HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

SCHOOL OF AERONAUTCIAL SCIENCES

M.TECH. AERONAUTICAL ENGINEERING

CURRICULUM & SYLLABUS 2018-19

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE DEPARTMENT OF AERONAUTICAL ENGINEERING M.TECH. AERONAUTICAL ENGINEERING

CURRICULAM 2018-19

SEMESTER I										
SI. No.	Course Code	Course Title	L	т	Р	С	тсн			
	THEORY									
1	AEA3701	Aerodynamics [#] 3 0 1				3	4			
2	AEA3702	Flight Vehicle structures	3	0	0	3	3			
3	MAA3702	Advanced Engineering Mathematics	3	0	0	3	3			
4	DE	Department Elective – I	3 0 0		3	3				
5	DE	Department Elective – II	3	0	0	3	3			
6	ZZZ3715	Research Methodology & IPR*	2	1	0	2	3			
	·	PRACTICAL								
7	AEA3791	Aircraft structures Lab	0	0	4	2	4			
8	AEA3796	Seminar	0	0	3	2	3			
	Total 21 26									

[#] Theory integrated with lab *Compulsory course for all PG Program

	SEIVIESTER II								
SI. No.	Course Code	Course Title	L	т	Р	С	тсн		
	THEORY								
1	AEA3703	Composite Materials & Structures	3	0	0	3	3		
2	AEA3704	Aerospace Propulsion	3 0 0		3	3			
3	AEA3705	Flight Mechanics	Flight Mechanics 3		0	3	3		
4	DE	Department Elective – III	3	0	0	3	3		
5	OE	Open elective	3	0	0	3	3		
		PRACTICAL							
6	AEA3792	Propulsion lab	0	0	4	2	4		
7	AEA3781	Mini Project 0 C		0	6	2	6		
	Total 19								

SEMESTER II

SEMESTER III

SI. No.	Course Code	Course Title	Course Title L T P		Credit	ТСН	
Theory							
1	DE	epartment Elective – IV [#] 3 0 0		3	3		
Practical							
2	AEA3797	Internship *	0	0	3	2	3
3	AEA3798 Project Work-Phase I 0 0 24		8	24			
	13	30					

* Internship to be undergone during vacation between 2nd or 3rd semesters # Incorporation of MOOC to be offered for this course.

SEMESTER IV

SI. No.	Course Code	Course Title	L T P		Credit	тсн	
1	AEA3799	Project Work-Phase II	II 0 0 24				24
	12	24					

Total No. of Credit = 65

Department Elective –I

SI. No.	Course Code	Course Title	L	т	Р	Credit	тсн
1	AEA3721	Aircraft Design	3	0	0	3	3
2	AEA3722	Theory of Vibrations	3	0	0	3	3

Department Elective –II

SI. No.	Course Code	Course Title	L	т	Р	Credit	тсн
1	AEA3723	Experimental Stress Analysis	3	0	0	3	3
2	AEA3724	Advanced Heat Transfer	3	0	0	3	3

Department Elective –III

SI. No.	Course Code	Course Title	Course Title L T P		Ρ	Credit	тсн
1	AEA3725	Nocketry & Space Mechanics 3 0		0	3	3	
2	AEA3726	ypersonic Aerodynamics 3 0 0 3		3			
3	AEA3727	Fatigue & Fracture Mechanics	3	0	0	3	3
4	AEA3728	High Temperature Gas Dynamics	3	0	0	3	3
5	AEA3729	Mechanics of Structural Impact	3	0	0	3	3

Department Elective –IV

SI. No.	Course Code	Course Title	L	т	Р	Credit	ТСН
1	AEA3730	Finite Element Methods	3	0	0	3	3
2	AEA3731	Computational Fluid Dynamics	3	0	0	3	3
3	AEA3732	Combustion Modeling	3	0	0	3	3
4	AEA3733	Cryogenics	3	0	0	3	3

