

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CURRICULUM AND SYLLABUS

(Applicable for Students admitted from Academic Year 2021-22)

M.Tech (COMPUTER SCIENCE AND ENGINEERING)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTER SCIENCES

HINDUSTAN INSTITUTE OF TECHNOLOGY & SCIENCE VISION AND MISSION

Motto:

To Make Every Man a Success and No Man a Failure

VISION

"TO MAKE EVERY MAN A SUCCESS AND NO MAN A FAILURE"

MISSION

- To create an ecosystem that promotes learning and world class research.
- To nurture creativity and innovation.
- To instill highest ethical standards and values.
- To pursue activities for the development of the Society.
- To develop national and international collaborations with institutes and industries of eminence.
- To enable graduates to become future leaders and innovators.

VALUE STATEMENT

• Integrity, Innovation, Internationalization

DEPARTMENT OF COMPUTER SCIENCE VISION AND MISSION

VISION

To excel in Computer Science and Engineering education, research and project management by empowering the students with strong conceptual knowledge.

MISSION

- **M1.** To educate the students with basic foundation blocks of core and allied disciplines of Computer Science and Engineering.
- **M2.** To provide practical skills in the advancements of the Computer Science and Engineering field required for the growing dynamic IT and ITES industries.
- **M3.** To sculpt strong personal, technical, research, entrepreneurial, and leadership skills.
- **M4.** To inculcate knowledge in lifelong learning, professional ethics and contribution to the society.

M.Tech (COMPUTER SCIENCE AND ENGINEERING)

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The program is expected to enable the students to

- **PEO I**Excel in their professional career by applying advanced knowledge and/or pursue higher education including research by applying the knowledge of Computer Science and Engineering.
- **PEO II** Asses the industry requirements and provide tangible solutions with social consciousness and ethical values.

PROGRAM OUTCOMES (ALIGNED WITH GRADUATE ATTRIBUTES) (PO)

At the end of this program, graduates will be able to

- **PO1** Scholarship of knowledge: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyses and synthesize existing and new knowledge, and integration of the same for enhancement of knowledge.
- **PO2 Critical Thinking:**Analyze complex engineering problems critically, apply independent judgement for synthesizing information to make intellectual and/or creative advances for conducting research in a wider, theoretical, practical and policy context.
- **PO3 Problem Solving:** Think laterally and originally, conceptualize and solve engineering problems, evaluate a wide range of potential solutions for those and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.
- PO4 Research Skill: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data,,

demonstrate higher order skill and view things in a broader perspective, contribute individually / in group(s) to the development of scientific of scientific / technological knowledge in one or more domains of engineering.

- **PO5** Usage of modern tools: Create, select, learn, and apply appropriate techniques, resources, and engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of the limitations.
- **PO6 Collaborative and multidisciplinary work:** Process knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborate-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision—making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.
- **PO7 Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply the same one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors.
- **PO8 Communication:** Communicate with engineering community, and with society at large, regarding complex engineering activities confidentially an effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.
- **PO9** Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
- **P10** Ethical Practices and Social Responsibility: Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an

understanding of responsibility to contribute to the community for sustainable development of society.

P11 Independent and Reflective Learning: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback

PROGRAM SPECIFIC OUTCOMES (PSO)

- **PSO1:** To impart knowledge in Advanced Operating System, Advance Data Base Technology, Advanced Data Structures & Algorithms for analyzing and the solving complex problem.
- **PSO2:** To develop the skill set of the students especially in Data Science and Engineering, Software Engineering and Information Security.
- **PSO3** To inculcate the analytical knowledge in the students for innovative system design using modern tools and techniques.

		M.Te	ch - COMPUTER SCIENCE AND ENGINEE	RING	ì				
			(65 CREDIT STRUCTURE)						
			SEMESTER - I						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн
1	BS	MAA3706	Statistics for Computer Science ⁺	3	0	2	4	0	5
2	РС	CSA3701	Advanced Data Structures and Algorithms ⁺	2	0	2	3	0	4
3	PC	CSA3702	Machine Learning ⁺	2	0	2	3	0	4
4	PE	CSA****	Department Elective - I	2	0	2	3	0	4
5	PE	CSA****	Department Elective - II	2	0	2	3	0	4
6	PE	ZZZ3715	Research Methodology & IPR*	2	0	0	2	0	2
PRAG	CTICAL								
7	BS	CSA3781	Mini project	0	0	6	2	0	6
			Total				20		29
			SEMESTER - II						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн
1	РС	CSA3703	Advanced Operating Systems	2	0	2	3	0	4
2	PC	CSA3704	Soft computing	3	0	2	3	0	5
3	РС	CSA3705	Advanced Data Base Technology	2	1	2	3	0	4
4	РС	CSA3706	MOOC Course	3	0	0	3	0	3

5	PE	CSA****	Department Elective - III	3	1	0	4	0	3
6	OE	*****	Open Elective	2	0	0	2	0	3
PRAC	CTICAL								
7	РС	CSA3751	Seminar	0	0	3	2	0	2
			Total				20		25

*Research Methodology & IPR is a compulsory Course

^{*}Professional Core papers Common for M.Tech. CSE with Specialization of Data Science, Artificial

Intelligence and Cyber Security

		M	Tech - COMPUTER SCIENCE AND ENGINEERII	NG					
			SEMESTER - III						
			SEIVIESTER - III						
SL.	COURSE	COURSE			_	-	-		
NO	CATEGORY	CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн
1	PC	CSA****	Department Elective – IV	3	0	0	3	0	3
PRA	CTICAL								
2	PC	CSA3782	Project Phase –I	0	0	24	8	0	24
Inter	rnship/Mini P	roject					2	0	
			Total				13		27
			SEMESTER - IV						
SL.	COURSE	COURSE	NAME OF THE COURSE	L	т	Р	с	s	тсн
NO	CATEGORY	CODE			•				
PRA	CTICAL								
7	CSA3783	PC	Project Phase –II	0	0	24	12	0	24

	Total				12		24
--	-------	--	--	--	----	--	----

M.Tech - COMPUTER SCIENCE AND ENGINEERING												
		D	EPARTMENT ELECTIVES(ARTIFICIAL INTELLIGE	NCE)								
			ELECTIVE I									
SL. NO	COURSE CATEGOR Y	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	s	тсн			
1	PE	CSC3721	Optimization Techniques	2	0	2	3	0	2			
2	PE	CSC3722	Computational Neuroscience	2	0	2	3	0	2			
3	PE	CSB3723	Agent Based Intelligent Systems	2	0	2	3	0	2			
4	PE	CSC3723	2	0	2	3	0	2				
ELECTIVE II												
SL. NO	COURSE CATEGOR	COURSE	NAME OF THE COURSE	L	т	Р	С	S	тсн			
	Y	CODE										
1	PE	CSA3733	Computer Vision	3	0	0	3	0	3			
1 2			Computer Vision Game Theory for Al	3	0	0	3		3			
	PE	CSA3733						0				
2	PE PE	CSA3733 CSC3723	Game Theory for Al	3	0	0	3	0	3			
2 3	PE PE PE	CSA3733 CSC3723 CSB3722	Game Theory for Al Recommender System	3	0	0	3	0 0 0	3			

	Y									
1	PE	CSC3725	Nature-Inspired Computing	3	0	0	3	0	3	
2	PE	CSC3727	Cognitive Computing	3	0	0	3	0	3	
3	PE	CSC3728	Emotional Intelligence	3	0	0	3	0	3	
4	PE	CSB3729	Principles of Deep Learning	3	0	0	3	0	3	
SL. NO	COURSE CATEGOR Y	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	s	тсн	
-	CATEGOR		NAME OF THE COURSE	L 3	т 0	P 0	с 3	s 0	тсн 3	
NO	CATEGOR Y	CODE					-			
NO	CATEGOR Y PE	CODE CSC3726	Natural Language Processing	3	0	0	3	0	3	

COURSE TITLE	STATISTIC	S FOR COMPUTER SC	IENCE	CREDITS	4									
COURSE CODE	MAA3706	COURSE CATEGORY	BS	L-T-P-S	3-0-2-0									
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL 4									
ASSESSMENT SCH	HEME		1											
First Periodical Assessment	Second Periodical AssessmentSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE15%10%5%5%50%													
15%	15%	10%	5%	5%	50%									
Course Description Course Objective	 to use forecasting met 1. In-depth knowle 2. Programming set 3. Ability to apply manner. 4. Combined theo 	s an introduction to t hods to support manage edge in the mathema oftware engineering s statistical analysis ar retical and technical s	erial, financial, and o tical, probabilistic kills. Ind modeling to re skills to use for rea	operational. , and statistical ason from data al-world applica	foundations. in a principled									
Course Outcome	 Develop statistica Perform marketing 	this course, the stude al models for business a ng analytics using statist r data for customer acqu es analysis.	nalytics ical models.											

			5. Ana	ysis of	varianc	e.									
Prerequ	isites:	NIL													
CO, PO	AND P	SO MA	PPING												
<u> </u>	PO -	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO -	PO-	PO-	PSO-	PSO-	PSO-
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	-	2	2	-	1	-	-	1	-	-	-	-	-	-	-
CO-2	-	3	3	3	-	-	3	-	2	2	-	-	-	-	-
CO-3	-	-	2	2	2	1	2	2	2	-	-	-	-	-	-
CO-4	2	-	2	2	2	2	-	-	-	-	-	-	-	2	1
CO-5	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-
			1: We	akly re	lated,	2: Mo	derate	ly relat	ed and	d 3: Str	ongly r	elated			I
MODULE	1: PRO	BABILIT	Y											(12)	
Introduc	tion to p	robabil	ity–Baye	es theor	em-Ran	dom va	riables-	discrete	random	n variabl	e (Binor	nial, Poi	sson,		
Geometr	ic), Cor	ntinues	randon	n varial	ole (Un	iform,	Expone	ntial ar	nd Nor	mal dist	tributio	n). Mo	ment		
generati	ng unct	ion.												CO	-1
Sugges	ted Act	ivities	: Basic l	nowle	dge on	probat	oility							BTL	2
					-										
Sugges					•										
MODULE							(1	•							
Joint dist		-							orrelatio	on and re	egressio	on (linea	ar and		
Multiple	e). Cent	ral limi	t theor	em, Ch	ebyshe	v's ineo	quality.							со	-2
Sugge	sted Ac	tivities	s: Basic	knowle	edge or	n proba	bility							BTL	2
Sugge	sted so	urces:	Probah	ilitv. Sta	atistics	and Ra	Indom	Process	ses-T.V	eeraraja	an				
MODULE				-					12)						
Introduc									-	ce (sing	e and	double)	. test.		
Indepen				-						(0008	5 0110		,,	со	-3
				-										BTL	3
Suggest	ed Acti	vities:	Basic kı	nowled	ge of sa	amplin	g								

Suggested sourc	es: Probability, Statistics and Random Processes-T.Veerarajan	
MODULE4:TIME SE	ERIES ANALYSIS	(12)
Introduction to S	tochastic process, Time series as a discrete stochastic process. Stationarity, Main	
characteristics of	f stochastic process (mean, auto covariation and auto correlation function).	
Autoregressive m	odels AR(p),Yull-Worker equation Auto regressive moving average models ARMA.	CO-4
Seasonality in Box	–Jenkins model.	BTL-2
Suggested Activit	ies: Basic knowledge of Time series analysis	
Suggested sourc	es: Time series-Maurice George kendall, j.k.Ord	
MODULE 5: DESIG	N OF EXPERIMENTS (12)	
Analysis of varian	ce (one way & two ways) classification – completely randomized design –randomized	
block design – Lat	tin square design.	CO-5
Suggested Activit	ties: Basic knowledge of design of experiments	BTL-3
		5120
	es: Probability, Statistics and Random Processes-T.Veerarajan	
TEXT BOOKS		
1	T.Veerarajan, "Probability,Statisticsand Random Processes" Tata McGraw-Hill,Education,20	008
2	Maurice George Kendall, J. K. Ord, "Time series" Oxford University Press, 1990	
REFERENCE BOOK	< <u>S</u>	
1	K.S.Trivedi.John, "Probability and statistics with reliability, Queuing and computerScience	
	Application", Second edition, Wiley&Son, 2016	
2	Levin Richard and Rubin Davids, "Statistics for Management", Pearson Publications, 2016	
3	Robert Stine, Dean Foster, "Statistical for Business: Decision Making and Analysis". Pearson	
	Education, 2nd edition,2013	
E BOOKS		
	http://www.math.harvard.adu/~knill/toaching/math144_1004/archahility.adf	
1	http://www.math.harvard.edu/~knill/teaching/math144_1994/probability.pdf	l
2	http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/boo	k.pdf
MOOC		

1	https://nptel.ac.in/courses/IIT-MADRAS/Principles_of_Communication1/Pdfs/1_5.pdf
2	https://nptel.ac.in/courses/110104024/

COURSE TITLE	ADVANCED DAT	A STRUCTURES AND AI	GORITHMS	CREDITS	3							
COURSE CODE	CSA3701	COURSE CATEGORY	РС	L-T-P-S	2-0-2-0							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4							
ASSESSMENT SC	HEME											
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE							
15%	15%	10%	5%	5%	50%							
Course Description		an introduction to the v time and space comple			and algorithms.							
Course Objective	 Describethehea Illustrate paralle 	 Describetheheappropertyandtheuseofheapsasanimplementationofpriority queues. Illustrate parallel algorithm models. 										
Course Outcome	 Illustrate the va Apply an approp 	f this course, the stu rious self- balanced tre priate algorithmic appro el algorithm models.	es and their opera	tions.								

		2	1. Use	a heur	istic ap	proach	n to solv	ve an al	opropri	ate pro	blem.				
Prerequ	isites:	1. Fur	ndame	ntals c	of Data	a Struc	tures	2. Desi	gn and	d Analy	ysis of	Algori	thm		
со, ро	AND P	SO MA	APPIN(3					_		-	_			
со	PO -1	РО- 2	РО- 3	PO-	РО- 5	РО- 6	РО- 7	PO-	РО- 9	PO -10	PO-	PO- 12	PSO-	PSO-	PSO-
	-1			4										2	5
CO-1	-	2	2	2	1	2	3	3	3	1	1	2	1	-	-
CO-2	-	2	2	2	2	2	2	2	2	2	3	3	-	-	3
CO-3	1	2	3	3	3	1	2	2	2	1	1	-	-	2	-
CO-4	2	1	3	2	2	2	2	2	2	2	2	2	1	2	-
CO-5	-	-	3	2	2	2	2	2	2	2	3	3	-	1	3
		1	l: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	d		
MODULI	E1: INTR	RODUC	TION	(9)											
Abstract	Data T	vpes-Ti	me and	Space	Analys	is of Al	gorithn	ns-Big (Dh and [·]	Theta N	lotatio	ns- Ave	rage,		
best and	worst	case an	alysis-S	Simple I	recurre	nce rel	ations-	-Mappi	ngs.						
Suggeste	ed Activ	/ities : F	ind the	time a	nd spa	ce com	plexitie	es of the	e follow	ving alg	orithm	5		CO	-1
1.Sum o	f n nun	nbers 2	.Facto	rial of ı	n3.Mat	trix mu	ltiplica	tion 4.	Insertio	on sort				BTL	2
Suggest															
https://			urses/	106105	5 <u>164/</u> h	ttps://	nptel.a	ac.in/co	ourses/	10610	5085/1	8			
MODULE	2:HEAP	P STRUC	TURES	(9)											
Min-max heaps.	cheaps-	Heaps-	Leftisth	ieaps-B	inomia	lheaps	-Fibona	iccihea	os-Skev	vheaps	-Lazy-b	inomial		со	-2

Suggested Activities: Implement the following Heap structures using C,C++,Java or Python	BTL-2
1. Max-min Heap 2. Binomial Heap 3. Fibonacci Heap	
Suggested sources: https://nptel.ac.in/courses/106102064/20 , 21	
MODULE3:SEARCH STRUCTURES (9)	
Binarysearchtrees-AVLtrees-2-3trees-2-3-4trees-Red-blacktrees-B-trees-splaytrees-k-d trees, Tries.	
Suggested Activities: Implement the following tree structures using C, C++, Java or Python	CO-3
1.AVLTree 2.Red-Blacktree 3. Splay Trees 4. K-d Trees5. Tries	BTL-3
Suggested sources: https://nptel.ac.in/courses/106102064/11 , 12,14,15,18	
MODULE 4: ALGORITHM DESIGN TECHIQUES(9)	
Divide and conquer and Greedy: Quicksort-Strassen's matrix multiplication-convex hull-Tree- vertex	
splitting-Job sequencing with deadlines-Optimal storage on tapes Dynamic Programming and	
Backtracking: Multistage graphs - 0/1 knapsack - 8- queens problem - graph coloring, Palindrome	
partitioning.	
Suggested Activities: Solve the following problems	
	CO-4
1. Quick sort	BTL-2
2. Strassen's matrix multiplication	
3. 8-queensproblem	
4. Palindrome Partitioning	
Suggested Source:	
https://nptel.ac.in/courses/106106131/15 https://nptel.ac.in/courses/106102011/7	
MODULE 5:ADVANCED ALGORITHMS (9)	
Parallel Algorithms: Basic Techniques- Work & Efficiency - Distributed Computation - Heuristic	CO-5
&Approximation Approaches.	20-5
Suggested Activities: Implement following heuristic algorithms	BTL-2

Γ									
1. HillClimb	ing								
2. Simulate	2. SimulatedAnnealing								
3. ParticleSwarmOptimization									
4. GeneticA	lgorithm								
Suggested s	ources: https://nptel.ac.in/courses/106104120/4,								
https://npte	el.ac.in/courses/106106126/9 - 15								
TEXT BOOKS									
1	Thomas H.Coremen, Charles E.Leiserson, RonaldL. Rivest, Clifford Stein, "Introduction to								
	algorithms", Third edition, MIT press,2013								
REFERENCE BO	OKS								
1									
1	E. Horowitz, S.Sahni and Dinesh Mehta, Fundamentals of Data structures in C++, University Press,								
	2009.								
2	E.Horowitz, S.Sahniand S.Rajasekaran, Computer Algorithms/C++, Second Edition, University Press, 2007.								
2	Mark Allen Weiss "Data Structures and Algerithm Analysis in C" Third Edition								
5	3 Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Third Edition,								
	PearsonEducation, Asia.2007.								
4	AnanthGrama, AnshulGupta, George Karypis, Vipin Kuma, "Introduction to Parallel Computing", Second								
	Edition, Addison Wesley, 2003								
E BOOKS									
1	OmidBozorg-Haddad, MohammadSolgi, HugoA. LoÃi iciga, "Meta-heuristicand Evolutionary Algorithms								
	for Engineering Optimization 1st Edition", Wiley, 2017								
	Introduction to Parallel Computing - ResearchGate - Free Ebook								
2									
MOOC									
1	Advanced Data structures and Algorithms ,https://nptel.ac.in/courses/106105164/								
ר ז	Artificial Intolliganco Soarch matheds for problem solving								
2	Artificial Intelligence Search methods for problem solving								

https://onlinecourses.nptel.ac.in/noc18_cs51/

		CREDITS	3						
COURSE CODE	CSA3702	COURSE CATEGORY	PC	L-T-P-S	2-0-2-0				
Version	1.0	Approval Details 23 ACM, 06.02.2021		LEARNING LEVEL	BTL-4				
ASSESSMENT SCH	HEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	This course serves as an introduction to Machine learning and to understand real time applications.								
Course Objective	 To Apply multilayer perceptron using simple machine learning techniques. To Use decision trees and statistics models To introduce students to the basic concepts and techniques of Machine Learning To become familiar with regression methods, classification methods, clustering methods To become familiar with Dimensionality reduction Techniques. 								

