth of Functions – Asymptotic notation - Probabilistic Analysis and Randomized Algorithms - Indicator random variables - Randomized algorithms - Probabilistic analysis and further uses of indicator random variablesCO-1 BTL-2Practical component: 1. Calculate complexity of algorithms using step count method. Suggested Readings: https://onlinecourses.nptel.ac.in/noc18_cs20CO-1 BTL-2																	
M	MODULE 2 DIVIDE-AND-CONQUER (9L+6P)																	

The maximum Subarray problem	Strassen's algorithm for matrix	CO-2 BTL -2
multiplication The substitution m	athed for solving requirences. The	CO-2 B1L-2
recursion tree method for solving r	ecurrences Heapsort Ouicksort	
Priority queues	centrences – neapson - Quickson -	
Practical component:		
Solve problems using divide and or	anguar approach and analyza its	
solve problems using divide and co	siquel approach and analyze its	
Suggested reading: https://online/	ourses antel as in/nos18 as 20 Dinary	
MODULE 2 DVNAMIC	POCRAMMINC AND CREEDY	
ALGORITHMS	KOGRAMINIING AND GREEDI	(0L+0 F)
Dynamic Programming - Elements	of dynamic programming - Optimal	CO-3 BTL-2
binary search trees - Greedy Algor	thms - An activity-selection problem -	
Huffman codes		
Practical component:		
1 Solve problem using Greedy apr	roach and analyze its complexity	
2 Solve problem using dynamic pr	ogramming approach and analyze its	
complexity	ogramming approach and analyze its	
Suggested reading: https://online	$r_{\rm ourses}$ notel ac in/noc18 cs20	
MODULE 4 · ELEMENTA DV ((6 I + 6 D)
Representations of graphs Broadt	h first seensh Denth first seensh	
Minimum Spanning Traces The ol	a-mist search - Depui-mist search -	CO-4 B1L-2
Source Shortest Daths Single of	goriumis of Kruskai and Prim – Single	
Source Shortest Pains - Single-so	All Daine Chartest Daths In directed acyclic	
graphs - Dijkstra's algorithm -	All-Pairs Shortest Paths - The Floyd	
Warshall algorithm		
Practical component:		
1. Implement Single source shortes	t path algorithm and Analyze its	
complexity		
2. Implement All source shortest pa	ath algorithm and Analyze its	
complexity		
3. Implement Minimum spanning t	ree algorithm and analyze its	
complexity		
Suggested reading :https://onlineo	courses.nptel.ac.in/noc18_cs20Dynamic	
Programming: Matrix-Chain Mu	ltiplication – Elements of Dynamic	
Programming – Longest Common	Subsequence- Greedy Algorithms: An	
Activity-Selection Problem - Elen	nents of the Greedy Strategy- Huffman	
Codes		
MODULE 5 LINEAR PROGRA	MMING	(6L+6P)
Formulating problems as linear pr	ograms - The simplex algorithm - NP-	CO-5 BTL-2
CO-5		
Completeness - NP-completeness a	and reducibility - Approximation	
Completeness - NP-completeness a Algorithms - The traveling-salesma	and reducibility - Approximation	
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement 2	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling	
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement a salesman problem and analyze its o	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling complexity	
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement a salesman problem and analyze its c Suggested Readings: ht	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling complexity tps://www.edutechlearners.com/design-	
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement a salesman problem and analyze its o Suggested Readings: htt analysisalgorithms	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling complexity tps://www.edutechlearners.com/design-	
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement a salesman problem and analyze its o Suggested Readings: ht analysisalgorithms TEXTBOOKS	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling complexity tps://www.edutechlearners.com/design-	
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement a salesman problem and analyze its o Suggested Readings: ht analysisalgorithms TEXTBOOKS	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling complexity tps://www.edutechlearners.com/design-	Structures and Algorithms
Completeness - NP-completeness a Algorithms - The traveling-salesma Practical component: Implement a salesman problem and analyze its a Suggested Readings: ht analysisalgorithmsTEXTBOOKS1Alfred V. Aho, John Pearson Education	and reducibility - Approximation an problem - The set-covering problem Approximation algorithms for Traveling complexity tps://www.edutechlearners.com/design-	Structures and Algorithmsl,

2	Robert Sedgewick and Kevin Wayne, —ALGORITHMS, Fourth Edition, Pearson Education.									
3	S.Sridhar, Design, and Analysis of Algorithms, First Edition, Oxford University Press. 2014									
4	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, -Introduction to									
	Algorithms, Third Edition, Prentice-Hall, 2011.									
REFERENC	REFERENCE BOOKS									
1	Data Structures – A Pseudocode Approach with C++ - Gilberg and Forouzan by Cengage Hill									
2	Schaum's Outline of Data Structures with C++ - Hubbard John. R by Tata McGraw									
3	Data Structures Using C and C++ - Langsam, Augenstein, Tanenbaum by Pearson Education									
E-BOOKS										
1	https://dokumen.tips/documents/fundamentals-of-algorithmics-brassard-bratley.html?page=1									
2	https://sd.blackball.lv/library/Introduction_to_Algorithms_Third_Edition_(2009).pdf									
3	https://kishorekoduvayur.files.wordpress.com/2017/12/schaums-programming-with-c-434.pdf									
MOOC										
1	http://www.coursera.org/learn/advanced-data-structures									
2	http://ocw.mit.edu/6-851S12 (MITOPENCOURSEWARE, Massachusetts Institute of									
	Technology)									
3	http://freevideolectures.com/Course/2279/Data-Structures-And-Algorithm									

COURSE TITLE	COMMUNICATION NETWORKS	CREDITS	4					
COURSE	ACS02001	COURSE CATEGORY	РС	PC L-T-P-S 3-1				
VERSION	1.0	APPROVAL DETAILS	38-ACM	LEARNING LEVEL	BTL - 3			

		С	IA								ES	SE		
First	Sec	ond Pe	eriodi	cal		Semi	nar/	Surprise Attendance ESE						
Periodical		Assessi	ment		a	ssignr	nents/	/ Test / Quiz						
Assessment						Proj	ect							
15%		15%	6			10	%		5%		5%	, D	5	0%
Course	This mo	dule is	the se	cond le	evel n	nodule	e of the	e curri	cula rel	ated to	the cor	nputer	network	field
Description	that prov	ides in	-deptl	n covei	age o	of some	e basio	c topic	s taugh	t such a	as layer	ed com	munica	tion
	architect	ure, roi	uting	algoritl	hms, a	and co	ngesti	on co	ntrol alg	gorithm	ns.			
Course	This mo	This module aims to provide a broad coverage of some new advanced topics in the field of												
Objective	compute	computer networks (wireless networks, mobile networks, VPN networks, Mobile IP, etc.)												
Course	After the	After the completion of the course, students will be able to												
Outcome	CO1: Ur	dersta	nd adv	anced	conce	epts ar	nd nex	t-gene	eration r	networl	KS			
	CO2: Ar	alyze	ГСР/І	P varia	nts, n	etwor	k Algo	orithm	, Protoc	ols, an	d their	functio	nalities	
	CO3: Co	mpreh	end fe	atures	of SE	ON and	d its ap	oplicat	tion to r	ext-ge	neration	n syster	ns	
	CO4: Ar	alyze t	he pe	rforma	nce o	f vario	ous ser	ver in	nplemer	itations	3			
	CO5: Ar	alyse t	he va	rious re	outing	g algor	ithms							
Prerequisite	s: NIL													
CO,PO, AN	CO,PO, AND PSO MAPPING													
CO PO	PO PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
1	2 3	4	5	6	7	8	9	0	1	2	1	2	3	4

Image: CO	CO	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	1
20 1 - 2 - 2 1 - - 2 . 2 2 20 - 1 - 1 - 1 - 2 . 2 2 2 4 - 1 - 1 - 1 - 2 2 2 2 4 - - 1 2 1 - - 1 2 2 2 2 4 - - 1 2 1 - - 1 2 1 1 - 2 <td< td=""><td>CO</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	CO	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
CO 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	2	1															
CO · I · I · I ·			-	2	-	-	2	1	-	-	-	2	-	-	2	-	2
CO··I2I··I2II·2MODULE INETWORK LAYER9L COI,BTL-2Network layer: Network Layer Services, Packet Switching, Performance, provided transport layers, implementation connectionless services, implementation connection oriented services, comparison of/irtual – circuit and datagram subnets.IPV4 Address, Forwarding of IP Packets, Internet Protocol, ICMP v4, Mobile IPMODULE 2 ROUTING ALGORITHMS9L CO2,BTL -3Routing Algorithms-Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Dasis, Intradomain Multicast Protocols, IGMP.MODULE 3 IPV6 ADDRESSING9L CO3,BTL-3IPv6 Addressing, IPv6 Protocol, Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control.MODULE 4 ANALYSIS OF NETWORK CONGESTION9L CO4,BTL-4Analysis of Network cogestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants.MODULE 5 SCTP9L CO1,BTL-3SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control, QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network. Compar	CO	-	-	1	-	-	1	-	-	1	-	-	-	-		-	2
Image: Second	CO	-	-	-	-	1	2	1	-	-	-	1	2	1	1	-	2
MODULE TWORK LAYER PERFORMANCE Network layer: Network Layer Services, Packet Switching, Performance, provided transport layers, implementation connectionless services, implementation connection oriented services, comparison of virtual – circuit and datagram subnets. IPV4 Address, Forwarding of IP Packets, Internet Protocol, ICMP v4, Mobile IP MODULE 2 ROUTING ALGORITHMS 9L CO2,BTL -3 Routing, Algorithms—Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Multicast Protocols, IGMP. MODULE 3 IPV6 ADDRESSING 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 5 SCTP 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network	5 MOD		1 NIE'T			VFD									1 DTI	2	
Implementation connectionless services, implementation connection oriented services, comparison of virtual – circuit and datagram subnets.IPV4 Address, Forwarding of IP Packets, Internet Protocol, ICMP v4, Mobile IP MODULE 2 ROUTING ALGORITHMS 9L CO2,BTL -3 Routing Algorithms–Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Multicast Protocols, IGMP. 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NF	Netwo	ork lay	ver: No	etworl	c Lave	er Serv	ices. I	Packet	Swite	hing	Perfor	mance	provi	ded tran	sport la	vers.	
circuit and datagram subnets.IPV4 Address, Forwarding of IP Packets, Internet Protocol, ICMP v4, Mobile IP MODULE 2 ROUTING ALGORITHMS 9L CO2,BTL - 3 Routing Algorithms-Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Multicast Protocols, IGMP. MODULE 3 IPV6 ADDRESSING 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Silding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. Softwork congestion dechanism, SDN control to improve QOS: scheduling, raffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G.	imple	menta	tion co	onnect	tionles	s serv	ices, i	mplen	nentati	on co	nnectio	on oriei	nted se	rvices,	compar	ison of	virtual –
MODULE 2 ROUTING ALGORITHMS 9L CO2,BTL - 3 Routing Algorithms-Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Multicast Protocols, IGMP. MODULE 3 IPV6 ADDRESSING 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transition from IPv4 to IPv6.Transport Layer Services, connectionless versus connection-oriented protocols. Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing, UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocol Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G.	circui	t and c	latagra	am sul	bnets.	IPV4 A	Addres	ss, Foi	wardi	ng of	IP Pacl	kets, In	ternet	Protoco	ol, ICM	P v4, M	obile IP
Routing Algorithms-Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Multicast Protocols, IGMP. MODULE 3 IPV6 ADDRESSING 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks; A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2013. 2 Computer Netwo	MOD	ULE	2 RO	UTIN	IG AI	GOR	ITHN	AS					ļ	9L CO2	2,BTL	-3	
Protocol-Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Multicast Protocols, IGMP. MODULE 3 IPV6 ADDRESSING 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transition from IPv4 to IPv6.Transport Layer Services, connectionless versus connection-oriented protocols. Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 edition, 2013. 2 Computer Networks, Andrew S	Routi	ng Al	gorith	ms–D	istanc	e Vec	tor ro	uting,	Link	State	Routi	ng, Pa	th Ve	ctor Ro	outing,	Unicast	Routing
V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradoman Multicast Profecois, IGMP. MODULE 3 IPV6 ADDRESSING 9L CO3,BTL-3 IPv6 Addressing, IPv6 Protocol, Transition from IPv4 to IPv6. Transport Layer Services, connectionless versus connection-oriented protocols. Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALVSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 edition, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2009 3 Comp	Proto	col-Int	ernet	Struct	ure, R	louting	g Info	rmatic	n Pro	tocol,	Open	Source	Path	First, B	order (Jateway	Protocol
Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involution Involuti	V4, B MOD		ast rot 3 IPV	$V_{6} \Delta \Gamma$		ssing		ng, Mi	inticas	ting B	asics,	Intrado	main		St Proto R RTI -	1000000000000000000000000000000000000	IMP.
connection-oriented protocols. Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network - Oroparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks; Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 edition, 2013. 2 2 Computer Networking: A Top-Down Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2014. 3 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009. 4 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012.	IPv6	IPv6 Addressing IPv6 Protocol Transition from IPv4 to IPv6 Transport Laver Services connectionless versus															
Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks; A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Cul	connection-oriented protocols. Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N,																
segement, A TCP connection, Flow control, error control, congestion control. MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks; Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2009 4 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 2 Goransson P, Black C, Culver T. Software Defined Network	Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications: TCP services, TCP features,																
MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4 Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2013. 2 2 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Mergene Koufmann 2014	segement, A TCP connection, Flow control, error control, congestion control.																
Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking; Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 edition, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morrore XeatFreeneene 2014	MOD	MODULE 4 ANALYSIS OF NETWORK CONGESTION 9L CO4,BTL-4															
Implementation of multi-threaded Web Server/Web Proxy with Caching/Filtering features, Sliding Window protocol implementation, performance study of various TCP/IP variants. MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2009 4 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Margan Kauffman with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013.	Analysis of Network congestion Mechanism, Routing algorithms, ARQ protocols Multimedia Networking;																
MODULE 5 SCTP 9L CO1,BTL-3 SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Magnetic	Imple	menta	tion o	of mul	ti-thre	aded	Web S	Server	/Web	Proxy	with	Cachin	ng/Filte	ering fe	atures,	Sliding	Window
MODULE SIGT PL COLBIES SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Margon Kauffman in 2014	proto		$\frac{1}{5}$	ntatio	n, peri	orman	ice stu	ay or	variot	IS ICI		riants.	DTI /	2			
SCIP: SCIP services SCIP reatures, packet format, An SCIP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Margan Kauffware 2014.					COT			1	- C	· •			DIL- ,	5		1	· 1
QUALITY OF SERVICE: now characteristics, now control to improve QOS: scheduling, traine shaping, resource reservation, admission control. Software Defined Network -Comparison between SDN and traditional networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach.	SCIP	': SCI i itv	OF S	VICES	SCH CE: f	P feat	ures,	packet	t form	lat, A	n SCI trol to	P asso	ociatio	n, flow	contro	ol, erroi	control.
networks -SDN controller, Switch design, SDN Controller-Switch Protocols, Open Flow Protocol, Control Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach.	resolu	LIII rce res	ervati	on ad	CE. I. missia	on con	trol S	oftwa	s, nov re Def	ined l	Networ	mpio ∙k -Cor	ve QC	on betw	een SD	N and t	snaping, raditional
Overhead & Handoff algorithms. Network Function Virtualization -NFV Architecture, Use cases, NFV Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach.	netwo	orks -S	SDN c	contro	ller, S	witch	desig	n, SD	N Co	ntrolle	er-Swit	ch Pro	tocols	, Open	Flow 1	Protocol	, Control
Orchestration and NFV for 5G. TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach.	Overł	nead &	& Hai	ndoff	algori	thms.	Netw	ork F	Functio	on Vi	rtualiza	ation -	NFV	Archite	cture,	Use cas	ses, NFV
TEXTBOOKS 1 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. 2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Koufmanny 2014	Orche	estratio	on and	NFV	for 50	J.											
 Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 editions, 2013. Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Koufmany 2014 	TEX	ГВОС	OKS			1	A 1	C	T	1	D '	1 T XX7	(1 11	D	F 1		1: 7
2 Computer Networks: A Systems Approach, LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach.	1		Co edi	mpute tions,	er Netv 2013.	vorks,	Andro	ew S.	Tanen	baum	, Davic	i J. We	therall	, Pearso	n Educ	ation In	d1a; 5
Edition, 2011. 3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Kaufmann; 2014	2		Co	mpute	r Netv	works:	A Sys	stems	Appro	ach, I	LL Pete	erson, I	3S Dav	vie, Mo	rgan-K	auffman	, 5th
 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley , 5th Edition, 2009 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Kaufmann; 2014 			Ed	ition, 2	2011.												
4 Data Communication and Networking , Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 REFERENCE BOOKS 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Kaufmann; 2014	3 Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley, 5th Edition 2009																
REFERENCE BOOKS 1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Kaufmann; 2014	4 Data Communication and Networking, Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012																
1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional;2013. 2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Kaufmann: 2014	REFERENCE BOOKS																
2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach.	1	1 Douglas E Comer. Internet Working with TCP/IP Volume -1, Sixth Edition, Addison-Wesley Professional:2013.															
Worgan Kaumann, 2014.	1		2 Goransson P, Black C, Culver T. Software Defined Networks: a Comprehensive Approach. Morgan Kaufmann: 2014.														, estej

3	Chayapathi R, Hassan SF, Shah P. Network Functions Virtualization (NFV) with a Touch of SDN: Netw Fun Vir (NFV ePub_1. Addison-Wesley Professional; 2016 Nov 14.
4	Marschke D, Doyle J, Moyer P. Software Defined Networking (SDN): Anatomy of OpenFlow Volume 1. 2015.
E-BOOKS	
1	http://iotmumbai.bharatividyapeeth.edu/media/pdf/lab_manuals/Manual_CM5I_ACN_22520_0 31020.pdf
2	https://csc-knu.github.io/sys-prog/books/Andrew%20S.%20Tanenbaum%20-%20Computer%20Networks.pdf
3	https://eclass.teicrete.gr/modules/document/file.php/TP326/%CE%98%CE%B5%CF%89%CF %81%CE%AF%CE%B1%20(Lectures)/Computer_Networking_A_Top-Down_Approach.pdf
MOOC	
1	https://freevideolectures.com/course/2276/computer-networks
2	https://archive.nptel.ac.in/courses/106/106/106106243/
3	https://github.com/Developer-Y/cs-video-courses

COURSE	ADVANCEI	D DATABASE	CREDITS	3					
TITLE	MANAGEMI	ENT SYSTEMS							
COURSE	ACS02002	COURSE	PC	L-T-P-S	3-0-0-0				
CODE		CATEGORY							
VERSION	1.0	APPROVAL	38-ACM,	LEARNING	BTL - 4				
		DETAILS	13-05-2023	LEVEL					
		ASSES	SSMENT SCHEME						
		ESE							
First	Second	Seminar/	Surprise Test /	Attendance	ESE				
Periodical	Periodical	assignments/	Quiz						
Assessment	Assessment	Project							
15%	15%	10%	5%	5%	50%				
Course	This module builds on the introductory module in databases. It intends to introduce more								
Description	advanced topics in databases such as data mining and data warehousing, distributed databases,								
	and client server architecture after introducing the DBMS implementation.								
Course	This module air	ns to give students	in-depth information ab	out system implementat	tion techniques,				
Objective	data storage, rej	presenting data ele	ments, database system	architecture, the system	a catalog, query				
	processing and	optimization, tran	saction processing con-	cepts, concurrency cont	rol techniques,				
	database recove	ery techniques, data	abase security and author	prization, and enhanced	data models for				
	advanced applic	cations, temporal d	atabases, deductive data	bases, database technolo	bgy for decision				
	support systems	s, distributed databa	ases and client-server are	chitecture, advanced dat	abase concepts,				
~	and emerging technologies and applications.								
Course	CO1 Master t	the basic concepts	and appreciate the appli	cations of database syste	ems.				
Outcome	CO2 Master the basics of SQL and construct queries using SQL.								
	CO3 Be fami	liar with a commer	cial relational database	system (Oracle) by writi	ng SQL				
	using th	e system.		0 1 1 1					
	CO4 Underst	and the concepts	of database technology	tor decision support s	ystems,				

distributed databases and client-server architecture.

CO5 Understand the concept of emerging technologies and applications.

Prere	quisit	es: NI	L														
						C	CO,PC),ANI) PSC) MA	PPIN	ר נ					
	CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	
		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
	CO	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	
	$\frac{1}{co}$												1				
	$\frac{co}{2}$	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	
	$\frac{2}{CO}$	1	_	2	_		2	1	_	_	_	2	_	_	2		
	3	1	_	2	_	-	4	1	_	_		-	_	-	-	-	
	CO	-	-	1	-	-	1	-	-	1	-	-	-	-		-	
	4																
	CO	-	-	-	-	1	2	1	-	-	-	1	2	1	1	-	
MOD	5	1.017															
MODULE 1 OVERVIEW									<u>91</u>								
PL/SQ	$\frac{1}{2}L - L$	ntrodu	iction	to PL	L/SQL	– De	clare,	begir	1 state	ments	s, Varia	ables, Q	Contro	I Struct	ture,	COI,B	TL - 3
PL/SQ Deckor	L Ira	insacu	OODS - Dro	Save	point,		r, PL/ Emb	SQL.		Duna	bjects -	- Proce	aures,	Funcu	ons,		
Defini	tion	of Tr	S. F10	grann tion a	natic a	CID	Drop	rtias	SQL, Tran	Dyna	$\frac{1110}{n} \frac{S}{Pro}$	2L, alle		- Stalle	ion		
proces	sing r	nonite	ansaci	ansact	ional	work	flows	mair	-mem	ory d	atahas	es rea	5 – 1 I-time	transac	rtion		
system	is lo	ng-dr	ration	n frai	isactio	ons.	and	transa	ction	man	ageme	nt in	multi	-databa	ases		
Concu	rrency	v Cor	ntrol -	– Loc	ks. C) Dotimi	stic (Concu	rrency		trol (I	Backwa	ard an	d Forv	vard		
validations), Timestamping Concurrency Control.																	
MODULE 2 OO DATABASE								9I									
Object	t-base	d data	bases	- Co	mplex	data	types	, struc	tured	types	and in	nherita	nce in	SQL, t	able	CO2,B	ГL - 3
inherit	ance,	array	and	multis	set ty	pes in	SQL	, obj	ect id	entity	and r	eferend	ce type	es in S	QL,		
impler	nentir	ng O-F	R featu	ires, P	ersiste	ent pro	ogram	ming	langu	ages,	OO vs	OR. X	ML-S	Structu	re of		
XML,	Docu	ment	Schen	na, Qu	leryin	g and	Trans	forma	tion,	API ir	n XML	, XML	, applic	ations.			
MOD	ULE :	3 OLA	AP													9I	_
On-lin	e Ana	alytica	l Pro	cessin	g – O	LAP	Bench	ımark	s, app	olicatio	ons, be	enefits,	tools,	catego	ries,	CO3,B	ГL - 3
extens	ions t	o SQ	L, Da	ita mi	ning -	– intr	oduct	ion, te	echnic	ues,p	redictiv	vemod	eling,	tools. 1	Data		
mining	g algo	rithms	s – Ap	riori,	Decis	ion tre	e,k-n	neans,	Baye	sian c	lassifie	er.				0.7	
MOD	ULE 4	4 OTI	HER '	TYPE	<u>15 OF</u>		ABA	SES	1.	1 4 1	~		1 . 1 .	C		<u>91</u>	
More	Kecen	t App	licatio	ons M	obile (iataba	ises; N	/lultin		databa	ases; G	eograp	onical I	ntorma	tion	COI,B	1°L - 4
Systen	ns; Ge	enome	e data	mana	gemei	it. Int	roduc	tion to	Data	a war	enousi	ng – C	oncept	ts, Ben	erits		
and Pr	oblen	is, Dv	v Arc	miecu	ure - v	Jpera		Dala,	load	manag	ger, me	ela dala	a, DW	Data II	ows		
- inflow, upflow, meta flow, DW tools and technologies – Extraction, cleansing, and																	
Data Warehousing using Oracle Data Warehousing Design - Designing Dimensionality							ality										
modeling, Design methodology, DW design using Oracle.							anty										
MODULE 5 SECURITY IN DATABASES								91									
Securi	ty and	d inte	grity 1	threats	, Def	ence	mecha	anism	s, Sta	tistica	l datab	base au	diting	& con	trol.	CO2.B	ГL - 4
Securi	ty iss	ue ba	sed of	n grai	nting/1	evoki	ng of	privi	leges.	Intro	ductio	n to st	atistica	al data	base	,	-
securit	y. PL	/SQL	Secur	ity – L	.ocks -	- Impl	licit lo	cking	, type	s and l	levels of	of locks	s, expli	cit lock	ting,		
Oracles' named Exception Handlers.																	
TEXT	BOO	KS															

1.	Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", 6th
2	Personal Sharkant P. Nevethe, "Eurodemontals of Database Systems" 4th Edition
2.	Pearson/Addisionwesley, 2007
REFERENC	E BOOKS
1.	Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom, "Database Systems: The Complete Book", Pearson, 2011.
2.	Niall O'Higgins, "Mongo D B and Python", O'reilly, 2011.
3	W. Lemahieu, S. vandenBroucke and B. Baesens Principles of Database Management: Practical
	Guide to Storing, Managing and Analyzing Big and Small Data Cambridge University Press
	,2018 ISBN: 978-1107186125
4	T. M. Connolly and C. Begg,"Database Systems: Practical approach to design, implementation,
	and management "Pearson Education Date: 2015 ISBN: 978-1292061184
E-BOOKS	
1	https://www.kopykitab.com/eBooks-for-MCA-master-of-computer-applications
2	https://www.oreilly.com/library/view/mongodb-and-python/9781449312817/
3	https://people.inf.elte.hu/miiqaai/elektroModulatorDva.pdf
MOOC	
1	https://cosmolearning.org/courses/database-design-417/video-lectures/
2	https://freevideolectures.com/course/2668/database-management-system
3	https://archive.nptel.ac.in/courses/106/105/106105175/

COURSE TITLE	ADVANCED COMPUTER ARCHITECTURE	CRE	DITS	4	
COURSE	ACS02003	COURSE	PC	L-T-P-S	3-0-2-1
CODE		CATEGORY			
VERSION	1.0	APPROVAL	38-ACM	LEARNING	BTL - 3
		DETAILS	13-05-2023	LEVEL	

		CIA			ESE
First Periodical Assessment	Second Periodical Assessment	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	This module focuses or pipelined and Multipro	n advanced compute cessor systems.	er architectures and	low-level system soft	ware such as
Course Objective	 To make students know To give the students To introduce the students To make the student multicomputers To study about 	v about the Parallel lents an elaborate id e advanced process idents know about t data flow computer	ism concepts in Pro dea about the differ or architectures to t the importance of m r architectures	gramming ent memory systems a he students. ultiprocessor and	nd buses.
Course Outcome	CO1: Demonstrate con CO2 : Discuss memory CO3 : Describe archite	cepts of parallelism organization and r ctural features of ac	n in hardware/softw napping techniques dvanced processors.	are.	