SEMESTER-I

COURSE TITLE			AERODYNAM	1ICS				
COURSE CODE	AEA3701	Credits	3	L-T-P-C	3-0-0-3			
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50)% weightage)			
Prerequisites : Flui	d Mechanics							
AIM OF THE COURSE	E: To understand	the behavior of ai	rflow over bo	dies with particular	emphasis on airfoil			
sections in the incom	pressible flow re	gime						
OUTCOME OF THE	COURSE:							
The student will								
• Be able to understand the continuity, source, sink, pressure, velocity distributions with and without								
circulation with experiments								
Have a fundamental knowledge thin airfoil theory and its applications with experiments								
Understand the	concept of lifting	line theory, aspect	t ratio and tap	er ratio with experin	nents			
• Know the flows.	shock, expansion	waves and small p	perturbation the	neory with experime	nts			
Have an understanding various types of wind tunnel and measurement system with experiments								
MODULE 1: REVIE	W OF BASIC FLU	ID MECHANICS			10 (8L + 2T)			
Continuity and Mome	entum equations,	Point source and	sink, Free and	d Forced Vortex, Un	iform parallel flow,			
combination of basic fl	lows, Pressure and	Velocity Distribution	ns On bodies wi	th and without circula	tion in ideal and real			
fluid flows, Magnus effect								
Lab : 1. Calib	ration of wind tunn	el						
Pressure distribution o	n 3-D bodies							
MODULE 2: AIRFOI	ILS				9 (8L + 1T)			
Conformal Transformat	tion, Kutta conditio	n, Karman – Treffz p	profiles, Thin aer	ofoil Theory and its ap	oplications.			
Lab: 1. Press	sure distribution ov	er an aerofoil at diff	erent angles of a	attack				
MODULE 3: WING	THEORY				9 (8L + 1T)			
Vortex line, Horse shoe	e vortex, Biot and sa	avart law, lifting line	theory, effects	of aspect Ratio, planfo	rm and taper ratio.			
Lab : 1. Drag	measurements in V	Wind Tunnels						
MODULE 4: ELEME	NTS OF COMPR	ESSIBLE FLOWS			9 (8L + 1T)			
Isentropic flows – sh	ock and expansio	n waves, compress	sibility effects of	on aerodynamic Coef	ficients, method of			
& Oblique shock equat	ions. Payleigh and l	y. Prandti equation	and Rankine – I	augonoit relation, Nor	mai shock equations			
					$8(71 \pm 1T)$			
Types of wind types		processes - Measu	romonts in wind	tunnals 6 componen				
Lab · 1 Super	- FIOW VISUAIIZACION	ation with schlieren	systems	tunnels, 6-componen	t balance.			
		ation with semicici	57500115.					
J.D. Anderson, "Fundar	mental of Aerodyna	mics", McGraw-Hill	Book Co., New `	/ork, 1985.				
REFERENCES								
1. E.L. Houghton an	d N.B. Carruthers,	"Aerodynamics for	r Engineering S	tudents", Edward Arr	nold Publishers Ltd.,			
London (First India	London (First Indian Edition).							
2. W.H. Rae and A. Pope, "Low speed Wind Tunnel Testing", John Wiley Publications.								
3. Shapiro, A.H., Dyn	3. Shapiro, A.H., Dynamics & Thermodynamics of Compressible Fluid Flow, Ronald Press,							
4. Zucrow, M.J., and	Anderson, J.D., Ele	ments of gas dynam	ics McGraw-Hill	Book Co., New York.				
5. Rathakrishnan.E.,	Gas Dynamics, Prer	ntice Hall of India, 19	995.					
TUTORIAL LINK								