	Upon completion of this course, the students will be able to
	1. Gain knowledge about basic concepts of Machine Learning
Course	2. To Use data analysis for machine learning
Outcome	3. Identify machine learning techniques suitable for a given problem
	4. Use the optimization technique for solving machine learning problem.
	5. Design application using machine learning techniques.

Prerequisites: Fundamentals of Programming

CO, PO AND PSO MAPPING PO PO-PO-PO-PO-PO-PO-PO-PO-PO PO-PO-PSO-PSO-PSO-СО -1 -10 CO-1 --CO-2 ---CO-3 --CO-4 ---CO-5 _ _ _ _

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE1: INTRODUCTION (9)

 Learning - Types of machine learning - Supervised learning - The brain and the neurons, Linear

 Discriminants -Perceptron - Linear Separability -Linear Regression - Multilayer perceptron

 Examples of using MLP - Back propagation of error.

 Suggested Activities: Design a Multilayer Perceptron for Rain Forecasting system

 BTL-2

Suggested sources: Enrico C, Simon W, Jay R, Machine Learning Techniques for Space Weather, Elsevier, 2018

MODULE 2: CLASSIFICATION ALGORITHMS

Decision trees-Constructing decision trees-Classification of regression trees-Regression example-	
Probability and Learning: Turning data in to probabilities-Some basic statistics-Gaussian mixture	
models-Nearest Neighbor methods.	CO-2
Suggested Activities: Explore the Regression Examples in Machine Learning	
Suggested Activities: Explore the Regression Examples in Machine Learning	BTL-2
Suggestedsources: Norman Matlof, "StatisticalRegressionandClassification:FromLinearModels	
to Machine Learning", CRCPress, 2017.	
	(0)
MODULE3: ANALYSIS	(9)
The k-Means Algorithm-Vector Quantization's-Linear Discriminant Analysis-Principal component	
analysis-Factor Analysis-Independent component analysis-Locally Linear embedding–Isomap- Least	
squares optimization-Simulated annealing.	CO-3
Suggested Activities: Simulatedannealing/Modellingonanydatascienceapplication.	BTL-3
Suggested sources: L.M.Rasdi, Simulated Annealing Algorithm for Deep Learning, Procedia	
ComputerScience,Volume:72,2015.	
	(-)
MODULE4: OPTIMIZATIONTECHNIQUES	(9)
The Genetic algorithm-Genetic operators-Genetic programming-Combining sampling with genetic	
programming-Markov Decision Process-Markov Chain Monte Carlo methods:sampling- Montecarlo-	
Proposal distribution.	CO-4
Suggested Activities: Design an Encryption algorithm using Genetic algorithm	BTL-2
Suggested sources: Harsh Bhasin, Application of Genetic Algorithms in Machine learning,,	
International Journal of Computer Science and Information Technologies, Vol. 2 (5), 2011.	
	(0)
MODULE5: PYTHON FOR MACHINELEARNING	(9)
Baysean Networks-Markov Random Fields-Hidden Markov Models-Tracking methods.Python:	
Installation-Python for MATLAB ANDRusers-Code Basics-Using NumPy and MatPolitB.	CO-5
Currented Activities: Design a simple application using Numburand MatDelitD	
Suggested Activities: Design a simple application using NumPy and MatPolitB.	BTL-2
${\it Suggested sources:} {\it RakshithVasudev}, {\it IntroductiontoNumpy-1:} An absolute beginner sguide to the second second$	

MachineLearningandDatascience.,2017.

MachineLearning	andDatascience.,2017.
TEXT BOOKS	
1	Kevin P. Murphy, "Machine Learning – A probabilistic Perspective", MIT Pres, 2016.
2	Randal S, "Python Machine Learning, PACKT Publishing, 2016.
REFERENCE BOOK	KS
1	EthemAlpaydin, "Machine Learning: The New AI", MIT Press, 2016.
2	Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning: From Theory to
	Algorithms", Cambridge University Press, 2014.
3	Sebastian Raschka, "Python Machine Learning", Packt Publishing Ltd, 2015.
E BOOKS	
1	http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
2	http://www.mlyearning.org/
MOOC	1
1	https://www.coursera.org/learn/machine-learning
2	https://www.my-mooc.com/en/categorie/machine-learning

COURSE TITLE	RESEARC	CH METHODOLOGY 8	CREDITS	2	
COURSE CODE	ZZZ3715	COURSE CATEGORY	PC	L-T-P-S	2-0-0-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-2

First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					
15%	15%	10%	5%	5%	50%					
Course Description	plagiarism and ethi	igned to understan cs, To get the know al property rights and	ledge about tec	hnical writing,						
Course Objective	 To give an overview of the research methodology and explain the technique of defining a research problem To explain the functions of the literature review in research. To explain carrying out a literature search, its review, developing theoretical and conceptual framework sand writing a review. 									
Course Outcome	 To explain various research designs and their characteristics. Upon completion of this course, the students will be able to Understand research problem formulation. Understand the way of doing Literature review and to write proposal in an effective way. Understanding the data collection, sampling techniques used in the statistical analysis for effective data analysis. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. Understand the nature of Intellectual property rights in national and international level collaborations 									
Prerequisites: ni	-									

	РО	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
CO	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	-	2	1	1	1	2	3	2	3	2	3	2	-	3	2
CO-2	-	2	2	3	1	1	2	3	3	2	3	2	-	2	-
CO-3	3	2	2	1	2	2	3	3	2	3	2	-	2	-	1
CO-4	2	-	2	1	2	2	3	3	2	3	2	-	2	-	2
CO-5	-	-	3	-	2	1	2	2	3	3	2	3	2	-	2
		1	l: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed		
MODUL	E1: RE	SEARC	H PRO	BLEM	FORM	IULATI	ON							(9)
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations MODULE 2: RESEARCH PROPOSAL AND ETHICS Effective literature studies approach, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.								ective	CO BTL (9) CO BTL	-2					
MODULE3:DATA ANALYSIS AND INTERPRETATION								(9)						
Classification of Data, Methods of Data Collection, Sampling, Sampling techniques procedure and methods, Ethical considerations in research Data analysis, Statistical techniques and choosing an appropriate statistical technique, Hypothesis, Hypothesis testing, Data processing software (e.g. SPSS etc.), statistical inference, Interpretation of results.									stical hesis	CO BTL					
results.															

Patents, Desig	ns, Trade and Copyright. Process of Patenting and Development:	60 1						
technological research, innovation, patenting, development. International Scenario: CO-4								
International c	ooperation on Intellectual Property. Procedure for grants of patents,	BTL-2						
Patenting unde	r PCT.							
	ENT RIGHTS AND NEW DEVELOPMENTS IN IPR (9)							
WODOLLS. PAT	LINE RIGHTS AND NEW DEVELOPINIENTS IN IPK (3)							
Scope of Pater	t Rights. Licensing and transfer of technology. Patent information and							
databases. Ge	eographical Indications. Administration of Patent System. New	CO-5						
developments	in IPR; IPR of Biological Systems, Computer Software etc. Traditional	BTL-2						
knowledge Case	e Studies, IPR and IITs.	DTL-2						
TEXT BOOKS								
	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Pro	operty in New						
1	Technological Age", 2016.							
	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008							
2								
REFERENCE BOO	KS							
1	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by S	tep Guide for						
	beginners"							
2	Creswell, John W. Research design: Qualitative, quantitative, and mixed r	nethods,						
	approaches. Sage publications, 2013.							
3	Donald Cooper & Pamela Schindler ,"Business Research Methods ", TMG	H, 9th edition						
E BOOKS	1							
	https://www.modares.ac.ir/uploads/Agr.Oth.Lib.17.pdf							
1								
https://drive.google.com/file/d/0Bwk5FIsI0ctxNXBvU2dGVIJhSTg/view?usp=drivesdk								
2								
MOOC								
1	https://www.coursera.org/browse/physical-science-and-engineering/res	search-						
	methods							

2	https://www.ccrm.in/register.html

COURSE TITLE		MINI PROJECT		CREDITS	2		
COURSE CODE	CSA3781	COURSE CATEGORY	PC	PC L-T-P-S			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3		
ASSESSMENT SC	HEME						
First Review (Concept)	Second Review (Design)	Third Review (Experiment/ Analysis)	Project Ro Vivo- (Results and Atten	ESE			
20%	30%	20%	30	%			
Course Description	This course is designed to provide sufficient hands-on learning experience related to the design, development and analysis of suitable product/project so as to enhance the technical skill sets in the chosen field.						
Course Objective	 To Identify problems that have relevance to societal / industrial needs To Exhibit independent thinking and analysis skills To Demonstrate the application of relevant science / engineering principles To judge the value of different contributions To identify promising new directions 						

	Upon completion of this course, the students will be able to
Course Outcome	 Demonstrate sound fundamentals in a chosen area of computing Identify and formulate a problem of research interest in the chosen area of computing Analyze the computing problem and propose solutions Explain factual knowledge (terminology, classifications, methods, trends)of current areas of research. State and explain some fundamental principles, generalizations, or theories the student has learned in this course.

Prerequisites: Basic programming knowledge

CO, PO AND PSO MAPPING

со	РО	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-							
	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	3	3	3	3	-	2	-	-	3	3	3	2	3	3	2
CO-2	3	3	3	3	-	2	-	3	3	3	3	2	3	3	2
CO-3	3	3	3	3	3	-	-	3	3	-	3	2	3	3	3
CO-4	3	3	3	3	3	-	-	3	3	-	3	2	3	3	3
CO-5	3	3	3	3	3	2	-	3	3	-	3	2	3	3	3

1: Weakly related, 2: Moderately related and 3: Strongly related

GUIDELINES

- 1. The mini project must be done as the individual Project.
- Each Student must prepare a title that relates to any engineering discipline and the title MUST emulate any real-world situation.
 CO1, CO2, CO3, CO4, CO3, CO4,
- 3. Every project work shall have a guide who is the member of the faculty of the Department.

4.	Design, develop, test and implement a hardware/software system that is						
	demonstratable with required data set.						
5.	Assessment is based on creativity, applicability to the society, project development						
	skills, team work.						
6.	Technical communication, presentation and report writing skills form an essential						
	component in assessment.						
7.	The project/software MUST include all the topics that have been taught in class.						

COURSE TITLE		CREDITS	3					
COURSE CODE	CSA3706	COURSE CATEGORY	PC	L-T-P-S	3- 0- 0- 0			
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4			
ASSESSMENT S	ASSESSMENT SCHEME							
First Periodical Assessment	Second Periodical Assessment	Practical Cor	nponent	E	SE			
15%	15%	20%		50	0%			
CourseThe objective of this course is to define and clarify the cloud technologies that can be used to deploy cloud-based applications and services. It also explains how they differ in their implementation and usage. Any enterprise may implement any of the cloud deployment models and use the cloud services as per their needs.								

со	РО	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
CO, PC) AND	PSO N	1APPIN	IG											
Prereq	uisites	: Nil													
			stu	udent h	nas lea	rned in	this co	ourse.							
			5. Sta	ate and	d expl	ain sor	ne fur	ndamer	ntal pri	nciple	s, gen	eraliza	tions, o	r theori	ies the
			solution.												
	-		4. Communicate effectively and write effective reports on the design of Engineering												
Outcor			3. Work as an individual and as a team in solving complex problem.												
Course	<u>م</u>		2. Use research-based knowledge and research methods through modern tools												
		Engineering Knowledge.													
		1. Develop an Engineering solution through Analyzing the problem and Applying the													
			Upon	ı comp	letion	of this	course	, the st	udents	will b	e able	to			
			30	itvait	CIIGIN	Lenng.									
			software engineering.												
Objective		science. 3. To exercise the lifecycle of project development by following the principles of													
Course	e		2. To apply the concepts, principles and algorithms learnt in the field of computer												
			related to real world problems.												
		-	1. To analyse, design and develop products/tools/applications to solve the issues												

<u> </u>	РО	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
СО	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	3	3	-	-	3	-	-	-	2	-	-	1	1	1	-
CO-2	3	3	-	-	-3	-	-	-	-	2	-	-	1	1	-
CO-3	3	3	-	-	3	1	-	-	-	-	-	-	1	1	-
CO-4	3	3	-	-	3	-	-	-	-	-	-	2	1	1	-
CO-5	3	2	3	-	2	-	-	-	-	-	-	3	1	1	-
	1	1	1: W	eakly r	elated	, 2: Mo	oderate	ely rela	ated an	d 3: St	rongly	relate	d		

GUI	DELINES	
1.	The MOOC course will be selected as per the HOD instruction The students must	
	register for the selected MOOC Course. Faculty will be assigned to assist for	
	assignment completion.	
2.	At the end of the course will be directly transferred to the student's coursework.	
3.	For all other courses the concurrence from a faculty member to set the	CO1, CO2,
	question paper and evaluate the performance of the student should be obtained.	CO3, CO4,
4.	All the internal examination will be conducted. The candidate will have to appear for	CO5 /BTL4
	theend semester examinations.	
5.	At the end of the online & contact courses, the student should submit the course	
	completion certificate(s) with grades/marks for record in his/her course work.	

MOOC	
1.	https://www.mooc-list.com/course/cloud-computing-applications-part-1-cloud-systems- and-infrastructure-coursera
2.	https://www.mooc-list.com/course/cloud-computing-concepts-part-2-coursera

COURSE TITLE	ADVAN	CED OPERATING SYSTE	MS	CREDITS	3		
COURSE CODE	CSA3703	COURSE CATEGORY	PC	L-T-P-S	2-0-2-0		
Version	1.0	Approval Details 23 ACM, 06.02.2021		LEARNING LEVEL	BTL-4		
ASSESSMENT SC	HEME						
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE		
15%	15%	10%	5%	5%	50%		
Course Description	This course serves as an introduction to Advanced operating systems and to understand real time applications.						
Course Objective	 To Design distributed operating system To Detect, prevent and avoid the deadlocks in distributed environment. To Explain the need for load distribution and the corresponding techniques. To Design security mechanisms for distributed operating system. To Analyze and find out the requirements to construct a database operating systems 						
Course	Upon completion of	f this course, the stud	lents will be able	e to			
Outcome	 Design distributed operating system. Detect, prevent and avoid the deadlocks in distributed environment. 						

3.	Explain the need for load distribution and the corresponding techniques.
----	--

- 4. Design security mechanisms for distributed operating system.
- 5. Analyze and find out the requirements to construct a database operating systems

Prerequisites: Fundamentals of Programming

CO, PO AND PSO MAPPING

со	РО	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	-	3	2	2	1	1	2	3	3	2	3	2	-	2	3
CO-2	-	2	2	3	1	1	2	3	3	2	3	2	-	2	-
CO-3	3	2	2	3	2	1	3	3	2	3	2	-	2	-	1
CO-4	2	-	2	3	2	2	3	3	2	3	2	-	2	-	2
CO-5	-	-	3	-	2	1	2	2	3	3	2	3	2	-	2
		1	: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	d		
MODULE	1: DIST	RIBUTE	D OPER	ATING	SYSTEN	1								(12	2)

Synchronization Mechanisms: Introduction – concept of a process – concurrent process – the critical section problem – Synchronization problems – language mechanisms for synchronization: Monitors. System Architecture types – issues in distributed operating systems – communication networks – communication primitives. Theoretical Foundations: inherent limitations of a distributed system – lamport logical clocks – vector clocks – casual ordering of messages – global state – cuts of a distributed computation – termination detection.

MODULE 2: DISTRIBUTED DEAD LOCK DETECTION	(12)
Deadlock handling strategies in distributed systems – issues in deadlock detection and resolution – control organizations for distributed deadlock detection – centralized and distributed deadlock detection algorithms – hierarchical deadlock detection algorithms. Agreement protocols – introduction- the system model, a classification of agreement problems, solutions to the Byzantine agreement problem, applications of agreement algorithms. MODULE 3: DISTRIBUTED SHAREDMEMORY	CO-2 BTL-2 (12)
Architecture– algorithms for implementing DSM – memory coherence and coherence protocols – design issues. Distributed Scheduling: introduction – issues in load distributing – components of a load distributing algorithm – stability – load distributing algorithm – performance comparison – selecting a suitable load sharing algorithm – requirements for load distributing -task migration and associated issues. Failure Recovery and Fault tolerance: introduction – basic concepts – classification of failures – backward and forward error recovery approaches - recovery in concurrent systems – synchronous and asynchronous check pointing and recovery – check pointing for distributed database systems - recovery in replicated distributed databases systems.	CO-3 BTL-3
MODULE4: MULTIPROCESSOR OPERATIN GSYSTEM	(12)
Basic multiprocessor system architectures – basic multiprocessor system architecture - inter connection networks for multiprocessor systems – caching – hypercube architecture – structures of multiprocessor operating system -operating system design issues – threads management- process synchronization – processor scheduling–Memory management- The Mac OS.	CO-4 BTL-2
MODULE 5: DATABASE OPERATING SYSTEM	(12)
Requirements of a database operating system Concurrency control: theoretical aspects - introduction, database systems - a concurrency control model of database systems- the problem of concurrency control - Serializability theory- distributed database systems, concurrency control algorithms - introduction, basic synchronization primitives, lock based algorithms-timestamp based algorithms, optimistic algorithms - concurrency	CO-5 BTL-2

PRACTICES

- 1. Implementation of semaphores for multiprocessor OS
- 2. Implementation of multithreading for multiprocessor OS
- 3. Implementation of multiples leeping barbers problem for synchronization in distributed OS
- 4. Implementation of network operating system.
- 5. Design a real time operating system to control the temperature of a boiler.
- 6. Implementation of transactions and concurrency in Database operating system.
- 7. Implement a banking application using distributed Operating system.