CO4 : Interpret performance of different pipelined processors. CO5: Explain data flow in arithmetic algorithms

Prere	anisit		05. E	хріан	I Uala	now i	11 al lu	men	aigo						
COJ	PO.A	ND PS	SO M	APPI	NG										
CO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO10	PO1	PO12	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9		1				
CO 1	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1
CO 2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO 3	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-
CO 4	-	-	1	-	-	1	-	-	1	-	-	-	-		-
CO 5	-	-	-	-	1	2	1	-	-	-	1	2	1	1	-
MODULE 1 PIPELINE AND VECTOR PROCESSING										(6L+6P)					
Paralle Proces	el Pro ssing,	cessin Array	ig, Pip Proc	pelinir essors	ng, Aı	ithme	tic Pi	peline	, Insti	ruction P	ipeline	, RISC P	ipeline,	Vector	CO1,CO2 ,BTL - 3
Practi	ical C	ompo	nent:				-								
1. Implement a C program to convert a Hexadecimal, octal, and binary number to decimal									ecimal						
number vice versa. 2 Implement a C program to perform Binary Addition & Subtraction															
2. Implement a C program to perform Binary Addition & Subtraction. MODILE 2 COMPLITER ARITHMETIC									(6I ⊥ 6P)						
Addition and Subtraction Hardware Implementation Multiplication Algorithms and Hardware									rdware	$\frac{(0L+01)}{CO3.CO4}$					
Imple	menta	tion.	Divisi	on Al	gorith	ms a	nd Ha	rdwar	e Imp	lementa	tion, Fl	oating P	oint Arit	hmetic	.BTL - 3
Opera	tions.	,			U				1		,	U			,
Practi	ical C	ompo	nent:												
1.	Impl	lemen	t a C j	progra	m to	perfor	m Mu	ltiplic	ation	of two b	inary ni	umbers			
2.	Impl	lemen	t a C	progr	am to	perfo	rm M	ultipli	ication	n of two	binary	numbers	(signed)) using	
	Boo	th's A	lgorit	hms.											
3.	Impl	emen	t a C	prog	ram to	o pert	orm c	11V1S10	on of	two bina	ary nur	nbers (U	nsigned)	using	
1	Impl	oring (11V1S1C	on algo	orithii	l. norfor	m div	ision	of two	hinory	numbor	(Unaion	nod) usin	a non	
4.	resto	ring a	livisio	on algo	orithm		in urv	151011	or two) ontary i	number	s (Olisigi	licu) usili	g non-	
MOD	ULE	3 PAI	RALI	LEL C	COMI	UTE	R MC)DEL	\S						(6L+6P)
Evolu	tion of	of Co	mput	er Aı	rchited	cture,	Syste	em A	ttribu	tes to H	Perform	ance, Sl	nared M	emory	CO5,CO6
Multip	proces	sors,	Distri	ibuted	Men	nory I	Multic	ompu	ter, V	/ector S	uper Co	omputers	, SIMD	Super	,BTL - 3
Computers.															
Practical Component:															
1.	SIM	D													
<u></u>		tor Pro		or SCOD	C A N	D ME	MOD	VUI	TDA	DCUV					$(\mathbf{6I} + \mathbf{6D})$
Advar	ULE oced D	TOCAS	SOT To	chnol	OGV'T	Design		e of P	CKA.	ore Inet	ruction	Set Arch	itectures	CISC	$\frac{(0L+0P)}{CO1}$
scalar	Proc	essors	RIS	C sc	alar P	rocess	ors 9	Super	Scale	ar and V	lector	Processo	rs: Supe	rscalar	.BTL - 3
Proces	sors	- 55015	,	2 500	1		,	- apor	South			100000000		Journa	,
Practical Component:															
1.	RIS	2													

2. CISC								
MODULE 5 I	PIPELINING AND SUPERSCALAR TECHNIQUES	(6L+6P)						
Linear Pipeline	e Processors: Asynchronous and Synchronous models, Clocking and Timing Control,	CO2,CO4						
Speedup, Effic	eiency and Throughput, Pipeline Schedule Optimization, Instruction Pipeline Design:	,BTL - 3						
Instruction Ex	kecution Phases, Mechanisms for Instruction Pipelining, Dynamic Instruction							
Scheduling, B	Scheduling, Branch Handling Techniques							
Practical Con	nponent:							
1. Pipelin	e							
2. Schedu	lling							
3. Clocki	ng and timing							
TEXTBOOK	<u>S</u>							
1.	Computer System Architecture, Morris M. Mano, 3rd edition, Pearson/Prentice Hall	l India						
2	Kai Hwang and Naresh Jotwani, Advanced Computer Architecture (SIE): Parallelis	m,						
	Scalability, Programmability, McGraw Hill Educastion 3/e. 2015							
3	John L. Hennessy and David A. Patterson, Computer Architecture: A quantitative approach,							
	5th edition, Morgan Kaufmann Elseveir, 2013							
REFERENCI	REFERENCE BOOKS							
1	Computer Architecture, Fourth edition, J. L. Hennessy and D.A. Patterson. ELSEVI	IER.						
2	Advanced Computer Architectures, S.G. Shiva, Special Indian edition, CRC, Taylor	r &Francis.						
3	Introduction to High Performance Computing for Scientists and Engineers, G. Hage	er and G.						
	Wellein, CRC Press, Taylor & Francis Group							
4	Advanced Computer Architecture, D. Sima, T. Fountain, P. Kacsuk, Pearson educat	tion						
E-BOOKS								
1	http://cs.baylor.edu/~maurer/aida/courses/archintro.pdf							
2	https://ict.iitk.ac.in/wp-content/uploads/CS422-Computer-Architecture-patterson-5t	h-						
	edition.pdf							
3	https://www.cse.iitd.ac.in/~srsarangi/advbook/index.html							
MOOC								
1	http://www.gcekjr.ac.in/pdf/lectures/2020/6292All_5th%20Semester_Computer%2	0Science%						
	20And%20Engineering.pdf							
2	https://abit.edu.in/wp-content/uploads/2019/11/ADVANCED-COMPUTER-							
	ARCHITECTURE-1-1.pdf							

COURSE TITLE	ADVANCED MANAGEMENT	DATABASE SYSTEMS LAB	CREDITS	1	
COURSE CODE	ACS02400	COURSE CATEGORY	PC	L-T-P-S	0-0-2-0
VERSION	1.0	APPROVAL DETAILS	38-ACM 13-05-2023	LEARNING LEVEL	BTL - 4

CIA										
First Periodical Assessment	Second Periodical Assessment	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendan ce	ESE					
15%	15%	10%	5%	5%	50%					

Cours	e	Th	This module builds on the introductory module in databases. It intends to introduce more dvanced topics in databases such as data mining and data warehousing, distributed databases and client server architecture after introducing the DBMS implementation.														
Descri	iption	ad ad	advanced topics in databases such as data mining and data warehousing, distributed databases and client server architecture after introducing the DBMS implementation. This module aims to give students in depth information about system implementation techniques														
Carros		an	This module aims to give students in depth information about system implementation techniques, data storage, representing data elements, database system architecture, the system catalog, query														
Cours	e tivo		lata storage, representing data elements, database system architecture, the system catalog, query														
Objec	uve	ua	a store	ige, lej	ontimi	ing ua	trans	action	nroces	se syster	n arcini	concurr	ency co	ontrol	techniques		
		dat	abase	ig allu recove	opunn rv tech	niques	, uanso a datak	action	curity	and auth	ncepis, porizatio	concurrent on and e	ency co	d data	models for		
		ad	vanced	annlic	ations	tempo	oral dat	abases	dedu	ctive dat	tahases	datahas	e techno	nlogy f	for decision		
		sui	oport s	vstems	distri	buted d	latabas	tes and	client.	-server a	rchitect	ure adv	anced d	latabas	e concepts.		
		an	d emer	ging te	chnolo	ogies a	nd app	licatio	ns.	501 / 01 0			uneeuuu	uuous	e concepts,		
Cours	e	CC	CO1 Master the basic concepts and appreciate the applications of database systems.														
Outco	me	CC	CO2 Master the basics of SQL and construct queries using SQL.														
		CC	CO3 Be familiar with a commercial relational database system (Oracle) by writing SQL														
		usi	using the system.														
		CC	CO4: Design concurrency control techniques, database recovery techniques.														
		CC	CO5: Design transaction processing concepts.														
Prerec	quisit	es: NII	: NIL														
CO,F	<u>PO, A</u>	ND PS	PSO MAPPING														
	PO1	PO2	PO3	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03													
	1	1	-	-	-	-	-	-	-	-	1	1	1	1			
C02	1	-	-	-	-	-	•	-	-	-	-	1	-	-	-		
$\frac{000}{000}$	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-		
C04	1		-	-	-	-	•	-	-	-	-		-	- 2	-		
		1-	4		<u>-</u> т	1ST (MS	1-		1-	1-	4	(OT)		
1	וחח	and F	MI C	ommai	L ade	191 0	TIN	UGNA							$\frac{(\mathbf{3L})}{\mathbf{CO1} 234}$		
1.	Kev	Constr	ains-N	ormali	zation										5 RTL-4		
3	Ασσ	regate t	functio	ons	Zution										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
4.	Join	s															
5.	View	vs															
6.	Inde	х															
7.	PL/	SQL															
8.	Exce	eption l	nandlin	ıg													
9.	Trig	gers															
10.	. Curs	sors															
11.	. Subj	program	ns-proc	cedure	PL/SO	QL											
12.	. Fund	ctions c	of PL/S	SQL													
TEXT	BOC	KS															
1.		At	oraham	Silber	schatz	, Henry	y F. Ko	orth, S.	Sudha	arshan, ʻ	'Databa	se Syste	em Cono	cepts",	6th		
		ed	tion, T	<u>ata M</u>	<u>cGraw</u>	Hill, 2	2011	1 (7)			<u></u>	~		1			
2.		Ra	mezEl	masrı,	Sham	cant B.	Navat	he, "F	undam	entals o	f Datab	ase Syst	ems", 4	th Edi	tion,		
DEEE		Pe	arson/A	Addisi	onwesl	ey, 200	57										
	KEN	CE B(JUKS		1.1'm	Laff	T11	ан 1 Т		• W 7: 1 -	• "D-t	haat C					
1			ctor G	arcia-N	2011	, jeii U	Jiman	, and J	ennite	r widon	n, Data	idase Sy	stems:	i ne Co	ompiete		
2		BC BC	$\frac{11}{10}$	carson	, 2011.	ngo D	Dond	Duthar	·" O'"	$\frac{1}{2}$	11						
			анул	אחופעוד	S. IVIO	ע טצוו	D alla	т кшог	I.Uľ	univ, Zu	111.						

3	W. Lemahieu, S. vandenBroucke and B. Baesens Principles of Database Management: Practical
	Guide to Storing, Managing and Analyzing Big and Small Data Cambridge University Press
	,2018 ISBN: 978-1107186125
4	T. M. Connolly and C. Begg,"Database Systems: Practical approach to design, implementation,
	and management "Pearson Education Date: 2015 ISBN: 978-1292061184
E-BOOKS	
1	https://www.kopykitab.com/eBooks-for-MCA-master-of-computer-applications
2	https://www.oreilly.com/library/view/mongodb-and-python/9781449312817/
3	https://people.inf.elte.hu/miiqaai/elektroModulatorDva.pdf
MOOC	
1	https://cosmolearning.org/courses/database-design-417/video-lectures/
2	https://freevideolectures.com/course/2668/database-management-system
3	https://archive.nptel.ac.in/courses/106/105/106105175/

	SEMESTER II													
COURSE	SOFTWARE EN	GINEERING	CREDITS	3										
TITLE	METHODO	LOGIES												
COURSE	ACS02004	COURSE	PC	L-T-P-S	3-0-0-0									
CODE		CATEGORY												
VERSION	1.0	APPROVAL	38-ACM	LEARNING	BTL-3									
DETAILS 13-05-2023 LEVEL														
ACCECCMEN	T SCHEME	•		-										

ASSESSMEN														
		CIA		ES	E									
First	Second Periodical	Seminar/	Surprise Test /	Attendance	ESE									
Periodical	Assessment	assignments/	Quiz											
Assessment		Project	~											
15%	15%	10%	5%	5%	50%									
Course	This course introduces students to the different software development lifecycle (SDLC)													
Description	phases used in developing, delivering, and maintaining software products. Students will													
-	also acquire basic software development skills and understand common terminology used													
	in the software engined	ering profession.		-	-									
Course	To understand Softwar	To understand Software Engineering Lifecycle Models												
Objective	• To do project management and cost estimation													
	• To gain knowledge of System Analysis and Design concepts.													
	• To understand softwa	are testing approacl	nes											
	• To be familiar with I	DevOps practices												
Course	At the end of this cour	se, the students will	l be able to:											
Outcome	CO1 Understand the ad	dvantages of variou	s Software Developmer	nt Lifecycle Mode	ls									
	CO2 Gain knowledge	on project managem	ent approaches as well a	as cost and schedu	le									
	estimation strategies													
	CO3 Perform formal a	nalysis of specifica	tions											
	CO4 Use UML diagram	ms for analysis and	design											
	CO5 Architect and des	ign using architectu	ural styles and design pa	atterns										
Prerequisites	: NIL													
CO,PO,ANI	D PSO MAPPING													

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO				
	1	2	3	4	5	6	7	8	9	0	1	2	1	3					
CO 1	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1				
CO 2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-				
CO 3	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-				
CO 4	-	-	1	-	-	1	-	-	1	-	-	-	-		-				
CO 5	-	-	-	-	1	2	1	-	-	-	1	2	1 1 -						
MOD	MODULE 1INTRODUCTION																		
Software engineering concepts – Development activities – Software lifecycle models - Classical waterfall - Iterative waterfall – Prototyping – Evolutionary - Spiral – Software project management – Project planning – Estimation – Scheduling – Risk management – Software configuration management														1,C02,I	BTL-3				
MOD	ULE 2	SOF	ГWAI	RE RE	QUIF	REME	NT SI	PECIE	FICAT	TION				(9L)					
Requirement analysis and specification – Requirements gathering and analysis – Software Requirement Specification – Formal system specification – Finite State Machines – Petrinets – Object modelling using UML – Use case Model – Class diagrams – Interaction diagrams – Activity diagrams – State chart diagrams – Functional modelling – Data Flow Diagram												- C0	CU2,CU3,B1L-3						
MOD	ULE 3	ARC	HITE	CTU	REAN	D DE	SIGN							(9L)					
Softwa Function subscript Archite design	are des onal i ibe – ectural	sign – ndeper Adap styles	Designdence ter – s – Lay	gn pro e – D Comn vered -	cess - esign and - Client	- Desi patter - Stra -serve	gn co ns –] tegy – r - Tier	ncepts Model - Obso red - P	– Co -view- erver ipe and	oupling control – Prox d filter	– Coh ler – I y – Fa · User in	esion – Publish- acade – aterface	- C0 - -	C03,C04,BTL-3					
MOD	ULE 4	TES	TING										(9L)						
Testing testing Model	g – Un – Reg Checl	it testi ressioi king	ng – B n testir	lack bo 1g – D	ox testi ebugg	ing– W ing - F	/hite b Program	ox test n anal	ing – I ysis –	ntegrat Symbo	ion and lic exec	System cution –	cm C05,C06,BTL-3						
MOD	ULE 5	Dev)ps											(9L)					
Motiva Archite Micros	ation-C ecture service	Cloud Buil es.	as a ding	a plat and	form- Testin	Operat g-Dep	tions- loyme	Depl nt- C	oymer Case	nt Pipe study:	eline: Migrat	Overall ing to		7,C02,]	BTL-3				
TEXT	BOO	KS																	
1.		Ber Pea	nd Bru rson E	legge, ducati	Alan I on, 20	H Duto 04.	oit, Ob	ject-O	rientec	l Softw	are Eng	ineerin	g, 2nd e	edition,					
2.		Car edit	lo Ghe ion, Pl	ezzi, M HI Lea	ehdi J rning	azayer Pvt. Li	ri, Dino td., 20	o Man 10.	drioli,	Fundar	nentals	of Soft	ware E	ngineer	ing, 2nd				
3. Craig Larman, Applying UML and Patterns, 3rd ed, Pearson Education											on, 2005	5.							
4.		Len Pea	Bass, rson E	Ingo V ducati	Weber on, 20	and L 16	iming	Zhu, -	-Dev	Ops: A	Softwa	re Arch	itect's Perspectivel,						
REFE	REN	CE BC	OKS		, -														
1		Raj 200	ib Mal 9.	l, Funo	lamen	tals of	Softw	are Er	igineei	ring, 3ro	d editio	n, PHI	Learning Pvt. Ltd.,						

2	Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007.
E-BOOKS	
1	https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/Software-Engineering-
	9th-Edition-by-Ian-Sommerville.pdf
2	http://infolab.stanford.edu/~burback/watersluice/watersluice.pdf
3	https://davcollegetitilagarh.org/wp-content/uploads/2020/09/fundamentals-of-software-
	engineering-fourth-edition-rajib-mall.pdf
MOOC	
1	https://www.edx.org/learn/software-engineering
2	https://www.upgrad.com/software-engineering-course/

COUT			T 7 A N T						a	CDEI	TTC			4		
TITI	LE LE		VAN	CED (JPER.	AIING	G 8 1 8	ILNI	5	CREI	Л15			4		
COUF	RSE		ACS	2005		C	OURS	SE		PC		L	-T-P-S		2-1-2-1	
COD	DE					CA	ГEGO	DRY								
VERS	ION		1.	0		AP	PROV	AL		38-AC	CM	LEA	ARNIN	G	BTL -3	
						D	ETAI	LS		13-05-2	2023	L				
ASSES	SME	NT SO	CHEN	ſE												
		CLA									ESE					
Firs	st	Seco	ond Pe	eriodic	al	Seminar/ Surprise Test /				Att	AttendanceESE					
Period	lical	Asse	essmei	nt		assign	ments	5/		Qui	Z					
Assessr	ment					Projec	et									
15%	6	<u>15%</u> <u>10%</u> <u>5%</u> <u>5%</u> <u>50%</u>												50%		
Course		This	This course is a journey to understanding the role played by the Operating System in providing													ng
Descrip	otion	the r	the rich user experience afforded to modern applications by today's computers. Along the way,													ıy,
		we h	we highlight the symbiotic relationship between hardware and software that makes it possible													e
		for t	for the computer and OS to provide a pleasing user experience.													
Course	:	The	main	object	ives of	f this c	course	are to	: Enat	ole the s	students	s to lea	rn the o	differe	nt types	of
Objecti	ive	oper	ating	system	is and	their	function	oning.	Gain	knowle	dge of	Distrib	uted O	peratin	g Syster	ns
		Gair	insig	ht into	the c	ompon	ents a	nd ma	nagem	ent asp	ects of	real-tir	ne and	mobile	e operatio	ng
		syste	ems. L	earn c	ase stu	idies in	Linux	x Oper	ating S	Systems						
Course		On t	he suc	cessfu	l comp	oletion	of the	course	e, stud	ents wil	l be abl	le to:				
Outcon	ne	CO1	Unde	rstand	the de	esign is	sues a	ssocia	ted wit	th opera	ting sy	stems				
		CO2	Maste	er vario	ous pro	ocess n	nanage	ement o	concep	ts inclu	ding scl	hedulin	g, dead	locks,	and	
		distr	ibuted	file sy	stems											
		CO3	Prepa	are Rea	al-Tim	e Task	Schee	luling								
		CO4	Analy	yze Op	peratin	g Syste	ems fo	r Hand	lheld S	Systems						
		CO5	Analy	yze Op	peratin	g Syste	ems lik	ce LIN	UX ar	id iOS						
Prereq	uisite	s: NIL	4													_
CO,P	0, AN	ND PS	O MA	PPIN	G		-						_			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	_
CO1	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	4
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	4
CO3	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-	4
CO4	-	-	1	-	-	1	-	-	1	-	-	-	-		-	

CO4 -

1

-

(6L+6P)

1

-2

1

What is an Operating System? – Main frame Systems – Desktop Systems –	C01,C02,BTL-3
Multiprocessor Systems – Distributed Systems – Clustered Systems – Real-	, ,
Time Systems – Handheld Systems – Feature Migration – Computing	
Environments -Process Scheduling – Cooperating Processes – Inter Process	
Communication - Deadlocks – Prevention – Avoidance – Detection – Recovery.	
Practical Component:	
1. Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS	
d) Priority	
2. Implement all file allocation strategies	
3. Implement the all page replacement algorithms a) FIFO b) LRU c)	
LFU	
4. 10. Implement Threading & Synchronization Applications	
MODULE 2 DISTRIBUTED OPERATING SYSTEMS	(6L+6P)
Issues – Communication Primitives – Lamport"s Logical Clocks – Deadlock	C01,C02,BTL-3
handling strategies – Issues in deadlock detection and resolution-distributed file	, ,
systems –design issues – Case studies – The Sun Network File System-Coda.	
Practical Component:	
1 Implement all file allocation strategies	
2 Implement Semanhores	
3 Implement Il File Organization Techniques a	
4. Implement the all page replacement algorithms a) EIEO b) I PU a) I EU	
4. Implement lie an page replacement algorithms a) FIFO b) LKO c) LFO	
5. Implement Paging Technique I memory management.	
MODULE 3 REALTIME OPEKATING SYSTEMS	(0L+0P)
Introduction – Applications of Real Time Systems – Basic Model of Real Time	C01,C02,BTL-3
System – Characteristics – Safety and Reliability - Real Time Task Scheduling.	
Practical Component:	
1. Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS d)	
Priority	
2. Implement all file allocation strategies	
3. Implement Semaphores	
4. Implementation of File Organization Techniques	
MODULE 4 OPERATING SYSTEMS FOR HANDHELD SYSTEMS (6L+6P)
Paguirements Technology Overview Handhald Operating Systems	
Requirements – recimology Overview –franchend Operating Systems –	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android –	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component:	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: 1. Implement Bankers algorithm for Dead Lock Avoidance	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: 1. Implement Bankers algorithm for Dead Lock Avoidance 2. Implement an Algorithm for Dead Lock Detection	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: 1. Implement Bankers algorithm for Dead Lock Avoidance 2. Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES	C01,C02,BTL-3
PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: 1. Implement Bankers algorithm for Dead Lock Avoidance 2. Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process	C01,C02,BTL-3 (6L+6P) C01 C02 BTL-3
 PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS Architecture and SDK Framework - Media Laver - Services Laver - Core OS 	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 Requirements – Technology Overview –Handneid Operating Systems – PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System 	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS : Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System Practical Component:	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS : Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System Practical Component: Implementation of CDL scheduling - a) Bound Bohin b) SUE a) ECES d) 	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 Requirements – Technology Overview –Handneid Operating Systems – PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS : Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System Practical Component: Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS d) 	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 Requirements – Technology Overview –Handneid Operating Systems – PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS : Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System Practical Component: Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS d) Priority 	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3
 PalmOS-Symbian Operating System- Android –Architecture of android – Securing handheld systems Practical Component: Implement Bankers algorithm for Dead Lock Avoidance Implement an Algorithm for Dead Lock Detection MODULE 5 CASE STUDIES Case Studies: Linux System: Introduction – Memory Management – Process Scheduling – Scheduling Policy - Managing I/O devices – Accessing Files- iOS : Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System Practical Component: Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS d) Priority Implement all file allocation strategies 	C01,C02,BTL-3 (6L+6P) C01,C02,BTL-3