1. https://nptel.ac.in/courses/101105059/

2.https://nptel.ac.in/syllabus/101106032/

COURSE TITLE		FLIGHT	VEHICLE STR	RUCTURES					
COURSE CODE	AEA3702	Credits	3	L-T-P-C	3-0-0-3				
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50)% weightage)				
Prerequisites : Sol	id Mechanics								
AIM OF THE COUR	SE: To understa	nd different type	s of beams ar	nd columns subject	ed to various				
types of loading ar	nd support condi	tions with particu	ular emphasis	on aircraft structu	ural components.				
OUTCOME OF THE	COURSE:								
The student will	The student will								
Be able to understand the stresses in unsymmetrical sections with experiments									
Have a funda	amental knowled	lge monocoque a	and semimon	ocoque structure,	Torsion and thin				
walled structure with experiments									
 Understand 	the analysis of	stiffened tubula	r structure, A	Analysis Multi cell	, rings & frames				
revlent to air	craft structure								
Know the built	ckling and failure	es of thin walled s	structures						
Have an under	erstanding of ide	alization of stiffe	ned panels.						
Shear centre	and shear flow o	of multi cell.							
MODULE 1: UNSY	MMETRICAL BEN	IDING			9				
Stresses in beams	of unsymmetrica	al sections, box b	eams.						
MODULE 2: AIRCR	AFT STRUCTURE	MONOCOQUE A	AND SEMI MO	DNOCOQUE	9				
Analysis of tubula	ar, monocoque	and semi-monod	oque structu	ires – Torsion an	d flexure of thin				
walled boxes – she	ear centre – Flexu	ural axis and axis	of twist.						
MODULE 3: ANAL	YSIS OF STIFFENI	ED STRUCTURES			9				
Idealisation and ar	nalysis of stiffene	ed tubular structu	ires – Study c	of open tubes – Ana	alysis of multi cell				
tubes. Analysis of	rings and frames	 Applications to 	o aircraft stru	ctures.					
MODULE 4: STABI	LITY PROBLEMS				9				
Stability problems	of thin walled	structures – Flex	kural, torsion	al and local failur	es – Influence of				
eccentricity and in	elasticity – Bucl	kling of plates an	d sheet string	ger combinations -	 crippling loads – 				
Tension field theor	ry								
MODULE 5: SHELL	S				9				
Idealization of stiff	fened shells, she	ar center, shear f	flow in thin w	alled multicell box	<pre>where beams, effect of</pre>				
taper									
TEXT BOOKS									
E.F. Bruhn, "Analys	sis and Design of	Flight Vehicle St	ructures", Tri	state Offset Co.					
REFERENCES									
1. Megson, T.M.	G; Aircraft Struct	ures for Engineer	ring Students,	, Edward Arnold.					
2. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993.									
3. Stephen P. Tinnoshenko & S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition,									
McGraw-Hill, Singapore, 1990.									
TUTORIAL LINK									
1. <u>https://nptel.ac.in/courses/101104069/21</u>									
2. https://nptel.ac	in/courses/1011.	105022/							