TEXT BOOKS	
1	Mukesh Singhal, Niranjan G.Shivaratri, "Advanced concepts in operating systems", TMH, 2011
REFERENCE BOOI	KS
1	Abraham Silberschatz, Peter B. Galvin, G. Gagne, "Operating System Concepts", Ninth Edition, Addison Wesley Publishing Co.,2013.
2	Andrew S.Tanenbaum, "Modern operating system", PHI, 3rd edition,2008
3	Pradeep K.Sinha, "Distributed operating system-Concepts and design", PHI, 2003.
4	Andrew S.Tanenbaum, "Distributed operating system", Pearson education, 2003
E BOOKS	
1	https://books.google.co.in/books/about/Advanced_Concepts_In_Operating_Systems.html?id=nel4vdeLcqkC
2	http://www.cs.iit.edu/~sun/pdfd/cs550-lec1.pdf
MOOC	

1	https://www.coursera.org/learn/practical-machine-learning
2	https://www.coursera.org/learn/python-machine-learning

COURSE TITLE	S	OFT COMPUTING		CREDITS	3					
COURSE CODE	CSA3704	COURSE	РС	L-T-P-S	3-0-2-0					
		CATEGORY								
Version	1.0	Approval Details	23 ACM,	LEARNING	BTL-4					
Version	1.0		06.02.2021	LEVEL	0124					
ASSESSMENT SC	HEME									
First Periodical	Second Periodical	Seminar/	Surprise Test	Attendance	ESE					
Assessment	Assessment	Assignments/ Project	/ Quiz	Attendance	LJE					
	Project									
15%	15%	10%	5%	5%	50%					
Course	This course ser	ves as an intr	oduction to	Soft Compu	ting and to					
Description	Developcasestudiesto	illustratetheintelligent	pehaviorofprogram	nsbased on soft o	computing.					
	1. To Apply concep	ts of fuzzy sets, fuzzy log	ic and heuristics-ba	sed systems.						
	2. To Derive appropriate rules for inference systems.									
Course	3. To Use the mathematical background to optimize neural network learning.									
Objective	4. To Implementoptimizationalgorithmsandrandomsearchproceduresusefulto seek									
Objective	global optimu	m in self-learning								
	5. To Develop ca	se studies to illustra	te the intelligen	t behavior of p	rograms based					
	on soft compu	ting.								

		Up	on co	mpleti	on of t	his co	urse, t	he stu	dents v	will be	able to	0			
Course			1. Apply concepts of fuzzy sets, fuzzy logic and heuristics-based systems.												
			2. Derive appropriate rules for inference systems.												
		3					-						ork learr	-	
Outc	ome	4	4. Implement optimization algorithms and random search procedures useful to												
			seek global optimum in self-learning.5. Develop case studies to illustrate the intelligent behavior of programs based on												
		5													
			soft computing.												
Prerequ	isites:	Artifici	al Intel	ligence	, Proble	em solv	/ing, Ex	pert Sy	stems						
CO, PO		SO MA		G											
		1	Γ	I					1				T		
со	РО	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	3	2	2	1	1	2	3	3	2	3	2	-	2	3	-
CO-2	2	2	3	1	1	2	3	3	2	3	2	-	2	-	-
CO-3	2	2	3	2	1	3	3	2	3	2	-	2	-	1	2
CO-4	1	2	2	2	2	3	3	2	3	2	-	2	-	2	1
CO-5	-	3	-	2	1	2	2	3	3	2	3	2	-	2	-
		1	: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed		<u>I</u>
MODULE	1: FUZZ	ZY SET T	HEORY	(12)											
									<u> </u>			c			
Introduc															
Terminc	0,				•									CO	-1
paramet			-			-		-							•
Relation		-			•		-	-						BTL	2
Fuzzy N			-		Node	eis —	isukar	noto	Fuzzy	wode	ıs — lı	nput S	pace		
Partition	Partitioning and Fuzzy Modeling.														

Suggested Activities: Apply fuzzy logic and reasoning to handle uncertainty and solve	
engineering problems.	
Suggested sources: https://swayam.gov.in/course/4574-introduction-to-soft-computing	
MODULE2: OPTIMIZATION (12)	
Derivative-based Optimization – Descent Methods – The Method of Steepest Descent –	
Classical Newton's Method – Step Size Determination – Derivative-free Optimization –	
Genetic Algorithms – Simulated Annealing – Random Search – Downhill Simplex Search-	
Particle Swarm Techniques - Ant Colony Optimization.	CO-2
Suggested Activities: Develop the application based on Genetic Algorithm and Ant	BTL-2
Colony optimization	
Suggested sources: https://swayam.gov.in/course/4574-introduction-to-soft-	
computing	
MODULE 3: NEURAL NETWORKS (12)	
Supervised Learning Neural Networks – Perceptron - Adaline – Back propagation	
Multilayer Perceptron – Radial Basis Function Networks – Unsupervised Learning Neural	
Networks – Competitive Learning Networks – Kohonen Self-Organizing Networks –	
Learning Vector Quantization– Hebbian Learning.	CO-3
Suggested Activities: Compare and Analyze the features of supervised and	BTL-3
Unsupervised Neural Networks	
Suggested sources: https://swayam.gov.in/course/4574-introduction-to-soft-computing	

Adaptive Neuro-Fuzzy Inference System	s – Architecture – Hybrid Learning Algorithm –							
Learning Methods that Cross-fertilize ANFIS and RBFN – Coactive Neuro Fuzzy Modeling								
– Framework Neuron Functions for Adaptive Networks – Neuro Fuzzy Spectrum.								
Suggested Activities: Build Adaptive Neuro-Fuzzy Inference Systems (ANFIS), train								
		BTL-2						
Sugeno systems using neuro-adaptive lea	arning							
Suggested sources: <u>http://in.mathworks.</u>	com/help/fuzzy/adaptive-neuro-fuzzy-							
inference-systems.html								
MODULE5: APPLICATIONS OF COMPUTATIONA	L INTELLIGECE (12)							
Printed Character Recognition – Inve	rse Kinematics Problems – Automobile Fuel							
Efficiency Prediction – Soft Computing fo								
Suggested Activities: Prepare the st	udents for developing intelligent modeling,	CO-5						
optimization and control of non-linear sy	stems through case studies.	BTL-2						
Suggested sources: https://towardsdatas	cience.com/introductory-guide-to-artificial-							
intelligence-11fc04cea042								
intelligence-11004cea042								
TEXT BOOKS								
1 J.S.R.Jang, C.T.Sun and E	E.Mizutani, "Neuro-Fuzzy and Soft Computing", PH	11,						
2004, Pearson Education								
2 N.P.Padhy, "Artificial Intell	igence and Intelligent Systems", Oxford University Pres	s, 2006						
REFERENCE BOOKS								
1 SamirRoy"IntroductiontoSof	ftcomputing"NeuroEuzzyandConaticAlgarithms" Eirstaditid	on Pearson						
SamirRoy"IntroductiontoSoftcomputing"NeuroFuzzyandGeneticAlgorithms",Firstedition,Pearson								
Publishers, 2015.								
2 J.S.R.Jang, C.T.Sun and E.N	lizutani, "Neuro-Fuzzy and Soft Computing", Pearson, 2	.004.						
3 Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.								
3 Timothy J.Ross, "Fuzzy Log	ic with Engineering Applications, wedraw mil, 1997.							
	gorithms:Search,OptimizationandMachineLearning",Addis	onWesley, 2009.						

5	S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI,2003.
E BOOKS	
1	https://stimelstep.firebaseapp.com/15/Introduction-to-Soft-Computing-Neuro-Fuzzy-and-Genetic Algorithms.pdf
2	http://www.a-zshiksha.com/forum/viewtopic.php?f=147&t=61593
MOOC	
1	https://www.class-central.com/tag/soft-computing
2	https://www.class-central.com/course/nptel-introduction-to-soft-computing-10053

COURSE TITLE	ADVANCED DATA BASE TECHNOLOGY CREDITS 4								
COURSE CODE	CSA370	COURSE	РС	L-T-P-S	2-1-2-0				
		CATEGORY							
Version	1.0	Approval Details	23 ACM,	LEARNING	BTL-5				
			06.02.2021	LEVEL	2.20				
ASSESSMENT SCH	EME								
First Periodical	Second Periodical	Seminar/	Surprise Test /						
Assessment	Assessment	Assignments/	Quiz	Attendance	ESE				
		Project							
15%	15%	10%	5%	5%	50%				
Course	This course serves as an introduction to Advanced Data Base Technology and to learn								
Description	advanced data models and emerging databases.								

Course Objective 2. To Implement object and object relational databases 3. To Learn advanced data models 4. To Learn emerging databases		1. To Implement parallel and distributed databases.
3. To Learn advanced data models4. To Learn emerging databases	Course Objective	2. To Implement object and object relational databases
		3. To Learn advanced data models
		4. To Learn emerging databases
Upon completion of this course, the students will be able to		Upon completion of this course, the students will be able to
Course Outcome1. Implement parallel and distributed databases.2. Implement object and object relational databases.3. Learn advanced data models4. Learn emerging databases	Course Outcome	 Implement object and object relational databases. Learn advanced data models

Prerequisites: Database Management System

CO, PO AND PSO MAPPING

со	PO -	PO-	РО	PO -	PO-	PO-	PSO-	PSO-	PSO-						
	1	2	-3	-4	-5	-6	-7	-8	-9	10	11	12	1	2	3
CO-1	3	2	2	1	1	2	2	3	2	3	2	-	2	3	-
CO-2	2	2	3	1	2	2	2	3	2	3	2	-	2	-	2
CO-3	2	2	3	2	2	3	3	2	3	2	-	2	-	1	1
CO-4	1	2	2	2	1	2	3	2	3	2	-	2	-	2	1
CO-5	-	3	-	2	1	2	2	3	3	2	3	2	-	2	-

1: Weakly related, 2: Moderately related and 3: Strongly related

(12)

MODULE 1: PARALLEL AND DISTRIBUTED DATABASES

Database System Architectures: Centralized and Client-Server Architectures – ServerSystem Architectures – Parallel Systems- Distributed Systems – Parallel Databases: I/OParallelism – Inter and Intra Query Parallelism – Inter and Intra operation Parallelism –Design of Parallel Systems- Distributed Database Concepts - Distributed Data Storage –Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query

Suggested sources: NPTEL and http://mazsola.iit.unimiskolc.hu/tempus/discom/doc/db/tema01a.pdf (12) MODULE 2: OBJECT AND OBJECT RELATIONAL DATABASES (12) Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies. CO-2 Suggested Activities: Assignments and Case Study BTI-2 Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf CO-3 MODULE 3: INTELLIGENT DATABASES (12) CO-3 Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. CO-3 Suggested Activities: Assignments and Case Study Suggested Activities: Assignments and Case Study	Processing – Case Studies	
http://mazsola.iit.unimiskolc.hu/tempus/discom/doc/db/tema01a.pdf MODULE 2: OBJECT AND OBJECT RELATIONAL DATABASES (12) Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Relational and Extended – Relational Systems: Object CO-2 Relational features in SQL/Oracle – Case Studies. BTI-2 Suggested Activities: Assignments and Case Study BTI-2 MODULE 3: INTELLIGENT DATABASES (12) CO-3 Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- CO-3 Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods - Spatial DB Implementation. Suggested Activities: Assignments and Case Study CO-3 Suggested Activities: Assignments and Case Study BTI-3 Suggested Activities: Assignments (Starburst, Oracle, DB2)- Taxonomy- Applications- CO-3	Suggested Activities: Assignments and Case Study	
http://mazsola.iit.unimiskolc.hu/tempus/discom/doc/db/tema01a.pdf MODULE 2: OBJECT AND OBJECT RELATIONAL DATABASES (12) Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Relational and Extended – Relational Systems: Object CO-2 Relational features in SQL/Oracle – Case Studies. BTI-2 Suggested Activities: Assignments and Case Study BTI-2 MODULE 3: INTELLIGENT DATABASES (12) CO-3 Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- CO-3 Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods - Spatial DB Implementation. Suggested Activities: Assignments and Case Study CO-3 Suggested Activities: Assignments and Case Study BTI-3 Suggested Activities: Assignments (Starburst, Oracle, DB2)- Taxonomy- Applications- CO-3	Suggested sources: NPTEL and	
Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies. Suggested Activities: Assignments and Case StudyCO-2 BTL-2Suggested Sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdfCO-2MODULE 3: INTELLIGENT DATABASES (12)(12)Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation.CO-3 BTL-3Suggested Activities: Assignments and Case StudySuggested Activities: Assignments and Case StudySuggested Sources:	http://mazsola.iit.unimiskolc.hu/tempus/discom/doc/db/tema01a.pdf	
Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies. Suggested Activities: Assignments and Case StudyCO-2 BTL-2Suggested Sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdfCO-2MODULE 3: INTELLIGENT DATABASES (12)(12)Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation.CO-3 BTL-3Suggested Activities: Assignments and Case StudySuggested Activities: Assignments and Case StudySuggested Sources:	MODULE 2: ORIECT AND ORIECT RELATIONAL DATABASES (12)	
Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies. Suggested Activities: Assignments and Case Study Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES_(12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:		
Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies. Suggested Activities: Assignments and Case Study Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:	Concepts for Object Databases: Object Identity – Object structure – Type Constructors –	
ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object CO-2 Relational features in SQL/Oracle – Case Studies. BTL-2 Suggested Activities: Assignments and Case Study BTL-2 Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive CO-3 Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data BTL-3 Suggested Activities: Assignments and Case Study BTL-3	Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies –	
Relational features in SQL/Oracle – Case Studies.CO-2Suggested Activities: Assignments and Case StudyBTL-2Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdfBTL-2MODULE 3: INTELLIGENT DATABASES (12)Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation.CO-3Suggested sources:BTL-3	Inheritance – Complex Objects – Object Database Standards, Languages and Design:	
Relational features in SQL/Oracle – Case Studies. BTL-2 Suggested Activities: Assignments and Case Study BTL-2 Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive CO-3 Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data BTL-3 Suggested Activities: Assignments and Case Study BTL-3	ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object	
Suggested Activities: Assignments and Case Study Suggested sources: NPTEL and https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. BTL-3 Suggested sources:	Relational features in SQL/Oracle – Case Studies.	CO-2
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:	Suggested Activities: Assignments and Case Study	BTL-2
k/sect10_3-5.pdf MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:	Suggested sources: NPTEL and	
MODULE 3: INTELLIGENT DATABASES (12) Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. BTL-3 Suggested sources:	https://www.uio.no/studier/emner/matnat/ifi/INF3100/v13/undervisningsmateriale/lysar	
Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:	k/sect10_3-5.pdf	
Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation.CO-3Suggested Activities: Assignments and Case StudyBTL-3	MODULE 3: INTELLIGENT DATABASES (12)	
TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:	Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications-	
and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. Suggested Activities: Assignments and Case Study Suggested sources:	Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases-	
Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial DataCO-3Structures-Spatial Access Methods- Spatial DB Implementation.BTL-3Suggested Activities: Assignments and Case StudySuggested sources:	TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules- Syntax	
Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation. BTL-3 Suggested Activities: Assignments and Case Study Suggested sources:	and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive	
Suggested Activities: Assignments and Case Study Suggested sources:	Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data	CO-3
Suggested sources:	Structures-Spatial Access Methods- Spatial DB Implementation.	BTL-3
	Suggested Activities: Assignments and Case Study	
https://www.cse.iitb.ac.in/~cs6212011//Intelligent%20Database%20Systems.ppt	Suggested sources:	
	https://www.cse.iitb.ac.in/~cs6212011//Intelligent%20Database%20Systems.ppt	

MODULE 4: ADVAN	CED DATAMODELS	(12)						
Mobile Databas	es: Location and Handoff Management - Effect of Mobility on Data							
Management - Location Dependent Data Distribution - Mobile Transaction Models -								
Concurrency Cor	Concurrency Control - Transaction Commit Protocols- Multimedia Databases- Information							
Retrieval- Data V	Retrieval- Data Warehousing- Data Mining- Text Mining.							
Suggested Activi	ties:Assignments and Case Study	BTL-2						
Suggested source	ces: https://www.slideshare.net/avnishpatel165/multimedia-database-							
56310108, https	://www.geeksforgeeks.org/dbms-multimedia-database/							
MODULE 5:EMERG	ING TECHNOLOGIES (12)							
XML Databases:	XML-Related Technologies-XML Schema- XML Query Languages- Storing							
XML in Databas	es-XML and SQL- Native XML Databases- Web Databases- Geographic							
Information Syst	ems- Biological Data Management- Cloud Based Databases: Data Storage							
Systems on the (Cloud- Cloud Storage Architectures-Cloud Data Models- Query Languages-							
Introduction to E	Big Data-Storage-Analysis.	CO-5						
Suggested Activi	ties: Assignments and Case Study	BTL-2						
Suggested sourc	es: https://www.tutorialspoint.com/xml/,							
https://www.tec	hwalla.com/articles/what-is-a-web-database							
https://www.ibn	n.com/cloud/learn/what-is-cloud-database							
TEXT BOOKS								
1	ApproachtoDesign,ImplementationandManagement",SixthEdition,PearsonEducation,20)15.						
REFERENCE BOOK	S							
1	PamazElmacri&ShamkantB Nayatha "Eurodamontals of Database Systems" Counth Edi	tion Dearson						
RamezElmasri&ShamkantB.Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson Education, 2016.								
n								
2 Tamer Ozsu M., Patrick Ualduriel, "Principles of Distributed Database Systems", Second Edition, Pearson Education, 2003.								

3	Prabhu C.S.R., "Object Oriented Database Systems", PHI, 2003.
4	Peter Rob and Corlos Coronel, "Database Systems – Design, Implementation and
	Management", Thompson Learning, Course Technology, 9th Edition, 2011.
5	Henry
	FKorth, AbrahamSilberschatz, S. Sudharshan, "DatabaseSystemConcepts", SeventhEdition, McGraw Hill,
	2010.
E BOOKS	
1	http://aries.ektf.hu/~hz/pdf-tamop/pdf-xx/Radvanyi-hdbms-eng2.pdf
2	https://dsinghpune.wordpress.com/advanced-database-management-system/
МООС	
1	https://www.coursera.org/learn/distributed-database
2	https://nptel.ac.in/courses/106106093/38

COURSE TITLE		SEMINAR	CREDITS	2	
COURSE CODE	CSA3751	COURSE CATEGORY	LAB	L-T-P-S	0-0-3-0
Version	1.0	Approval Details	23 ACM, 06.02.202 1	LEARNING LEVEL	BTL-3
ASSESSMENT SCHEM	E				
First Review	Second Review	Third Review	Mod	ESE	

20%	20%	20%		40%						
Course Description		In this course, students will develop the scientific and technical reading, writing and presentation skills they need to understand and construct research articles.								
Course Objective	report pr 2. To Select 3. To Link th 4. To Stud t	 report preparation 2. To Selecting a subject, narrowing the subject into a topic 3. To Link the papers and preparing a draft of the paper. 								
Course Outcome	 Upon completion of this course, the students will be able to 1. Acquired the basic skills to for performing literature survey and paper presentation 2. Provide students better communication skills. 3. Describe the current topics in computer science and related areas based on current publications. 4. Prepare the report 									
Prerequisites: Nil										
CO, PO AND PSO MA	PPING)- PO- PO- PO	PO PO-	PO- PO-	PSO I					

60	PO-	РО	РО	PO-	PO-	PO-	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	-8	-9	10	11	12	-1	-2	-3
CO-1	1	2	3	-	3	-	-	-	-	-	-	3	-	-	3
CO-2	1	2	3	-	-	-	-	-	-	-	-	-	-	-	3
CO-3	1	2	3	-	-	-	-	-	-	-	-	-	-	-	3
CO-4	1	2	3	-	-	-	-	-	-	-	-	-	-	-	3

1: Weakly related, 2: Moderately related and 3: Strongly related

GUIDELINES

- For seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Departmental Academic Committee consisting of Department PG Coordinator, Supervisor and two other senior faculty members of the department.
- Each student will make a seminar presentation using audio/visual aids for a duration of 20-25 minutes and submit the seminar report prepared in Latex only
- CO1/BTL3

- 3. For Seminar there will be only internal evaluation.
- 4. Out of the total allocated marks distribution of marks shall be 30% for the report, 50% for presentation and 20% for the queries.
- 5. A candidate has to secure a minimum of 50% of marks to be declared successful.
- 6. If the student fails to fulfill minimum marks, the student has to reappear during the supplementary examinations.
- 7. There shall be no semester end examinations for the seminar.