5. Implement Il File Organization Techniques a											
6. Implement the all page replacement algorithms a) FIFO b) LRU c) LFU	ſ										
2. Implement Shared memory and IPC	2. Implement Shared memory and IPC										
3. Implement Paging Technique f memory management.											
4. Implement Threading & Synchronization Applications											
TEXTBOOKS											
1 Abraham Silberschatz; Peter Baer Galvin; Greg Gagne, "Operation	ing System Concepts",										
Seventh Edition, John Wiley & Sons, 2004.											
2 MukeshSinghal and Niranjan G. Shivaratri, "Advanced Concep	ts in Operating Systems –										
Distributed, Database, and Multiprocessor Operating Systems",	Tata McGraw-Hill, 2001.										
REFERENCE BOOKS											
1 Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson	n Education India, 2006.										
2 Pramod Chandra P.Bhatt, An introduction to operating systems,	concept and practice, PHI,										
Third edition, 2010.											
3 Daniel.P.Bovet& Marco Cesati, "Understanding the Linux kerne	el",3rdedition,O"Reilly, 2005										
4 Neil Smyth, "iPhone iOS 4 Development Essentials – Xcode", 1	Fourth Edition, Payload media,										
2011.											
E-BOOKS											
1 https://minnie.tuhs.org/CompArch/Resources/os-notes.pdf											
2 https://www.phindia.com/Books/BookDetail/9789387472877/in	troduction-to-operating-										
systems-bhatt											
MOOC											
1 https://onlinecourses.nptel.ac.in/noc20_cs04/preview 2											

COURSE TITLE	WIRELESS CO	MMUNICATIONS	CREDITS	3			
COURSE CODE	ACS02006	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0		
VERSION	1.0	APPROVAL DETAILS	38-ACM 13-05-2023	LEARNING LEVEL	BTL - 3		

		CIA			ESE										
First Periodical	Second Periodical	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendance	ESE										
15%	15%	10%	5%	5%											
1570	1370 1070 370 370														
Course	To introduce the c	To introduce the concepts of wireless / mobile communication using cellular environment.													
Description	To make the students to know about the various modulation techniques, propagation														
_	methods, coding and multi access techniques used in the mobile communication. Various														
	wireless network s	systems and standards	are to be introduced	l.											
Course	The student should	d be made to:													
Objective	Understand	d the basic concepts of	mobile computing												
	Understand	d Wireless LAN, Blue	tooth and WiFi Tecl	hnologies											
	Be familiar	r with the network pro	tocol stack	-											
	• Learn the b	basics of mobile teleco	mmunication system	n											
	Be exposed	d to Ad-Hoc networks													

Cours Outco	se ome		On the successful completion of the course, students will be able to: CO1 Explain the basics of mobile telecommunication system CO2 Illustrate the generations of telecommunication systems in wireless network													
			CO3	3 Un	dersta	nd the	archi	tectur	e of W	vireless	LAN t	echnol	ogies	neress	10000011	-
			CO4	1 Det	termin	e the	functi	onalit	y of no	etwork	layer a	nd Ider	ntify a	routing	protoco	1
			CO'	for 5 Evi	a give	en Ad	hoc no	etworl	KS f Tran	enort o	nd Ann	lication	n lavar			
Prere	anisit	es: N	<u> </u>		Jiaini			anty 0		sport a	ոս App	meanor	li layel			
CO,	PO, A	ND P	SO M	O MAPPING												
C	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PSO	
0	1	2	3	4	5	6	7	8	9	0	1	2	01	02	3	
C	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	
				<u> </u>												
$\begin{bmatrix} 0\\ 02 \end{bmatrix}$	-	-	- - - - - - - 1 - - -												-	
C	1	-	2	2 2 1 2 2 -												
03																
C 04	-	-	1	1 1 - 1												
C	-	-	-	-	1	2	1	-	-	-	1	2	1	1	-	
05																
MOD	ULE	I CEI	LUL	AR C	CONC	EPT	AND	SYST	EM L	DESIG	N FUN	DAMI	ENTA	LS		9
Introd system Cellul capac	luction ns- Ex lar Co ity, tra	n to w ample ancept acking	vireles es, trei : Freq and g	s com nds in uency rade o	munic cellul reuse of serv	ation: ar rad e, cha ice. Ir	Evol io and nnel a	ution perso assign ing Co	of mo onal co ment, overag	bile co ommun hand o ge and o	ommun ications off, Int capacity	ications s. erferen v in Ce	s, mob ice and llular s	ile radi 1 syster ystems	o COI 3 n	, BTL-
MOD	ULE	IIM)BIL	E RAI	DIO P	ROP	AGA	FION	<u> </u>		<u> </u>	,		<u></u>	-	9
Free s	space	propa	gation	mode	el. refl	ectior	n. diffi	ractio	n. scat	tering.	link bı	ıdget d	esign.	Outdoo	or CO2	. BTL-
Propa	gation	mod	els, In	door j	propag	gation	mode	els, Sn	nall sc	ale Mu	ıltipath	propag	gation,	Impuls	e 3	,
mode	l, Sma	ll scal	e Mul	tipath	measu	ireme	nts, pa	aramet	ters of	Mobile	e multip	path ch	annels,	types of	of	
small	scale	fading	g, stati	stical		s for 1	nultip	ath fa	ding c	hannel	S.				0	
UNII	111 N	ΙΟΟ		ION	IECH	INIQ	UES A	AND I	LQUA		TION				9	
Modu Ortho Fadin Equal Adapt	Modulation Techniques: Minimum Shift Keying, Gauss ion MSK, M-ary QAM, M-ary FSK, Orthogonal Frequency Division Multiplexing, Performance of Digital Modulation in Slow-Flat Fading Channels and Frequency Selective Mobile Channels. Equalization: Survey of Equalization Techniques, Linear Equalization, Non-linear Equalization, Algorithms for Adaptive Equalization Diversity Techniques, RAKE receiverCO3, BTL- 3															
UNIT	UNIT IV CODING AND MULTIPLE ACCESS TECHNIQUES 9															
Coding: Vocoders, Linear Predictive Coders, Selection of Speech Coders for Mobile CO4, BTL Communication, GSM Codec, RS codes for CDPD. Multiple Access Techniques: FDMA, 3 TDMA, CDMA, SDMA, Capacity of Cellular CDMA and SDMA.									, BTL-							
UNIT	UNIT V WIRELESS SYSTEMS AND STANDARDS 9															
Secon AMPS	d Ger S, GSI	eratio M, IS-	n and 95 an	Third d DEC	Gene CT	ration	Wire	less N	etwor	ks and	Standa	rds, W	LL, Bl	ue tootl	n. CO5	5, BTL-

TEXTBOOKS	
1	T.S.Rappaport, "Wireless Communications: Principles and Practice, Second Edition,
	Pearson Education/ Prentice Hall of India, Third Indian Reprint 2003.
REFERENCE B	BOOKS
1	W.C.Y.Lee, "Mobile Communications Engineering: Theory and applications, Second
	Edition, McGraw-Hill International, 1998.
2	R. Blake, "Wireless Communication Technology", Thomson Delmar, 2003.
E-BOOKS	
1	https://minnie.tuhs.org/CompArch/Resources/os-notes.pdf
MOOC	
1	https://www.coursera.org/courses?query=mobile%20cloud%20computing
2	https://www.mooc-list.com/tags/mobile-computing

COURSE	ADVANCED	CREDITS		4						
TITLE	NETWORK SECURITY									
COURSE	ACS02007	COURSE	P	C	L-]	Г -Р- S	3-0-2-1			
CODE		CATEGORY								
VERSION	1.0	APPROVAL	38- A	ACM	LEA	RNING	BTL - 3			
		DETAILS	13-05	5-2023	LE	VEL				
ASSESSMENT	SCHEME									
	CIA					I	ESE			
First	Second Periodical	Seminar/	Sur	prise Te	est /	Attenda	in ESE			
Periodical	Assessment	assignments/		Quiz		ce				
Assessment		Project								
15%	15%	10%	5	%	4	5%	50%			
Course	To highlight the features of d	lifferent technologie	es invol	ved in N	etwork	Security				
Description										
Course	Explain the objectives of info	ormation security Ex	kplain th	ne import	tance ar	nd applica	tion of each			
Objective	of confidentiality, integrity, a	uthentication and a	vailabil	ity Unde	rstand v	various cr	yptographic			
	algorithms. Understand the b	basic categories of	threats	to compi	uters an	d networ	ks Describe			
	public-key cryptosystem. De	escribe the enhance	ments i	nade to	IPv4 b	y IPSec.	Discuss the			
	fundamental ideas of public-	key cryptography.	Genera	te and di	stribute	e a PGP k	ey pair and			
	use the PGP package to send	an encrypted e-mai	il messa	.ge.						
	Discuss Web Security and Firewalls									
Course	After successful completion of the course, the learners would be able to									
Outcome	CO1. Provide security of the data over the network.									
	CO2. Do research in the emerging areas of cryptography and network security.									
	CO3. Implement various networking protocols.									
	CO4. Protect any network fro	om the threats in the	e world							
	CO5: Understand Intrusions	and intrusion detect	tion							

Prerequisites: NIL															
CO,PO,AND PSO MAPPING															
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	01	02	3
С	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1
01															
С	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
02															
С	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-
03									-						
C	-	-	1	-	-	1	-	-	1	-	-	-	-		-
04		1.00					ļ								
MOD	ULE	I SEC			KEND		•	1 4		6.0		1.6	.		(6L+6P)
Secur	ity tre	nds - I	Legal,	Ethic	al and	Profe	ssiona	al Asp	ects of	f Secur	ity, Ne	ed for S	Security	y C	01,C02,BTL-3
at Mu	ıltiple	levels	s, Sec	urity]	Policie	es - N	Iodel	of net	twork	securit	ty – Se	ecurity	attacks	5,	
servic	es and	l mech	nanism	ns – O	SI sec	urity	archite	ecture	– Cla	ssical e	ncrypti	on tech	nniques	:	
substi	tution	techi	niques	, tran	sposit	ion t	echnic	ques,	stegar	nograph	ny) F	oundat	ions o	f	
moder	rn cry	ptogra	phy: 1	perfec	t secu	rity –	infor	natior	theor	ry – pr	oduct c	ryptos	ystem -	_	
crypta	nalysi	is.				•				• 1		• • •	·		
Pract	ical C	ompo	nent:												
	1	L Cla	assical	encry	ption	techn	ique								
	~	2 Sul	hstitut	ion te	chnia	ie	940								
	2	$r_{r_{2}}$	ansnos	sition f	echni	nne									
MOD	ULE	$\frac{2}{2}$ SYN	MME'	FRIC	KEY	CRY	рто	FRAP	РНУ						(6L+6P)
Algeh	raic st	ructur	es - N	Iodula	r arith	metic	-Eucli	id's al	gorith	m- Cor	ornenc	e and r	natrice	s C	01.C02.BTL-3
- Grou	ine R	inge	Fields	- Finit	e fiel	le-DF	S_R	ock ci	nher I	Drincinl	es of T		Strengt	h	01,00 2 ,D12 0
of DE	רים, הע ה- א	ifferei	ntial a	nd lin	ear cr	untana	lveie	- Bloc	k cinh	er desi	on prin	ciples.	– Bloci	2	
cipher	mode	of on	aratio	nu III n Ex	valuati	on cri	toria f	$r \Lambda F$	κ cipi	dvoncor	i Enerv	ntion S	tandar	4	
	- Mout Kor	u diatr	ibutio	n – Lv n	aiuati				5 - A		I LITELY	puon 5	lanuar	u	
- NC4		omno	nont.	11.											
rraci		ombo	nent:												
1.	DES														
2.	2D2	1													
J.	AES)													
4.	RC4	Ir aimh													
5. Block cipher MODULE 2 A SYMMETRIC KEY CRYPTOCR A DUV										(6I + 6D)					
	ULL	JAGI								·	•		<u>,</u>	1 0	
Prime	s - P	rımalı	ty Te	sting	– Fac	torizat	10n –	Eule	r's tot	tient fu	nction,	Ferma	it's and	$\mathbf{d} = \mathbf{C}$	01,C02,BTL-3
Euler	s The	eorem	- Ch	inese	Rema	inder	Theo	rem –	- Exp	onentia	tion ar	nd loga	rithm	-	
ASYMMETRIC KEY CIPHERS: RSA cryptosystem - Key distribution - Key									У						
management – Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve									e						
arithmetic-Elliptic curve cryptography.															
Pract	ical C	ompo	nent:												
1.	Asy	mmetr	ic Key	y Ciph	ers										
2.	RSA	1	-												
3.	Diff	ie Hell	lman l	key ex	chang	e									
4. ElGamal cryptosystem															
MOD	III.E	4 ME	SSAG	E AT	THE	NTIC	ATIC	ΝΔΝ		TEGR	ΙТУ				(6I ⊥6P)

Authentication rec of hash function a Entity Authentic Authentication ap Practical Compo 1. Digital sig 2. Biometric 3. Password 4. Kerberos	quirement – Authentication function – MAC – Hash function – Security nd MAC – SHA –Digital signature and authentication protocols – DSS- cation: Biometrics, Passwords, Challenge Response protocols- pplications - Kerberos, X.509 onent: gnature s response protocols	C01,C02,BTL-3
MODULE 5 EM	AIL SECURITY	(6L+6P)
E-Mail Security: Security architector security association Secure Multiparty Payment Transactor Practical Compo	Pretty Good Privacy, S/MIME IP Security: IP Security overview, IP ure, Authentication Header, encapsulating security payload, Combining ons, Internet Key Exchange Case Studies on Cryptography and security: y Calculation, Virtual Elections, Single sign On, Secure Inter-branch tions, Cross site Scripting Vulnerability.	C01,C02,BTL-3
1. S/MIME I	P Security	
2. Cross site	scripting	
TEXTBOOKS		
1.	Cryptography and Network Security - Principles and Practice: William Education, 6th Edition	Stallings, Pearson
2.	Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd E	dition
REFERENCE B	OOKS	
1.	C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Wiley India Pvt.Ltd	Network Security,
2.	BehrouzA.Foruzan, Cryptography and Network Security, Tata McGraw	^y Hill 2007.
3.	Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security Communication in a PUBLIC World, Prentice Hall, ISBN 0-13-046019	y: PRIVATE 9-2
EBOOKS		
1.	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-12r1	l.pdf
2.	https://www.vssut.ac.in/lecture_notes/lecture1423183198.pdf	
3.	https://www.iare.ac.in/sites/default/files/lecture_notes/IARE_IS_LECT	URE_NOTES_0.pdf
MOOC		
1.	http://nptel.ac.in/courses/106105031/lecture by Dr.DebdeepMukhopadh	yayIIT Kharagpur
2.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-scienc computer-system-engineering-spring-2009/video-lectures/	e/6-033-

COURSE	MOBILE COMMUN	NICATION LAB	CREDITS	2							
TITLE											
COURSE	ACS02401	COURSE	PC	L-T-P-S	0-0-4-0						
CODE		CATEGORY									
VERSION	1.0	APPROVAL	38-ACM	LEARNING	BTL - 4						
		DETAILS	13-05-2023	LEVEL							
ASSESSMENT	SESSMENT SCHEME										
	CIA										

Pe	First riodic	al	Seco Asse	nd Pe ssmei	eriodio nt	cal	Sem assi	inar/ gnmei	nts/	Su	rprise ' / Quiz	Fest	Atte	ndance		ESE
Ass	sessm	ent					Pro	ject								
	15%		15% 10% 5% 5%													50%
Cour	se		This	cours	e cont	ains a	comp	rehens	sive m	aterial	about	MATL	AB as	a power	rful sin	ulation
Desci	riptio	n	tool	for co	mmun	icatio	ns. Th	e aim	of this	s cours	e is to i	introdu	ce MA	TLAB	not onl	y as a
			gene	ral pro	ogram	ming	langua	age, ra	ther, the	he role	of the	extrem	ely po	werful I	MATL	AB
			capa	bilitie	s as a	simula	ation t	ool is	empha	usized.	The ex	amples	s given	to illus	trate th	e
			mate	rial of	the c	ourse	is not	just a	direct	use of	MATL	LAB co	mman	ds, inste	ead they	v often
Cour	5 P		The	object	tive o	f the	s. Iah is	to in	troduc	e a ha	sic die	rital co	mmun	ication	system	through
Obie	ctive		MAT	TLAB	simul	lations	The Is	studer	nts wil	l be fai	miliar v	with the	e follov	ving ite	ms:	unougn
o »je	• Waveform generation.															
	• Signal detection.															
	 Evaluating various plots to quantify the performance of basic digita 														comm	unication
systems: Bit-error-rate versus signal-to-noise-ratio, power spectrum, power														er versus		
0	time, constellation plot, polar plot, and eye diagram.															
Cour	se	On the successful completion of the course, students will be able to:														
Outo	Jutcome CO1. Use simulation tools to demonstrate various aspects of the communication process													011		
			CO2	. De	monst	rate th	ne mo	dulati	on/den	nodula	tion ba	sed on	BPSK	/OPSK	-OFDN	4.
				GM	ISK, T	ГDМ.										,
			CO3	. An	alyze	the pro	operti	es/per	formai	nce of	CDMA	-based	codes.			
			CO4	. Mo	del th	e T1 C	Carrie	r bitstı	eam.							
			CO5	. De	velop	codes	s to c	haract	terize	and co	ompute	the p	aramet	ers of	differe	nt
Prere	anisi	tes. N	 TT	Cha	inner i	noder	s 01 w	ireless	snetwo	JIKS.						
CO.	PO. A	ND F	PSO M	[APP]	ING											
C	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PSO	
0	1	2	3	4	5	6	7	8	9	0	1	2	01	02	3	
C	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	
$\frac{01}{C}$												1				_
	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
C	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-	
03	-		_			_	-				_			-		
С	-	-	1	-	-	1	-	-	1	-	-	-	-		-	
04																
C	-	-	- - 1 2 1 - - 1 2 1 1											-		
05																
								т тет	OF D	DOCT		°C –				(0D)
												(9P)				
Study	of wi	reless	Comr	nunic	ations	using	Com	munic	ation 7	Frainer	Kits				CO	1,2,3,4,5
1.a Baseband Communication												, B1	L-4			
1.b. Adaptive Linear Equalizer																
1.0.0	Code E	Divisio	n Mul	tiple /	Access	s (CDI	MA) -	- Mult	iuser							

1. e Global System for Mobile Communication (GSM) (Using WiCOMM-T - Wireless Digital Communication Training system SDR										
Platform)										
1.f. Spread Spectrum – DSSS Modulation & Demodulation										
1.I. Spread Spectrum – DSSS Modulation & Demodulation (Using Emona 101 Tranier Kit)										
(Using Emona 101 Tranier Kit) Wireless Path loss Computations – Study of Propagation Path loss Models - Indoor &										
oncepts",										
1 /										
g Systems –										
-Hill, 2001.										
dia, 2006.										
ractice, PHI,										
J [~] Reilly,										
, Payload										
1 https://www.coursera.org/courses?query=mobile%20cloud%20computing										

	SEMESTER-III										
COURSE TITLE	COGNITIVE COMPUTING	CRED		4							
COURSE CODE	ACS02008	COURSE CATEGORY	PC	L-T-P-S	3-1-0-0						
VERSION	1.0	APPROVAL DETAILS	LEARNING LEVEL	G BTL-3							
ASSESSMENT SCHEME											
	CIA ESE										

F Peri Asse	First iodica essmei	l nt	Second Periodical AssessmentSeminar/ assignments/ ProjectSurprise Test / QuizAttendance											ESE		
1	5%			15%)		1	0%		5	%		5%			50%
Cours Descr	se ·iptior	1	explicitly programmed. An insight into various types of machine learning algorithm strategies for model generation and evaluation are given in this course. The fundam machine learning algorithms required in industries are covered together with their of implementations.													t being ns, iental concrete
Cours	se ctive		 To understand the concepts of Machine Learning. To appreciate supervised learning and their applications. To appreciate the concepts and algorithms of unsupervised learning. To understand the theoretical and practical aspects of Probabilistic Graphica To appreciate the concepts and algorithms of advanced learning. 													al Models.
Cours	 Design a learning model appropriate to the application. CO1 Design a Neural Network for an application of your choice. CO2 Implement Probabilistic Discriminative and Generative algorithms for a application. CO3 Use a tool to implement typical Clustering algorithms for different types of applications. CO4 Design and implement an HMM for a Sequence Model type of application. CO5 Identify applications suitable for different types of Machine Learning with the instification. 													an s of with		
Prere	quisit	es: N	JIL		J											
CO ,	PO, A	ND]	PSO M		ING	DO	DO	DO	DO	D01	DO4	D O1	Da	DC	DO	
	PO 1	PO 2			PO 5	PO 6	PO 7	PO 8	PO Q		1 POI	2 2	PS 01	PS 02)
C 01	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	
C O2	-	-	-	-	-	-	-	•	-	-	-	1	-	-	-	
C 03	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-	
C 04	-	-	1	-	-	1	-	-	1	-	•	-	-		-	
C 05	-	-	-	-	1	2	1	-	-	-	1	2	1	1	-	
MOD	ULE	1 IN	TROD	UCT	ION											(9L)
Machine Learning–Types of Machine Learning –Machine Learning process- preliminaries, testing Machine Learning algorithms, turning data into Probabilities, and Statistics for Machine Learning Probability theory – Probability Distributions – Decision Theory Solving Regression Classification using Decision Trees. Root Node Attribute Selection for Decision Trees using Information Gain Bayesian Inference in Gene Expression Analysis											CO1,BTL -3					

Linear Models	for Regression - Linear Models for Classification- Discriminant Functions,	CO2,BTL						
Probabilistic Ge	enerative Models, Probabilistic Discriminative Models – Decision Tree Learning –	-3						
Bayesian Learn	ing, Naïve Bayes – Ensemble Methods, Bagging, Boosting, Neural Networks,							
Multi-layer Perceptron, Feed- forward Network, Error Back propagation - Support Vector								
Machines. Patte	ern Recognition Application using Bayesian Inference Bagging in Classification							
Bagging, boosti	ng applications using Regression Trees							
MODULE 3 U	INSUPERVISED LEARNING	(9L)						
Clustering- K-n	neans – EM Algorithm- Mixtures of Gaussians –Dimensionality Reduction, Linear	CO3,BTL						
Discriminant Ai	nalysis, Factor Analysis, Principal Components Analysis, Independent Components	-3						
Analysis. Data	amp; lext Classification using Neural Networks Using weka tool for SVM							
classification to	r chosen domain application							
MODULE 4 P	ROBABILISTIC GRAPHICAL MODELS	(9L)						
Graphical Mode	els – Undirected Graphical Models – Markov Random Fields – Directed Graphical	CO4,BTL						
Models-Bayesi	an Networks – Conditional Independence properties – Markov Random Fields	-3						
Hidden Markov	Models– Conditional Random Fields (CRFs). Data Text Clustering using K-means							
algorithm Data	Text Clustering using Gaussian Mixture Models							
MODULE 5 A	DVANCED LEARNING	(9L)						
Sampling-Basic	Sampling methods, Monte Carlo, Gibbs Sampling – Computational Learning	CO5.BTL						
Theory – Mist	ake Bound Analysis – Reinforcement learning – Markov Decision processes,	-3						
Deterministic a	and Non-deterministic Rewards and Actions, Temporal Difference Learning							
Exploration. Di	mensionality Reduction Algorithms in Image Processing applications Application							
of CRFs in Natu	Iral Language Processing							
TEXTBOOKS								
1.	Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007							
2.	Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Chapman a	andHall,						
	CRC Press,Second Edition, 2014	-						
REFERENCE	BOOKS							
1.	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 20)12.						
2.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2	.014.						
3	Tom Mitchell "Machine Learning" McGrayy Hill 1997							
J.	Tom whenen, whenme Learning, weofaw-finn, 1997.							
E-BOOKS								
1.	https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-							
	Recognition-and-Machine-Learning-2006.pdf							
2.	https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Mac	chine%20L						
	earning							
	_%20An%20Algorithmic%20Perspective%20%282nd%20ed.%29%20%5BMarsla	and%20201						
	4-10-							
	08%5D.pdf							
MOOC								
1.	https://nptel.ac.in/courses/106106139							
2.	https://www.coursera.org/specializations/machine-learning-introduction							

COU	URSE		INF	ORMA	ATIO	N SEC	CURIT	Υ		CREDI	TS			3		
COU	URSE DDE	ACS02009 COURSE PC L-T-P-S CATEGORY 38-ACM LEADNING LEVEL												3	6-0-0-1	
VER	SION			1.0		I	APPR DET	OVAL AILS	· 1	38-AC 3-05-20	M)23	LEAF	RNING	LEVE	L B	STL - 3
ASSE	SSME	NT S	CHEN	ME												
														ESE		
Fi Perio	rst odical	Sec Ass	ond P essme	eriodi ent	cal		emina ssignr	ar/ nents/	St	rprise / Quiz	Test z	A	Attenda	nce		ESE
Asses	sment		Project													500/
13	9%			15%			10	%		5%			5%			50%
Cours Descr	se iption	In the aspective of the second	n this course students learn basics of information security, in both management aspect and technical spect. Students understand of various types of security incidents and attacks, and learn methods to revent, detect and react incidents and attacks. Students will also learn basics of application of ryptography which are one of the key technology to implement security functions. At the last ession, teams of students will make presentation of their study project fora topic related to nformation security.													
Cours	se etive	0	 Aware and Understand the Challenges and Scope of Information Security. Gain Knowledge of Basic Security Concepts. Learn and Understand the Importance of Cryptographic Algorithms and Their Uses. Learn and Understand Access Control Mechanism Used for User Authentication and Authorization. Understand and Practice the Sockets Layer (SSL). Aware and Learn the Usages of Secure Internet Protocol (IP) and HTTP 													tion and
Outco		CO CO CO CO CO	1 Und 2 Iden 3 Expl 4 Deve 5 Use	erstand tify an lain ho elop se crypto	and e d anal w stan curity graphy	explair yze se dard s mech y algor	the ri curity ecurity anisms rithms	sks fac proble y mech s to pro and pr	ced by ms in nanism otect c	compu comput as work. ompute <u>ls to ach</u>	ter syste er syste r system nieve co	ems and ems and ns and r omputer	l netwo networ network securit	rks. ks. s. y.		
COJ	QUISILE PO. Al	ND PS		APPIN	IG											1
CO,	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO	1
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO 1	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1	_
CO 2	-											-	_			
CO 3	1	-	2	-	-	2	1	-	-	-	2	-	-	2	-	
CO 4	-	-	1	-	-	1	-	-	1	-	-	-	-		-	
CO 5	-	-	1	-	-	1	-	-	1	-	-	-	-		-	
CO 6	-	-	-	-	1	2	1	-	-	-	1	2	1	1	-	