COURSE TITLE		ADVANCED E		MATHEMATICS				
COURSE CODE	MAA3701	Credits	3	L-T-P-C	3-0-0-3			
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50)% weightage)			
Prerequisites : -								
AIM OF THE COUI	RSE: To impart fu	undamental knov	vledge in var	ious fields of Adva	nced Engineering			
Mathematics and	its applications.							
OUTCOME OF THE	COURSE:							
The student will			_					
Be able to und	erstand the Fund	ctional dependen	it on function	s of independent v	<i>r</i> ariables			
Have a fundam	nental knowledge	e of Laplace equa	ations.					
Fourier transformation methods.								
Understand th	e concept Laplac	e equation and p	properties of	Harmonic function				
Know the expl	icit and implicit n	nethods with exa	amples.					
Have an under	standing of Tens	or anaylsis						
Concept of variati	JLUS OF VARIATI	UNS	uation Functi	anal danandant a	9 n first and higher			
order derivatives	Eunctional	dopondont on	functions	f soveral independent of	n first and figher			
Isoperimetric prob	- Functional	athods_Bitz and k	antorovich n	n several indepe	nuent vanables-			
					ΔΤΙΟΝS 9			
Laplace transform	: Definitions, pro	perties -Transfor	m of error fu	nction. Bessel's fur	nction. Dirac			
Delta function, Ur	nit Step function	s – Convolution	theorem – Ir	nverse Laplace Tra	insform: Complex			
inversion formula	– Solutions to pa	rtial differential	equations: He	eat equation, Wave	equation.			
MODULE 3: FOUR	IER TRANSFORM	TECHNIQUES FO	OR PARTIAL D	IFFERENTIAL EQU	ATIONS 9			
Fourier transform:	Definitions, prop	perties – Transfo	rm of elemer	ntary functions, Dir	rac Delta function			
– Convolution the	eorem – Parsev	al's identity– So	plutions to p	oartial differential	equations: Heat			
equation, Wave ed	juation, Laplace	and Poison's equ	ations.					
MODULE 4: NUME	RICAL SOLUTION	N OF PARTIAL DI	FFERENTIAL E	QUATIONS	9			
Solution of Lapla	ce and Poisson	equation on a	rectangular	region by Lieebm	iann's method –			
Diffusion equation	n by the explici	t and Crank Nic	colson – Imp	olicit methods – S	Solution of wave			
equations by expli	cit scheme Cubic	spline interpolat	tion.					
MODULE 5: TENSO	OR ANALYSIS				9			
Summation conve	ention – contra	variant and cova	ariant vector	s – contraction of	f vectors – inner			
product – quotien	t law – metric te	ensor – Christoff	el symbols –	covariant differen	tiation – gradient			
divergence and cu	rl.							
REFERENCES								
1. Gupta, A.S. –	Calculus of Varia	tions with Applic	cations, Prent	tice Hall of India(P)) Ltd., New Delhi,			
6 th print, 2006								
2. Sankar Rao, K.	– Introduction to	o Partial Differen	tial Equation	s, Prentice Hall of I	ndia(P) Ltd., New			
Delhi, 5 th print	, 2004							
3. Spiegel, M.R – Theory and problems of Complex Variables with an Introduction to Conformal								
Mapping and Its applications, Schaum's outline series, Mc Graw Hill Book Co.								
4. Grewal, B.S – I	Numerical Metho	bas in Science and	a Engineering	g, Kanna Publicatio	ns, New Delhi.			
5. Kamanalan, G.		sis, S. VISWanath	an (P) Lta., N	ew Delfil, 1990	d Manufacturing			
Systems Dren	. n ann Naidh tice-Hall Inc Lloi	ner Saddle River		mg of Automated				
Jysteins, Fiell		per sautie Rivel,	NJ, UJA, 1997	-				
IUIORIAL LINK								