REFERENCE BOOKS	
1.	NYIF ,"Technical Analysis: A Personal Seminar", Prentice Hall Press (10 March 2005)
2.	David F. Beer ,"Presenting the Successful Technical Seminar",Wiley-IEEE Press,2003
3.	Si FanJill Fielding-Wells,"What is Next in Educational Research?",Springer 2016
E BOOKS	
1.	https://link.springer.com/book/10.1007%2F978-94-6300-524-1

COURSE TITLE	PROJ	ECT PHASE –I		CREDITS	8
COURSE CODE	CSA3782	COURSE CATEGORY	PC	L-T-P-S	0- 0- 24- 0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	HEME				

10%20%20%50%Course DescriptionThis course is designed to provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.Course Objective1. To provide opportunity to involve in research related to science / engineering 2. To inculcate research culture 3. To enhance the rational and innovative thinking capabilitiesUpon completion of this course, the students will be able to 1. Demonstrate sound fundamentals in a chosen area of computing 2. Identify and formulate a problem of research interest in the chosen area o computingCourse 0utcome3. Analyze the computing problem and propose solutions 4. Apply the emerging technologies like - Blockchain, IoT, Robotics, ML Al,Datamining, Big Data Analytics in solving some challenging problem in chosen area 5. Effectively communicate the work at all stages of the project	First Review	Second Review	Third Review	ESE
Course the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field. Course 1. To provide opportunity to involve in research related to science / engineering Objective 2. To inculcate research culture 3. To enhance the rational and innovative thinking capabilities Upon completion of this course, the students will be able to 1. Demonstrate sound fundamentals in a chosen area of computing 2. Identify and formulate a problem of research interest in the chosen area of computing 3. Analyze the computing problem and propose solutions 4. Apply the emerging technologies like – Blockchain, IoT, Robotics, ML Al,Datamining, Big Data Analytics in solving some challenging problem in choser area	10%	20%	20%	50%
Course 2. To inculcate research culture Objective 3. To enhance the rational and innovative thinking capabilities Upon completion of this course, the students will be able to 1. Demonstrate sound fundamentals in a chosen area of computing 2. Identify and formulate a problem of research interest in the chosen area of computing 3. Analyze the computing problem and propose solutions 4. Apply the emerging technologies like – Blockchain, IoT, Robotics, ML Al,Datamining, Big Data Analytics in solving some challenging problem in choser area		the design, development	t and analysis of suitable product / process so as	
 Demonstrate sound fundamentals in a chosen area of computing Identify and formulate a problem of research interest in the chosen area o computing Analyze the computing problem and propose solutions Apply the emerging technologies like – Blockchain, IoT, Robotics, ML AI,Datamining, Big Data Analytics in solving some challenging problem in chosen area 		2. To inculcate resear	ch culture	ngineering
		 Demonstrate sound Identify and form computing Analyze the computing Apply the emerging Al,Datamining, Biging area 	d fundamentals in a chosen area of computing nulate a problem of research interest in the o nting problem and propose solutions ging technologies like – Blockchain, IoT, Data Analytics in solving some challenging prol	Robotics, ML

	DO	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
СО	PO				_		PO-						PSO-		
	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	-	2	-	-	1	-	3	-	-	-	-	-	-	-	3
CO-2	-	-	1	-	-	-	-	2	-	2	-	-	-	2	-
CO-3	-	-	-	-	-	1	-	-	2	-	-	-	2	-	-
CO-4	2	-	-	-	-	-	-	2	-	-	-	1	-	-	3
CO-5	-	-	3	-	-	-	-	-	-	-	-	-	-	2	-
			1: We	akly re	lated,	2: Mo	derate	ely rela	ated a	nd 3: S	trongly	y relate	ed		
															12)
GUIDEL	IINES													(,	12)
1.	Projec	t may	be a th	neoreti	cal an	alysis,	model	ing & s	simula	tion, e	xperim	entatio	on &		
	analys	is, pro	totype	desigr	n, fabr	ication	ofne	w equi	pment	, corre	elation	and ar	alysis		
	of data	a, softv	ware d	evelop	ment,	applie	ed rese	arch a	nd any	/ other	relate	d activ	ities.		
2.	Each s	tudent	is exp	ected	to do a	an indi	vidual	projec	t. The	projec	t work	is carr	ied		
	out in	two pł	nases -	- Phase	e I in II	l seme	ster ar	nd Pha	se II in	IV sen	nester				
3.	Phase	ll of tl	he pro	ject wo	ork sha	all be ii	n conti	nuatic	on of Pl	hase I	only.				
4.	At the	compl	etion	of a pr	oject t	he stu	dent w	vill sub	mit a p	project	repor	t, whic	h will		
	be eva	luated	l (end s	semest	ter ass	essme	nt) by	duly a	ppoint	ed exa	miner	(s). Thi	S	CO1,	CO2,
	evalua	tion w	ill be k	based o	on the	projec	t repo	rt and	a viva	voce e	examin	ation o	on the	CO3,	CO4,
	projec	t.												CO5 /	BTL4
5.	Projec	t shou	ld be f	or two	seme	sters b	ased o	n the	comple	etion c	of requ	ired nu	imber		
	of crea	lits as	per th	e acad	emic r	egulat	ions.								
	Carrie	d out i	nside d	or outs	ide the	e unive	ersity, i	n any	releva	nt indı	ustry o	r resea	rch		
6.		L:													
6.	institu	tion.													
	institu Publica		in the	peer r	eviewe	ed jour	nals /	Intern	ationa	l Confe	erence	s will b	e an		

COURSE TITLE	Р	ROJECT PHASE –II		CREDITS	12				
COURSE CODE	CSA3783	COURSE CATEGORY	PC	L-T-P-S	0- 0- 24- 0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3				
ASSESSMENT SC	HEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description Course Objective	This course is designed to provide sufficient hands-on learning experience related to the design, development and analysis of suitable product/project so as to enhance the technical skill sets in the chosen field. 1. To provide opportunity to involve in research related to science / engineering 2. To inculcate research culture								
Course Outcome	 To include research cuture To enhance the rational and innovative thinking capabilities Upon completion of this course, the students will be able to Identify a suitable problem to be solved computationally Reflectively analyze proposed solutions to the identified computing problem Design and develop solutions to the problem and analyze results Prepare a thesis and defend the thesis on the work done Augment the knowledge base in the chosen area of computing, adhering to ethical practices at every stage 								

Prerequisites: NIL

CO, PO AND PSO MAPPING

со	РО	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
0	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	-	2	-	-	1	-	3	-	-	-	-	-	-	-	3
CO-2	-	-	1	-	-	-	-	2	-	2	-	-	-	2	-
CO-3	-	-	-	-	-	1	-	-	2	-	-	-	2	-	-
CO-4	2	-	-	-	-	-	-	2	-	-	-	1	-	-	3
CO-5	-	-	3	-	-	-	-	-	-	-	-	-	-	2	-
			1: We	akly re	lated,	2: Mo	derate	ely rela	ated a	nd 3: S	trongl	y relate	ed		
Modalities / Requirements												(12)		
	F l		•				·					•	·I		
 Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of 															
		•								IV ser	nester	. Phase	II OT		
-	the pro	-							•						
2.	At the	-			-					-					
			•					-	• •			(s). Thi			
	evalua		ill be k	based o	on the	projec	t repo	rt and	a viva	voce e	examin	ation c	on the		
	projec													CO	-1
3.	Use Sc	-	-	-										BTL	-2
4.	Adopt			l well-o	define	d / inn	ovative	e meth	nodolo	gies to	fulfill	the			
	specifi	ed obj	ective												
5.	Submi	ssion c	of scier	ntific re	eport i	n a spe	ecified	forma	t (afte	r plagi	arism o	check)			
6.	Project	t shou	ld be f	or two	seme	sters b	ased c	on the	compl	etion o	of requ	ired nu	Imber		
	of crec	lits as	per th	e acad	emic r	egulat	ions.								
7.	Carried	d out i	nside o	or outs	ide th	e unive	ersity,	in any	releva	nt ind	ustry o	r resea	rch		
	institu	tion.													

8.	Publications in the peer reviewed journals / International Conferences will be an	
	added advantage	
9.	Student will be allowed to appear in the final viva voce examination only if he /	
	she has submitted his / her project work in the form of paper for presentation /	
	publication in a conference / journal and produced the proof of	
	acknowledgement of receipt of paper from the organizers / publishers.	

<mark>ELECTIVE I</mark>

COURSE TITLE		ΟΡΤΙΜΙΖΑ	TION TECHNIQUES		CREDITS	3				
COURSE CODE		CSC3721	COURSE CATEGORY	PE	L-T-P-S	2-0-2-0				
Version		1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-4				
ASSESSMENT S	CHEN	ЛЕ								
First Periodical Assessment	Second Periodical Assessment		Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%		15%	10%	5%	5%	50%				
Course Description		This course covers the methods, tools and algorithms used for optimization problems								
	1.	2. To Unders	stand the basics and engin	neering applicatio	ns of optimizatior	١				
Course		3. To Unders	stand the basics of Classic	al Optimization To	echniques					
Objective		4. To Unders	stand the Elimination Met	thods of Unconstr	ained Optimizatio	on problems				
		5. To Unders	stand the Interpolation M	ethods of Uncons	trained Optimizat	tion				
		6. To Unders	stand the Direct Root Met	thods of Unconstr	ained Optimizatio	n				

		pon the completion of the course the students will be able to							
		1. To Understand who your most likely customers are so you can target							
Course		meaningfully							
Outcome		2. Apply Linear Programming for solving AI related problems							
		3. Solve Unconstrained Optimization problems							
		4. Use Constrained Optimization to solve AI problems							
		5. Implement evolutionary algorithms using Python/Matlab							
Prerec	uisites:								

CO, PO AND PSO MAPPING

	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO	PS	
СО	1	2	3	4	5	6	7	8	9	10	11	12	-1	0- 2	PSO-3
CO-1	3	3	2	1	1	2	1	1	-	-	-	-	2	-	-
CO-2	3	3	3	1	1	1	1	1	-	2	-	-	-	-	-
CO-3	3	3	3	2	-	1	1	1	1	1	1	-	-	-	-
CO-4	3	3	3	2	1	2	2	1	1	1	1	2	-	1	1
CO-5	3	3	3	2	2	1	2	1	1	1	2	2	3	1	1
			1: W	/eakly r	elated,	2: Mo	deratel	y relate	d and	3: Stroi	ngly rel	ated			

MODULE 1:INTRODUCTION (12)

 Introduction to Optimization: Engineering application of Optimization – Statement of an

 Optimization problem - Optimal Problem formulation - Classification of Optimization problem.

 Optimum design concepts: Definition of Global and Local optima – Optimality criteria - Review

 of basic calculus concepts – Global optimality.

 Practical component: Introduction to MATLAB

 Suggested Readings: https://analytics.googleblog.com/2016/05/announcing-data-studio-our-

free-new.html

MODULE 2: LINEAR PROGRAMMING (12)	
Linear programming methods for optimum design: Review of Linear programming methods for	
optimum design – Post optimality analysis - Application of LPP models in AI.	CO-2
Practical component: Discuss on the classification of optimization problems	BTL-2
Suggested Readings: https://www.shsu.edu/~eco_dgf/web_chapter_a.pdf	
MODULE 3: UNCONSTRAINED OPTIMIZATION	(12)
Optimization algorithms for solving unconstrained optimization problems – Gradient based	
method: Cauchy's steepest descent method, Newton's method, Conjugate gradient method	CO-3
Practical component: Classical Optimization Techniques	BTL-3
Suggested Readings: https://www.shsu.edu/~eco_dgf/web_chapter_a.pdf	
MODULE 4: CONSTRAINED OPTIMIZATION	(12)
Optimization algorithms for solving constrained optimization problems – direct methods –	
penalty function methods – steepest descent method - Engineering applications of constrained	
and unconstrained algorithms	CO-4
Practical component: Study on Unconstrained Optimization: Elimination Methods	BTL-3
Suggested Readings: https://www.tandfonline.com/doi/full/10.1080/19427867.2019.1702250	
MODULE 5: OTHER OPTIMIZATION METHODS	(12)
Methods of Optimization: Genetic Algorithms - Simulated Annealing - Ant colony optimization -	
Tabu search – Neural-Network based Optimization – Fuzzy optimization techniques –	CO-5
Applications. Use of Python/ Matlab to solve optimization problems	
Practical component: Study on Unconstrained Optimization: Interpolation Methods	BTL-3
Suggested Readings: https://www.tandfonline.com/doi/full/10.1080/19427867.2019.1702250	
TEXT BOOKS	
Xin–She Yang , "Optimization Techniques and Applications with Examples", Wiley-	Blackwell,2018.
1 ISBN :9781119490548	
REFERENCE BOOKS	
1 J. Nocedal, S. J. Wright, "Numerical Optimization", Springer, 2 nd Edition, 2006.	
ISBN :9780387227429	

2	Rao S. S 'Engineering Optimization, Theory and Practice' – Wiley &Sons, 4th Edition, 2009. ISBN :978-0470183526
3	Yang ,Cui,XIao, Gandomi, Karamanoglu ,"Swarm Intelligence and Bio-Inspired Computing", Elsevier First Edition, 2013. ISBN: 9780124051775
E BOOKS	
1.	https://www.csie.ntu.edu.tw/~r97002/temp/num_optimization.pdf
	http://cslt.riit.tsinghua.edu.cn/mediawiki/images/e/e8/Introduction to Evolutionary Computing
2.	<u>.pdf</u>
MOOC	
1.	https://www.udemy.com/course/optimisation/

COURSE TITLE	COMPUT	ATIONAL NEUROSCIE	NCE	Credit	3					
COURSE CODE	CSC3722	COURSE CATEGORY	DE	L-T-P-S	2-0-2-0					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3					
ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					
15%	15%	10%	5%	5%	50%					
Course Description	This course provides anintroduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory.									

	1. To discuss different types of BCI signals from instruments						
Course	2. To discuss and compare different types of brain signals used for feature extraction						
Objective	3. To discuss the major components of BCI which makes up the system						
objective	4. To explain the applications based on BCI						
	5. To Use the toolbox BCI LAB						
	Upon completion of this course, the students will be able to						
	1. Discuss different types of BCI signals from instruments						
Course	2. Discuss and compare different types of brain signals used for feature extraction						
Outcome	3. Discuss the major components of BCI which makes up the system						
	4. Explain the applications based on BCI						
	5. Use the toolbox BCI LAB						
Prerequisites: Human-Computer Interaction, Cognitive Science							

CO, PO AND PSO MAPPING

со	PO-	PSO-	PSO-	PSO-											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	2	-	-	2	-	-	-	1	1	3	2	1	-
CO-2	3	3	2	1	2	1	-	1	2	2	2	3	3	2	1
CO-3	2	3	3	2	3	1	-	1	2	2	2	2	3	2	2
CO-4	2	3	3	3	2	2	1	1	1	2	2	2	3	3	1
CO-5	3	3	3	3	3	2	1	1	3	2	2	2	3	3	2

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: BASIC NEUROSCIENCE

Basic Neuroscience - Neurons - Action Potentials or Spikes -Dendrites and Axons -Synapses - Spike Generation - Adapting the Connections: Synaptic Plasticity -Brain Organization, Anatomy, and Function -Recording and Stimulating the Brain -Invasive Techniques -Non-invasive Techniques-Stimulating the Brain -Simultaneous Recording and Stimulation – Multi electrode Arrays –Neuro chip

(12)

Suggested Activities: Acquiring brain signals from within the brain and outside the brain

Suggested sources: https://www.udemy.com/course/brain-computer-interface/

MODULE 2: COMPUTATIONAL MODEL OF BRAIN AND BEHAVIOR

Models of Brain Disorders-Computational Model of Dyslexics perceptual difficulties as impaired inference of sound statistics –computation Approximation to intellectual Disability in Down Syndrome-Computational Psychiatry.

Suggested Activities: Design a model to identify anyone of the Brain Disorder of human.

Suggested sources: https://www.udemy.com/course/brain-computer-interface/

MODULE 3:BUILDING A BCI

Building a BCI --Brain Responses Useful for Building BCIs -Conditioned Responses -Population Activity -Imagined Motor and Cognitive Activity -Stimulus-Evoked Activity. Major Types of BCIs:Invasive BCIs - Invasive BCIs in Animals -Cognitive BCIs -Invasive BCIs in Humans -Cognitive BCIs in Humans - Long-Term Use of Invasive BCIs ,Semi-Invasive BCIs:Electrocortico graphic (ECoG) BCIs - BCIs Based on Peripheral Nerve Signals

Suggested Activities: Create a few variations of ERP BCI using BCILAB using filters and classifiers

Suggested sources: https://www.udemy.com/course/brain-computer-interface/

MODULE 4:NONINVASIVE BCIS(12)

Noninvasive BCIs- Electroencephalographic (EEG) BCIs-Other Noninvasive BCIs: fMRI, MEG, and fNIR -Functional Magnetic Resonance Imaging Based BCIs-Magnetoencephalography Based BCIs -Functional Near Infrared and Optical BCIs BCIs that Stimulate: Sensory Restoration-Motor Restoration-Deep Brain Stimulation (DBS) -Sensory Augmentation - Bidirectional and Recurrent BCIs Bidirectional BCI Control of a Mini-Robot-Cortical Control of Muscles via Functional Electrical Stimulation-Establishing New Connections between Brain Regions

Suggested Activities: Conduct the experiment to view and print different amplitude and frequency brain maps.