MODULE 1	INTRODUCTION & SECURITY INVESTIGATION	(9L)
History, what	t is Information Security? Critical Characteristics of Information, NSTISSC Security	C01,C02,B
Model, Comp	ponents of an Information System, Securing the Components, Balancing Security and	TL-3
Access, The S	SDLC, The Security SDLCNeed for Security, Business Needs, Threats, Attacks, Legal,	
Ethical and Pi	otessional Issues - An Overview of Computer Security - Access Control Matrix, Policy-	
Security polic	hes, Confidentiality policies, integrity policies and Hybrid policies	
MODULE 2	LOGICALDESIGN & PHYSICAL DESIGN	(9L)
Blueprint for	Security, Information Security Policy, Standards and Practices, ISO 17799/BS 7799,	C02,C03,B
NIST Models	s, VISA International Security Model, Design of Security Architecture, Planning for	1L-3
Devices Phys	sical Security Security and Personnel	
MODULE 3	SECURITY ANALYSIS	(9L)
Risk Manager	nent: Identifying and Assessing Risk, Assessing and Controlling Risk - Systems: Access	C03,C04,B
Control Mech	anisms, Information Flow and Confinement Problem	TL-3
MODULE 4	ASSET SECURITY	(9L)
IP Security:	IP security overview-IP Security Architecture-Authentication Header-Encapsulating	C05,C06,B
Security Pay	load-Combing Security Associations-Key Management. Web Security: Web Security	TL-3
Requirements	-SSL and Transport Layer Security-SET Network Management Security. System	
Security: Intr	uders-viruses-related threats-Fire Design principles-Trusted Systems Asset Security	
(Protecting So	rs) - Protect privacy - Appropriate retention - Data security controls - Handling	
requirements	(e.g. markings, labels, storage)	
MODULE 5	TYPES OF SECURITY IN NETWORK	(9L)
Program Secu	rity : Nonmalicious Program errors – Buffer overflow, Incomplete mediation, Time-of-	C01,C02,B
check to Time	e-of- use Errors, Viruses, Trapdoors, Salami attacks, Man-in-the-middle attacks, Covert	TL-3
channels, Th	reats in networks, Network Security Controls - Architecture, Encryption, Content	
Integrity, Stro	ng Authentication, Access Controls, Wireless Security, Honeypots, Traffic flow security,	
Firewalls – D	esign and Types of Firewalls, Personal Firewalls, IDS, Email Security – PGP,S/MIME	
TEXTBOOK	S	D-11:1:
1.	House, New Delhi, 2003	s Publishing
2.	Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education	
3.	Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, W	/illiam
	Stallings, Pearson	
4.	Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.	
KEFEKENC	E BOOKS	Hall
1.	Micki Krause Harold F. Tipton — Handbook of Information Security Management V	$a 1 1_{a}$
2.	CRCPress LLC, 2004.	011-5
3.	Stuart McClure, Joel Scrambray, George Kurtz, —Hacking ExposedI, Tata McGraw-Hi	11, 2003
4.	Matt Bishop, — Computer Security Art and Sciencel, Pearson/PHI, 2002.	
E-BOOKS		
1.	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-12r1.pdf	
2.	https://www.vssut.ac.in/lecture_notes/lecture1423183198.pdf	10
3.	https://www.iare.ac.in/sites/default/files/lecture_notes/IARE_IS_LECTURE_NOTES_0	.pdf
MOOC		
------	----	---
	1.	http://nptel.ac.in/courses/106105031/lecture by Dr.DebdeepMukhopadhyayIIT Kharagpur
	2.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-033-
		computer-system-engineering-spring-2009/video-lectures/

COUI	RSE TI	ITLE RESEARCH PAPER FINDINGS									CRE	DITS			3	
COU	RSE C	ODE	ACS	02010		COU CATEC	RSE GORY	Y	РС		L-T-	-P-S		3-()-0-2	
V	Version			1.0		APPRO	DVAI	3	8 th , 13-05-	-	LEAR	NING		BT	L-4	
ASSE	SCMEN			۰ ۲		DETA	ILS		2023			VEL				
ASSEC	SNET			1	(TIA								ESE		
					5	0%						50%				
Course Descri	e ption	The course provides students the opportunity to acquire and train skills and knowledge on how to independently assess the state of knowledge within a given narrow field of research. This course provides new insights or interpretation of a subject through thorough and systematic evaluation. In this project-based course, the students will outline a complete scientific paper based on Descriptive, Predictive or Prescriptive Modelling													to his itic per	
Course Object	e tive	1.To 2. T 3. T 4. T	 based on Descriptive, Predictive or Prescriptive Modelling 1.To write briefly the research and theories 2. To understand the basics of the research 3. To integrate and evaluate the research and theories 4. To provide a justification for the research proposed based on the previous research. 													
Course Outco	e me	Upor 1. Io 2. E 70 3. P 4. E 5. C	n comp dentify Evaluate esearch Present recisio Design Drganis	letion of theorie e resean the the n with and wr e and p	of this es and rch fin cories readab ite a lit resent	course, empiric dings a and em ility cerature the res	the st cal res nd im pirica revie earch	tudent sults w plicit al resu w wit	s will be a vithin a fie assumptio alts in a w hin the sp ngs for va	ble to ld of r ons with vay that ecified rious a	esearch thin a f at coml time li udienc	n ield of oines imit es				
PRER	EQUS	ITE R	esearcl	h Meth	odolog	gy										
					C	O,PO,	AND	PSO	MAPPIN	G						
СО	PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	Р О 7	PO 8	PO9	PO 10	PO 11	PO 12	PS O1	PSO 2	PS O3	
CO- 1	3	3	3	3	1	-	_	1	-		-	1	1	1	2	
CO- 2	3	3	3	3	-	_	1	_	1	2	_	_	1	2	_	
CO- 3	3	3	3	3	-	1	-	-	-	-	-	-	1	1	2	

CO-																
4	3	3	3	3	-	-	-	-	2	-	1	-	1	1	-	
CO-																
5	3	3	3	3	-	1	-	-	-	-	-	-	1	1	2	
RESEA	ARCH	PAPE	R RE	VIEW												
 Find review articles and other basic information to use for background (outside of what is provided in textbook) Find 3 empirical articles (papers have method/results sections) Write the paper:- Background information to topic; research question/hypotheses Describe/summarize empirical articles Critically analyse topic; synthesize findings from articles Propose future directions/research (be specific) The paper must be written in APA format. There are 2 primary ways you will use APA formatting: referencing and use of section headers. Referencing must be in APA style. Any ideas or conclusions that are not your own (information that you have learned), you must cite – give credit to the person that had that idea! Section headers are required in your paper. These should be descriptive of the paragraph(s) in that section (e.g. "Overview of false memories and children" then "Theories for false memories" then "Examination of familiarity", etc.). The headers should be italicized and on their own line. There is not a page requirement or limit, but typical papers are approximately 10 pages, double-spaced, 12-pt font, with additional, separate title page and reference page. Please include page numbers. Other APA style formatting, such as running heads or abstract, are not required but welcomed. Reference page: Only include references of papers Finally Proofread, revise, check for plagiarism, and publish in indexed journals 																
Rema	rks										Alloc	ation o	of Mar	·ks		
Tentat	tive Are	ea, Top	oic sele	ction								1	0%			
Abstra	act, Int	roducti	on, Lit	erature	Review	v, Gap	Ident	ificati	on, Objec	tives		1	0%		_	
Metho Design	odology n/Mod	/, (Mat elling//	erials a Analys	ind Met is/Fabri	hods, cation/	Testing	g)					2	0%		_	
Result	ts and I	Discuss	sion, C	onclusi	on, Fut	ure Sco	ope,					r	00/			
Refere			<u></u>		on suc		11						070		_	
Projec	et Repo	rt subr	nission	, PPT F	Prepara	tion						2	0%		_	
Intern	al and	Extern	al Exai	niners l	Evalua	tion						2	0%			
										Total		10	0%			
TEXT	BOOH	KS														
1	•	Chris	s A. M	ack(201	8), Ho	w to W	rite a	Good	l Scientifi	c Pape	r, SPIE	public	ations			
REFERENCE BOOKS																
1		Jame Educ	es D. L ation	ester Jr.	(2001)	, Writin	ng Re	searcl	n Papers:	A Com	plete (Guide, I	Pearso	n		
EBOOI	KS															

	http://thuvienso.bvu.edu.vn/bitstream/TVDHBRVT/15289/1/How-to-Write-a-
1.	Research-Paper.pdf

COURSE		CYBE	R FORE	NSICS	5	C	REDITS	5		4	ļ				
TITLE	1.00	00011		COUD			DC		T	D C		0.0.1			
COURSE	ACS	02011			SE		PC		L-T-	P-8	3-	0-2-1			
CODE	-	0	CA	ATEGO								77 4			
VERSION	1	.0	A	PPROV	AL	38-	ACM,1.	3- L	LEAR	NING	B'	FL -3			
				DETAL	LS	(5-2023		LEV	EL					
ASSESSMEN	NT SCH	EME									_				
First	Second Seminar/ Surprise Test Attendance ESE														
Periodical	Period	ical	assign	ments/	Project		/ Quiz								
Assessment	Assessi	nent													
15%	15	5%		10%			5%		5%	, D	4	50%			
Course	Introduces the principles and practices of digital forensics including digital investigations,														
Description	data an	data and file recovery methods, and digital forensics analysis and invalidation. Topics include													
1	data acc	data acquisition, digital forensics tools, virtual machines, network, mobile devices and cloud													
	forensie	forensics.													
Course	•	To correctly define and cite appropriate instances for the application of computer													
Objective		• 10 correctly define and cite appropriate instances for the application of computer forensics Correctly collect and analyze computer forensic evidence													
	•	• Identify the essential and un-to-date concents algorithms protocols tools and													
	-	method	ology of (Comput	ter Foren	sics	concer	<i>bib</i> , u ig	omunn	s, proto	co 15, t	sons, and			
Course	Upon c	ompletic	on of this	course.	the stud	ents w	ill be ab	le to							
Outcome	CO1	Explain	how to r	orenare	a digital	forens	ics inve	stigation	n by ta	king a sy	vstemat	ic			
outcome	001	approac	h no in to r	Joparo	u uigitui	10101		Sugaro	i oʻj tu		, stornat				
	CO^2	Analyze	how th	e adve	ent of co	mnute	r techn	ologies	chang	es the r	nature	of			
	002	cybercri	me			mpuu		0105105	enung	es the i	luture	01			
	CO3	Determi	ne what	data to d	collect a	nd ana]	vze								
	CO4	Explain	standard	proced	ures for	conduc	ting for	ensic an	alvsis						
	CO5	Apply d	ifferent c	compute	er forensi	c tools	to a giv	en cybe	rcrime	scene					
Prerequisites	: NIL	<u></u>		put	- 1010101			<u> </u>		200110					
CO,PO.AN	D PSO M	MAPPI	NG												
CO PO	PO	PO F	PO PO	PO	PO P	0 P() PO1	PO1	PO1	PSO	PSO	PSO3			
1	2	3 4	5	6	7 8	9	0	1	2	1	2				
CO1 3	3	3 3	1	-	- 1	-	-	-	1	1	1	1			
CO2 3	3	3 3	-	-	1 -	1	2	-	-	1	2	-			
CO3 3	3	3 3	-	1		-	-	2	-	1	1	-			
<u>CO4</u>															
	3	3 3	-	-	- -	1	-	-	1	1	1	-			
CO4 3 CO5 3	3 3 3	3 3 3	-	- - -		1	- -	-	1 -	1 1	1 1 ·				

Introduction t and handling	o Digital Forensics, Definition and types of cybercrimes, electronic evidence , electronic media, collection, searching and storage of electronic media, o internet crimes, backing and cracking, credit card and ATM frauds, web	CO1,BTL-3										
technology, cr	ryptography, emerging digital crimes and modules.											
MODULE 2:	BASICS OF COMPUTER	(9L)										
Computer org hierarchy, typ of computer la	anisation, components of computer- input and output devices, CPU, Memory es of memory, storage devices, system softwares, application softwares, basics anguages.	CO2,BTL-3										
MODULE 3:	MODULE 3: COMPUTER FORENSICS											
Definition an Systems-FAT artifacts, Inter	Definition and Cardinal Rules, Data Acquisition and Authentication Process, Windows Systems-FAT12, FAT16, FAT32 and NTFS, UNIX file Systems, mac file systems, computer artifacts, Internet Artifacts, OS Artifacts and their forensic applications											
MODULE EVIDENCE	4 FORENSIC TOOLS AND PROCESSING OF ELECTRONIC	(9L)										
Introduction to Vulnerability counters, retri processing of evidence, retr space, rename	o Forensic Tools, Usage of Slack space, tools for Disk Imaging, Data Recovery, Assessment Tools, Encase and FTK tools, Anti Forensics and probable ieving information, process of computer forensics and digital investigations, digital evidence, digital images, damaged SIM and data recovery, multimedia ieving deleted data: desktops, laptops and mobiles, retrieving data from slack ed file, ghosting, compressed files.	CO4,BTL-3										
MODULE 5	COMPUTER FORENSIC ANALYSIS	(9L)										
Computer for Reconstructin – Tactics of th	rensic analysis: Discover of Electronic EvidencEldentification of Data – g Past Events – Fighting against Macro Threats – Information Warfare Arsenal ne Military – Tactics of Terrorist and Rogues – Tactics of Private Companies	C01,C02,BTL -3										
TEXTBOOK												
1	John R. Vacca, "Computer Forensics: Computer Crime Scene Investigation", Learning, 2nd Edition, 2005. (CHAPTERS 1 – 18). (UNIT I – IV)	Cengage										
2	Marjie T Britz, "Computer Forensics and Cyber Crime: An Introduction", Pea 2nd Edition, 2008. (CHAPTERS 3 – 13). (UNIT IV – V)	rson Education,										
REFERENC	E BOOKS											
1.	Marie-Helen Maras, "Computer Forensics: Cybercriminals, Laws, and Evidence", Jones & Bartlett Learning; 2nd Edition, 2014.											
2.	Chad Steel, "Windows Forensics", Wiley, 1st Edition, 2006.											
3.	Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013.											
4.	Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition, 2004.											
E-BOOKS												
1.	https://www.gettextbooks.com/author/Bill_Nelson_Amelia_Phillips_Christop	her_Steuart										
2.	https://baou.edu.in/assets/pdf/PGDCL_104_slm.pdf											
3.	https://www.nitm.ac.in/nitmeghalaya/ckfinder/userfiles/files/CS%20420%20-%20Cyber%20Forensics%20and%20Analysis.pdf											
MOOC												
1.	https://www.mygreatlearning.com/academy/learn-for-free/courses/cyber-forer	nsics										
2.	https://www.edx.org/learn/computer-forensics											

COUR TITL	SE E				Ι	NTE	RNS	HIP*	:				CF	REDITS	2
COUR	E SE E		ACS	50280	1	(CO CATE	URSI EGOI	E RY		PC	C	L	-T-P-S	0-0-0-0
VERSI	ON		1	.0		I	APPI DET	ROVA FAIL	AL S	13	38-A 3-05-	CM 2023	LEA LI	RNING EVEL	BTL-3
						AS	SES	SME	NT S	SCHI	EME				
			CIA										ESE		
			50%										50%		
Course Description	n	The acad inte acad inte	inter demic rnship demic rnship	rnship ally by os mus o units	is gu a facu st be a	iided ulty r appro	by 1 nemb wed i	learni per and n adv	ng g d pro vance	goals fessic e, and	and onally 1 stu	reflect y by an dents	ive assig internshi must be	gnments. It p supervisor concurrent	is supervised All academic ly enrolled in
Course Objective		 Internship units Gain an understanding of workplace dynamics, professional expectations, and the influence of culture on both. Build proficiency in a range of industry skills appropriate to the field of the internship Refine and clarify professional and career goals through critical analysis of the internship experience or research project 													
Course Outcome		Upo 1. 2. 3. 4. 5.	on con Descr andon Accor Draw Devel Recog experi	npletion ibe mains the mains nplish skills op an gnize mains ience,	on of the ain issummer to und from e aware nore the percep	he co ues a famil exper ness horou	urse f nd ch iar w ience of the ighly s, and	ork p ork p and eir ski on th care	udent ges to lace , proce ills at leir co er go	ts wil o be f , worl ess ch nd asj ompa oals	l be a aced allen biration ny ar	ible to in the culture ges ons id secto	industry, and style or as wel	both interna e l as on their	lly own
Prerequisi	tes: Ba	asics	of dat	abase	:										
CO, PO Al	ND PS		APPI	NG	DO	DO	DO	DO	DO	DO	DO	DO	Da	DC	Da
CO	PO 1	PO -2	PO -3	PO -4	PO -5	PO -6	PO -7	PO -8	PO -9	PO -10	PO -11	PO -12	PS 01	PS 02	PS 03
CO-1	-1	3	3	3	1	-	-	1	-	-	-	1	1	1	-
CO-2	3	3	3	3	-	-	1	-	1	2	-	-	1	1	-
CO-3	3	3	3	3	-	1	-	-	-	-	-	-	1	1	-
CO-4	3	3	3	3	-	-	-	-	2	-	2	1	1	1	-
CO-5	3	3	3	3	-	-	-	-	-	-	-	-	1	1	-
1: Weakly related, 2: Moderately related and 3: Strongly related															
INTERNS The interns member an and studen supervisors	INTERNSHIP The internship is guided by learning goals and reflective assignments. It is supervised academically by a faculty member and professionally by an internship supervisor. All academic internships must be approved in advance, and students must be concurrently enrolled in academic internship units. Students evaluate the work site and supervisors evaluate the student's performance at the internship.														

Procedure for applying for internships

For internship, look for the companies and organisations of the industry the students are interested in and search for training, internships or any links that allow to enteryour details and upload professional resume with the website. If direct application is allowed, apply for the internship.

	SEMESTER -IV													
COURSE TITLE	VIRTUALIZATION AND CLOUD COMPUTING	CRED	ITS	4										
COURSE CODE	ACS02012	COURSE CATEGORY	PC	L-T-P-S	3-1-0-0									
VERSION	1.0APPROVAL DETAILS36-ACM 13-05-2023LEARNING LEVELBTL-4													
ASSESSMENT SO	ASSESSMENT SCHEME													
First Periodical Assessment	Second Periodical Assessment	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendance	ESE									
15%	15%	10%	5%	5%	50%									
Course Description	The course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its main focus is on parallel programming techniques for cloud computing and large scale distributed systems which form the cloud infrastructure.													

Course	To in	ntrod	uce th	ne cor	ncept	of Cl	oud (Compu	iting, F	Parallel	and I	Distrib	uted Co	mpu	ting. To
Objective	enab	le stu	dents	to lea	rn ab	out V	irtual	ization	and th	e Clou	id Arcl	nitectu	re. To g	ive a	detailed
	over	view	on R	esour	ce Po	oling	, Sca	ling, C	apacit	y Plan	ining a	and Lo	ad Bala	incin	g in the
	Clou		Tami base	narize		cepts	on C	loud S	ecurity	, serv	ice Or	iented	Archite	ecture	3 (SOA)
Course Outcome	Upor		ressfu	u Sio il com	nleti	on of	the co	ourse	the stu	dent w	vill be	able to	•		
Course Outcome	CO1	:Expl	ain th	ne cor	e con	cepts	of th	ne clou	d com	nuting	narad	ligm: h	Iow and	why	v
	this	parad	igm	shift	came	abou	it, the	e chara	acterist	ics, ac	lvanta	ges an	d challe	enges	S
	brou	ght al	oout b	by the	vario	ous m	odels	and se	rvices	in clo	ud con	nputing	3.	U	
	CO2	CO2: Apply fundamental concepts in cloud infrastructures to understand the tradeoffs in power efficiency and cost and then study how to leverage and													
	tradeoffs in power, efficiency, and cost, and then study how to leverage and manage single and multiple data centers to build and deploy cloud applications that														1
	manage single and multiple data centers to build and deploy cloud applications that are resilient, elastic and cost-efficient.														t
	CO3	CO3: Discuss system, network and storage virtualization and outline their role in													n
	enab	enabling the cloud computing system model.													1
	CO4: Illustrate the fundamental concepts of cloud storage and demonstrate their													r	
	use i	use in storage systems such as Amazon S3 and HDFS.													
	CO5: Analyze various cloud programming models and apply them to solve problem													ems on	
D	the cloud.														
Prerequisites: NII	PSO MAPPING														
C D D		PSO MAPPING													
	P	P P P P P PO PO PO PS PS O O O O O O III III III III													
	3	4	5	6	7	8	9	10	11	14	01	02	05		
C 3 3	3	3	1	-	-	1	-	-	-	1	1	1	1		
01															
C 3 3	3	3	-	-	1	-	1	2	-	-	1	2	-		
O2	2	2		1							1	1			
$\begin{bmatrix} C & 3 & 3 \\ 03 & 3 \end{bmatrix}$	3	3	-	1	-	-	-	-	2	-	1	1	-		
$\begin{array}{c c} \hline 0.3 \\ \hline 0.3 \\ \hline 3 \\ \hline 3 \\ \hline \end{array}$	3	3	-	-	-	-	1	- -	-	1	1	1	.		
		0								1	-	1			
C 3 3	3	3	-	-	-	-	-	-	-	-	1	1	-		
05															
1: We	akly r	elate	d, 2:]	Mode	ratel	y rela	ated a	and 3:	Stron	gly rel	ated				
MODULE 1 CLO	UD C		PUTI	NG (VEF	VIE	W			1			> 1	1	(9L)
Origins of Cloud	com	putin	g —		l con	npone	ents ·	- Esse	ential (charac	ing E	s – C Donid d	Jn-dema	and	COI RTI 4
Measured service	Comr	arino		s, Lu d prov	viders	with	tradi	tional	IT serv	vice pr	nıg ,r ovider	s Roo	ots of clo	y, oud	DIL-4
computing	comp	e	erou	a pro	1401		indui	lionai	11 501	rice pr	0,1001	5, 100		Juu	
MODULE 2 CLOUD INSIGHTS										9L					
Architectural influences – High-performance computing, Utility and Enterprise grid computing,											CO2				
Cloud scenarios – Benefits: scalability ,simplicity ,vendors ,security, Limitations – Sensitive B												BTL-4			
information - App	licatio	n dev	elopr	nent-	secur	ity le	vel o	t third	party	- secu	rity be	netits,	Regula	rıty	
MODULE 3 CL O			IITE	СТІП	RE- I	AVE	CRS /		IODF	LS					91
Lavers in cloud ar	d architecture Software as a Service (SaaS) features of SaaS and henefite Platform (CC												CO3		
as a Service (Paa	S). fe	atures	s of P	aaS a	nd be	enefits	Saa S. Infi	astruc	ture as	a Ser	vice (JaaS).	features	s of	BTL-4

IaaS and benefits, Service providers, challenges and risks in cloud adoption. Cloud deployment model: Public clouds – Private clouds – Community clouds - Hybrid clouds - Advantages of Cloud computing.										
MODULE 4 CLO	UD SIMULATORS- CLOUDSIM AND GREENCLOUD	9L								
Introduction to Sir CloudSim, GridSin GreenCloud	nulator, understanding CloudSim simulator, CloudSim Architecture(User code, m, SimJava) Understanding Working platform for CloudSim, Introduction to	CO4 BTL-4								
MODULE 5 INTRODUCTION TO VMWARE SIMULATOR										
Basics of VMWare, advantages of VMware virtualization, using Vmware workstation, creating virtual machines-understanding virtual machines, create a new virtual machine on local host, cloning virtual machines, virtualize a physical machine, starting and stopping a virtual machine.										
TEXTBOOKS										
1.	Cloud computing a practical approach - Anthony T.Velte , Toby J. Velte Robert Elsenpeter, TATA McGraw- Hill , New Delhi – 2010									
2.	Cloud Computing: Web-Based Applications That Change the Way You Work an Collaborate Online - Michael Miller - Que 2008	d								
REFERENCE BC	OOKS									
1.	Cloud computing for dummies- Judith Hurwitz , Robin Bloor , Marcia Kaufman Halper, Wiley Publishing, Inc, 2010	,Fern								
2.	Cloud Computing (Principles and Paradigms), Edited by Rajkumar Buyya, James Broberg, Andrzej Goscinski, John Wiley & Sons, Inc. 2011	\$								
E-BOOKS										
1.	https://www.iare.ac.in/sites/default/files/lecture_notes/CC%20LECTURE%20N0 df)TES.p								
2.	https://aws.amazon.com/what-is-cloud-computing/									
3.	https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/									
MOOC										
1.	https://aws.amazon.com/what-is-cloud-computing/									
2.	https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/									
3.	https://www.salesforce.com/what-is-cloud-computing/									
4.	https://cloud.google.com/docs/									