https://nptel.ac.in/downloads/111105035/

COURSE TITLE		RESEARC	LH IMETHODO	DLOGY & IPR				
COURSE CODE	ZZZ3715	Credits	3	L-T-P-C	3-0-0-3			
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50	0% weightage)			
Prerequisites : NA								
AIM OF THE COUR	SE: To understar	nd research prob	lem and IPR r	ole in research asp	pects.			
OUTCOME OF THE	COURSE:							
At the end of this o	course, students	will be able to						
Understand re	search problem	formulation.						
Analyze resear	rch related inforr	nation						
Follow research ethics								
Understand tl	hat today's wo	rld is controlled	d by Compu	ter, Information	Technology, but			
tomorrow wor	ld will be ruled b	y ideas, concept	, and creativi	ty.				
 Understanding 	g that when IPR v	vould take such i	mportant pla	ce in growth of inc	dividuals & nation,			
it is needless	to emphasis th	e need of infor	mation abou	t Intellectual Prop	perty Right to be			
promoted amo	ong students in g	eneral & enginee	ering in partic	ular.				
Understand th	at IPR protection	n provides an ince	entive to inve	ntors for further r	esearch work and			
investment in	R & D, which le	eads to creation	of new and	better products, a	nd in turn brings			
about, econom	nic growth and so	ocial benefits.						
MODULE 1: RESEA	RCH PROBLEM				9			
Meaning of resea	rch problem, So	ources of resear	ch problem,	Criteria Characte	ristics of a good			
research problem	, Errors in sele	cting a researcl	h problem,	Scope and object	tives of research			
problem. Approac	hes of investigat	tion of solutions	for research	problem, data co	ollection, analysis,			
interpretation, Neo	cessary instrume	intations						
MODULE 2: ASSES	SMENT AND ME	THODOLOGY			9			
Effective literature	studies approac	ches, analysis. Pla	igiarism, Rese	earch ethics, Effect	ive technical			
writing, how to wr	ite report, Paper	Developing a Re	search Propo	sal, Format of rese	earch proposal, a			
presentation and a	assessment by a	review committe	ee					
MODULE 3: DATA	ANALYSIS AND I				9			
Classification of D	ata, Methods of	Data Collection	, Sampling, S	ampling technique	es procedure and			
methods, Ethical d	considerations in	n research Data	analysis, Stat	istical techniques	and choosing an			
appropriate statis	tical technique,	Hypothesis, Hyp	othesis testi	ng, Data processi	ng software (e.g.			
		erpretation of res	suits.		0			
Noturo of Intellect		atonto Docigno	Trada and C	opyright Process	of Datanting and			
Development: tech	nological resear	rch innovation	natenting d	evelonment Interi	national Scenario:			
International cooper	International cooperation on Intellectual Property Procedure for grants of patents. Patenting under PCT							
MODULE 5: PATENT INFORMATION 9								
Datent Dights: Scope of Datent Dights, Liconsing and transfer of Technology, Datent information, and								
databases. Geographical Indications.								
New Development	MODULE 6: IPR DEVELOPMENT 9							
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPD and UT-								
ыоюдісаї systems,	, computer soft	ware etc. Traditio		se case studies, IP				

REFERENCES

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science& engineering students'"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel , "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008
- 10. C. R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques, New Age
- 11. International publishers, Third Edition. Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners, 2nd Edition, SAGE, 2005
- 12. Business Research Methods Donald Cooper & Pamela Schindler, TMGH, 9th edition
- 13. Creswell, John W. Research design: Qualitative, quantitative, and mixed methods, approaches. Sage publications, 2013.

COURSE TITLE		AIRCE	RAFT STRUCT	URES LAB			
COURSE CODE	AEA3791	CREDITS	2	L-T-P-C 0-0-4-2			
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50)% weightage)		
Prerequisites : - N	A						
AIM OF THE CO	URSE: To study	experimentally	the load d	eflection characte	eristics structural		
materials under di	fferent types of I	oads.					
OUTCOME OF THE	E COURSE:						
The students will b	pe able to						
Be able to und	lerstand the beha	aviour of structu	ral materials t	through experimer	nts		
NAME OF THE EXP	PERIMENTS						
1. Stress Strain c	urve for various	engineering mate	erials.				
2. Deflection of b	peams with vario	us end condition	S.				
3. Verification of	Maxwell's Recip	rocal theorem &	principle of s	uperposition			
4. Column – Test	ing						
5. South – well's	plot.						
6. Unsymmetrica	al bending of bea	ms					
7. Shear centre l	7. Shear centre location for open sections and closed section						
8. Calibration of	3. Calibration of Photo- elastic materials						
9. Stresses in circ	cular discs and be	eams using photo	elastic techr	niques			
10. Vibrations of b	beams						