Suggested sources: https://www.udemy.com/course/brain-computer-interface/

(12)

(12)

MODULE 5: APPLICATIONS AND ETHICS

Medical Applications -Sensory Restoration -Motor Restoration-Cognitive Restoration-Rehabilitation Brain-Controlled Wheelchairs -Nonmedical Applications -Web Browsing and Navigating Virtual Worlds-Robotic Avatars -Education and Learning -Security, Identification, and Authentication -Ethics of Brain-Computer Interfacing: Medical, Health, and Safety Issues-Abuse of BCI Technology - BCI Security and Privacy -Legal Issues-Moral and Social-Justice Issues

Suggested Activities: Design of an EEG based Emotion Recognition System

Suggested sources: https://www.udemy.com/course/brain-computer-interface/

TEXT BOOKS	
1	Rajesh P. N. Rao ,"Brain-Computer Interfacing: An Introduction"Cambridge University Press, 2013. ISBN :9780521769419
2	Chang S. Nam, Anton Nijholt, Fabien Lotte ,"Brain–Computer Interfaces Handbook: Technological and Theoretical Advances",CRC Press 2018. ISBN: 9780367375454
REFERENCE E	зоокя
1	Jonathan Wolpaw and Elizabeth Winter Wolpaw ,"Brain–Computer Interfaces: Principles and Practice",Oxford university Press, 2012. ISBN :9780195388855
2	BernhardGraimannGertPfurtschellerBrendanAllison"Brain-ComputerInterfacesRevolutionizing Human-Computer Interaction" Springer 2018
3	Guido Dornhege, José del R. Millán, ThiloHinterberger, Dennis J. McFarland and Klaus-Robert Müller "Toward Brain-Computer Interfacing", MIT Press, 2007. ISBN : 978-0262527880
4	Seungchan Lee, Younghak Shin, Soogil Woo, Kiseon Kim and Heung-No Lee "Brain-Computer Interface Systems: Recent Progress and Future Prospects"Intechopen, 2013
5	Graimann, Bernhard, Allison, Brendan Z., Pfurtscheller, Gert "Brain-Computer Interfaces Revolutionizing Human-Computer Interaction",Springer 2010. ISBN: 978-3642020902.
E BOOKS	

1	file:///C:/Users/Rajendran/Downloads/RoutledgeHandbooks-9781351231954-chapter3.pdf
2	https://www.intechopen.com/books/brain-computer-interface-systems-recent-progress- and-future-prospects/review-of-wireless-brain-computer-interface-systems
MOOC	
1	https://www.udemy.com/course/brain-computer-interface/
2	https://www.coursera.org/learn/computational-neuroscience

COURSE TITLE	AGENT B	ASED INTELLIGENT SYST	EM	CREDITS	3						
COURSE CODE	CSB3723	CSB3723 COURSE PE CATEGORY		L-T-P-S	2-0-2-0						
Version	1.0	1.0Approval Details23 ACM, 06.02.2021		LEARNING LEVEL	BTL-3						
ASSESSMENT SC	ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE						
15%	15%	10%	5%	5%	50%						
Course Description	The goal of the course is to understand important problems, challenges, concepts and techniques dealing with the use of intelligent agents for computational tasks										
Course Objective	 To understand Agent development To gain Knowledge in Multi agent and Intelligent agents To understand Agents and security To gain Knowledge in Agent Applications 										

	Upon completion of this course, the students will be able to
	1. Explain the structure of agents
Course	2. Implement a computational agent with various searching techniques
Outcome	3. Apply the learning agents in planning
	4. Applythereasoningmechanismsofpropositionandpredicatelogictoagents.
	5. Use the learning mechanisms for an artificial agent.
	6. Execute different communication and co-operation methodologies in a multi-agent setup.
Prerequisites: A	rtificial Intelligence

Prerequisites: Artificial Intelligence

CO, PO AND PSO MAPPING

со	PO-	PSO-	PSO-	PSO-											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	-	-	3	1	-	2	-	-	-	-	-	2	1	-
CO-2	2	3	3	3		-	-	I	-	2	-	-	2	1	-
CO-3	1	1	3	3	3	1	2	-	3	-	-	1	2	1	-
CO-4	1	1	3	3	3	-	-	-	-	-	-	1	2	1	-
CO-5	3	1	3	3	3	-	2	I	3	-	-	1	2	1	-

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: INTRODUCTION

(12)

MODULE 2: LEARNINGINAGENTS	(12)
Practical Component: Develop an AI based application for solving any real time problem	
What to Do.	BTL-2
Intentional Systems - Abstract Architectures for Intelligent Agents - How to Tell an Agent	0-1
societies- Intelligent Agent: Agents and Objects - Agents and Expert Systems - Agents as	CO-1
Agents as a paradigm for software engineering - Agents as a tool for understanding human	

TEXT BOOKS	
Practical Component: Develop the human computer interface using AI Agent	
environments - agents for social simulation.	BTL-3
electronic commerce - agent for human- computer interface - agents for virtual	
distributed systems - agents for information retrieval and management - agents for	CO-5
Agent for workflow and business process management- Mobile agents - Agents for	
MODULE 5:APPLICATIONS(12)	
Campaign)	
Practical Component: Build the Application using Social Agent(like Facebook Marketing	
Acquaintance Diagrams - Develop Agent Descriptors	BTL-3
Deciding on the Agent Types - Grouping functionalities - Review Agent Coupling -	CU-4
Challenging Agent Environments: Plans and Beliefs - Social Agents - Agent Execution Cycle -	CO-4
Situated Agents: Actions and Percepts - Proactive and Reactive Agents: Goals and Events -	
MODULE 4: DEVELOPING INTELLIGENT AGENT SYSTEMS	(12)
Practical Component: Working on Ontology Software Tools	
Synchronization	BTL-3
Result Sharing - Handling Inconsistency - Coordination - Multi agent Planning and	
Problem Solving - Task Sharing and Result Sharing - Result Sharing - Combining Task and	CO-3
Software tools for ontology - OWL - XML - KIF - Speech acts - Cooperative Distributed	
MODULE 3: COMMUNICATION AND COOPERATION IN AGENTS(12)	
Practical Component: Apply the knowledge Representation System	
Higher order Logics	BTL-3
with horn clauses - Procedural control of reasoning - Rules in production – Reasoning with	CO-2
Proportional case - Handling variables and qualifiers - Dealing with intractability - Reasoning	CO 3

1	Michael Wooldridge, An Introduction to Multi Agent Systems, Second Edition, John Wiley and Sons, 2009. ISBN :9780470519462
2	StuartRussell,PeterNorvig,—ArtificialIntelligence:AModernApproach ,ThirdEdition, Pearson Education, 2009. ISBN: 978-0136042594.
3	LinPadgham, Michael Winikoff, Developing Intelligent Agent Systems: APractical Guide, Wiley publications, 2005. ISBN: 9780470861219.
REFERENCE BO	OKS
1	RonaldBrachman, HectorLevesque—KnowledgeRepresentationandReasoning, The Morgan Kaufmann
	Seriesin Artificial Intelligence 2004. ISBN: 978-1558609327.
2	Arthur B. Markman, —Knowledge Representation, Lawrence Erlbaum Associates, 1998.
	ISBN: 978-0805824414
E BOOKS	
	http://guwp.gallaudet.edu/reader/read.php?article=an-introduction-to-multiagent-
1.	systems-2nd-edition-pdf&encrypt=22aad92b4b2b88f6d201b2fc7a505169
моос	
1.	https://www.coursera.org/lecture/modeling-simulation-natural-processes/multi-agent- systems-kAKyC

COURSE TITLE		INDUSTRIAL AI		CREDITS	3				
COURSE CODE	CSC3723	COURSE CATEGORY	PE	L-T-P-S	2-0-2-0				
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3				
ASSESSMENT SCHEME									
First Periodical	Second Periodical	Seminar/ Assignments/	Surprise Test	Attendance	ESE				

Assessment	Assessment	Project	/ Quiz							
15%	15%	10%	5%	5%	50%					
Course Description	The purpose of this course is to provide the students with a comprehensive introduction to the recent developments in AI through the coverage of fundamental AI concepts, practical business applications and the hands-on experiences with modern AI frameworks.									
Course Objective	industries 2. To impart the 3. To expose to v	 industries 2. To impart the role of PLC in industry automation. 3. To expose to various control techniques employed in process automation 								
Course Outcome Prerequisites: NII	 To develop automation system for manufacturing and process industries. Upon completion of this course, the students will be able to Solve the basic industrial problem using AI Use the AI Algorithm to solve the real time problems Understand the killer applications for manufacturing industries Explore the various Industrial applications Apply the Concepts for new Industrialization Project 									

Prerequisites: NIL

СО, РО	AND P	SO MA	APPINO	i											
60	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-	PSO-
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	-	-	3	1	-	2	-	-	-	-	-	2	1	-
CO-2	2	3	3	3		-	-	-	-	2	-	-	2	1	-
CO-3	1	1	3	3	3	1	2	-	3	-	-	1	2	1	-
CO-4	1	1	3	3	3	-	-	-	-	-	-	1	2	1	-
CO-5	3	1	3	3	3	-	2	-	3	-	-	1	2	1	-
	1: Weakly related, 2: Moderately related and 3: Strongly related														

MODULE 1: INTRODUCTION (12	2)
Development and Application of AI technology-New Perspectives in Industrial systems for	or
I-Basic Method of Solving Problem with AI- Neural Networks-Statistical method	-
ybernetics Approach-Difference between Industrial Ai and AI-Challenges of AI in Industry	/-
lew Opportunity Spaces.	CO-1
uggested Activities: Identify the challenges of anyone of the AI application for Industry	BTL-2
Suggested sources: Kate Lyapina," Technical challenges for AI in heavy industry and how the	
vercome them ",2019.	
IODULE 2: DEFINITION AND MEANING OF INDUSTRIAL AI(12)	
Beginnings of Industrial AI-Purpose and Value of industrial AI-GE Predix-Technical Element	CS
f AI –CPS-Architecture for Integrating the 5 technical elements for industrial Intelligence	-ز
ategories of Algorithm- Industrial AI Algorithms-Selection and Application.	
suggested Activities: Analyze the Artificial intelligence's impact on manufacturing	CO-2
Suggested sources : IztokPalcicRobert, OjstersekRobertOjstersek,"Artificial Intelligence i	n BTL-3
Nanufacturing Companies and Broader: An Overview", DAAAM International Scientifi	ic
ookPublisher: DAAAM International Publishing,2019	
IODULE 3:KILLER APPLICATION OF INDUSTRIAL AI	(12)
Application scenario types for industrial AI-Predictive maintenance of Equipment –Virtua	al
Netrology and Process Quality Control-Energy Management and Energy efficienc	ÿ
ptimization-Defect detection and material sorting based on machine vision-Schedulin	е со-з
ptimization. Assessment of basic capability maturity- Assessment Tools for globa	al
	- BTL-3
ndustries AI - Faxconn Lighthouse factory-organizational Intelligent Transformation ability	
ndustries AI - Faxconn Lighthouse factory-organizational Intelligent Transformation ability per Source Industrial Big Data Competition.	

computer vision		
Suggested sources: Serhii Maksymenko ,"AI-Based Visual Inspection For Defect		
Detection",2020		
MODULE 4: FOURTH INDUSTRIAL REVOLUTION(12)		
Enabler Technology –Disruptors of the current World-Machine-Insurance-In Stream		
Analytics-Adaptive machine learning-Real time closed loop system-Fourth generation of		
Industrialized Machine learning-Rapid Information factory-Five system layers-Six data lake		
Zones-RAPTORE/QUBE.		
Suggested Activities: Deploy interpretable and inclusive machine learning models with	CO-4	
Suggested Activities: Deploy interpretable and inclusive machine learning models with	BTL-3	
Explainable AI, tools and frameworks designed to instill user trust.		
Suggested sources: Tracy Frey," Increasing transparency with Google Cloud Explainable		
Al",2019.		
MODULE 5:INDUSTRIALIZED ARTFICIAL INTELLIGENCE (12)	
Big data Impact-health care-Financial Services-Manufacturing-Media and Entertainment-		
Games-Simulations-Restrictions on Industrialized Artificial Intelligence –Final		
Industrialization Project- Requirements-Basic Solution-Geospatial knowledge	CO-5	
Suggested Activities: Design a simple AI application for Healthcare.	BTL-3	
Suggested sources: Sudipto Datta, Ranjit Barua and Jonali Das," Application of Artificial		
Intelligence in Modern Healthcare System",2019		

TEXT BOOKS	
1	Jay Lee," Industrial AI: Applications with Sustainable Performance", Springer; 1st ed. 2020 edition (February 2020). ISBN: 9811521433
2	Vermeulen, Andreas François ,"Industrial Machine Learning Using Artificial Intelligence as a Transformational Disruptor". ISBN: 978-1484253151.
REFERENCE BOO	DKS
1	Nilanjan Dey, Aboul Ella Hassanien, Santosh Kumar Das, Shom Prasad Das," Machine Learning Algorithms for Industrial Applications",Springer 2020. ISBN: 978-3030506407.
2	Bill Hibbard," Super-Intelligent Machines", Springer 2020. ISBN: 9781461507598
3	Adelyn Zhou, Mariya Yao, and Marlene Jia,"AppliedArtficialIntelligence: A Handbook for Business Leaders", TOPBOTS Inc, 2018. ISBN: 978-0998289021.
E BOOKS	
1.	https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/AI-in- Industrie4.0.pdf? blob=publicationFile&v=5
2.	https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en- manufacturing-industry-4-0-24102014.pdf
моос	
1.	https://www.coursera.org/learn/introduction-to-ai

ELECTIVE -II

COURSE TITLE	COMPUTER VISION CREDITS 3											
COURSE CODE	CSA3733	L-T-P-S	3-0-0-0									
Version	1.0	LEARNING LEVEL	BTL-3									
ASSESSMENT SCHEME												
First Periodical Assessment	SecondSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE											
15%	15%	10%	5%	5%	50%							
Course Description	feature detection, s The course will	the fundamentals of segmentation and rec enable the students t nentals of image formatio	ognition.		techniques in							
Course Objective	 Know the feature Expose to variant Explore Structure 	ire detection and trac ous segmentation and ire from Motion and I ifferent recognition m	king techniques alignment tech Dense motion ar	niques.								
Course Outcome	 Explain the funda Explain the featu Demonstrate var Explain Motion a 	on of this course, the s mentals of image formati are detection and trackin rious segmentation and andDense Motion Analys us recognition techniqu	on, transformatior ng techniques. alignment technic sis methodologies	n and analysis. ques								

Prerequisites: Basic Knowledge in Linear Algebra and Vector Calculus

CO, PO AND PSO MAPPING

60	РО	РО	РО	РО	РО	РО	РО	PO-	РО	РО	PO-	PSO-	PSO-	
СО	-1	-2	-3	-4	-5	-6	-7	8	-9	-10	11	1	2	PSO-3
CO-1	3	3	2	3	1	1	1	2	2	1	3	2	2	3
CO-2	3	3	2	3	1	1	1	2	2	1	3	2	2	3
CO-3	3	3	2	3	2	1	1	2	2	1	3	2	2	3
CO-4	3	3	2	3	1	1	1	2	2	1	3	2	2	3
CO-5	3	3	3	1	3	1	1	1	2	1	3	2	2	3
		:	1: Wea	akly re	lated,	2: Mo	derate	ly relat	ed an	d 3: Sti	rongly r	elated		

MODULE1:IMAGEFORMATIONANDIMAGEPROCESSING (9)

Introduction to computer vision-Geometric primitives-2D and 3D transformations-3D to 2D	
projections- Image formation- Lighting- Reflective and Shading. Histogram Equalization-Linear	
filtering- Non-Linear Filtering-Morphology-Distance transforms-Interpolation- Decimation.	
Practical Component:	CO-1
1. Download and install the latest release of OpenCV. Compile it in debug and release	BTL-2
Mode	
2.write a simple OpenCV program that loads an image from disk and displays it on the screen	
MODULE 2: FEATUREDETECTIONANDTRACKING(9)	
Invariance-key points and 3D flow vectors- RANSAC-SIFT, SURF, ORB- Feature evaluation.Tracking	
and feature updation-Lucas-Kanade tracker-Kalman filter.	CO-2
Practical Component:1. write a simple OpenCV program for playing a video fi le from disk	BTL-2
2. write a Program to add a trackbar slider to the basic viewer window	

MODULE 3: SEGMENTATIONANDALIGNMENT(9)	
Convertetion Active contains Create based convertetion. Many shift Nerrowicad out 2D	
Segmentation- Active contours, Graph based segmentation- Mean shift- Normalized cut.2D	
feature based alignment-Least squares-Iterative algorithms-3D alignment -Pose estimation-	
Geometric intrinsic calibration.	
Practical Component:	CO-3
1.Write a program for Loading and then smoothing an image before it is displayed on	BTL-3
the screen	
2.Create a new image that is half the width and height of the input image Using	
cvPyrDown()	
MODULE 4: STRUCTURE FROM MOTION AND DENSEMOTIONANALYSIS(9)	
Structure from motion (sfm)-Triangulation- Two frame sfm - Bundle	
adjustment.3Dmotionand2Dopticalflow-TheHornSchunckalgorithm-Lucas-KanadeAlgorithm-	
Performance evaluationofopticalflowresults.	
	CO-4
Practical Component:	BTL-2
1.Write a program to read in a color video and write out the same video in grayscale	
2.Create a three-channel RGB image of size 100-by-100.	
MODULE 5:RECOGNITION (9)	
Object detection- Face detection -Pedestrian detection- Face recognition- Eigenfaces- Active	CO-5
appearance and 3D shape models.Categoryrecognition-Bag-of-words-Part-	
basedmodels, Recognition with segmentation-Context and scene understanding.	BTL-3
Practical Component:	
Make an application that reads and displays a video and is controlled by sliders.	
REFERENCE BOOKS	
1 ComputerVision:AlgorithmsandApplications,RichardSzeliski,SpringerInternational,2011.	
ISBN :978-1848829343	
C+CE200401-0/E. NIDCI	

2	ConciseComputerVision:AnintroductionintotheoryandAlgorithms,ReinhardKlette,2014,Springer-Verlag
	London. ISBN: 9781447163206
3	R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, CambridgeUniversity Press,
	2003. ISBN: 0521540518.
4	DavidAforsyth&Jeanponce,"Computervision–AmodernApproach",,PrenticeHall,2002.
	ISBN:9780136085928
5	BerndJahne and Horst HauBecker"ComputervisionandApplications", Academicpress, 2000
E BOOKS	
1	http://szeliski.org/Book/drafts/SzeliskiBook 20100903 draft.pdf
моос	
1.	https://in.udacity.com/course/introduction-to-computer-visionud810
2.	https://www.edx.org/course/computer-vision-image-analysis-1