COURSE TITLE	CYBER SECURI	TY ESSENTIALS	CREDITS	4				
COURSE CODE	ACS02013	COURSE CATEGORY	PC	L-T-P-S	3-1-0-0			
VERSION	1.0	APPROVAL DETAILS	38-ACMLEARNINGBTI13-05-2023LEVEL					
ASSESSMEN	T SCHEME							
First Periodical Assessment	Second Periodical Assessment	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendance	ESE			

15	5%		15	5%			10%			5%	,)		5%	4	50%	
Cours Descri	e iption	Lea tech dev gov secu syst solu prot ben	 Learn the foundations of Cyber security and the threat landscape. To equip students with the technical knowledge and skills needed to protect and defend against cyber threats. To develop skills in students that can help them plan, implement, and monitor cyber security mechanisms to ensure the protection of information technology assets. To expose students to governance, regulatory, legal, economic, environmental, social, and ethical contexts of cyber security. To expose students to the responsible use of online social media networks. To systematically educate the necessity to understand the impact of cybercrimes and threats with solutions in a global and societal context. To select suitable ethical principles and commit to professional responsibilities and human values and contribute value and wealth for the benefit of the society Analyse and evaluate the importance of personal data and its privacy and security. 													
Object	tive	Upo	 Analyse and evaluate the importance of personal data and its privacy and security. Analyse and evaluate the security aspects of social media platforms and ethical aspects associated with the use of social media. Analyse and evaluate the cyber security risks. Based on the Risk assessment, plan suitable security controls, audit, and compliance. Evaluate and communicate the human role in security systems with an emphasis on ethics, social engineering vulnerabilities, and training. Increase awareness about cyber-attack vectors and safety against cyberfrauds. Take measures for self-cyber-protection as well as societal cyber-protection. 													
Outco	me	CO CO CO CO CO aga CO ethi	1: Und 2: De erattac 3: Ana 4: Ana inst dig 5: Eva cs, soc	erstanc velop ks, cyb lyse an lyse an gital pa luate a ial eng	l the cy a dee ercrim d eval d eval yment nd con ineerin	yber se per un nes, vul uate ex uate the t frauds mmuni ng vuln	n the c curity ndersta Inerabi isting e digita cate th erabili	threat l inding lities a legal fr al paym ities, ar	and sc and nd ren camew anent sy an rol nd train	ape. familiar nedies th ork and stem sec e in sec ning.	ity with hereto. laws on curity an	h vario cyber s d remed stems v	us type security. dial mea vith an o	s of sures empha	isis on	
Prerec	quisite PO AN	s: NIL I D PS (O MA	PPING	(F											
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2	PS O3	
CO 1	3	3	3	3	1	-	-	1	-	-	•	1	1	1	1	
CO 2	3	3	3	3	-	-	1	-	1	2	-	-	1	2	-	
CO 3	3	3	3	3	-	1	-	-	-	-	2	-	1	1	-	
CO 4	3	3	3	3	-	-	-	-	1	-	-	1	1	1	-	
5	3	ן א 1:) Weak) lv rela	- ted. 2:	- : Mode	- eratelv	- relate	- d and	- 3: Stro	- ngly rel	- ated	1	1	-	

(9L)

Defining Cyberspace and Overview of Computer and Web-technology, Architecture cyberspace, Communication and web technology, Internet, World wide web, Advent of internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace Concept of cyber security, Issues and challenges of cyber security.							
MODULE 2 C	CYBER CRIME AND CYBER LAW	9L					
mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operand, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.							
MODULE 3 S	OCIAL MEDIA OVERVIEW AND SECURITY	9L					
Introduction to monitoring, Ha opportunities a and reporting practices for th	o Social networks. Types of social media, Social media platforms, Social media ashtag, Viral content, Social media marketing, Social media privacy, Challenges, nd pitfalls in online social network, Security issues related to social media, Flagging of inappropriate content, Laws regarding posting of inappropriate content, Best e use of Social media, Case studies.	CO1, BTL-4					
MODULE 4 E	C - C O M M E R C E AND DIGITAL PAYMENTS	9L					
Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payment Settlement Act 2007							
MODULE 5 I	DIGITAL DEVICES S E C U R I T Y, TOOLS AND TECHNOLOGIES FOR	9L					
End Point devi backup, Down Security best p andAnti-virus,	ce and Mobile phone security, Password policy, Security patch management, Data loading and management of third-party software, Device security policy, Cyber ractices, Significance of host firewall and Ant-virus, Management of host firewall Wi-Fi security, Configuration of basic security policy and permissions.	CO1, BTL-4					
TEXTBOOKS	8						
1.	Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition	on 2010.					
2.	Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Persp Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)	bectives by					
REFERENCE	C BOOKS	· T A					
1.	Security in the Digital Age: Social Media Security Threats and Vulnerabilities by F Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November,	Henry A. 2001)					
2. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.							
3.	Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominan Publishers.	it					
4.	Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, India Pvt. Ltd.	Wiley					
E-BOOKS							
1.	https://mrcet.com/downloads/digital_notes/EEE/CyberSecurity.pdf						
1. https://micet.com/downloads/digital_notes/EEE/CyberSecurity.pdf							

3.	https://www.uou.ac.in/sites/default/files/slm/Introduction-cyber-security.pdf
MOOC	
1.	https://www.simplilearn.com/learn-cyber-security-basics-skillup
2.	https://www.coursera.org/learn/cyber-security-fundamentals

COURSE TITLE	PRO	JECT	CREDITS	12							
COURSE CODE	ACS02802	COURSE CATEGORY	РС	L-T-P-S	0-0-24-0						
VERSION	1.0	APPROVAL	38-ACM	LEARNING	BTL-4						
		DETAILS	13-05-2023	LEVEL							
ASSESSMENT SC	ASSESSMENT SCHEME										
First Periodical	Second	Seminar/	Surprise Test /	Attendance	ESE						
Assessment	Periodical	assignments/	Quiz								
150/	Assessment	Project	50/	5 0/	500/						
15% Course	15%	10%	3%	J%	50%						
Description	applying theor	etical and practic	al knowledge of va	op quality software s	he Project						
Description	work constitut	es a maior compo	onent in the course	it needs to be carried o	ut with due						
	care and shoul	d be executed wi	th seriousness by th	ne students with essent	ial foundation						
	principles and	practices to deve	lop effective ways	to solve computing pro	oblems.						
Course Objective	1. To fun	ction effectively	on a team whose n	nembers together prov	vide leadership,						
	create a	a collaborative ar	nd inclusive enviror	nment,							
	2. To ide	ntify, formulate,	and solve comple	x engineering problen	ns by applying						
	princip	les	• , • •	1	C ² 1 1						
	3. To app	ly engineering de	esign to produce so	montation analyza and	linterpret data						
	$\begin{array}{c} 4. 10 \text{ dev} \\ 5 \text{To acc} \end{array}$	uire and apply	appropriate experi-	memation, analyze and	nierpret data.						
	strategi	ies.	new knowledge as	s needed, using appro	priate learning						
Course Outcome	On successful	completion of the	e project students v	vill be able to:							
	CO1. Identify	a real time work	helpful for the soci	ety.							
	CO2. Analyze	and solve the sol	lution for the proble	em.							
	CO3. Create an	n application by	using relevant com	puter application conce	epts.						
	CO4. Conduct	appropriate expe	eriment in different	software design metho	ods.						
Droroquisitos: Soft	US. Create R	eal time scenario	b-based software pr	oject design.							
SOFTWARF DES	ICN PROIFC	r	Togramming Skins								
• Identify a rea	al time work hel	nful for the socie	tv								
 Develop a so 	olution for the p	oblem									
 Develop a set Develop an a 	application by u	sing relevant con	nputer application c	concepts							
Tools used	11	0	I TF TOPOLO	L							
Any Application So	ftware in the spe	ecific domain for	solving the problem	m							
Rubrics for Gradin	ng the Software	Design Project									
Compon	ent		Grading Criteria Total								

	Exemplary (20)	Competent (15)	Partially correct –	Unsatisfactory (5)	
	(=-)	()	Needs to work		
	FIRST PE	RIODICAL AS	SSESSMENT		
Project objective	All major	Most of the	Only few	Objectives are no	t 15%
formulation	objectives are	objectives	objectives	identified	
	identified and	were	were identified		
	methodology	identified but			
	clearly	one or two			
	identified	were not			
	based on the	identified			
	existing				
	system				
Methodology to be	Methodology	Methodology	Partially	Not identified	
followed	clearly	chosen and	identified		
	identified	some are not			
	based on the	adequately			
	existing	addressed			
	SFCOND P	FRIODICAL	SSESSMENT		
Use of Software	techniques	Employ	Employ some	Not used	15%
Engineering	Employ	appropriate	tools and		10 /0
88	appropriate	tools and	software	-	
	tools and	software	engineering		
	software	engineering	techniques		
	engineering	techniques in	-		
	techniques	his course of			
		study			
Implementation	Implemented	Implemented	Partial	Not implemented	
/Demonstration	and	and	implementation		
	demonstrated	demonstrated			
	the project	the project			
	with all the				
A agi ann ant/Ohaam	details	/0			15.0/
Assignment/ Observ	ation/lab records	Quiz			
Attendance	E	ND SEMESTE	R EXAMINATI	ON	570
Project	Report is well	Report is well	Report is	Report lacks an	10 %
- J	organized and	organized and	organized	overall organization	
	clearly	clearly	Some diagrams	Diagrams are not	
	written	written some	are not well	drawn, grammatical	
	Diagrams are	of the parts	explained.	spelling errors etc	
	consistent	Sentences are	Grammar		
	Sentences are	mostly	errors that		
	grammatical	grammatical	impede the		
	and free from	and only a	flow of		
		tew spelling	communication		

	spelling errors	errors are present			
Presentation	Presentation, demonstration with all the project details &viva voce	Presentation well organized with demonstration	The presentation is not organized and partial demonstration	Presentation lacks content and not demonstrate d	40%
				Total	100%

LIS	LIST OF DEPARTMENT ELECTIVE COURSES FOR SPECILIZATION IN FULL STACK DEVELOPMENT										
S.NO	SEM	COURSE CATEGORY		COURSE CODE	NAME OF THE COURSE	L	Т	Р	C	S	ТСН
	DEPARTMENT ELECTIVE-1(SEMESTER-II)										
1	2	DE	ACS	\$02500	Typescript	3	0	2	4	0	5
2	2	DE	ACS	802501	Backend development	3	0	2	4	0	5
			DEP	ARTMENT	ELECTIVE-II(SEM	ESTI	ER-III)				
2	3	DE	ACS	\$02502	Web Development	3	0	2	4	0	5
3	3	DE	ACS	802503	MEAN Stack development	3	0	2	4	0	5

ELECTIVE-I

COURSE	TYPESCRIPT	CR	EDITS	4							
TITLE											
COURSE	ACS02500	COURSE	DE	L-T-P-S	3-0-2-0						
CODE		CATEGORY									
VERSION	1.0	APPROVAL	38 ACM	LEARNING	BTL-4						
		DETAILS	13-05-2023	LEVEL							
ASSESSME	NT SCHEME										
	CIA		ESE								
First	Second Periodical	Seminar/	Surprise Test /	Attendance	ESE						
Periodical	Assessment	assignments/	Quiz								
Assessment		Project									
15%	15%	5%	5%	50%							
Course	AngularJS is a struct	ural framework for	creating dynamic web	applications. H'	ГML is a						
Description	great declarative language for static pages. It does not contain much for creating a										
	dynamic application. So Angular will be filling that gap. Angular's data binding and										
	dependency injection	eliminate much of	the code than we would	ld actually write	. The best						
	part is that it all happ	ens in the browser	by making it an ideal p	artner with any	server						
	technology			-							
Course	Reduce the ar	nount of code you	write to build rich user	interface applic	ations.						
Objective	• Increase the r	eliability and maint	ainability of UI by using	ng data binding.							
-	Retrieve data	from back-end serv	ver, manipulate it and d	lisplay it with ea	nse.						
	Modularise v	our code with the c	ustom services and dire	ectives.							
	 Providing two 	o way binding of da	ta								
	Create Single	Page Applications	(SPA)								
Course	Upon successful com	pletion of the cours	se the student will be a	ble to							
Outcome	CO1. Build native i	nobile apps for And	troid iOS and using A	ngular 1 x							
S accome	CO2. Understand th	ne fundamentals of	Angular Forms and its	architecture							
	CO3. Present data i	n beautiful, interact	ive lists								
	CO4. Build forms a	and setting pages									
		nala naga annligati	on(CDA)								

Prere	quisit	es: Nl	L												
CO, PO AND PSO MAPPING															
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO	1	1	-	-	-	-	-	-	-	-	-	-	3	1	1
1															
CO	-	-	-	-	-	-	-	-	-	-	-	-	3	2	1
2															
CO	1	-	2	-	-	2	1	-	-	-	-	-	3	2	-
3															
CO	-	-	1	-	-	1	-	-	1	-	-	1	3	1	1
4															
CO	-	-	-	-	1	2	1	-	-	-	-	-	3	1	1
5															
		1:	Weal	kly re	lated,	2: M	odera	tely r	elated	l, and 3	3: Stro	ngly r	elated		
MOD	ULE	1 INT	ROD	UCTI	ION Í			•		/			(6L+6	(P)	
Introd	uctior	to A	ngular	JS. M	VC A	rchite	cture.	Conce	eptual	Overv	iew. Se	etting	CO1-I	<u>- /</u> 3TL-4	
up th	e Er	viron	ment.	First	Apr	olicati	on. I	Inders	standi	ng ng	attrib	outes.			
Expre	ssions	and D	Data B	iding.	Numt	ber and	l Strin	g Exp	ressio	ns. Obi	iect Bir	nding			
and Expressions Working with Arrays Forgiving Behavior Understanding															
Data binding, Working with Directives, Conditional Directives. Styles															
Directives, Mouse and Keyboard Events Directives															
1. Jumping Into JavaScript															
2.	Gett	ing St	arted	with A	ngula	rJS									
3. Understanding AngularJS Application Dynamics															
MOD	ULE	2 CO	NTRO	DLLE	RS									(6L+	6 P)
Under	standi	ing C	ontro	llers,	Progr	ammi	ng C	ontrol	lers d	& \$sc	ope ol	bject,	CO2-BTL-4		
Addin	g Beł	naviou	r to a	Scop	e Obj	ect, F	Passing	g Para	meter	s to th	e Met	hods,			
Havin	g Arra	ay as r	nembe	ers in	Contro	oller S	cope,	Neste	ed Cor	troller	s and S	cope			
Inheri	tance,	Multi	ple Co	ontrol	lers an	d thei	r scop	bes, Bu	uilt-In	Filters	, Uppe	rcase			
and L	owerc	ase F	ilters,	Curre	ency a	ind N	umbei	r Forn	natting	g Filter	rs, Ord	erBy			
Filter,	Filter	Filter	, Crea	ting C	luston	n Filte	r								
Practi	ical C	ompo	nents	:											
1.	Impl	emen	ting th	e Sco	pe as a	a Data	Mod	el							
2.	Usin	ig Ang	gularJS	S Tem	plates	to Cr	eate V	views							
Implei	mentii	ng Dir	rective	es in A	ngula	rJS Vi	iews								
MOD	ULE	3 FO	RMS											(6L+	6 P)
Using	Simp	ole Fo	rm, W	Vorkin	g wit	h Sele	ect an	d Opt	ions,	Input `	Validat	ions,		CO3-B	TL-4
Using	CSS	class	ses, F	orm I	Events	, Cus	tom	Mode	l upda	ate trig	ggers,	Why			
Modu	le?, N	Modul	e Loa	ading	and	Deper	ndenci	es, R	ecom	mende	d Setu	p of			
Application, Creation vs Retrieval., Understanding Services, Developing															
Creating Services, Using a Service Injecting Dependencies in a Service, http															
Service, \$q Service, Ajax Impl using \$http and \$q Service, Routing															
Introduction to SPA, Creating HTML Templates, Configuring Route Provider.															
Practical Components:															
1.	The	Mode	l Viev	v Cont	troller	(MVC	C)								
2.	Data	ı bindi	ng in	Angul	arJS										
3.	Dire	ctives													

The role of \$r	The role of \$routeProvider in AngularJS.								
MODULE 4	DIRECTIVES	(6L+6P)							
Introduction -	- objects in HTML, event handling, window object, document	CO4-BTL-4							
object, brows	er object, object methods, built-in objects, user defined objects,								
cookies.	cookies.								
Suggested Re	adings: Built-in objects								
Practical Con	mponents:								
1. Creati	ng Your Own Custom Directives to Extend HTML								
2. Using	Events to Interact with Data in the Model								
Implementing	AngularJS Services in Web Applications								
MODULE 5	DATA BINDING	(6L+6P)							
Expressions	Expressions and Data Binding, Number and String Expressions, Object CO5-BTL-4								
Binding and	Binding and Expressions, Working with Arrays, forgiving Behaviour,								
Understandin	g Data binding.								
Practical Con	mponents:								
Creating You	r Own Custom AngularJS Services								
TEXTBOOK	ΣS								
1.	Learning AngularJS by Ken Williamson Published by O'Reill	y Media 2015							
2.	Laura Lemay, Jennifer Kymin(2016) Mastering HTML,CSS &a	mp; JavaScript, Web							
	Publishing,								
REFERENC	E BOOKS								
1.	AngularJS Essentials by Rodrigo Branas published by Packt Pul	blishing 2014							
E-BOOKS									
1.	https://gist.github.com/chrisnicola/9673040								
MOOC									
1.	https://www.coursera.org/specializations/web-design								

COURSE TITL F	BAC	K END OPMENT	CREDITS	4						
COURSE	ACS02501	COURSE	DE	L-T-P-S	3-0-2-0					
CODE		CATEGORY								
VERSION	1.0	APPROVAL	38 ACM	LEARNIN	BTL-4					
		DETAILS	13-05-2023	G LEVEL						
ASSESSMENT SCHEME										
First	Second	Seminar/	Surprise Test / Quiz	Attendanc	ESE					
Periodical	Periodical	assignments/		e						
Assessment	Assessment	Project								
15%	15%	10%	5%	5%	50%					
Course Description	This course provides hands-on experience and exposure to developing web application using HTTP. This course builds strong foundation of HTTP based request and response scenarios which will help developer to build efficient web applications									
Course Objective	Building stron WebSocket's.	g expertise in Webs Developing single	Socket's. Implement fronten page application using Expr	d and backend ess Frameworl	scenarios using					

Course

Upon successful completion of the course, the student will be able to:

Outcome Conduct ethnographic research to produce user profiles.

CO1 Create a functional, interactive prototype.

CO2 Apply the basics of test design, including user consent, safety, ethics, and privacy concerns.

CO3 Conduct effective usability and user experience test sessions.

CO4 Generate usability and user experience assessment reports

Conduct the express for framework

					CO, I	PO, AN	ND PS	O MA	PPIN	G					
СО	PO	PO2	Р	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PS	PS	PS
	1		03	4	5	6	7	8	9	10	11	2	01	02	03
CO	1	1	-	-	-	-	-	-	-	-	-	-	3	1	1
1															
CO	-	-	-	-	-	-	-	-	-	-	-	-	3	-	-
2															
CO	1	-	2	-	-	2	1	-	-	-	-	-	3	2	2
3															
CO	-	-	1	-	-	1	-	-	1	-	1	-	3	-	-
4														-	
CO	-	-	-	-	1	2	1	-	-	-	-	-	3	1	1
5 D	• • • • • •	NIII													
Prerec	In E 1	S: NIL		CTIO	N								(61	⊥6D)	
	Desig	n Patter	rns_O	biect (riented	l Desig	n_ISO		M_ΔI	ΔX			CO1.	.RTI _/	1
	ULE 2		P	ojeci o	Tientee	Desig	II-300.		IVI-71J	1/1		(6L+6P)			
								ттр	CO2-RTL-4						
Paqua	ot UT			,ПТТР ЦТТР	Motho	de UT	, EL FD Stat		do UT	,es п ТD Цо	ader		CO2	-DIL	•
Fields	Regist	tration	HTTE	,11111 Ο Διιτ	hentics	us,111	11 Stat TTP	Cachi	ue,111 na ИТ	TP 1					
Encod	ing H	TTP Se	curity	Aut	nentice		111	Caem	iig,111	11 (UKL				
MOD	ULE 3	WEB	SOC	KETS									(6I	(+6P)	
Introdu	uction	to We	b soc	kets.W	eb soc	ket UR	Is.Wel	o sock	et AP	Is.Ope	ning		CO3-	-BTL-4	ŀ
Hands	hake	.Data	Fram	ing, S	ending	and	Receiv	ing I	Data.C	losing	the				
Conne	ctions	Error	H	andling	g,Web	soc	eket	Seci	irity, D	eployi	ment				
Consid	leratio	ns,Proj	ect							1 2					
MOD	ULE 4	: MIC	ROS	ERVIC	CESIN	TROD	UCTI	ON				(6L+6P	')	
Micros	service	es Arch	itectu	re, Mic	croserv	ices Pr	oject S	tructu	re, Mi	croserv	vices		CO3-	-BTL-4	ł
Frame	works	,Spring	Boo	t with	Micro	service	s Basi	cs,. S	pring	Boot	with				
Micros	service	es Codi	ing St	andard	s, Spri	ng Boo	ot with	Micro	oservio	es Bu	ilder				
Design	n Patte	rn,Spri	ng Bo	ot with	n Micro	oservice	es QR	Code	Genera	ator					
MODULE 5 FRAME WORK (6L+6P)								2+6P)							
Hibernate Introduction, Hibernate Basics, Hibernate Architecture, Hibernate									CO3-	-BTL-4	ł				
Session Hibernate SessionFactory, Hibernate Configuration, Hibernate															
Config	Configuration Offline Hibernate with HBM, Hibernate with Annotation														
TEXT	BOO	KS													
1.		J	AVA	SPRIN	IG-A	unified	l hardw	are ar	nd soft	ware i	ntroduc	ction: F	. Vahic	l John '	Wiley
REFE	RENO	CE BO	OKS												

1.	Spring boot, Rajkamal, TataMcGraw-Hill
2.	Hibernate: Shibu K. V. (TMH)
E-BOOKS	
1.	https://docs.spring.io/spring-boot/docs/current/reference/pdf/spring-boot-reference.pdf
2.	https://docs.spring.io/spring-boot/docs/1.5.4.RELEASE/reference/pdf/spring-boot-reference.pdf
MOOC	
1.	https://onlineitguru.com/spring-boot-training.html

ELECTIVE-II

COU TIT	RSE LE			WE	B DEV	VELO	PME	NT		C	REDIT	r s		4		
COU CO	RSE DE		А	CS02	2502		CA	COUR Ateg	RSE ORY		DE		L-T-P	-S	3-0-2	-0
VERS	SION			1.0			Al	PPRO	VAL	3	88-ACN	1 1	LEARN	ING	BTL	-4
							I	DETA	ILS	13	-05-20	23	LEVE	EL		
ASSES	SSME	NT SC	CHEN	ИE			CI	•							ECI	7
		G						1						ע -		
Fii Daria	First Second Periodical						Sem	inar/	4.01		Surprise Attendant				ESF	£
Assess	aicai	ASS	sessm	ent			Proi	Project								
15	%			15%	,)		110	10%	,)		5%		5%		50%	ģ
			This course is intended to teach students the fundamentals of web development in													
Course	e ntion	Thi	his course is intended to teach students the fundamentals of web development in a roject-based learning environment. Students are taught the basic elements of web													
Descri	puon	dev	broject-based learning environment. Students are taught the basic elements of web levelopment, such as web hosting, file organization, and incorporating Javascript into													
		HT	HTML files.													
Course	9	1.7	o un	dersta	nd the	graph	nic des	sign pi	rincipl	es that	relate t	o web	design	and lea	rn how	to /
Object	ive	imp	leme	nt the	ories in	nto pra	actice.		-				-			
		2. 7	To dev	velop	skills i	n anal	yzing	the us	ability	of a w	veb site.					
		3.7	To dev	velop	how to	plan	and co	onduct	user i	research	n relate	d to we	b usabil	lity.		
		4.1	o lea	rn the	langu	age of	the w	eb: H	IML a	and CS	S .					
Course	د	J. I Un	$\frac{10}{20}$ $\frac{10}{20}$	rcessf	<u>skills i</u> jul com	nletio	$\frac{1}{n}$ of the	he cou	rse th	e stude	nt will	he ahle	to:			
Outcor	me	CO	1. D)evelo	n a we	b bag	e usin	g HTN	AL sin	nple tag	28.		/ 10.			
		CO	2. In	nplen	nent th	e vari	ous us	e of ca	ascadi	ng style	e sheet					
		CO	3. A	nalyz	te and	write 1	the fur	nctions	s using	g script	ing lang	guage				
		CO	4. E	valua	te the	websit	e usin	ig ever	nt hand	iling m	echanis	sm				
D	• • /		5. A	nalyz	the t	ise of	DHTN	ML								
Prereq	uisites	S: NIL														
CO , I	\mathbf{O}, \mathbf{A}	ND PS		AFPI	ING											
CO	PO 1	PO	P O2	P	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PS	
CO	1	2	03	04	5	0	7	ð	<u>у</u>	U		<u> </u>		2	03	_
	3	3	-	-	-	-	-	-	-	-				3	-	
1	-	-												_		