COURSE TITLE	REG	COMMENDER SYSTEM	CREDITS	3	
COURSE CODE	CSB3722	COURSE CATEGORY	PE	L-T-P-S	2-0-2-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-6
ASSESSMENT S	SCHEME				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE

15%	15%	50%											
Course Description	The course will cover fundamental and practical aspects of Recommender systems, focusing on theory as well as on the practical use and applications of Recommender systems												
Course Objective		To develop state-of-the-art recommender systems that automate a variety of choice- making strategies with the goal of providing affordable, personal, and high-quality recommendations											
Course Outcome	 Explain the rec Apply the tech and also analyz Analyze the U Model based systems. Design and d Parallelized hy Evaluate the rec 	n of this course, the s ommendation system for iniques for pre-process ting classification algorit Jser-based recommend approaches and also ill evelop the Hybrid Ap bridization design ecommender systems or uct coverage, and serend	or a particular appli ing, feature extrac hms. ation, Item-based ustrate the Attack proaches such as the basis of metri	ication domain. ction and similari recommendatio ks on collaborati 5 Monolithic hyl	on and build the ve recommender bridizationdesign,								
Prerequisites:	6. Design and dev concepts Data Structures with a C	velop the model for any	real world applicat	ion using recomn	nendation system								

CO, PO AND PSO MAPPING

60	РО	PO	PO	PO	PO-	PSO	PSO	PSO							
СО	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	12	-1	-2	-3
CO-1	3	3	3	3	1	-	2	-	-	-	-	-	2	1	-
CO-2	3	3	3	3	3	-	-	-	-	2	-	-	2	1	-

CO-3	3	3	3	-	-	1	2	-	-	-	-	1	2	1	-	
CO-4	3	3	3	-	-	-	-	-	-	-	-	1	2	1	-	
CO-5	3	3	3	-	-	-	2	-	-	-	-	1	2	1	-	
1: Weakly related, 2: Moderately related and 3: Strongly related																
MODULE 1: INTRODUCTION											(12	2)				
Quarti																
Overview of Information Retrieval, Retrieval Models, Search and Filtering Techniques: Relevance Feedback, User Profiles, Recommender system functions, Matrix operations,										•						
								-		comm		•		CO-1		
Issues					-	atings,	, Аррп	cations	one	COMIN		511 595	lenis,	BTL-2		
issues	WILLI	econni	nenuei	syste											_	
Suggested Activities: Assignments, MCQ, Reading reports & research projects																
MODU	LE 2: (ONTE	NT-BAS	SED FIL	TERINO	6								(12)		
High level architecture of content-based systems, Advantages and drawbacks of										ks of						
content-based filtering, Item profiles, Discovering features of documents, pre-processing									essing							
and feature extraction, Obtaining item features from tags, Methods for learning user										user	CO-2					
profile	s, Simi	larity	based	retriev	al, Clas	sificat	ion alg	orithm	IS.					BTL-3		
Sugge	sted A	ctiviti	es: Ass	ignme	nts, M	CQ, Re	ading ı	reports	& res	earch p	oroject	S				
MODULE 3: COLLABORATIVE FILTERING (12)																
User-b	based	recom	menda	ation, I	tem-b	ased r	ecomn	nendat	ion, N	1odel b	ased a	approa	ches,		•	
Matrix factorization, Attacks on collaborative recommender systems.									CO	-3						
Suggested Activities: Assignments, MCQ, Reading reports & research projects									BTL-3							
MODU	MODULE 4: HYBRID APPROACHES(12)															
Opportunities for hybridization, Monolithic hybridization design: Feature combination,								ation,	CO-4							
Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed,											lixed,					
Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization											ation	BTL	-3			
strategies.																

Suggested A	ctivities: Assignments, MCQ, Reading reports & research projects							
MODULE 5: E	VALUATING RECOMMENDER SYSTEM(12)							
Introduction,	General properties of evaluation research, Evaluation designs: Accuracy,							
Coverage, co	CO-5							
datasets, Offl	ine evaluations.							
Suggested A	BTL-3							
TEXT BOOKS								
1	JannachD.,Zanker M. And FelFeringA.,Recommender Systems: An Introduct	ion, Cambridge						
1	University Press (2011), 1st edition. ISBN: 9780521493369							
REFERENCE B	OOKS							
1	CharuC.Aggarwal,RecommenderSystems:TheTextbook,Springer(2016),1 st ed	liton.						
2	RicciF.,RokachL.,ShapiraD.,KantorB.P.,RecommenderSystemsHandbook,Springer(2011),1							
	t ed.							
3	ManouselisN., Drachsler H., VerbertK., DuvalE., Recommender Systems For Learning, Springer							
	(2013), 1st ed.							
E BOOKS								
1.	http://rd.springer.com/book/10.1007%2F978-3-319-29659-3							
2.	https://pdfrog.com/download/recommender_systems.pdf							
МООС								
1.	https://nptel.ac.in/courses/110105083/54							
2.	https://www.coursera.org/specializations/recommender-systems							

COURSE TITLE	REINF	ORCEMENT LEARNIN	Credit	3								
COURSE CODE	CSC3724	COURSE	DE	L-T-P-S	2-0-2-0							
		CATEGORY										
Version	1.0	Approval Details	23 ACM,	LEARNING	BTL-3							
Version	1.0	Approval Details	06.02.2021	LEVEL	DIE-5							
ASSESSMENT SCHEME												
Second Seminar/												
First Periodical	Periodical	Assignments/	Surprise Test	Attendance	ESE							
Assessment	Assessment	Project	/ Quiz	Attendance								
	Assessment	Floject										
15%	15%	10%	5%	5%	50%							
	Reinforcement Learning is a subfield of Machine Learning, but is also a general											
	purpose formalism	for automated decis	ion-making and	AI. This course	introduces you							
Course	to statistical learning	ng techniques where	an agent explici	tly takes actior	s and interacts							
Description	with the world. Un	derstanding the impo	ortance and chal	lenges of learn	ing agents that							
	make decisions is	of vital importance	e today, with	more and mo	ore companies							
	interested in intera	ctive agents and inte	lligent decision-ı	making.								
	1. To implement and apply Multi-Arm Bandit algorithms											
	2. To explain Markov Decision Processes and Dynamic Programming to solve real-											
	world problems.											
Course	Course 3. To implement and apply Monte Carlo and temporal-difference rein											
Objective	learning algorithms											
	4. To apply on-policy and off-policy reinforcement learning algorithms w											
	function app	roximation.										
	5. To apply Eligibility Traces and Policy Gradient Methods for solving any given											

			problem.												
	Upon completion of this course, the students will be able to														
		:	1. Implement and apply Multi-Arm Bandit algorithms												
			2. Explain Markov Decision Processes and Dynamic Programming to solve real-												
			world problems.												
Course		3. Im	pleme	ent an	d app	ly Mo	onte C	arlo a	nd te	mpora	l-diffe	rence r	einforc	ement	
Outcome			lea	arning	algorit	thms									
	4	4. Construct and apply on-policy and off-policy reinforcement learning algorithms													
		with function approximation.													
			5. Apply Eligibility Traces and Policy Gradient Methods for solving any given												
			problem.												
Prerequ	isites:	Basic	Statist	ics and	l Linea	r Algel	ora								
CO, PO				6											
CO, PO	AND			U											
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-1	-2	-3
CO-1	3	3	2	2	-	2	-	-	2	1	1	3	2	1	-
CO-2	3	3	2	1	2	1	1	1	2	2	2	3	3	2	1
CO-3	3	3	3	2	3	1	-	1	3	2	2	2	2	2	2
CO-4	3	3	3	2	2	2	1	1	1	1	1	2	3	3	1
CO-5	3	3	3	2	1	2	1	1	2	2	2	2	3	2	2
	<u> </u>	1	L: Wea	kly rel	ated, 2	2: Moo	derate	ly rela	ted an	d 3: St	rongly	relate	ed		<u>.</u>
	1. INT					-ARM	BANDI	тѕ						(12)	

MODULE 1: INTRODUCTION AND MULTI-ARM BANDITS

(12)

Reinforcement Learning - Elements of Reinforcement Learning- Limitations and Scope – Examples. Multi-arm

Bandits: An n-Armed Bandit Problem- Action-Value Methods- Incremental Implementation- Tracking a Nonstationary Problem- Optimistic Initial Values- Upper-Confidence-Bound Action Selection- Gradient Bandit Algorithms- Associative Search.

MODULE 2: FINITE MARKOV DECISION AND DYNAMIC PROGRAMMING

Finite Markov Decision Processes:The Agent–Environment Interface- Goals and Rewards- Returns and Episodes- Unified Notation for Episodic and Continuing Tasks- Policies and Value Functions - Optimal Policies and Optimal Value Functions - Optimality and Approximation.

Dynamic Programming: Policy Evaluation- Policy Improvement- Policy Iteration- Value Iteration-Asynchronous Dynamic Programming- Generalized Policy Iteration- Efficiency of Dynamic Programming.

MODULE 3: MONTE CARLO METHODS AND TEMPORAL-DIFFERENCE LEARNING(12)

Monte Carlo Methods: Monte Carlo Prediction - Monte Carlo Estimation of Action Values - Monte Carlo Control - Monte Carlo Control without Exploring Starts - Off-policy Prediction via Importance Sampling - Incremental Implementation - Off-policy Monte Carlo Control.

Temporal-Difference Learning: TD Prediction - Advantages of TD Prediction Methods - Optimality of TD(0) - Sarsa: On-policy TD Control - Q-learning: Off-policy TD Control - Expected Sarsa - Maximization Bias and Double Learning -Games, Afterstates, and Other Special Cases.

MODULE 4: APPROXIMATE SOLUTION METHODS

(12)

On-policy Prediction with Approximation: Value-function Approximation - The Prediction Objective-Stochastic-gradient and Semi-gradient Methods - Linear Methods - Feature Construction for Linear Methods - Selecting Step-Size Parameters Manually -Nonlinear Function Approximation: Artificial Neural Networks -Least-Squares TD – Memory and kernel-based Function Approximation.

On-policy Control with Approximation: Episodic Semi-gradient Control - Semi-gradient n-step Sarsa -Average Reward: A New Problem Setting for Continuing Tasks - Deprecating the Discounted Setting -Differential Semi-gradient n-step Sarsa. Off-policy Methods with Approximation- Semi-gradient Methods -Examples of Off-policy Divergence -Linear Value-function Geometry - Bellman Error.

MODULE 5: ELIGIBILITY TRACES AND POLICY GRADIENT METHODS (12)

Eligibility Traces: The λ -return - TD(λ) -n-step Truncated λ -return Methods- Redoing Updates: Online λ - return Algorithm - True Online TD(λ) - Sarsa(λ) - Variable λ and Y- Off-policy Traces with Control Variates - Watkins's Q(λ) to Tree-Backup(λ)- Stable Off-policy Methods with Traces- Implementation Issues .

Policy Gradient Methods: Policy Approximation and its Advantages - The Policy Gradient Theorem-

REINFORCE: Monte Carlo Policy Gradient - REINFORCE with Baseline - Actor–Critic Methods - Policy Gradient for Continuing Problems - Policy Parameterization for Continuous Actions. Applications and Case Studies.

REFEREN	NCE BOOKS
1	Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction", 2 nd Edition,
	MIT Press,2018. ISBN: 978-0262039246.
2	Csaba Szepesvári, "Algorithms for Reinforcement Learning", Morgan & Claypool, 2013.
3	Kevin Murphy , "Machine Learning - A Probabilistic Perspective" , MIT press, 2012.
4	Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
E BOOK	5
1	https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
моос	
1	https://www.coursera.org/specializations/reinforcement-learning
2	https://www.edx.org/course/reinforcement-learning-explained-2

ELECTIVE –III

COURSE TITLE	NATURE	NATURE-INSPIRED COMPUTING								
COURSE CODE	CSC3725	COURSE CATEGORY	DE	L-T-P-S	2-0-2-0					
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3					
ASSESSMENT S	ASSESSMENT SCHEME									
First	Second Periodical	Seminar/	Surprise Test	Attendance	ESE					

Perio	odical		Asses	sment	:	Assi	gnmer	its/	/	Quiz					
Asses	sment	:	Project												
1	5%		15% 10% 5% 5% 50%												
	urse ription	ph en ph	As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. The topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies.												
Course Object			 To identify the need of appropriate Nature-Inspired Algorithms for Optimization. To explain and implement random walk, simulated annealing and GA To implement Differential Evolution and Swarm intelligence. To implement Firefly, Cuckoo Search and Bat Algorithms. To explain Self Tuning and other hybrid Algorithms. 												
Course Outcor	me		2. Exj 3. Im 4. Im 5. Exj	entify t olain ai plemei plemei olain Se	he nee nd imp nt Diffe nt Firef elf Tun	d of ap lemen ^a erentia fly, Cuc	opropri t randc l Evolu koo Se	ate Na om wal tion an arch a		spired lated a m inte Algorit	Algori anneal Illigenc	ing anc		nization	
Prereq CO, PC			cial Inte	-	ce										
	PO	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-
со	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	3	3	2	2	-	2	-	-	2	1	1	3	2	1	-

CO-2	3	3	2	1	2	1	1	1	2	2	2	3	3	2	1
CO-3	3	3	3	2	3	1	-	1	3	2	2	2	2	2	2
CO-4	3	3	3	2	2	2	1	1	1	1	1	2	3	3	1
CO-5	3	3	3	2	1	2	1	1	2	2	2	2	3	2	2
U	1: Weakly related, 2: Moderately related and 3: Strongly related														

MODULE 1:INTRODUCTION

Introduction to Algorithms - Newton's method - Optimization - Search for Optimality- No-Free-

LunchTheorems - Nature-Inspired Metaheuristics.

Analysis of Algorithms: Analysis of Optimization Algorithms – Nature-Inspired Algorithms -Parameter Tuning and Parameter Control.

MODULE 2: RANDOM WALKS, SIMULATED ANNEALING AND GA

Random variables - Isotropic random walks - Levy distribution and flights - Markov chains -Step sizes and Search efficiency - Modality and intermittent search strategy - Importance of randomization- Eagle strategy. **Simulated Annealing:** Annealing and Boltzmann Distribution - Parameters -SA Algorithm - Stochastic Tunneling. Genetic algorithms (GA): Introduction - Role of genetic operators - Choice of parameters -GA variants - Schema theorem - Convergence analysis.

MODULE 3: DIFFERENTIAL EVOLUTION AND PSO (12)

Introduction to Differential Evolution- Variants - Choice of parameters - Convergence analysis - Implementation.

Particle Swarm Optimization (PSO): Swarm intelligence - PSO algorithm - accelerated PSO - implementation – Convergence analysis - Binary PSO.

MODULE 4: FIREFLY, CUCKOO SEARCH AND BAT ALGORITHMS

The Firefly algorithm - Algorithm analysis - Implementation – Variants- Firefly Algorithms in Applications.

Cuckoo Search: Cuckoo Breeding Behavior- Lévy Flights - Cuckoo Search – Applications. Bat Algorithms:

Echolocation of Bats- Bat Algorithms- Implementation- Variants of the Bat Algorithm- Convergence Analysis-

(12)

(12)

(12)

Арр	lications.
MO	DULE 5: SELF TUNING AND OTHER ALGORITHMS (12)
Self	-Tuning Algorithms: Introduction- Algorithm Analysis and Parameter Tuning- Framework for Self-Tuning
Algo	prithms- A Self-Tuning Firefly Algorithm.
Ant	Algorithms- Bee-Inspired Algorithms- Harmony Search- Hybrid Algorithms.
TEX	T BOOKS
1	Xin-She Yang, "Nature Inspired Optimization Algorithms", Elsevier, First Edition 2014.
REF	ERENCE BOOKS
1	Eiben, A.E., Smith, James E, "Introduction to Evolutionary Computing", Springer 2015.
	ISBN: 978-3642072857.
2	Helio J.C. Barbosa, "Ant Colony Optimization - Techniques and Applications", Intech, 2013.
	ISBN: 9789535157175.
3	Yang ,Cui,XIao,Gandomi,Karamanoglu ,"Swarm Intelligence and Bio-Inspired Computing", Elsevier First
	Edition, 2013.
E BC	DOKS
1	http://www.cleveralgorithms.com/nature-inspired/index.html
2	http://cslt.riit.tsinghua.edu.cn/mediawiki/images/e/e8/Introduction to Evolutionary Computing.pdf
MO	oc
1	https://www.udemy.com/course/geneticalgorithm/

COURSE TITLE	COG	INITIVE COMPUTING		Credit	3						
COURSE CODE	CSC3727	COURSE CATEGORY	DE	L-T-P-S	2-0-2-0						
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3						
ASSESSMENT SC	HEME		L								
First Periodical Assessment	Second Periodical Assessment Project Surprise Test / Quiz Attendance ESE										
15%	15% 10% 5% 5% 50%										
Course Description Course Objective	 natural language processing computer interaction 1. To understand 2. To describe the world problems 3. To understand 4. To know the a services of Composition 	the acquisition of Nat dvancement of Comp	gnition and visio e generation, to al modelling. Watson technolo ural Language an outer Vision and	on (object recogn name a few. ogy is being applic nd its processing	ition), human–						
Course Outcome	 Understand the Describe the fi world problems 	 Describe the field of AI and how Watson technology is being applied to solve real world problems 									

	 Know the advancement of Computer Vision and Identify some of the tools and services of Computer Vision Design and develop cognitive based applications like Chatbot
Prerequisites:Bas Processing	ics of Machine Learning, Artificial Intelligence, Natural Language Processing, Image

CO, PO AND PSO MAPPING

со	Р О- 1	PO -2	РО- 3	РО- 4	РО -5	РО -6	РО -7	PO -8	PO -9	PO -10	PO -11	PO- 12	PSO- 1	PSO- 2	PSO- 3
CO-1	3	3	2	-	1	2	-	-	2	1	1	3	2	3	-
CO-2	3	3	2	1	2	1	1	1	2	2	2	3	3	2	1
CO-3	3	3	3	2	3	1	-	1	3	2	2	2	3	2	2
CO-4	3	3	2	1	2	2	1	1	2	1	1	2	2	3	1
CO-5	3	3	3	2	1	2	1	1	2	1	1	2	3	2	1

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1:FORMAL MODELLING(12)

Bayesian Inference and Hierarchical Bayesian Models, Frameworks for Knowledge Representation: Firstorder Logic, Formal Grammars, Associative Networks, Taxonomic Hierarchies, Relational Schemas -Probabilistic and Causal Graphical Models - Relational Probabilistic Models - Controlling Complexity: Minimum Description Length, Bayesian Occam's Razor, Nonparametric Bayesian Models - Inductive Logic Programming - Sampling Algorithms for Inference in Complex Probabilistic Models