$\begin{array}{c} CO\\ 2 \end{array}$	3	3	-	-	-	-	-	-	-	-	-	-	-	3	-	
	3	3	2	-	-	2	1	-	-	-	-	2	1	3	2	-
CO	3	3	1	-	-	1	-	-	1	-	-	-	-	3	1	-
4 CO	3	3	-	-	1	2	1	-	-	-	1	1	-	3	-	-
5 1: Weakly related, 2: Moderately related and 3: Strongly related												_				
MODULE 1 HTML												(6L+6	P)			
Internet basics, introduction to HTML, list, creating tables, linking documents, frames, graphics												CO1	- /			
to HTML documents, style sheet basics, adding styles to documents.											1	BTL-	-4			
Sugge	sted Re	eading	s: Inti	roduc	tion to	HTM	L	-								
Practi	cal Co	mpon	ents:													
1.	Basic	HTM	L Tag	gs,Tal	ble Tag	gs,List	Tags,	Image	Tags,	, Forn	ns.					
2. Implement forms using HTML,FRAMES,CSS.														(D)		
MODULE 2 CSS												hor	(0L+0) CO2	P)		
displa	ng style	rties	lioois	, style	e sheet	prope	ittes, i	ont, te	xt, IIS	i, coic	DI alla Da	ickgrou		, DOX,	BTI -	- - 1
Sugge	sted Re	adino	s CS	S Too	als										DIL-	
Practi	cal Co	mnon	ents:	5 100	515											
1.	CSS S	Selecto	ors													
2.	CSS I	Paddin	ig and	l Mar	gin											
3.	CSS I	Positic	ons		C											
4.	CSS a	nimat	ion													
MOD	ULE 3	JAV	A SCI	RIPT											(6L+6	P)
Introd	uction	to Jav	aScrip	ot, Ac	lvantag	ges of	JavaS	cript, .	JavaSo	cript S	Syntax,	data typ	es, vari	ables,	CO3	-
arrays	Opera	ators a	and E	xpres	ssions,	Loopi	ng co	nstruc	tors, f	functi	ons, dia	log bo	x, JavaS	cript,	BTL-	.4
docum	ient ob	ject m	odel.													
Practi	cal Co	mpon	ents:			TO	•									
Sugge	sted Re	eading	s: Inti	roduc	tion to	JavaS	cript	1 1 - 4	4 -	.		. 11				
1.	write	a Jav	aScri	pt to	design	a sim	ipie ca	liculat	or to]	perior	rm the I	ollowin	g opera	tions:		
2	Write	a Iav	st, uii Scrir	t that	t calcul	quone ates th		arec ar	nd cub	es of	the num	bers fro	$m 0 to^{2}$	Dand		
2.	outpu	ts HT	MLte	ext the	at displ	avs th	e resu	lting v	alues	in an	HTML	table fo	rmat	loand		
3.	Write	a Java	aScrip	ot cod	e that d	lisplay	s text	"TEX	T-GR	OWI	NG" wit	h increa	ising for	nt size		
51	in the	interv	val of	100r	ns in F	RED C	OLO	R. who	en the	font	size rea	ches 50	pt it dis	plays		
	"TEX	T-SH	RINK	ING	" in BI	LUE co	olor. T	hen th	e font	size	decrease	es to 5p	I	r og s		
MOD	ULE 4	DOM	I												(6L+6	P)
Introd	uction	– obie	ects in	n HT	ML, e	vent h	andlin	g, wii	ndow	objec	t, docur	nent ob	ject, bro	owser	CO4	-
object, object methods, built-in objects, user defined objects, cookies.												BTL-	-4			
Sugge	sted Re	eading	s: Bu	ilt-in	objects	5										
Practi	cal Co	mpon	ents:													
1.	How	to Acc	ess E	leme	nts in t	he DC	М									
2.	How	to Tra	verse	the D	DOM		-									
3.	How	to Mal	ke Ch	anges	s to the		l • • •	ч, ч	• .1	DO						
 How to Make Changes to the DOM How to Modify Attributes, Classes, and Styles in the DOM 											1					

5. Underst	tanding Events in JavaScript							
MODULE 5 D	DHTML	(6L+6P)						
DHTML, casc	ading style sheets, class, external style sheets, working with JavaScript style	CO5-						
sheet.		BTL-4						
Suggested Rea	dings: DHTML							
Practical Com	ponents:							
1. Create	ogin form and validate it username/password stored in database.							
2. Create	student record and perform following operations: Add record, delete, and edit,							
3 A web	application display product names and price in tabular formats. Each row							
contain	ing product detail should display Know More button. When the button is clicked							
the desc	cription for the selected item should be displayed							
TEXTBOOKS	S							
1.	Thomas Powell(2017), HTML & amp; CSS: The complete Reference, Fifth Editi	on						
	McGraw Hill Education							
2.	Laura Lemay, Jennifer Kymin(2016) Mastering HTML,CSS & amp; JavaScript,	Web						
	Publishing,							
REFERENCE	BOOKS							
1	Joshua Johaman, Richard Zea, Talha Khan(2016), Web Developers Reference G	luide,						
	Packet							
	Publishing.							
E-BOOKS								
1. https://www.creativebloq.com/web-design/free-ebooks-web-designers-5132836								
MOOC								
1.	https://www.coursera.org/specializations/web-design							

COURSE TITLE	MEAN STACK DEVELOPMENT	CREDITS	4					
COURSE CODE	ACS02503	COURSE CATEGORY	DE	L-T-P-S	3-0-2-0			
VERSION	1.0	APPROVAL DETAILS	38-ACM 13-05-2023	LEARNING LEVEL	BTL-4			

ASSESSMENT SCHEME

	CIA First Second Deviadical Seminary/ Summise Attendence													
First	Second Periodical	ESE												
Periodical	Assessment assignments/ Test / Quiz													
Assessment		Project												
15%	15%	10%	5%	5%	50%									
Course	This course is intende	d to teach students	the fundamenta	als of web develo	opment in a									
Description	project-													
	based learning environ	nment. Students are	e taught the basi	ic elements of w	eb									
	development, such as	development, such as web hosting, file organization, and incorporating Javascript into												
	HTML files.													

Cour	se]	l. To i	under	stand	the gr	aphic	desig	n prin	ciples	that re	late to	web d	esign a	and lea	rn how
Objec	ctive	t	o imp	lemer	it theo	ories 1	nto pr	actice		1 •1•	c	1 •				
		4	2. 100		p ski	lls in a	analyz	zing th	ie usa	bility (of a we	eb site.	1.		• • • •	
		-	5. To (develo	p hov	v to p	lan an	id con	duct u	iser re	search	related	to we	b usab	ollity.	
		2	4. To I	learn t	he lar	iguag	e of th	ie wel	5: HT	ML an	d CSS	•				
~			<u>р. То (</u>	develo	p ski	lls in		AL.								
Cour	se	l	Jpon	succe	ssful c	compl	etion	of the	cours	se, the	studen	t will	be able	e to:		
Outco	ome	(201.	Deve	elop a	web	page i	ising	HTM	L simp	ole tage	5.				
		(CO2.	Impl	emen	t the v	ariou	s use	of cas	cading	g style	sheet				
		(203.	Ana	lyze a	nd wr	ite the	e tunc	tions	using s	scriptii	ng lang	guage			
	CO4. Evaluate the website using event handling mechanism															
CO5. Analyze the use of DHTML																
Prerequisites: NIL																
), PO	, ANI) PSC) MAR	PING	r				
C	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS	PS
0	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04
C	3	3	-	-	-	-	-	-	-	-	1	1	1	3	-	-
01	-															
	3	3												-		
	2	2														
	3	3											2	-		
03	•												4			
C	3	3	1 - - 1 - - 1 - - - 3										3	1	-	
04 C	3	3	-	_	1	2	1	-	-	_	1	1		3	 _	-
05	J	5			•	-	•							5		
1:	Wea	kly re	elated	, 2: N	Ioder	ately	relate	ed and	d 3: S	trongl	y rela	ted				
MOD	ULE	1: M	ONG	D DB									1		(6L	(+6P)
Overv	view,	Unde	rstand	what	is N	OSQI	L, Des	scribe	CRU	D, Sta	te the	types	of NO	SQL,	C01	-BTL-
Expla	in wl	nat is	Aggi	regation	on, D	escrit	e Re	plicat	ion &	Shar	ding,C	RUD	Opera	tions,		4
Under	rstand	what	are C	rud O	perati	ons, E	Explai	n wha	t is U	osert, I	Describ	e Que	ry Inter	rface,		
List th	ne Co	mpari	son O	perate	ors an	d Log	tical C) perat	ors, S	tate w	hat are	Wrap	ped Qu	ieries		
and Q	uery	Opera	ators,	Basic	Oper	ations	crud	l Oper	ration	s, Data	a Mod	el, JS	ON, B	SON,		
Aggre	gatio	ns, In	dexin	g.	1			-								
Pract	ical (Comp	onent	s:												
1.	Cre	ate da	tabase	е,												
2.	Cre	ate co	llection	on,												
3.	inse	ert dat	a, finc	l, find	one,	sort, l	imit, s	skip, o	listing	et, proj	ection	•				
MOD	ULE	2 EX	PRE	SS.JS											(6L	(+6 P)
Introd	luctio	n of I	Expres	ssJs, '	What	is Ex	pressJ	IS, Ho	ow Ex	press.	js wor	ks, In	stallati	on of	CO2	-BTL-
Express.js, Basic Example, Templating Engines, Working with Express.js,											4					
Request/Response in Express.js																
Reque	est-pa	rams,	body,	files,r	oute,h	leader	,get,						Resp	onse-		
render	r,loca	ls,stat	us,jso	n,redi	rect, l	Using	midd	lewar	e, Ty _l	pes of a	middle	eware,	Applic	ation		
level	mide	llewa	re,Exp	press-	json,s	essior	n,logg	er,cor	npres	s, Ro	uter l	evel 1	niddle	ware,		
Built-in middleware, Third party middleware, Express 4. Router.																
Pract	ical (Comp	onent	s:												

1. Install Express.jsExpress.js RequestExpress.js ResponseExpress.js										
GetExpress.js PostExpress.js										
2. RoutingExpress.js CookiesExpress.js										
3. File UploadExpress.js										
4. MiddlewareExpress.js ScaffoldingExpress.js Template										
MODULE 3 ANGULAR.JS	(6L+6P)									
Introduction to AngularJS, MVC Architecture, Conceptual Overview, Setting up the	CO3-BTL-									
Environment, First Application, Understanding ng attributes, Expressions and Data	4									
Biding, Number and String Expressions, Object Binding and Expressions, Working with										
Arrays, Forgiving Behavior, Understanding Data binding, Working with Directives,										
Conditional Directives, Styles Directives, Mouse and Keyboard Events Directives.										
Practical Components:										
1. AngularJS First AppAngularJS Data										
2. BindingAngularJS ExpressionsAngularJS DirectivesAngularJS										
ControllersAngularJS ModulesAngularJS 3 ScopesAngularIS DependencyAngularIS FiltersAngularIS TablesAngularIS										
3. ScopesAngularJS DependencyAngularJS FiltersAngularJS TablesAngularJS SelectAngularJS										
4 DOMAngularIS Forma AngularIS										
4. DOWAligutaries FormisAligutaries										
MODULE 4 NODE IS	(6L+6P)									
Introduction to Node JS Introduction, What is Node JS? Advantages of Node	CO4-BTL-									
JS, Iraditional web Server Model, Node. JS Process Model, Caliback Concept, Global	4									
Module Module Types Core Modules Legel Modules Module Exports Creating Web										
server Debugging Node IS Application Core Node IS debugger Debugging with Visual										
server, Debugging Node JS Application, Core Node JS debugger Debugging with Visual										
Studio, Events, EventEmitter class, Returning event emitter, Inhering events.										
Studio, Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components:										
Studio, Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: 1. Setting up Node, is and Other Essentials										
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps 										
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha 										
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars 										
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi 										
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS 										
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML 	(6L+6P)									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript 	(6L+6P) CO5-BTL-									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components:	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page 	(6L+6P) CO5-BTL- 4									
 Studio, Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page Style Your Page with CSS 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page Style Your Page with CSS Validate Your Page 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page Style Your Page with CSS Validate Your Page to the Web 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page Style Your Page with CSS Validate Your Page Upload Your Page to the Web Advanced Style Techniques 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page Style Your Page with CSS Validate Your Page Upload Your Page to the Web Advanced Style Techniques Favorite Movie 	(6L+6P) CO5-BTL- 4									
 Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: Setting up Node.js and Other Essentials Using Express.js 4 to Create Node.js Web Apps TDD and BDD for Node.js with Mocha Template Engines: Jade and Handlebars Building Node.js REST API Servers with Express.js and Hapi Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: About Me Page Style Your Page with CSS Validate Your Page to the Web Advanced Style Techniques Favorite Movie 	(6L+6P) CO5-BTL- 4									
Studio,Events, EventEmitter class, Returning event emitter, Inhering events. Practical Components: 1. Setting up Node.js and Other Essentials 2. Using Express.js 4 to Create Node.js Web Apps 3. TDD and BDD for Node.js with Mocha 4. Template Engines: Jade and Handlebars 5. Building Node.js REST API Servers with Express.js and Hapi 6. Real-Time Apps with WebSocket, Socket.IO, and DerbyJS MODULE 5 DHTML DHTML, cascading style sheets, class, external style sheets, working with JavaScript style sheet. Suggested Readings: DHTML. Practical Components: 1. About Me Page 2. Style Your Page with CSS 3. Validate Your Page 4. Upload Your Page to the Web 5. Advanced Style Techniques 6. Favorite Movie TEXTBOOKS 1.	(6L+6P) CO5-BTL- 4									

2.	Laura Lemay, Jennifer Kymin(2016) Mastering HTML,CSS & amp; JavaScript, Web
	Publishing,
REFERENCE	C BOOKS
1.	Joshua Johaman, Richard Zea, Talha Khan(2016), Web Developers Reference Guide,
	Packet Publishing.
E-BOOKS	
1.	https://www.creativebloq.com/web-design/free-ebooks-web-designers-5132836
MOOC	
1.	https://www.coursera.org/specializations/web-design

LIST OF DEPARTMENT ELECTIVE COURSES FOR SPECILIZATION IN AUGUMENTED REALITY/VIRTUAL REALITY														
S.NO	SEM	COURSE	COURSE	NAME OF	L	Τ	P	C	S	ТСН				
	DEDADTMENT ELECTIVE 1(SEMESTED II)													
DEPARTMENT ELECTIVE-1(SEMESTER-II)														
1 2 DE ACS02504 AR/VR Tool and 3 0 2 4 0 5														
techniques														
2	2	DE	ACS02505	Emerging trends	3	0	2	4	0	5				
	in AR/VR													
		DEPART	MENT ELE	CTIVE-II(SEMES	TE	R-II	I)							
				·			-							
3	3	DE	ACS02506	3d Texturing and	3	0	2	4	0	5				
				Sculpting										
4	3	DE	ACS02507	Unity For	3	0	2	4	0	5				
				AR/VR										

ELECTIVE -I

COURSE TITLE	AR & VR T TECH	FOOLS AND NIQUES	CREDITS	4						
COURSE CODE	ACS02504	COURSE CATEGORY	DE	L-T-P-S 3-0-2-0						
VERSION	1.0	APPROVAL DETAILS	38-ACM 13-05-2023	LEARNING LEVEL	BTL-4					
ASSESSMENT SCHEME										

		CIA			ESE								
First Periodical Assessment	Second Periodical Assessment	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendance	ESE								
15%	15%	10%	5%	5%	50%								
Course Description	This course prov and Virtual Real	This course provides you with end-to-end training in Dimensional Content for Augmented and Virtual Reality											

Cours Objec	e tive	Th AF his the	e obje R and 1 storical e funda	ctive c make t l and n amenta	of this he stud noderr ils of s	course dents a overv ensatio	is to p ware o views a on, per	provid of the and pe ceptio	e a fou variou rspection, tecl	Indatior s AR de ives on hnical a	n to the evices. virtual nd engi	fast-gro It is des reality. neering	owing fi igned to It descr aspect	ield of o give ribes s of	
Cours Outco	ie me	Up CC CC CC CC CC bu CC bu	Upon successful completion of the course, the student will be able to: CO1: Compare and Contrast VR and AR experiences CO2: Demonstrate and develop VR apps in Unity CO3: Demonstrate and develop AR apps in Unity CO4: Acquire knowledge in VR and AR technologies in terms of used devices, building of the virtual environment and modalities of interaction and modelling. CO5: Acquire knowledge about the application of VR and AR technologies in medicine, education, cultural heritage and games.												
CO.	CO. PO. AND PSO MAPPING														
CO	$\begin{array}{c cccccc} \hline CO, FO, AND FSO MAPPING \\ \hline CO, PO, PO, PO, PO, PO, PO, PO, PO, PO, P$														
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	1	1	-	-	-	-	-	-	-	-			1		1
$\frac{1}{CO}$															
	-	-	-	-	-	-	-	-	-	-			-		-
CO	1	-	2	-	-	2	1	-	-	-			-		2
3															
CO	-	-	1	-	-	1	-	-	1	-			-		
4 CO	_				1	2	1						1		1
5	-	-	-	-		2		-	-	-			1		L
Preree	quisite	es: NII	L			1		1							
MOD	ULE 1	I INT	RODI	JCTIC)N									(6L+6	P)
What I	Is Aug	gmente	d Rea	lity - E	Definin	ig augi	menteo	d realit	ty, hist	tory of a	augmen	ited real	ity,	CO1-	BTL-4
Techn	ologie	s. Oth	er Idea	ns Rela	ted to	the Sr	bectrur	n Betv	veen R	Real and	l Virtua	l World	ls.		
applica	ations	of aug	gmente	d reali	ity Au	gment	ed Rea	lity C	oncept	ts- How	Does A	Augmer	nted		
Reality	y Wor	k? Coi	ncepts	Relate	ed to A	ugme	nted R	eality,	Ingre	dients c	of an Au	igmente	ed		
Reality	y Expe	erience	e.												
Pracu 1	Cal Co Time	o mpor eline o	f evolu	ition o	f AR f	rom V	'R								
MOD	ULE 2	2: VIR	TUA	L REA		7	<u>N</u>							(6L	+6 P)
Defini	ng Viı	rtual R	eality,	Histo	ry of V	/R, Hı	ıman I	Physio	logy a	nd Perc	eption,	Key		CO2-	BTL-4
Eleme	nts of	Virtua	l Real	ity Ex	perien	ce, Vi	rtual R	eality	System	n, Inter	face to	the Vir	tual		
World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality.															
Practical Components:															
2.	Creat	ting 3I	D obje	cts usi	ng Ble	nder.	1 10/1								
MOD	MODULE 3 GEOMETRY OF VIRTUAL WORLDS & THE PHYSIOLOGY OF (6L+6P)														
HUM	HUMAN VISION														

Representation	of the Virtual World, Visual Representation in VR, Aural Representation	CO3-BTL-4						
in VR and Hap	tic Representation in VR Case Studies GHOST (General Haptics Open							
Software Tooll	kit) software development toolkit.Geometric Models, Changing Position							
and Orientation	n, Axis-Angle Representations of Rotation, Viewing Transformations,							
Chaining the T	ransformations, Human Eye, eye movements & implications for VR.							
Practical Components:								
1. Sweepi	ng coverage of eye movements							
2. Use of	OpenCV for AR App Development							
MODULE 4:	VISUAL PERCEPTION & RENDERING	(6L+6P)						
Visual Percept Combining Son Rasterization, G studies: Autom Worlds- Veloc World, Misman Tracking Posit Study Use Cas Remapping, Lo The Physiolog Practical Com 1. Google 2. Create a (use 3. ARCor	ion - Perception of Depth, perception of Motion, Perception of Color, arces of Information Visual Rendering -Ray Tracing and Shading Models, Correcting Optical Distortions ,Improving Latency and Frame Rates Case actic stitching of panoramas in Virtual Reality .Motion in Real and Virtual ities and Accelerations, The Vestibular System, Physics in the Virtual acched Motion and Vection Tracking- Tracking 2D & 3D Orientation, iton and Orientation, Tracking Attached Bodies Case Studies A virtual e- NICE, An Educational Experience Interaction - Motor Programs and bocomotion, Manipulation, Social Interaction. Audio -The Physics of Sound, y of Human Hearing, Auditory Perception, Auditory Rendering ponents: Daydream a C# script which plays a video when an image is scanned using AR App e & Unity).	CO4-BTL-4						
MODULE 5 V	VORKING WITH VR & AR DEVICES	(6L+6P)						
VR Devices -	Structure and working of HTC Vive Google Cardboard Samsung gear	CO5-BTL-4						
VR Oculus Or	uest Samsung Odyssev Oculus Rift AR Components – Scene Generator	CO3-D1L-4						
Tracking syste	m monitoring system display Game scene AR Devices – Ontical See-							
Through HMD	Virtual retinal systems Monitor based systems Projection displays							
Video see_thro	ugh systems. Advantages and Disadvantages of AR and VR technologies							
Case Studies G	cogle Daydream Trending Application Areas - Gaming and Entertainment							
Architecture or	od Construction Science and Engineering Health and Medicine Aerospace							
and Defence	ducation. Tale relations and Telepresence Human Factors. Lagel and Social							
Considerations	Human Easters Considerations, Lagel and Social Considerations, The							
	- Human Factors Considerations, Legar and Social Considerations, The							
Future.								
Practical Com	ponents:							
1. Case St	udies: What is Google Maps AR navigation and now it is used							
TEXTBOOK		•						
1.	Steve Aukstakalnis- Practical Augmented Reality: A Guide to the Technolog	gies,						
	Applications, and Human Factors for AR and VR, Addison-Wesley Profession	ional,						
	September 2016, ISBN: 9780134094328							
2.	Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016							
3.	Understanding Virtual Reality: Interface, Application and Design, William I	R Sherman						
3.	Understanding Virtual Reality: Interface, Application and Design, William I and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)".	R Sherman Morgan						
3.	Understanding Virtual Reality: Interface, Application and Design, William I and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". KaufmannPublishers, San Francisco, CA, 2002	R Sherman Morgan						

1.	Jesse Glover, Jonathan Linowes – Complete Virtual Reality and Augmented Reality Development with Unity: Leverage the power of Unity and become a pro at creating mixed reality applications. Packt publishing, 17th April 2019. ISBN -13 : 978- 1838648183
2.	Jonathan Linowes, Krystian Babilinski – Augmented Reality for Developers: Build practical augmented reality applications with Unity, ARCore, ARKit, and Vuforia. Packt publishing, 9th October 2017. ISBN-13: 978-1787286436
E-BOOKS	
1.	https://www.amazon.in/Soft-Computing-Fundamentals-Applications-Pratihar/dp/8184873387
MOOC	
2.	https://www.coursera.org/learn/augmented-reality
3.	https://www.coursera.org/specializations/unity-xr

COURSE TITLE	EMERGING TREN	DS IN AR/VR	CREDITS	4					
COURSE CODE	ACS02505	COURSE CATEGORY	DE	L-T-P-S	3-0-2-0				
VERSION	1.0	APPROVAL DETAILS	38-ACM 13-05-2023	LEARNING LEVEL	BTL-4				
		ASSESSMENT	SCHEME						
		CIA			ESE				
First Periodical Assessment	Second Periodical Assessment	Seminar/ assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	This course provides you with end-to-end training in Dimensional Content for Augmented								
Course Objective	The objective of this co AR and make the stude historical and modern the fundamentals of se virtual reality systems.	ourse is to provide ents aware of the overviews and per nsation, perceptio	e a foundation to the various AR devices rspectives on virtua n, technical and eng	e fast-growing fid . It is designed to l reality. It descri gineering aspects	eld of o give ibes of				
Course Outcome	virtual reality systems. Upon successful completion of the course, the student will be able to: CO1: Compare and Contrast VR and AR experiences CO2: Demonstrate and develop VR apps in Unity CO3: Demonstrate and develop AR apps in Unity CO4: Acquire knowledge in VR and AR technologies in terms of used devices, building of the virtual environment and modalities of interaction and modelling. CO5: Acquire knowledge about the application of VR and AR technologies in								

				CC), PO, <i>A</i>	AND PS	SO MA	PPING							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSC	D1	PSO2		
CO1	1	1	-	-	-	-	-	-	-	-	1		1		
CO2	-	-	-	-	-	-	-	-	-	-	-		-		
CO3	1	-	2	-	-	2	1	-	-	-	-	- 2			
CO4	-	-	1	-	-	1	-	-	1	-	-				
CO5	-	-	-	-	1	2	1	-	-	-	1		1		
Prerequi	isites: N	JIL													
MODUL	E 1 IN	TROD	UCTIO	N								(6L+6P)		
 What Is Augmented Reality - Defining augmented reality, history of augmented reality, The Relationship Between Augmented Reality and Other Technologies-Media, Technologies, Other Ideas Related to the Spectrum Between Real and Virtual Worlds, applications of augmented reality Augmented Reality Concepts- How Does Augmented Reality Work? Concepts Related to Augmented Reality, Ingredients of an Augmented Reality Experience. Practical Components: 1 Timeling of avolution of AP from VP)1-ВТ L-4						
MODULE 2: VIRTUAL REALITY									(6L+6P)					
Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality. Practical Components: 1. Study the use of Virtual Reality at NASA								CC)2-BTL-4						
MODUL	E 3 GI	EOMEI	FRY OF	VIRT	UAL V	VORLI)S &TH	IE PHY	SIOLO	OGY OF		(6 I	L+6P)		
HUMAN	VISIO)N	~				•					a			
VR Hardware and Software- Sensory hardware; Limitations and interactions; AR and VR together; Introduction to AR headset and smart glasses; Various AR software available; Introduction to Spark AR; Create a face detection app; Introduction: What is Unity; Introduction: Why Unity; Introduction: Unity installation; Introduction: What is Software Development Kit (SDK); Introduction to AR foundation; Installing AR foundation SDK; SDK setup,3D computer graphics basics; Creating 3D objects C-Sharp basics; Unity classes; Vectors in Unity Basics of creating a virtual environment for AR; Applying physics Interactions in AR Types of interaction in AR; How to test your project Practical Components: Sweeping coverage of eye movements Use of OpenCV for AR App Development 							CC)3-BTL-4							
MODUL	E 4: V	ISUAL	PERCI	EPTIO	N & RI	ENDER	RING					(6I	L+6P)		
Visual Perception - Perception of Depth, perception of Motion, Perception of Color, Combining Sources of Information Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions ,Improving Latency and Frame Rates Case studies: Automatic stitching of panoramas in Virtual Reality .Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the Virtual								CO	94-BTL-4						