Practical Component:1.Implement Bayesian Model

MODULE 2: ARTIFICIAL INTELLIGENCE FOUNDATIONS(12) Introduction to Artificial Intelligence - Computer Vision, Cognitive computing Introduction to IBM Watson, Evolution from Deep QA to Watson services on IBM Cloud, Build with Watson Practical Component: Working on simple exercise based on IBM Watson Application **MODULE 3: NATURAL LANGUAGE PROCESSING** (12) Natural Language Processing, Pipeline& concepts, NLP and IBM Watson. Practical Component: Working on simple exercise using NLP Tools **MODULE 4: COMPUTER VISION(12)** Introduction to Computer Vision, Computer Vision fundamentals, IBM Watson visual recognition service Practical Component: Working on simple exercise using OpenCV Computer Vision Tool **MODULE 5: CASE STUDY : CHATBOTS** (12) Introduction to Chatbots, Chatbot fundamentals, IBM Watson conversation service Practical Component: Develop the simple chatbot using IBM Watson **TEXT BOOKS** 1. Cognitive Computing with IBM Watson, TanmayBakshi. ISBN: Cognitive Computing with IBM Watson, Tanmay Bakshi. ISBN:9781788478298 **REFERENCE BOOKS** Judith S. Hurwitz, Marcia Kaufman, Adrian Bowles, "Cognitive Computing and Big Data Analytics,", 1 ISBN: 978-1-118-89662-4 April 2015 288 Pages 2 Peter Fingar, Vinton G. Cerf, "Cognitive Computing: A Brief Guide for Game Changers All's Changed Utterly" Meghan-Kiffer Press, 2015. MOOC 1. Cognitive Computing (Perception, Learning, Reasoning) - AI Concepts, Terminology, and Application Areas | Coursera

COURSE TITLE	EMOTIONAL INTELLIGENCE Credit 3												
COURSE CODE	CSC3728	COURSE CATEGORY	DE	L-T-P-S	2-0-2-0								
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3								
ASSESSMENT SCHEME													
First Periodical Assessment	Second Periodical AssessmentSeminar/ Assignments/ ProjectSurprise Test / QuizAttendanceESE												
15%	15%	10%	5%	5%	50%								
Course Description	understanding emot	ys been able to clain ion. But that won't be bach on emotion, the	e the case for lo	ng. While some	may doubt that								
Course Objective	 To apply the A To understand To explore the 	d the basic industrial p Al Algorithm to solve th d the killer applications e various Industrial app oncepts for new Indus	ne real time prob s for manufacturi olications	ng industries									
Course Outcome	 Solve the basi Use the AI Alg Understand th Explore the value 	this course, the studer c industrial problem us orithm to solve the rea ne killer applications fo prious Industrial applica cepts for new Industri	sing AI al time problems or manufacturing ations										

Prerequisites:

CO, PO AND PSO MAPPING

со	РО	PO-	РО	PO-	PO-	PSO-	PSO-	PSO-							
	-1	2	3	4	5	6	7	8	9	-10	11	12	1	2	3
CO-1	3	3	3	2	1	2	-	-	2	1	1	3	2	3	-
CO-2	3	3	2	1	2	1	1	1	2	2	2	3	3	2	1
CO-3	3	3	3	2	3	1	-	1	3	2	2	2	3	2	2
CO-4	3	3	3	1	2	2	1	1	2	1	1	2	2	3	1
CO-5	3	3	3	2	3	2	1	1	2	2	1	2	3	2	1

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: INTRODUCTION TO EMOTIONAL INTELLIGENCE

(12)

What is Emotional Intelligence?-Causes of Emotions-Typical Characteristics of Emotion-Basic Components of Emotion-Rationality of Emotion-Regulation and Control of Emotion-The Biological Basis of Emotion-Self Regulation Models of Emotion-Emotional Learning-Mathematical Modeling of Emotional Dynamics-Controlling Emotion by Artificial Means-Effect of Emotion Modeling on Human Machine Interactions Practical Component:

Develop the model to monitor the Effect of Emotion on Human Machine Interactions

MODULE 2: MATHEMATICAL MODELING AND ANALYSIS OF DYNAMICAL SYSTEMS

Introduction-System Modeling and Stability-Stability Analysis of Dynamics by Lyapunov Energy Functions-Stability Analysis of Fuzzy Systems-Chaotic Neuro Dynamics and Lyapunov Exponents-Emotional Dynamics and Stability Analysis-The Lyapunov Exponents and the Chaotic Emotional Dynamics-Preliminaries on Image Processing-Discrete Fourier and Cosine Transforms-Preprocessing and Noise Filtering-Image Segmentation Algorithms-Boundary Description-Object Recognition from an Image-Scene Interpretation **Practical Component:**Build a framework to recognize the object from an Image.

MODULE 3: BRAIN IMAGING

Emotion Processing by the Human Brain-The Role of Medial Frontal Cortex in Self-regulation of Emotion-The Anterior Cingulate Cortex as a Self-regulatory Agent-Voluntary Self-regulation of Emotion-EEG Conditioning and Affective Disorders-Emotion Dysregulation and Psycho-pathological Issues-Fuzzy Models for Facial Expression-Based Emotion Recognition and Control-Filtering, Segmentation and Localization of Facial Components-Determination of Facial Attributes-Fuzzy Relational Model for Emotion Detection-Validation of the System Performance-Proposed Model of Emotion Transition and Its Control Practical Component: Develop the model for Emotion Transition and Its Control

MODULE 4: CONTROL OF MENTAL STABILITY

Stable Points of Non-temporal Logic-Stable Points in Propositional Temporal Logic-Stability of Propositional Temporal System Using Lyapunov Energy Function-Human Emotion Modeling and Stability Analysis-The Fuzzy Temporal Representation of Phenomena Involving Emotional States-Stabilization of Emotional Dynamics-Psychological Stability in Emotion-Logic Counter-Actions-Proposed Model for Chaotic Emotional Dynamics-Effect of Variation in Parameters of the Emotional Dynamics-Chaotic Fluctuation in Emotional State-Stability Analysis of the Proposed Emotional Dynamics by Lyapunov Energy Function-Parameter Selection of the Emotional Dynamics by Experiments with Audio-Visual Stimulus-Stabilization Scheme for the **Mixed Emotional Dynamics**

Practical Component: Implement Audiovisual integration of emotional signals and test with suitable dataset

MODULE 5: ELECTROENCEPHALOGRAPHIC SIGNAL PROCESSING

EEG Prediction by Adaptive Filtering-EEG Signal Prediction by Wavelet Coefficients-Bio-potential Signals in Emotion Prediction-Emotion Clustering by Neural Networks-Application in Human-Machine Interactive Systems-Application in Multi-agent Co-operation of Mobile Robotics-Emotional Intelligence in Psycho-

(6+6)

(6+6)

(12)

(6+6)

therapy-	Detection of Anti-social Motives from Emotional Expressions-Applications in Video
Photogra	aphy/Movie Making-Applications in Personality Matching of People for Matrimonial Counseling-
Synthesi	zing Emotions in Voice-Application in User Assistance Systems-Emotion Recognition from Voice
Samples	
Practica	I Component: Develop the model to Recognize the human emotions from Voice Samples
TEXT BO	OKS
1	Aruna Chakraborty and Amit Konar,"EmotionalIntelligence: A Cybernetic Approach", 2009 Springer-
	Verlag Berlin Heidelberg. ISBN: 9783540-686064
2	Richard Yonck ,"Heart of the Machine: Our Future in a World of Artificial Emotional Intelligence",
	Arcade (11 February 2020)
REFEREN	ICE BOOKS
1	Alessandro Parisi,"Hands-On Artificial Intelligence for Cyber security: Implement smart AI systems
	for preventing cyber attacks and detecting threats and network anomalies
E BOOKS	
1	https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/AI-in-
	Industrie4.0.pdf?blob=publicationFile&v=5
2	https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-
	manufacturing-industry-4-0-24102014.pdf
MOOC	
1	https://www.coursera.org/learn/introduction-to-ai
2	https://www.my-mooc.com/en/mooc/artificial-intelligence-ai-columbiax-csmm-101x/

COURSE TITLE	PRINCIPLES OF DEEP LEARNING CREDITS 3											
COURSE CODE	CSB3729	COURSE CATEGORY	PE	L-T-P-S	3- 0- 0- 0							
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-5							
ASSESSMENT SC	HEME											
First Periodical Assessment	Assignments/ Attendance ESE											
15%	15%	5%	50%									
Course Description		-depth knowledge fo										
Course Objective	 To understand To be capable and implemen To be capable 	 To be capable of confidently applying common Deep Learning algorithms in practice and implementing their own; To be capable of performing distributed computations; 										
Course Outcome	 Upon the completion of the course the students will be able to Develop algorithms simulating human brain. Analyze ANN learning and memory based learning Explore the essentials of Deep Learning and Deep Network architectures. Implement Neural Networks in Tensor Flow for solving problems. Use deep learning methodology in real world application 											

Prerequisites: Neural Networks

CO, PO AND PSO MAPPING

со	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-	PSO-
to	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	1	1	1	2	1	-	-	-	-	-	2	-	-
CO-2	3	3	1	-	-	-	-	-	-	2	-	-	-	-	-
CO-3	3	3	3	2	-	1	-	2	-	-	-	-	-	-	-
CO-4	2	1	3	3	3	3	1	1	1	2	2	2	-	-	1
CO-5	1	1	3	3	3	3	3	1	1	2	2	2	3	-	1
	1		1: We	akly re	elated,	2: Mo	derate	ly rela	ted and	d 3: Str	ongly	related	1	I	
MODUL	E1:INTR	ODUCT	ION											(9)	
Basics	of	De	eplear	ing-De	eplear	ning	arch	itectur	es:	Convo	lutiona	al N	leural		
	rks:Ne		in	Huma		sion-Tl		hortco	-	of	Featu	ireSele	ction-		
Vanilla	DeepN	leuralN	letwor	ksDon'	tScale-	Filters	andFea	atureM	aps-						
FullDe	scriptic	onofthe	Convo	lutiona	alLayer	-MaxP	ooling-	FullAr	chitect	ural	Descr	ription	of		

ConvolutionNetworks-ClosingtheLooponMNISTwithConvolutionalNetworksCO-1ImagePreprocessingPipelinesEnableMoreRobustModels-AcceleratingTrainingwithBatchNormalization-BuildingaConvolutionalNetworkforCIFAR-BTL-2BTL-2BTL-210VisualizingLearninginConvolutionalNetworksLeveragingConvolutionalFilterstoReplicateArtistic Styles-LearningConvolutional Filters for OtherProblem Domains-Trainingalgorithms.

Practical component: Study on Tools for AI and DL

Suggested Readings: <u>https://machinelearningmastery.com/what-is-deep-learning/</u>

MODULE2:MEMEORY AUGUMENTED NEURAL NETWORKS

(9)

Memory Augmented Neural Networks: Neural Turing Machines-Attention-Based Memory Access- NTM Memory Addressing Mechanisms-Differentiable Neural Computers- Interference-Free Writing in DNCs-DNC Memory Reuse-Temporal Linking of DNC Writes- Understanding the DNC Read Head- The DNC Controller Network Visualizing the DNC in Action-Implementing the DNC in TensorFlow- Teaching a DNC to Read and Comprehend. Practical component:Mathematical computing with Python, Data migration and visualization: Suggested Readings: https://machinelearningmastery.com/what-is-deep-learning/	CO-2 BTL-3
Interference-Free Writing in DNCs-DNC Memory Reuse-Temporal Linking of DNC Writes- Understanding the DNC Read Head- The DNC Controller Network Visualizing the DNC in Action-Implementing the DNC in TensorFlow- Teaching a DNC to Read and Comprehend. Practical component :Mathematical computing with Python, Data migration and visualization:	
Understanding the DNC Read Head- The DNC Controller Network Visualizing the DNC in Action-Implementing the DNC in TensorFlow- Teaching a DNC to Read and Comprehend. Practical component:Mathematical computing with Python, Data migration and visualization:	
Action-Implementing the DNC in TensorFlow- Teaching a DNC to Read and Comprehend. Practical component:Mathematical computing with Python, Data migration and visualization:	
Practical component :Mathematical computing with Python, Data migration and visualization:	BTL-3
visualization:	
visualization:	
Suggested Readings: https://machinelearningmastery.com/what-is-deep-learning/	
	(-)
MODULE3:DEEP REINFORCEMENT LEARNING	(9)
Deep Reinforcement Learning Masters Atari Games What Is Reinforcement Learning? -	
Markov DecisionProcesses(MDP)-ExploreVersusExploit-PolicyversusValueLearning-Pole-	CO-3
CartwithPolicy Gradients-Q-LearningandDeepQ-Networks-ImprovingandMovingBeyondDQN.	
Practical component: Hands-on on ML concepts with Deep Playground.	BTL-4
Suggested Readings: https://machinelearningmastery.com/what-is-deep-learning/	
MODULE 4:TENSORFLOW (9)	
Implementing Neural Networks in tensorFlow: What Is tensorFlow?-How Does TensorFlow Co	ompare to
Alternatives?-Installing tensorFlow-Creating and Manipulating tensorFlow Variables- ten	-
Operations-Placeholder Tensors-Sessions in tensor Flow-Navigating Variable Scopes and Sharing	
Managing Model sovler the CPU and GPU-Specifying the Logistic Regression Model in tensor Flor	
and Training the Logistic Regression Model-Leveraging Tensor Board to Visualize 24 Computation	
and Learning-Building a Multilayer Model for MNIST in Tensor Flow.	
Practical component:	
Hands on TensorFlow libraries to implement deep learning	
Suggested Readings:	
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac	
MODULE 5: APPLICATIONS(6L+6L=12)	
Applications: Deeplearning for computervision, DeepLearning Applications at the Enterprise	CO-5
Scale, Deep Learning Models for Healthcare Applications	

Practical comp	oonent:Mini project on DL	BTL-5
Suggested R	Readings: <u>https://towardsdatascience.com/what-is-deep-learning-and-how-</u>	
does-it-work-2	ce44bb692ac	
TEXT BOOKS		
1	Simon Haykins, "Neural Network- A Comprehensive Foundation", Pearsor	n Prentice Hall,
	2nd Edition, 1999. ISBN-13: 978-0-13-147139-9/ISBN-10: 0-13-147139-2	
2	Zurada and Jacek M, "Introduction to Artificial Neural Systems", West Publis	hing Company,
	1992, ISBN: 9780534954604	
3	Nikhil Buduma, Nicholas Locascio, "Fundamentals of Deep Learning: [Designing Next
	Generation Machine Intelligence Algorithms", O'Reilly Media, 2017.	
REFERENCE BC	DOKS	
1	IanGoodfellow,YoshuaBengio,AaronCourville,"DeepLearning(AdaptiveComp	utationand
	Machine Learning Series MIT Press 2017	
2	MTHagan, HBDemoth, MBeale, "Neural Networks Design", Thomson Learning, 20	002.ISBN-
	10: 0-9717321-1-6/ ISBN-13: 978-0-9717321-1-7	
E BOOKS		
1.	http://www.deeplearningbook.org/	
моос		
1	https://onlinecourses.nptel.ac.in/noc18_cs26/	
2	https://www.upgrad.com/machine-learning-and-artificial-intelligence	

ELECTIVE IV

COURSE TITLE	NATURAI	LANGUAGE PROCES	SSING	Credit	3					
COURSE CODE	CSC3726	COURSE CATEGORY	L-T-P-S	2-0-2-0						
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3					
ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					
15%	15%	15% 10% 5% 5% 50%								
Course Description	advanced: Gramma	a wide range of tasks ar and parsing, sem r language processing	antic analysis,	neural languag	ge models and					
Course Objective	 To understan analysis To analyze th To familiariz processing 	 To understand the fundamentals of Grammar and parsing algorithms for syntax analysis To analyze the semantic content of a given text To familiarize neural language models and neural networks for language processing 								

		Up	oon co	mpleti	ion of t	this co	urse, t	he stu	dents	will be	able t	0				
		:	1. Ur	ndersta	and th	e basio	c conce	epts re	lated t	o lang	uage p	rocess	ing			
_			2. Ur	ndersta	and th	e Gran	nmar a	ind pai	sing a	lgorith	ms for	synta	x analys	is		
Course Outcon			3. Ar	alyze	the se	mantic	c conte	ent of a	given	text						
			4. Familiarize neural language models and neural networks for language													
			pr	ocessi	ng											
			5. Develop question answering and Chatbots													
Prerequisites:Artificial Intelligence																
CO, PO	AND F	PSO M	APPIN	G												
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO	PSO			
co													130	PSO	PSO	
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-1	-2	PSO -3	
CO-1	-1 3	-2 3	-3 2	-4 2	-5 -	-6 2	-7	-8 -	-9 2	-10 1		-12 3				
CO-1 CO-2								_			-11		-1	-2	-3	
	3	3	2	2	-	2	-	-	2	1	-11 1	3	-1 2	-2 1	-3	
CO-2	3	3	2	2	- 2	2	- 1	- 1	2	1 2	-11 1 2	3	-1 2 3	-2 1 2	-3 - 1	
CO-2 CO-3	3 3 3	3 3 3	2 2 3	2 1 2	- 2 3	2 1 1	- 1 -	- 1 1	2 2 3	1 2 2	-11 1 2 2	3 3 2	-1 2 3 2	-2 1 2 2	-3 - 1 2	

MODULE 1: INTRODUCTION

(12)

Introduction to NLP, Regular Expressions, Words, Corpora, Text Normalization, Minimum Edit distance, N gram Language Models, Evaluating Language Models, Generalization and Zeros, Smoothing, Kneser-Ney Smoothing, The web and the stupid backoff, Advanced: Perplexity's Relation to Entropy.

Practical Component:

- 1. Installation of NLP toolkit, Get familiar with Python programming
- 2. Practice NLTK and Numpy library

3. Simple NLP Exercise – Tokenization, stop words removal, punctuations removal

MODULE 2: PART OF SPEECH TAGGING AND SYNTAX PARSING

English Word Classes, The Penn Treebank Part-of-Speech Tagset, Part-of-Speech Tagging, HMM Part-of-Speech Tagging, Maximum Entropy Markov Models, Probabilistic Context-Free Grammars, Probabilistic CKY Parsing of PCFGs, Ways to Learn PCFG Rule Probabilities, Problems with PCFGs, Improving PCFGs by Splitting Non-Terminals, Probabilistic Lexicalized CFGs, Probabilistic CCG Parsing.

Practical Component:

1. Programming exercises for using existing NLP tools (CoreNLP/NLTK) and obtaining the syntactic parsing of the text.

MODULE 3: SEMANTIC ANALYSIS (12)	MODULE 3: SEMANTIC ANALYSIS	(12)
----------------------------------	-----------------------------	------

Lexical Semantics, Vector Semantics, Words and Vectors, Cosine for measuring similarity, TF-IDF: Weighing terms in the vector, Applications of the tf-idf vector model, Pointwise Mutual Information (PMI), Word2vec, Visualizing Embeddings, Semantic properties of embeddings, Bias and Embeddings, Evaluating Vector Models.