World, Misma	tched Motion and Vection Tracking- Tracking 2D & 3D Orientation,									
Tracking Posit	Tracking Position and Orientation, Tracking Attached Bodies Case Studies A virtual									
Study Use Cas	se- NICE, An Educational Experience Interaction - Motor Programs and									
Remapping, L	ocomotion, Manipulation, Social Interaction. Audio -The Physics of Sound,									
The Physiology of Human Hearing, Auditory Perception, Auditory Rendering										
Practical Components:										
1. Google	e Daydream									
2. Create a C# script which plays a video when an image is scanned using AR App										
(use A	RCore & Unity).									
MODULE 5	WORKING WITH VR & AR DEVICES	(6L+6P)								
VR Devices –	Structure and working of HTC Vive, Google Cardboard, Samsung gear VR,	CO5-BTL-4								
Oculus Quest,	Samsung Odyssey, Oculus Rift. AR Components – Scene Generator,									
Tracking syste	em, monitoring system, display, Game scene AR Devices – Optical See-									
I hrough HML	D, Virtual retinal systems, Monitor based systems, Projection displays, Video									
See-through sy	Stems. Advantages and Disadvantages of AR and VR technologies.									
Architecture of	nd Construction Science and Engineering Health and Medicine Acrospace									
and Defence	Education, Tele robotics and Telepresence Human Eactors, Legal and Social									
Consideration	- Human Factors Considerations Legal and Social Considerations. The									
Future	Tuman I actors Considerations, Legar and Social Considerations, The									
Practical Con	nponents:									
1. Case S	tudies: What is Google Maps AR navigation and how it is used									
TEXTBOOK	S									
1	- Steve Aukstakalnis- Practical Augmented Reality: A Guide to the Technolog	ries								
1.	Applications and Human Factors for AR and VR Addison-Wesley Profession	onal								
	September 2016 ISBN: 9780134094328	onar,								
2	Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016									
3	Understanding Virtual Reality: Interface Application and Design William R	Sherman								
5.	and Alan B Craig. (The Morgan Kaufmann Series in Computer Graphics)".	Morgan								
	KaufmannPublishers, San Francisco, CA. 2002									
REFERENCI	E BOOKS									
1.	Jesse Glover, Jonathan Linowes – Complete Virtual Reality and Augmented	Reality								
	Development with Unity: Leverage the power of Unity and become a pro at	creating								
	mixed reality applications. Packt publishing, 17th April 2019. ISBN -13 : 97	8-								
	1838648183									
2.	Jonathan Linowes, Krystian Babilinski – Augmented Reality for Developers	: Build								
	practical augmented reality applications with Unity, ARCore, ARKit, and Vu	uforia. Packt								
	publishing, 9th October 2017. ISBN-13: 978-1787286436									
E-BOOKS										
1.	https://www.amazon.in/Soft-Computing-Fundamentals-Applications-Pratiha	r/dp/								
	8184873387									
MOOC										
1.	https://www.coursera.org/learn/augmented-reality									
2.	https://www.coursera.org/specializations/unity-xr									

ELECTIVE-II

CO TI	URS ITLE	E		3D 7	TEXT SCU	URIN LPTI	NG A. NG	ND		C	REDI	ГS			4			
CO C	URS ODE	E	AC	CS025	06	0	COU CATE	JRSE GOR	Y		DE		L-T-I	P-S	3-0	-2-0		
VEI	RSIO	N		1.0		A	APPR DET	OVA AILS	L	38 13-0	ACM 95-202	3 L	EARN LEVI	ING EL	BT	L-4		
ASSE	ESSM	ENT	SCH	EME														
First Perio Asses	dical smen	t	SecondSeminar/SurpriseAttendancePeriodicalassignments/Test / QuizImage: Constraint of the second										nce	ESE				
15%	Sinci		15%	Sillen	•	10%))			5%		59	5% 50%					
Cour: Descr	se riptio	n	Provides an introduction to creating, editing, and analyzing 3D models. Develops foundational skills to work with, and navigate the digital 3D modelling workspace to create 3D objects. Examines basic elements of the 3D development of modeling, texturing, lighting, animating, and rendering.															
Obje	se ctive		1 ms c	To u To u To g Env Den way To g and To U	inders gain T ironm nonstr gain T 3D en Jnders	tand t tand t heore ent. ate the heore viron stand	he co tical k e abili tical k ment. the Ba	ents: ncepts mowl ity to mowl asics o	s of 31 edge o map d edge o o <u>f</u> Ani	D- Thro of how letailed on Ligh	ee Dim to crea l textur nting an n.	tension ate Thr es to 3 nd Rer	n. ree-dim BD obje ndering	nension ects in the	nal (3D) theoreti e 3D ot) ical ojects		
Cours	se ome		 To Understand the Basics of Animation. On the successful completion of the course, students will: CO1 Understand the concept of 3D Three Dimension in General. CO2 Understand the 3D Industrial Pipeline process and ability to apply the pipeline in their 3D projects. CO3 Be able to Start working on 3D related software and learned the tools and Techniques. CO4 Have a brief knowledge about Modeling, Texturing, Lighting and Rendering, Rigging and animation. 															
					C), P (, AN	D PS) MA	PPIN	G							
C	P	P	Р	Р	P	Р	P	P	P	PO	PO	PO	PS	PS	PS			
O C	01 1	02 1	03	04 -	- O5	06 -	- O7	- 08	- O9	10 -	11	12	01 1	02 1	03			
01																		
	-	-	-	-	-	-	-	-	-	-			- -					
C 03	1	-	2	-	-	2	1	-	-	-			-	2				

~					1	-	1		-				1			-
C	-	-	1	-	-	1	-	-	1	-			-			
<u>04</u>			1			1			1							
04	-	-	L	-	-	T	-	-	T	-			-			
Prere	auisit	tes: N	Ш	I				l	l		l	l		l		
MOD	ULE	1 IN'	ΓROI	DUCT	TION										(6L -	-6 P)
3D M	odelli	ng - J	Types	of 3D	Mod	elling	- Dig	ital So	culptin	ng - Pro	ocedur	al Moo	lelling	-	CO1-	BTL-
Image Based Modelling - Tool-Box - Navigate the Camera -Show or Hide - Change the											4	1				
Display of Objects - Display Scene Information - Level of Detail (LOD) - Walk																
Throu	igh Th	ie Śce	ene - C	Create	and E	Edit O	bjects	- Typ	bes of	Object	s - Cre	ate Ba	sic 3D			
Objec	ts and	l Curv	ves- D	uplica	ate - C	ut, Co	opy, P	aste -	Delet	e, Ůnd	o, Red	o & R	epeat -	Edit		
Comp	onent	s Nur	neric	Value	s Dire	ectly -	Com	ponen	t Edit	or - Tra	ansfori	n Obje	ects and	1		
Comp	onent	s - Cł	nange	The F	Pivot F	oint -	Alig	n and	Snap	- Matcl	hing ol	bject a	ttribute	:		
values	5.		U				U		1		U	5				
Pract	ical C	Comp	onent													
1. Cre	eate 3	D mo	del Su	ırface	of mu	id pot	set us	sing th	e give	en refe	rence.					
2. Cre	eate A	Mod	el of l	Dining	g Tabl	e set i	using	basic	polyg	on moo	delling	tools.				
3. Ma	ke a r	nodel	of so	da car	n and a	apply	the gi	ven te	exture	using	UV Ur	iwrapi	ng			
techniques.																
MODULE 2 MODELLING										(6L+	⊦6P)					
Polyg	onal N	Model	ling -	Editi	ng Pol	lygon	s - Tra	ansfor	ming	Polygo	onal Co	ompon	ents -		CO2-	BTL-
Comb	ining	, Sepa	rating	g, and	Splitt	ing - S	Smoot	thing _[polyge	ons - C	olouri	ng Pol	ygons -		4	1
Retop	ology	- Pol	ygona	al Moo	delling	g Refe	erence	- Mo	dellin	g Men	u Set -	Polyg	onal			
Mode	lling '	Tools	- Nur	bs Mo	odellir	ng - C	reatin	g NUl	RBS S	Surface	es - Edi	ting N	URBS	-		
UV's	- Map	oping	UV's	- Edit	ting U	V's -	Sculp	ot a me	esh - S	Sculpt ı	using s	ymme	try.			
Pract	ical C	Comp	onent													
1.	Crea	ate 3D) mod	el of V	Wine	Bottle	and (Glass,	Rend	er it us	ing Ma	aya me	ental ra	у		
	Glas	ss Ma	terials	5.												
2.	Crea	ate 3D) mod	el of l	Readii	ng Ta	ble an	d prop	os req	uired o	n it an	d set u	p the			
_	Ligi	nting	for the	e same	e and i	rende	r it.						_			
3.	Set	up a 3	8-poin	t light	setup	o for C	Biven	produ	ct mo	del and	l take I	Render	· Image	S		
MOD	tor j	orodu	ct mo	deling			TOTAL	a								
MOD	ULE	<u>3 SH</u>		NG AI				G	10	11	A 44					-6P) DTI
Surra	ce ma		Attric	outes -	Surra			Spec	ular S	hading	g Attrit	outes S	urface		CO3-	BIL-
Mater	1ais- 1	Jispia	Creat	nt Ma		S-VO	Iumet		aterial	s - Sna	aling -	Assigi	n Mate	riais	4	•
10 10	le Sur	ace -	Creal		er -Sr	laders	- Kel			ract Lig	gni - O	Eilo 7	W OI	<i>a</i>		
Droco	e nou dural	US - ZI		chodi	Ellvii na Edi	tor	un re	xiule	- Laye		exture ·	- File I	lexture			
Proof	uurar	¹ omn	nont	311au11	ig Eu	101 –	пуре	Isnauc	2.							
1140	Cree	oto Si	mpla	• Carto	on Ch	aracta	r and	Give	onnro	orioto 7	Fortura	and L	Pandar	it		
1.	Mal	$z = \mathbf{P} \mathbf{a}$	listic		Bound	a a a c c	r anu motio	ns Fo	r Diff	priate 1		ing Ke	vfram	π.		
2. Make Realistic Dati Dounce Annhations For Different Balls using Regirante																
Annuauon. 3 Set up Interior and Exterior Lighting For The Given 3D Building model																
		4. A			N	i Ligi	iiiig I				Dunu	ng mo			(6I -	-6P)
Anim	ation	Basic	s - An	imate	d rota	tion -	Creat	e Tim	e Wa	rning F	Effects	-Edit s	nimati	on	CO4-	BTL.
nreferences - Playback Animation - Keyframe Animation- Edit Curves - Driven Keys -									4							
preferences - Playback Animation - Keyframe Animation - Edit Curves - Driven Keys - Breakdowns – In Between - Time Editor - Character Animation - Skeletons - Skeleton											-					

components - S Animation Laye	kinning - IK handles overview - HumanIK - Constraints - Graph Editor - ers And Animation File Formats - Base Animation - Animation Layer								
Editor									
Practical Com	ponent:								
1. Using B	ackground Shader and Surface Shaders.								
2. Make a 3D model of ROBO, Set up Rig and Controls for it and make Walk									
cycle Ar	nimation.								
MODULE 5 M	AYA	(6L+6P)							
Hardware, softw	vare, and vector rendering - Maya Software Renderer - Maya Hardware	CO5-BTL-							
2.0 Renderer - N	Maya Vector Renderer - ARNOLD FOR MAYA RENDERER - Camera	4							
Setup - Depth of	f field - Focus and Blur -Using A Stereoscopic Camera - Create A								
Multi-Camera R	Rig - Working in Viewport 2.0 - Viewport 2.0 Limitations- Linear								
Workflows And	Color Management - Limitations of color management.								
Practical Com	ponent:								
1. Kicking	a ball								
2. Characte	er thinking								
3. Variatio	ns for face expressions								
4. Change	a character emotion (Happy to sad, sad to angry etc.,)								
5. Object f	alling into a body of water								
TEXTBOOKS									
1.	Preston J. Blair, "Animation 1: Learn to Animate Cartoons Step by Step"	,							
	(Cartooning, Book 1) Paperback – 2003								
2.	Russell Chun "Adobe Animate CC Classroom in a Book" 1st Edition, 20	018							
REFERENCE	BOOKS								
1.	The Animator's Survival Kit: A Manual of Methods, Principles and Form	nulas for							
	Classical, Computer, Games, Stop Motion and Internet Animators 4th Ed	lition – 2009							
2.	Jean Ann Wright, "Animation Writing and Development: From Script D	evelopment							
	to Pitch (Focal Press Visual Effects and Animation) 1st Edition"	1							
E-BOOKS									
1.	https://pdfcoffee.com/3d-modeling-for-beginners-danan-thilakanathanpd	f-pdf-							
	free.html	-							
2.	https://itbook.store/books/9781593279264								
MOOC									
1.	https://in.coursera.org/courses?query=3d%20modeling								
2.	https://www.udacity.com/course/interactive-3d-graphicscs291								

COURSE	UNITY FOR	AR/VR	CREDITS	4		
TITLE						
COURSE	ACS02507	COURSE	DE	L-T-P-S	3-0-2-0	
CODE		CATEGORY				
VERSION	1.0	APPROVAL	38 ACM	LEARNING	BTL-4	
		DETAILS	13-05-2023	LEVEL		
ASSESSMENT	Г SCHEME					

First Period Assess	lical ment	S A	Second Periodical Assessment				Semin assign Projec	ar/ ments/ ct	/	Surpr Test /	ise Quiz	Atten	dance	ES	E
15%		1	5%				10%			5%		5%		509	%
Course Descri	e ption	U p de se	Inity V lugins evices. oftware	R lets in proje It has	you tar ects. It been d	get vi provi esigne	rtual re des a b ed to pr	eality d base AF rovide	evices PI and forwa	directly feature rd comp	y from U set with patibility	Unity, w compa for fut	vithout any tibility for ure device	exter multi s and	rnal iple
Course Object	e tive	T V to	he obje R app, see ho	ective o includ ow Uni	of this ling tra ty's A	course cking R Fou	e is to e , telepo indatio	explain orting, n suppo	how long to how long the how long to how long the how long to how	Unity su cting wi uilding A	ipports the virtue AR apps	the man al objec s.	y compon ts. At the	ents o same 1	f a time
Course	e me		 CO1 Compare and Contrast VR and AR experiences CO2 Demonstrate and develop VR apps in Unity CO3 Demonstrate and develop AR apps in Unity CO4 Acquire knowledge in VR and AR technologies in terms of used devices, building of the virtual environment and modalities of interaction and modelling. CO5 Acquire knowledge about the application of VR and AR technologies in medicine, education, cultural heritage and games 												
CO	PO	PO	DO DO DO DO DO DO DO DO DO1 DO1 DO1 DO										PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	150
CO1	1	1	-	-	-	-	-	-	-	-	-	-	1	1	3
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3
CO3	1	-	2	-	-	2	1	-	-	-	-	-	-	2	3
CO4	-	-	1	-	-	1	-	-	1	-	1	-	-		3
CO4	-	-	1	-	-	1	-	-	1	-	1	-	-		3
			1: V	Veakly	relate	ed, 2:	Mode	rately 1	related	d and 3	: Stron	gly rela	ted		
Prerec	luisite	s: NI	L												
MODU	ULE I	: IN'	FROD	UCTI	ON									(6 I	L+6P)
Categorizing the realities – Virtual Reality, Augmented Reality & Mixed Reality, Introduction, features and application areas of Virtual Reality, Augmented Reality & Mixed Reality. All you need to know about VR – Integration of VR techniques, Contents objects and scale, GazeBased Control, Handy Interactables, IDE setup with package files, concepts and features of VR, VR project example All you need to know about AR - Working with AR techniques, compatibility with the environment, system architecture, AR terminology, application areas of AR, Integration of AR toolkits with existing IDE's (Unity-Vuforia, Visual Studio, Netbeans, intellij IDEA, Android, iOS), connectivity of smart devices with AR. Practical Component: 1. Case study of a single application using both VR and AR technologies)1- `L-4						
MODU	ULE I	I VR	APP I)EVEI		ENT	WITE	I UNI	ΓΥ	1111100	morogr			(61	L+6P)

VR SDK's – VF	R SDK'S and Frameworks – OpenVR SDK, StreamVR SDK, VRTK, Oculus	CO2-
SDK, Google V	R SDK. VR Concept Integration- Motion Tracking, Controllers, Camera,	BTL-4
Hardware and S	oftware requirements Setting up Unity with VR- Framework/SDK Integration	
with Unity, Deb	ugging VR projects, Unity XR API's, Mobile VR Controller Tracking, Object	
Manipulation, I	ext optimizing and UI for VR	
Practical Comp	oonent:	
	ng 5D objects using Blender.	((I + (D))
MODULE 5 AI	KAPP DEVELOPMENT WITH UNITY	$(\mathbf{0L}+\mathbf{0P})$
AR Foundation	– Detection of surfaces, identifying feature points, track virtual objects in real	CO3-
world, face and	object tracking. AR Algorithms – Briefing on SLAM Algorithm (Simultaneous	BTL-4
Localization and	Mapping), understanding uncertain spatial relationship, Anatomy of SLAM,	
Loop detection a	and Loop closing Unity AR concepts- Pose tracking, Environmental detection,	
Raycasting and	physics for AR,	
Light estimation	, Occlusion, working with ARCore and ARKit Working with AR Tools-	
ARCore, ARTo	olkitx ARCore - Features of ARCore, integration with	
Unity/Unreal/iO	S/Android Studio, augmented reality applications with ARCore. ARToolkit –	
Features of ART	Coolkit, setting up the environment for application development. Vuforia-	
Features of Vufe	oria, setting up the environment for application development	
Practical Comp	oonent:	
1. Use of C	penCV for AR App Development	
MODULE 4: P	ROGRAMMING LANGUAGES FOR AR & VR APPLICATIONS	(6L+6P)
C# with Unity –	OOL concepts, classes in C#, setting up visual studio or code editor for C#, 3D	CO4-
models compati	bility with C#, C# for AR and VR C++ with Unreal Engine – Building and	BTL-4
compiling C++]	programs with unreal engine, variables and memory, looping and if else	
structures with u	inreal engine, functions and macros, adding actors to the scene, dynamic	
memory allocati	ons, spell book	
Practical Comp	oonent:	
I. Create a	C# script which plays a video when an image is scanned using AR App (use	
ARCore	& Unity)	
MODULE 5 M		(6L+6P)
VR Devices $-S$	tructure and working of HTC Vive, Google Cardboard, Samsung gear VR,	CO5-
Oculus Quest, S	amsung Odyssey+, Oculus Rift. AR Components – Scene Generator, Tracking	BIL-4
system, monitor	ing system, display, Game scene AR Devices – Optical See- Through HMD,	
virtual retinal s	ystems, Monitor based systems, Projection displays, video see-through	
Proctical Com	ages and Disadvantages of AK and VK technologies.	
1 Google I	Jonent.	
TEXTROOKS	Jaydicani	
1	Steve Aukstakalnis- Practical Augmented Reality: A Guide to the Technologies	
1.	Applications and Human Factors for AR and VR Addison-Wesley Professional	
	September 2016. ISBN: 9780134094328	
2	Allan Fowler- Beginning iOS AR Game Development Developing Augmented R	eality
2.	Apps with Unity and C#, 1st Edition, Apress Publications, 2018, ISBN 978-1484	236178
3.	William Sherif- Learning C++ by Creating Games with UE4 , Packt Publishing, ISBN 978-1-78439-657-2	2015,
REFERENCE	ROOKS	

1.	Jesse Glover, Jonathan Linowes – Complete Virtual Reality and Augmented Reality Development with Unity: Leverage the power of Unity and become a pro at creating mixed reality applications. Packt publishing, 17th April 2019. ISBN -13 : 978-1838648183
2.	Jonathan Linowes, Krystian Babilinski – Augmented Reality for Developers: Build practical augmented reality applications with Unity, ARCore, ARKit, and Vuforia. Packt publishing, 9 th ctober 2017. ISBN-13: 978-1787286436
E-BOOKS	
1.	https://www.oreilly.com/library/view/practical-augmented-reality/9780134094328/
2.	https://www.scholarvox.com/catalog/book/docid/88852781
MOOC	
1.	https://www.coursera.org/googlearvr
2.	https://www.freecodecamp.org/news/augmented-reality-full-course/

LIST OF DEPARTMENT ELECTIVE COURSES FOR SPECIALIZATION IN IOT														
S.NO	SEM	COURSE	COURSE	NAME OF THE	L	Τ	Р	С	S	TCH				
		CATEGORY	CODE	COURSE										
DEPARTMENT ELECTIVE-1(SEMESTER-II)														
1	2	DE	ACS02508	5G & IOT	3	0	2	4	0	5				
				Technologies										
2	2	DE	ACS02509	Cognitive Iot	3	0	2	4	0	5				
DEPARTMENT ELECTIVE-II(SEMESTER-III)														
3	3	DE	ACS02510	Wearable Computing	3	0	2	4	0	5				
4	3	DE	ACS02511	IOT Security	3	0	2	4	0	5				

ELECTIVE-I																	
COU	RSE	50	J ANI	D IOI	T TECHNOLOGIES					CREDITS			4				
TIT	'LE																
COU	RSE	AC	CS025	08	COURSE		DE			L-T-P-S		3-0-2-0					
CO	DE				C	ATE	GORY	Z									
VERS	SION		1.0		А	PPR()VAI			38 A (CM	L	EARNI	NG	BTL -	4	
			1.0			DET	AILS	-	1	3-05-	2023		LEVE	L	212		
ASSE	SSME	NT S	CHE	ME					-								
TIDDL									FSF								
Fir	ret	Sec	ond		Semir	ar/			Su	rnrise	Test /		ttenda	FSF	FSF		
Dorio	dical	Dor	india	al	occian	mont	ents/Project Ouiz						uunua		LOL	1	
	uncar		Iouica	ant	assign	ment	5/110	iject	Quiz								
Assess	sment	ASS		ent		1.0	2/								500/		
15	%		15%		10%					5%)		5%		50%		
	_	• •			T 1			•				1 00	1 .				
Cours	e Deso	cripti	on		The co	ourse (explai	ns in g	great c	letails	the trac	le-offs	betwee	n cellul	ar IoT		
					and emerging low power wider area networking technologies. it explains												
					the advantages of cellular and gives technical of NB-IoT, LTE-M and EC-												
					GSM. Also, the course provides some of the untold and behind-the-scene												
					facts on IoT.												
Cours	e Obi	ective)	1	This course is organized in a way to help students to grasp the basic												
	9				concepts of Internet of Things. It describes the IoT communication it's												
					building block and operating system requirements. The course also												
					includes Industrial Internet of Things (IoT) which is an application of IoT												
					in industrias to modify the various existing industrial systems by linking												
					the outomation system with anterprise planning and product liference												
				Lestly it accuration system with enterprise, planning and product infecticle.													
				Lasuy it covers 101 applications,													
					securi	ty and	legal	consi	deratio	ons.							
Cours	e Out	come			Upon successful completion of the course, the student will be able to:												
					CO1: Identify and describe the need and evolution of Internet of												
					Things.												
					CO2: Describe working principle IOT sensors and actuators.												
					CO3: Explain working principle of on-board peripherals.												
					CO4: Explain the different networking concepts used in IoT												
					networks												
					CO5: Understand the types of technologies that are available in												
					industry and in use today and can be utilized to implement Industrial												
					Industry and in use today and can be duffized to implement industrial												
			101 SOLUTIONS.														
	• •	• •	T		CO6: Explain various IoT related used cases and applications												
Prerequisites: NIL																	
CO , 1	APPI	2ING															
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO1	PSO	PSO	PSO	1	
	1	2	3	4	5	6	7	8	9	10	11	2	1	2	3		
CO	1	1	-	- -	-	-	_	-	-		2	-	1	1	3	1	
		•									-	_	•	–			
												1			2	1	
	-	-	-	-	-	-	-	-	-	-	-	I	-	-	3		
2																	

CO 3	1	-	2	-	-	2	1	-	-	-	-	1	-	2	3				
CO 4	-	-	1	-	-	1	-	-	1	-	-	1	-		3				
CO 5	-	-	-	-	1	2	1	-	-	-	-	1	1	1	3				
MODU	ULE 1	BAS	SICS (DF IO	T		(6L+6P)												
Definit	tion o	of "In	ternet	of T	hings'	', Tec	CO1-BTL-4												
trends	whicl	h hav	e led	to Io	T, in	pact													
society	, His	tory	of IO	Т, Н	ow I	DT w													
Applic	ations	, Cha	racteri	istics	of lo'.	Γ , Cha	alleng	es of											
101, 1	Advan	itages	OI	101,	Disa	ivanta	iges	101,											
Practi	ion or cal co	mnor	ents.																
1	To w	vrite a	a prog	ram t	o sen	se the	e avai	lable											
	netw	orks u	ising A	Arduin	10.		e u vu	luoit											
2.	To w	vrite a	progr	am to	meas	sure th	ne dis	tance											
	using	g ultra	sonic	senso	r and a	make													
	using	g Ardu	iino.																
3.	To w	rite a	progra	am to o	detect	s the v													
MODI	an ob	ject v	vith se	nsor u	ising A	Arduin													
MODU	ULE 2	2101	SENS	SORS	AND	ACI	(0L+0P)												
Variou	s IOT	Sense	ore and	l actur	atorea	nd tec	hnolo	nies	CO2-BTL-4										
Tempe	rature	sen	usors	Mois	ature	senso	ors	l joht	CO2-DIL-4										
sensors Acoustic and noise sensors Water level																			
sensors	s, P1	roxim	ity s	sensor	s, n	notion	ser	nsors,											
Gyrosc	cope, (Chem	ical se	ensors	, Imag	ge sen	sors, 1	Light											
actuato	ors, m	otors,	relay	s, sole	enoids	etc,	Data	sheet											
reading	g of se	ensors	, actua	ators															
Practi	cal co	mpon	nents:				•.1	.1											
1.		vrite	a pro	gram	to co	onneci	W1tr	n the											
2		able v	nrogr	am to	Aluul sense	no a finc	er wi	nen it											
2.	is pla	nced o	n the h	board	Ardui	no.		ich ît											
3.	To	write	a pro	ogram	to	get te	emper	ature											
	notifi	ication	n using	g Ardı	lino.	0	ľ												
MODU	ULE 3	B ON-	BOA	RD PI	ERIP	HERA	(6L+6P)												
Disk controllers, Integrated graphic controller,												CO3-E	BTL-4						
integrated sound card, fast ethernet network																			
controller, USB 2.0, IKDA controller, temperature, PS/2 port VGA port DVI port HDMI port Ethernet																			
port, audio card, voltage and fan speed controller to																			
monitor health of computer components.																			
Multin	lexers	, Pow	er dev	ices. I	Displa	vs and	glue	logic											
for I/O	s, Dat	a shee	et read	ling of	f on be	bard p	erals												
Practi	cal co	mpon	nents:	-		Ĩ													
1. To write	e a program to install MySQL																		
--------------------	---	---																	
database	in Raspberry pi.																		
2. To write	e a program to work with basic																		
MySQL	queries by fetching data from																		
database	in Raspberry pi.																		
MODULE 4	4 SOFTWARE DEFINED	(6L+6P)																	
NETWORKS																			
SDN, Cloud, Fo	og and MIST networking for IoT	CO4-BTL-4																	
communications	, Principles of Edge/P2P																		
networking, M2	M and peer networking concepts,																		
Protocols to sup	port IoT communications, security																		
and privacy in fo	og.																		
Practical compo	onents:																		
1. To write	a program to switch light on when																		
the input	is 1 and switch the light off when																		
the input	is 0 using Raspberry pi.																		
2. Design of	f digital DC voltmeter and ammeter.																		
3. Design of	f digital frequency meter.																		
MODULE 5 IN	IDUSTRY IOT	(6L+6P)																	
Basics of Indu	strial IoT, Industrial Processes,	CO5-BTL-4																	
Industrial Sensir	ng & Actuation, Industrial Internet																		
Systems, Busi	iness Model and Reference																		
Architecture Ap	plications of IoT: Connected cars																		
IoT Transportat	tion, Smart Grid and Healthcare																		
sectors using Io7	Γ, Security and legal considerations,																		
IT Act 2000 and	d scope for IoT legislation, Smart																		
cities and IoT rev	volution.																		
Practical compo	onents:																		
1. Traffic si	gnal control																		
2. Railway	gate control by stepper motors																		
3. Direction	and Speed control of DC motor																		
TEXTBOOKS																			
	Designing the Internet of Things Adr edition	ian McEwen, Hakim Cassimally Paperback 1st																	
2	Internet of things Samuel Greenguard	1 MIT Press - 2015																	
3	Analytics for the Internet of Things (IoT)Andrew Minteer Kindle Edition 1st edition																	
4 1	IoT Fundamentals Networking Techn	nologies, Protocols and Use Cases for Internet of																	
r	Things David Hanes, Gonzalo salgue	iro Cisco Press Kindle Edition 2017																	
REFERENCE	BOOKS																		
1	D.W. Patterson, "Introd	uction to AI & Expert Systems", PHI, 1992.																	
2	Peter Jackson, "Introduc	ction to Expert Systems", AWP, M.A., 1992.																	
3	R.J. Schalkoff, "Artifici McGraw Hill Internatio	al Intelligence - An Engineering Approach",																	
F-BOOKS		nai Lutton, Singapore, 1772.																	
1	https://www.veeut.co.in	/lecture_notes/lecture1520018612 adf																	
1	nups.//www.vssut.ac.m	recture_notes/recture1550018015.put																	

2	https://www.cet.edu.in/noticefiles/271_AI%20Lect%20Notes.pdf
MOOC	
1	https://youtu.be/WUYAjxnwjU4?list=PLaxu2gn9WXMf_ln5pMvxjf043j zof4-i&t=13
2	www.iitk.ac.in https://youtu.be/p7kYStiASLo?list=PLbRMhDV UMngdcLdH4-YF1uJI4IuhcDZPR&t=
3	www.nptel.ac.in https://nptel.ac.in/courses/108108098/
4	www.edureka.com https://youtu.be/LlhmzVL5bm8?list=PL9ooVrP1h QOGccfBbP5tJWZ1hv5sIUWJl&t=120

COURSE TITLE	COGNI	TIVE IOT	CREDITS	4	ļ
COURSE CODE	ACS02509	COURSE CATEGORY	DE	L-T-P-S	3-0-2-0
VERSION	1.0	APPROVAL	38 ACM	LEARNI	BTL - 4
		DETAILS	13-05-2023	NG	
				LEVEL	
	ASSE	SSMENT SCHEM	IE		
		CIA	-		ESE
First Periodical	Second	Seminar/	Surprise	Attendan	ESE
Assessment	Periodical	assignments/	Test / Quiz	ce	
	Assessment	Project			
15%	15%	10%	5%	5%	50%
Course Description	By combining	AI and machine lea	rning capabilitie	es with IoT d	evices,
	cognitive IoT e	enables real-time de	cision-making a	nd automation	on that
	can revolutioni	ise various industrie	es, from healthca	re and manu	facturing
	to agriculture a	and energy.			
Course Objective	1. To emphasis	s the students from	shifting their m	indset from	theoretical
	to practical mu	ultidisciplinary skill	ls through insta	lling the kno	ow-how of
	actual practice	in industry field	1, 1		.1 1.
	2. Impart the Ki	nowledge to log the	sensor data and	to perform I	urther data
	analytics	udanta ta annlu Inta	mot of Things	(IoT) data fa	" huainaga
	5. Make the st	ious domain in socu	rad mannar	(101) data 10	or business
Course Outcome	At the end of c	ourse the student w	will be able to:		
Course Outcome	CO1 Integrat	te the aspects of hu	man cognitive r	rocesses in	the
	system	design		noeesses m	uite
	CO2 Compre	ehend the underlyi	ng cognitive pr	ocess can ha	ive
	many a	abstractions of a co	ognitive cycle si	uch as 'Sens	se'.
	'Under	stand', 'Decide' and	d 'Act'.		- ,
	CO3 Detect	any failures of syste	m components a	nd re-config	ure
	itself w	which provides a gra	ceful degradation	on through se	elf-
	healing		C	U	
	CO4 Accom	plish knowledge a	about the appli	cation, syst	em
	archited	cture, resources, sys	stem state and be	haviour	

CO5 Incorporate recent advancements in the machine learning including deep learning in IOT

Prerequisites: NIL														
						CO, F	PO, AN	ID PSO	O MA	PPING				
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSC
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO 1	1	1	-	-	-	-	-	-	-	-	1	1	1	1
CO 2	-	-	-	-	-	-	-	-	-	-	1	2	-	-
CO 3	1	-	2	-	-	2	1	-	-	-	1	1	-	2
CO 4	1	2	-	-	1	2	1	-	-	-	1	1	-	-
			1: V	Veakly	relate	ed, 2: N	Moder	ately r	elated	and 3:	Strong	ly relate	d	
MOD	ULE 1	INTR	ODU	CTION	I								(6L+	6P)
Cognit	ive Io	T. Neo	ed for	Cogni	tive Io	T. Cu	rrent a	nd Fu	ture tr	ends of	IoT, C	Cognitive	CO1	_
compu	ting ar	nd app	lication	ns. Dat	a Ana	lytics t	for IoT	Regre	ession,	Data A	nalytics	for IoT	BTL	-4
ANN (Classifi	ication	, Data	Analyt	tics for	IoT M	lodern	DNN'	s.		_			
MOD	ULE 2	CLO	UD AN	ND ED	GE C	OMPU	JTING	IN IC)T				(6L+	6P)
Decen	tralized	1 Com	puting	. Clou	d com	puting.	Cloud	ilets a	nd fog	compu	ting. Cl	oud and	CO2	_
edge c	omputi	ing for	large s	scale Io	T app	lication	ns.		10 108	••••••••			BTL	-4
Practi	cal Co	mpon	ent:		11									
1.	Conne	ect wit	h the A	Availab	le Wi-	Fi Usi	ng Ard	uino						
2.	Sense	a Fing	ger Wh	en it is	Place	d on B	oard U	sing A	rduino					
3.	Temp	erature	e Notif	ication	Using	Ardui	no	•						
MOD	ULE 3	INTR	ODU	CTION	N TO O	GPU							(6L+	6P)
Introdu	action	to GPI	U's Pa	rallel p	rogran	nming	for GI	PU, Par	rallel P	rogram	ming in	CUDA,	CO3	-
CNN I	nferen	ce in C	GPU, C	CNN Tr	aining	in GP	U.						BTL	-4
Practi	cal Co	mpon	ents:											
1.	LDR	to Var	y the L	ight In	tensity	of LE	D Usi	ng Ard	uino					
2.	MySC	QL Dat	tabase	Installa	ation ir	n Raspl	berry P	i						
3.	SQL	Querie	s by Fe	etching	; Data 1	from D	Databas	e in Ra	aspberr	y Pi				
MOD	ULE 4	FPG	A FOI	R INTI	ERNE	T OF	THIN	<u>GS</u>	1 .		EDGA		(6L+	6P)
Benef	its of F	PGA,	Interfa	acing F	PGAs	with Ic	oT-bas	ed edg	e devic	es, 101	FPGA	based	CO4	-
applications, Microsemi's SmartFusion2 SoC FPGA.Big data, Digital twin, Cloud B7							BIL	-4						
Computing, Sensors, Communications, Analytical software, Edge Devices														
racucal components:														
Switch Light on and Off Dased on the Input of User Using Paseberry Di														
		SECI	TDITV	7 IN C	OCNI	TIVE	ЮТ							
Cloud services and IsT offerings related to IsT from sloud service providers. Cloud														
Lioud services and 101 – offerings related to 101 from cloud service providers – Cloud								BTI						
in clos	id enal	bled I	n – All T cor	nnutina	J Secu	rity in	Coon	itive Ia	T Se	r c = 1 v c	ssues in	1013		т
hardwa	are ass	sisted	appros	nch for	secur	itv A	rchited	tural 1	level o	verviev	v for n	roviding		
securit	security. Security threats.													

Practical Components:

- Home automation using the BOLT IoT module.
 Introduction to Arduino microcontroller and its programming.
- Interfacing of the sensors and actuators with Arduino.
 Real Time Projects Based on IoT.

TEXTBOOKS	
1.	Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob
	van Kranenburg,
	Sebastian Lange and Stefan Meissner, enabling things to talk –
	Designing IoT solutions
	with the IoT Architecture Reference Model, 1 st edition, Springer Open,
	2016
2.	Matin, Mohammad Abdul, ed. Towards Cognitive IoT Networks, 1 st
	edition, Springer International Publishing, 2020.
REFERENCE BOOKS	
1.	Arshdeep Bahga and Vijay Madisetti, Cloud Computing: A Hands-on
	Approach, 1 st edition, CreateSpace Independent Publishing Platform,
	2013.
2.	John Mutumba Bilay, Peter Gutsche, Mandy Krimmel and Volker
	Stiehl, SAP Cloud
	Platform Integration: The Comprehensive Guide, 2nd edition,
	Rheinwerg publishing.2019.
E-BOOKS	
1.	https://link.springer.com/book/10.1007/978-3-642-40403-0
2.	http://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-
	explanation-internet-things-that-anyone-can-understand/
MOOC	
1.	https://www.cybrary.it/course/iot-security/

ELECTIVE-II

COURSE TITLE	WEARAB COMPUTI	LE NG	C	REDITS		4	
COURSE CODE	ACS02510	COURSE CATEGOR Y		DE	L-T-P-S	3-0-2-0	
VERSION	1.0	APPROVA L DETAILS		38 ACM 13-05-2023	LEARNING LEVEL	BTL - 4	
ASSESSMEN	T SCHEME						
		C	CIA			ESE	
First	Second	Semin	nar/	Surprise	Attendance	ESE	
Periodical	Periodical	assigr	iments	Test / Quiz			
Assessment	Assessment	/ Proj	ect				
15%	15%	1	0%	5%	5%	50%	
Course Description	The course covers general-purpose graphics systems and their use. It gives an in- depth knowledge of computer graphics and graphical user interfaces. This course						

		intro teach	introduces students to the concepts of graphical representation on computers and teach students the design of good graphical user interfaces											
Course		•	• To provide a basic understanding of evolution of IoT and its functional modules											
Object	ive		 modules. To develop skillset to implement IoT systems for wearable applications 											
Course	9	Upor	• To develop skinset to implement for systems for wearable applications.											
Outcor	ne	CO1	CO1: Design and develop IoT end points for wearable applications.											
		CO2	: To id	entify	the real	l-world	l probl	em and	give I	oT solut	ions.		_	
		CO3	: To ar	alyse a	and sel	ect app	propria	te proto	ocols, v	wireless	technic	lues for	the	
		CO4	: Exai	mine.	select	and i	mplen	nent ar	opropri	ate des	ign pa	tterns a	and	
		fram	eworks	s for a	chosen	weara	ble pla	tform.	prop-		-8 P*	•••••		
		CO5	: Appr	aise a	nd app	ly gen	eral /	platfor	m-spec	cific HC	I and	design a	and	
		deve	lopmei	nt guid	lelines	and to	echniq	ues for	r deve	loping h	highly	usable a	and in a	
		skills	uve wo S.		appine	ations,	пакп	ig use		allve all	i proor		ing	
Prereg	uisites	: NIL												
						CO,	PO , <i>A</i>	ND P	SO MA	APPING	J			
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PS
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO	1	1	-	-	-	-	-	-	-	-	2	1	1	1
1														
CO	-	-	-	-	-	-	-	-	-	-	-	1	-	-
$\frac{2}{CO}$	1		2			2	1					1		2
	1	-	2	-	-	2	1	-	-	-	-	1	-	2
MODU	J LE 1	ROLE	C OF I	OT IN	WEA	RABL	E DEV	/ICES			(6L	+6P)	1	1
Fundar	nentals	of We	arable	Techn	ologies	- Histe	ory of	wearab	le Tecl	nnologie	s CO	1-BTL-4	1	
-User	Experi	ence l	Design	for I	nternet	of T	hings	- Soc	ial As	spects o	of			
Bioche	onical s	Intern	et of 1 s - Tec	hings	– App v of C	licatio	ns - W ted De	vices –	e Cher	nical and	a			
Sensor	s, Actu	ators.	5 100	morog	5y 01 C			1005	Devi	c Type:	,			
Practic	cal Cor	npone	nts:											
1.	Intelli	Vue M	X40											
2.	BlueL	1bris WFAI	2 A RI 1	F CON	πριτι		DDI 1([¬] ATIO	NS		(61	⊥6 ₽)		
Medica	al Appl	ication	s of W	earabl	e Tech	nologie	es - W	earable	Techr	ologies	- CO	<u>+01)</u> 2-BTL-4	1	
Energy	Expe	nditure	and	Energy	Harve	esting	- Tech	nology	of C	onnecte	d			
Device	s – En	ergy (Consid	eration	s - Fle	exible	Electro	onics a	nd Te	xtiles fo	or			
Wearat	ole Tec	Fechnologies.												
	al Cor BioHa	npone	nts: RT											
2.	Averv	Denni	son Me	edical S	Solutio	ns								
MODU	MODULE 3 WEARABLE COMPUTING ARCHITECHTURE (6L+6P)													

Wearable Algo	orithms - Web of Things – Architecture Standardization- Data	CO3-BTL-4							
Mining for Bo	Mining for Body Sensor Network - Internet of Things – Embedded Device								
UX Design.									
Practical Con	Practical Components:								
1. Zoll Life Vest									
2. Basis E	31 Basis								
3. Fuel B	and Nike								
MODULE 4 0	COMMUNICATION TECHNOLOGIES	(6L+6P)							
Physical Activ	rity Modelling and Behaviour Change - Internet of Things –	CO4-BTL-4							
Interface and	Interaction Design - Human Body Communication for a Data								
Rate Sensor No	etwork. Internet of Things – Networking Wireless Body Area								
Networks - We	earable Computing as a form of urban design								
Practical Con	iponents:								
$\begin{array}{ccc} 1. & F1t & D1t \\ 2 & D & d & D \end{array}$	Ultra fit bit								
2. Body N	VIEDIA LINK								
MODULE 5	IOT APPLICATION DEVELOPMENT	$(\mathbf{0L}+\mathbf{0P})$							
wearable Sens	sors for Monitoring of Physical and Physiological Changes and	CO3-B1L-4							
Tor Early Deb	ection of Diseases - wearable and Non-Invasive Assistive								
Proceedings Con	anononto								
Practical Coll	Eve Classes								
$\begin{array}{c} 1. \text{Sinart} \\ 2 \text{Ding} \\ \end{array}$	Lye Glasses								
2. King so 3 iGlove									
J. ICIOVE	с С								
	Alessandro Bassi Martin Bayer Martin Fiedler Thorsten Kra	umn Roh yan							
1.	Kranenburg Sebastian Lange Stefan Meissner "Fnabling thi	ngs to talk – Designing							
	Intranenourg, Sebastian Lange, Steran Weissner, "Endoming un Intranenourg, Sebastian Lange, Steran Weissner, "Endoming un	ringer Open 2013							
2	The Internet of Things: How Smart TVs Smart Cars Smart H	Iomes and Smart							
2.	Cities Are Changing the World 1st Edition	iomes, and omart							
REFERENCI	E BOOKS								
1	Ian Holler VlasiosTsiatsis Catherine Mulligan StamatisKarr	nouskos Stefan							
1.	Avesand David Boyle "From Machine to Machine to Interne	t of Things" Elsevier							
	Publications 2014	, or mings , hisever							
2	IEEE Standards Association Working Group for an Architectu	ral Framework for the							
2.	Internet of Things (IoT) (P2413) - http://grouper.jeee.org/grou	$\frac{1}{108}/2413/$							
3.	Internet of Things – Architecture – Final Architectural Refere	nce Model for the IoT							
	v3.0.								
E-BOOKS									
1.	https://www.csa.iisc.ac.in/~vijayn/courses/Graphics/index.htm	nl							
2.	http://www.svecw.edu.in/Docs%5ACSECGLNotes2013.pdf								
3.	https://www.cs.umd.edu/~mount/427/Lects/427lects.pdf								
MOOC									
1.	https://in.coursera.org/learn/wearable-technologies								
2.	https://codereality.net/wearable-computing/								
3.	https://www.udemy.com/course/wearable-technology-a-comp	lete-primer-on-							
	wearables/	r							
4.	https://www.mooc-list.com/tags/wearable-technology								

CC	OURSE	E TITI	LE		ΙΟ	Г SEC	CURIT	Y		CREI	DITS	4				
CC)URSI	E COD)E	AC	S0251	1	CO CATE	URSE EGOR	Y	DI	E	L-'	Г-Р-S	3-()-2-0	
	VERS	SION			1.0		APPF DET	ROVAI	L	38 A 13-05-	CM 2023	LEA LE	RNING EVEL	BT	'L - 4	
ASSE	ASSESSMENT SCHEME															
	CIA											E	SE			
Fi	First Periodical Assessment			Secon Perio Asses	nd odical ssment	t P	ssignn Project	r/ 1ents/		Surprise Qu	e Test / iz	Atte	ndance	E	SE	
	15	%			15%		1	0%		5%	, D		5%	5	0%	
Cours	e Desc	ription	n	The c challe priva syste persp	course enges. cy issu matica ectives	will in With I les bec lly ana S.	troduce oT bei come m dyze Ic	e the ad ng depl ajor co oT secu	lvance loyed oncern rity fr	ed topics in variou s. Upon om hard	of IoT us applie this req ware, co	security cations, uest, the ommun	and pri IoT sec course ication, a	vacy urity and will and syst	d em	
Cours	e Obje	cuve		Stude syste	ents with the second se	ill be	able to rking.	under	stand	or mast	er IoT	security	v related	to har	dware,	
Cours	e Outo	come		At th CO1 CO2 CO3 CO4 CO5	 At the end of course, the student will be able to: CO1 Ability to understand the Security requirements in IoT CO2 Understand the cryptographic fundamentals for IoT CO3 Ability to understand the authentication credentials and access control CO4 Understand the various types trust models and Cloud Security. CO5 Understand the security from hardware, communication, and system perspectives 											
Prerec	quisite	s: NIL								DDING						
	DO	DO	DO	DO	DO		'U, AN) MA	PPING	DO1	DO1	DCO	DCO	DGO	
	РО 1	PO 2	PO 3	4	PO 5	РО 6	PO 7	РО 8	РО 9	0	1	2	1 PSO	PSO 2	PSO 3	
CO 1	1	1	-	-	-	-	-	-	-	-	2	1	1	1	3	
CO 2	-	-	-	-	-	-	-	-	-	-	1	1	-	-	3	
CO 3	1	-	2	-	2 1 -				-	-	1	2	-	2	3	
CO 4	1	2	-	-	- 1 2 1 1 3							-	3			
CO 5	1	1	2	1	0	0	1	2	1	3	1				3	
	1: Weakly related, 2: Moderately related and 3: Strongly related															

MODULE 1 INTRODUC	CTION: SECURING THE INTERNET OF THINGS	(6L+6P)				
 Security Requirements in IoT, Architecture - Security in Enabling Technologies -Security Concerns in IoT Applications. Security Architecture in the Internet of Things -Security Requirements in IoT – Insufficient Authentication/Authorization – Insecure Access Control - Threats to Access Control, Privacy, and Availability - Attacks Specific to IoT. Vulnerabilities – Secrecy and Secret-Key Capacity -Authentication/Authorization for Smart Devices – Transport Encryption – Attack & Fault trees Practical Components: Sense the Available Networks Using Arduino Measure the Distance Using Ultrasonic Sensor and Make Led Blink Using Arduino 						
MODULE 2 CRYPTOGI	RAPHIC FUNDAMENTALS FOR IOT	(6L+6P)				
Cryptographic primitives and its role in IoT – Encryption and Decryption – Hashes –Digital Signatures – Random number generation –Cipher suites – key management fundamentals – cryptographic controls built into IoT messaging and communication protocols – IoT Node Authentication Practical Components: 1. Connect with the Available Wi-Fi Using Arduino 2. Sense a Finger When it is Placed on Board Using Arduino						
MODULE 3 IDENTITY	& ACCESS MANAGEMENT SOLUTIONS FOR IOT	(6L+6P)				
Identity lifecycle – auther Publish / Subscribe scheme Practical Components: 1. LDR to Vary the Li 2. MySQL Database I 3. SQL Queries by Fe	ntication credentials – IoT IAM infrastructure – Authorization with es – access control. ight Intensity of LED Using Arduino installation in Raspberry Pi tching Data from Database in Raspberry Pi	CO3-BTL- 4				
MODULE 4: PRIVACY	PRESERVATION AND TRUST MODELS FOR IOT	(6L+6P)				
Concerns in data dissemination – Lightweight and robust schemes for Privacy protection – Trust and Trust models for IoT – self-organizing Things - Preventing unauthorized access. Practical Components: 1. Switch Light On and Off Based on the Input of 2. User Using Pasphorry Pi						
MODULE 5 CLOUD SE	CURITY FOR IOT	(6L+6P)				
Cloud services and IoT – of controls – An enterprise Io in cloud enabled IoT comp Practical Components: 1. Home automation to 2. Introduction to Ard 3. Interfacing of the set 4. Real Time Projects	fferings related to IoT from cloud service providers – Cloud IoT security T cloud security architecture – New directions uting using the BOLT IoT module. uino microcontroller and its programming. ensors and actuators with Arduino. Based on IoT.	CO5-BTL- 4				
TEXTBOOKS						
3.	Practical Internet of Things Security (Kindle Edition) by Brian Russell, Duren	, Drew Van				

REFERENCE BOOKS	
3.	Securing the Internet of Things Elsevier
4.	Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementation
E-BOOKS	
3.	ttp://searchsecurity.techtarget.com/feature/Secure-all-the-things
4.	http://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/
MOOC	
2.	https://www.cybrary.it/course/iot-security/