Practical Component:

- 1. Extract the word vector representation of the word using word2vec model
- 2. Implement Word embedding on the given texts and visualize it

MODULE 4: NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(12)

The XOR problem, Feed-Forward Neural Networks, Training Neural Nets, Neural Language Models, Simple Recurrent Neural Networks, Applications of Recurrent Neural Networks, Deep Networks: Stacked and Bidirectional RNNs, Managing Context in RNNs: LSTMs and GRUs, Words, Subwords and Characters.

Practical Component:

- 1. Demonstration and familiarization with deep learning libraries
- 2. Programming exercises for employing a multi-layer feedforward network on PoS tagging and NER tasks

MODULE 5: QUESTION ANSWERING & DIALOGUE SYSTEMS (12)

IR based Factoid QA, Knowledge based QA, IBM's Watson, Properties of human conversation, Chatbots, Simple frame based dialogue systems, Dialogue system architecture, Evaluation of Dialogue system, Dialogue system design.

Practical Component:

Build	a Question Answering model that answers questions from the given context using transformers
pack	age
DEEF	
REFE	
1	Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft), 2019.
	ISBN: 978-0135041963
2	Jacob Eisenstein. Natural Language Processing, MIT Press, 2018.ISBN :978-0262042840
E BO	OKS
	https://www.amazon.com/Natural-Language-Processing-SEO-Optimization-
1	ebook/dp/B07X1LB686?tag=uuid10-20
	https://www.amazon.com/Natural-Language-Processing-Fundamentals-applications-
2	ebook/dp/B07KX263Y4?tag=uuid10-20
мос	
1	https://www.coursera.org/learn/language-processing

COURSE TITLE	SPEECH IN	CREDITS	3		
COURSE CODE	CSC3727	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SCH	EME				

First Periodica Assessment	II Se	Second Periodical Assignments/ Assignments/ / Quiz Attendance ESE											SE	
15%		1	5%			10%			5%		5%	6	50)%
Course Description	pro cov ma	The course is aimed for students who are interested to work in the area of speech processing as well as thosewho are interested in doing research in speech. The course covers techniques for analysis and modeling ofspeech both from signal processing and machine learning aspects covering a number of applications includingspeech recognition, enhancement and coding.												
Course Objective	2	 ToUnderstand the human speech communication system To know about Time varying signals and system for modeling speech To learn more about Short-time analysis for speech signal To get knowledge about the applications of various techniques for speech coding, enhancement and recognition 												
Course Outcon	22 ne 3 4	 Upon completion of this course, the students will be able to 1. Demonstrate the conventional acoustic models. 2. Apply deep neural networks for building acoustic models. 3. Explain and implement hybrid system for automatic speech recognition. 4. Perform feature Representation Learning in Deep Neural Networks 5. Demonstrate Representation Sharing and Transfer in Advanced Deep Neural Networks 												
Prerequisites: [CO, PO AND PS			rocessi	ng, Pr	obabili	ty and I	Rando	m Proc	esses					
PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-	PSO-

60	PO-	PSO-	PSO-	PSO-											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	2	-	1	-	-	-	-	-	-	-	1	1	-
CO-2	3	3	2	2	-	-	-	-	-	-	-	-	1	1	-
002		5	2	2									-	-	

CO-3	3	3	2	2	-	1	-	-	-	-	-	-	1	1	-	
CO-4	3	3	2	2	-	-	-	-	-	-	-	-	1	1	-	
CO-5	3	3	2	2	-	-	-	-	-	-	-	-	1	1	-	
			1: Wea	akly re	lated,	2: Moc	leratel	y relat	ed and	3: Str	ongly r	elated				
MODULE	- 1. CO	NVFNT	ΊΟΝΔΙ	ΔΟυ			s					(9)				
							5					(3)				
Introduction, Gaussian Mixture Models- Random Variable-Parameter Estimation, Hidden																
Markov Models and the Variants- Markov Chain-Hidden Markov Sequences and Model-M											<u> </u>	1				
Algorithm and Its Application to Learning HMM Parameter-Viterbi Algorithm for Decoding											coding	CO				
HMM State Sequence- the HMM and Variants for Generative Speech Modeling and											g and	BTI	-2			
Recognition.																
MODULE	2: DEE	P NEU	RAL NE	TWOF	RKS(9)											
The Deep) Neura	al Netv	vork A	rchitec	ture- I	Parame	eter Es	timatio	on with	Error	Back	propag	ation-			
Practical																
Machines									•							
Discrimin						-										
Discrimin		i iyona	второ		ci all'il	193.										
MODULE	3: HYB	BRID SY	STEMS	S FOR /	AUTON		SPEECH	H RECC	GNITI	ON(9)						
Deep Nei	ural Ne	twork-	Hidder	n Mark	ov Mo	del Hy	brid Sy	stems-	Archi	tecture	e -Key	Compo	onents			
and Theii	r Analy	sis- Ku	llback-	Leibler	⁻ Diver	gence-	Based	нм <i>,</i> т	raining	g and [Decodi	ng Spe	edup-	СС	2	
Deep Neural Network Sequence-Discriminative Training - Sequence-Discriminative Training									aining							
Criteria - Practical Considerations - Noise Contrastive Estimation.										BT	L-3					
MODULE	4: REP	RESEN	ΤΑΤΙΟΙ	N LEAF	NING	IN DEE	P NEU	RAL NI	TWOF	RKS(9)						

Feature Representation Learning in Deep Neural Networks- Joint Learning of FeatureRepresentation and Classifier- Feature Hierarchy- Flexibility- Robustness of Feature andAcross All Condition -Lack of Generalization Over Large Distortions, Fuse Deep NeuralNetwork and Gaussian Mixture Model Systems-Use DNN-Derived Features in GMM-HMMSystems-Fuse Recognition Results- Fuse Frame-Level Acoustic Scores - Multistream SpeechBTL-3Recognition, Adaptation of Deep Neural Networks - The Adaptation Problem for Deep NeuralNetworks - Linear Transformations - Linear Hidden Networks - Conservative Training -Subspace Methods - Effectiveness of DNN Speaker Adaptation.

(9)

CO-5

BTL-3

MODULE 5: ADVANCED DEEP MODELS

Representation Sharing and Transfer in Deep Neural Networks- Multitask and Transfer Learning - Multilingual and Crosslingual Speech Recognition – Multi objective Training of Deep Neural Networks for Speech Recognition- Robust Speech Recognition Exploiting Audio-Visual Information, Recurrent Neural Networks and Related Models - State-Space Formulation of the Basic Recurrent Neural Network - The Back propagation-Through-Time Learning Algorithm - A Primal-Dual Technique for Learning Recurrent Neural Networks - Recurrent Neural Networks Incorporating LSTM Cells - Analyzing Recurrent Neural Networks — A Contrastive Approach- Parameterization- Methods of Model Learning- Recognition Accuracy Comparisons, Computational Network - Forward Computation - Model Training - Typical Computation Nodes - Convolutional Neural Network - Recurrent Connections.

TEXT BOOKS 1. Yu, Dong, Deng, Li, Automatic Speech Recognition, A Deep Learning Approach, Springer, 2015. ISBN: 978-1447157786 REFERENCE BOOKS 1. Rabiner and Juang, Fundamentals of speech recognition, Prentice Hall, 1993. ISBN : 9780130151575

2.	Thomas F. Quatieri, <i>Discrete-Time Speech Signal Processing: Principles and Practice</i> , Prentice Hall, 2001.
3.	Lawrence R. Rabiner, Digital Processing of Speech Signals, Pearson Education, 2008.
4.	Daniel Jurafsky& James H. Martin, Speech and Language Processing - An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 3rd Edition 2019.
E BOOKS	
1.	https://www.amazon.com/dp/1532811616/ref=rdr_ext_tmb
моос	
1.	https://assp2015.wordpress.com/2015/08/03/mooc-on-speech-science-by-virtual- linguistic-campus/

COURSE TITLE	HUMAN	ING	CREDITS	3	
COURSE CODE	CSC3731	COURSE CATEGORY	DE	L-T-P-S	3-0-0-0
Version	1.0	Approval Details	LEARNING LEVEL	BTL-3	
ASSESSMENT SC	HEME				
		• • • •			
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
		Assignments/	-	Attendance 5%	ESE 50%

				with inf lividual		ion teo	chnolog	gies an	d to us	e this	inform	ation t	o impro	ve the l	ives of
				IVIGUU	5.										
		1	L. To	know t	the cor	ncept o	of intera	active	nform	ation to	echnol	ogy			
Course		2	2. To learn the Human interaction withinformation technologies												
Objecti	ve	3	3. То	explor	e the d	lesign a	and im	plemei	ntation	goals					
		2	4. To	know i	nore a	bout tl	he inte	rface's	requir	ement					
			Upon	compl	etion o	of this (course,	, the st	udents	will be	e able t	:0			
			1. Ela	borate	the ba	asics ar	nd fund	lament	als of l	numan	center	ed cor	nputing		
Course				strate									• -		
Outcom	ne			sign a r		-		-	F -	-0					
				erpret		-			ous ap	nlicatio	าทร				
				olore va					•	•					
			J. L.		lineas	use		JJC:		00000					
Droroau	vicitoc	Rasic c	omnut	ing kno	مهمايير	10									
Prerequ	isites:	Basic c	omput	ing kno	owledg	e									
Prerequ CO, PO					owledg	je									
CO, PO					owledg PO-	ge PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-	PSO-
	AND P	PSO MA	APPING	ì			PO- 7	PO- 8	PO- 9	PO- 10	PO- 11	PO- 12	PSO- 1	PSO- 2	PSO- 3
CO, PO	AND P	PO-	APPING PO-	PO-	PO-	PO-		_	_	_	_	_			
CO, PO CO	AND P PO- 1	PO- 2	PO- 3	PO- 4	PO-	PO-		_	_	_	_	_	1	2	3
CO, PO CO CO-1	AND P PO- 1 3	PO- 2 2	PO- 3 2	PO- 4	PO-	PO- 6 -		_	_	_	_	_	1	2	3
CO, PO CO CO-1 CO-2	AND P PO- 1 3 3	PO- 2 2 2	2 2	PO- 4 -	PO-	PO- 6 - 2	7 - -	-	9 - -	10 - -	_	_	1	2	3
CO, PO CO CO-1 CO-2 CO-3	AND P PO- 1 3 3 3	PO- 2 2 2 2 2	2 2 2	PO- 4 - -	PO-	PO- 6 - 2 2	7	-	9	10 - - -	_	_	1 1 1 1 1	2 1 1 1	3
CO, PO CO CO-1 CO-2 CO-3 CO-4	AND P PO- 1 3 3 3 3 3	PO- 2 2 2 2 2 2 2	2 2 2 2 2 2	PO- 4 - -	PO- 5 - - -	PO- 6 - 2 2 2 2	7	8	9	10 - - - -	11 - - - -	12 - - - -	1 1 1 1 1 1	2 1 1 1 1	3

Introduction- Conceptualizing HCI: From Paradigms to Frameworks- Transforming Society- Reframing Theory- The Role and contribution of theory in HCI- Classical Theories:Body of Knowledge, Applying Basic Research, Cognitive Modelling.					
MODULE 2: MODERN & CONTEMPORARY THEORIES OF HCI	(9)				
Modern Theories: External Cognition, Distributed Cognition, Ecological Psychology, Situa	ated CO-2				
Action, Ethnography, Computed-Supported Collaborative Work Theories, Activity The Grounded Theory, Hybrid Theories. Contemporary theories.	eory, BTL-3				
MODULE 3: DESIGNING HCI	(9)				
Visual Design: Principles for Usable interfaces, Intercultural User Interface Des Multimedia User Interface Design, Multimodal Interfaces, Adaptive Interfaces & age	CO-3				
Tangible UI, Information Visualization, Computer-supported Cooperative Work, HCI de of Decision -support systems.	esign BTL-3				
MODULE 4: DOMAIN SPECIFIC DESIGN	(9)				
HCI Interaction in Healthcare- User centered design in games- Motor vehicle Dr	river CO-4				
Interface- HCI in Aerospace-HCI and Autonomous Vehicles	BTL-3				
MODULE 5: DESIGNING FOR DIVERSITY(USE CASES) (9)					
Reasoning Based Virtual Machine Mapping Toward Physical Machine, Reinforcem	nent CO-5				
Learning Based Signal Quality Aware Handover Scheme, A Smart Contract based R Model for Dapps, Real-Time Collaborative Annotation System	BAC BTL-2				
TEXT BOOKS					
Julie A. Jacko. Human-Computer Interaction Handbook: Fundamentals, Evolvir 1. Emerging Applications, Third Edition. CRC Press, 2012. ISBN: 978-1439829431	ng Technologies, and				
REFERENCE BOOKS					
1. Yvonne Rogers. HCI Theory Classical, Modern, and Contemporary. Synthesis Centered Informatics, Morgan & Claypool Publishers, 2012. ISBN :978-1608459					

2.	Danijela Milošević, Yong Tang, Qiaohong Zu, Human Centered Computing, Information Systems and Applications, incl. Internet/Web, and HCI book sub series, Springer, 2019.
E BOOKS	
1.	http://findmedianow.com/book82.php?asin=B08435ZHQ
MOOC	
1.	https://www.interaction-design.org/courses/human-computer-interaction
2.	https://www.classcentral.com/course/hciucsd-306

COURSE TITLE	AI	IN CYBER SECURITY		CREDITS	3
COURSE CODE	CSC3729	COURSE CATEGORY	DE	L-T-P-S	2-0-2-0
Version	1.0	Approval Details	23 ACM, 06.02.2021	LEARNING LEVEL	BTL-3
ASSESSMENT SC	HEME				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	and technologies that vital, and with most	n in-depth understan at affect cyber securit business having an or against cyber-attacks	ty. The security on the security of the securi	of business syste	ms and data is

	1. To know more on basics of CIA in network security
Course	2. To learn cryptographic algorithms together with major attacks
Objective	3. To Learn deep learning fundamentals from a security perspective
	4. To know in-depth view of threat hunting in memory, file system and network data
	and an introductory analysis of malicious programs.
	Upon completion of this course, the students will be able to
	1. Explore the Network Concepts Security and Cyber Situational.
Course	2. Identify the Security Attacks in Machine Learning
Outcome	3. Develop a Patching for Software Vulnerabilities
	4. Use AI to Identify Network Attack and Intrusion Detection
	5. Analysis of Android Application Security using Machine Learning

Prerequisites: Cryptography and Cyber Security

CO, PO AND PSO MAPPING

со	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PO-	PSO-	PSO-	PSO-
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	1	-	3	-	-	-	-	-	-	-	1	1	-
CO-2	3	3	1	-	3	-	-	-	-	2	-	-	1	1	-
CO-3	3	3	3	-	3	1	-	-	-	-	-	-	1	1	-
CO-4	3	3	1	-	3	-	-	-	-	-	-	-	1	1	-
CO-5	3	3	1	3	3	-	-	-	-	-	-	-	1	1	-
			1: We	eakly re	elated,	2: Mo	derate	ly relat	ted and	d 3: Str	ongly	related	1		
MODU	LE 1: K	nowled	dge Eng	gineeri	ng in C	yber S	ecurity	/					(6+6=:	12)	

Introduction, Domain Ontologies for Cyber Security, Communication Network Concepts,	
Cyber Situational.	
Practical Component:	60.1
(i) Network Data Provenance	CO-1
(ii) Network Data Uncertainty	BTL-2
(iii) Network Data Vagueness	
Suggested reading: Reasoning Support for Cyber Situational Awareness	
MODULE 2: Security in Machine Learning Systems (6+6=	-12)
Threat Model – Capability of the Attacker, Goal of the Attacker, Knowledge of the Attacker,	
Data Poisoning – Poisoning Attacks, Test Time Attacks – Evasion Attack.	
Practical Component:	
(i) Transferability of Poisoning Attacks	CO-2
(ii) Defense Against Poisoning Attacks	BTL-2
(iii) Defense Against Evasion Attacks	
Suggested reading: Threats by Attack Strategy	
MODULE 3: DESIGNING HCI (6+6=12)	
Identify Targeted Software Vulnerabilities – Supervised Learning, Challenges of Exploit	
Prediction, Exploit Prediction Model, Vulnerability and Exploit Model.	
Practical Component:	CO-3
(i) Derformance Evaluation on Evaluit Analysis	BTL-3
(i) Performance Evaluation on Exploit Analysis	
Suggested reading: Adversarial Data Manipulation	
MODULE 4: DOMAIN SPECIFIC (6+6=12)	

Training Binary Classifiers for Detecting Network Attacks, Combining Binary Classifiers, Machine Learning in Network Intrusion Detection Systems, Practical Component: (i) Genetic Optimization to detect Network Attacks (ii) Evaluation for Intrusion Detection Suggested reading: Role of Dataset to Identify Network Attacks and Intrusion MODULE 5: DESIGNING FOR DIVERSITY(USE CASES(6+6=12)						
CO-4 Practical Component: (i) Genetic Optimization to detect Network Attacks (ii) Evaluation for Intrusion Detection Suggested reading: Role of Dataset to Identify Network Attacks and Intrusion						
Practical Component: BTL- (i) Genetic Optimization to detect Network Attacks BTL- (ii) Evaluation for Intrusion Detection Suggested reading: Role of Dataset to Identify Network Attacks and Intrusion						
(i) Genetic Optimization to detect Network Attacks BTL- (ii) Evaluation for Intrusion Detection Suggested reading: Role of Dataset to Identify Network Attacks and Intrusion	-2					
(ii) Evaluation for Intrusion Detection Suggested reading: Role of Dataset to Identify Network Attacks and Intrusion						
Suggested reading: Role of Dataset to Identify Network Attacks and Intrusion						
MODULE 5: DESIGNING FOR DIVERSITY(USE CASES(6+6=12)						
Structure of Android Application, Identify the Android Malware, Dataset Preparation,						
Detecting Malware in Android Applications.						
Practical Component: CO-!	5					
(i) APK File Analysis BTL-	-2					
(ii) DroidRiskPerformance						
Suggested reading: Challenges and Limitations of Android Security.						
TEXT BOOKS						
AI in Cyber Security, Leslie F. Sikos, Intelligent Systems Reference Library, Springer, 2019.						
1. ISBN: 978-3319988412.						
REFERENCE BOOKS						
Alessandro Parisi, Hands-On Artificial Intelligence for Cybersecurity: Implement smart AI sys	stems					
1. for preventing cyber-attacks and detecting threats and network anomalies, Packt, Publishin						
2019. ISBN: 9781789804027.						
E BOOKS						
1. <u>https://www.packtpub.com/in/data/hands-on-artificial-intelligence-for-cybersecurity</u>						
MOOC						

1.	https://www.coursera.org/learn/machine-learning
2.	https://www.coursera.org/learn/ai-for-everyone