SEMESTER-II

COURSE TITLE		COMPOSITE I	MATERIALS A	ND STRUCTURES					
COURSE CODE	AEA3703	CREDITS	3	L-T-P-C	3-0-0-3				
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50)% weightage)				
Prerequisites : NA	Prerequisites : NA								
AIM OF THE COUR	SE: To understar	nd the fabricatio	n, analysis an	d design of compo	site materials &				
structures.									
OUTCOME OF THE	COURSE:								
At the end of this o	course, students	will be able to							
 Be able to und Have a fundan macro mechar Know the gove Analysis of cor 	 Be able to understand the need and types of composite material Have a fundamental knowledge of orthotropic, anisotropic material. Micromechanics and macro mechanics Know the governing equations, static, dynamic stability 								
 Have an under To enable to u 	rstanding of Nett	ing analysis, failu	ire criteria an	d sandwich constr	uction				
MODULE 1: CLASS	IFICATION AND			SITE MATERIALS	9				
Need for the com	posite materials.	Types of compos	ite materials	and their use in st	ructures.				
MODULE 2: BASIC	CONCEPTS	, p			9				
Hooke's law for	orthotropic and	anisotropic mat	terials. Micro	mechanics and m	nacro mechanics.				
Lamina stress-stra	in relations refer	red and principa	l material dire	ections and arbitra	ry axes.				
MODULE 3: ANAL	YSIS OF LAMINA	TED COMPOSITE	S		9				
Governing equation	ons for anisotro	pic and orthotro	opic plates.	Angle-ply and cro	ss ply laminates.				
Static, dynamic an	d stability analys	is for simpler cas	ses of compos	ite plates. Inter lar	ninar stresses.				
MODULE 4: OTHE	R METHODS OF	ANALYSIS AND F	AILURE THEO	RY	9				
Netting analysis, F	ailure criteria. Sa	ndwich construc	tion.						
MODULE 5: MANU	JFACTURING & F	ABRICATION PR	OCESSES		9				
Manufacturing of	glass, boron and	carbon fibres. O	pen mould an	d closed mould pr	ocesses.				
REFERENCES									
1. R.M. Jones, "Med	hanics of composi	te materials", Mc	Graw-Hill, Koga	akusha Ltd., Tokyo,					
2. L.R. Calcote, "Ana	alysis of laminated	structures", Van N	Nostrand Reinh	nold Co.,					
3. G.Lubin, "Hand B	ook on Fibre glass	and advanced pla	stic composite	s", Van Nostrand Co	., New York,				
4. B.D. Agarwal and	L.J. Broutman, "A	nalysis and Perfor	mance of fiber	composites", John-	Wiley and Sons,				
E-BOOKS									
COURSEWARE LINK									
1. https://nntel.ac.ir	1/courses/101104	010/							
2. https://notel.ac.ir	n/svllabus/101104	010/							
	., -, -,								

COURSE TITLE		AER	OSPACE PROP	PULSION			
COURSE CODE	AEA3704	CREDITS	3	L-T-P-C	3-0-0-3		
CIE	100 Marks (50	% weightage)	ESE	100 Marks (50)% weightage)		
Prerequisites : Thermodynamics							
AIM OF THE COURSE:	To understand the p	principles of operation	on and design o	f aircraft and spacecra	ft power plants.		
OUTCOME OF THE C	COURSE:						
The student will							
Be able to unde	rstand the classific	ation of power pla	ants and differ	ences jet engine and	l rocket engine		
Have a fundame	ental knowledge tu	irbojet, turbo prop	and turbo far	n engines			
Understand the c	oncept thermodyna	mic analysis compor	nents of jet engi	ne. Ram jet and pulse	jet application		
Know the reacti	on principle, thrus	t equation, propel	lants				
 and rocket performance 	ormance						
Have an unde	erstanding various	s types of supe	rsonic combu	istors, Requiremen	ts for supersonic		
combustors, Per	rformance estimat	ion of supersonic o	combustors.				
MODULE 1: ELEMI	ENTS OF AIRCRA	FT PROPULSION			9		
Classification of po	wer plants based	I on methods of	aircraft prop	ulsion – jet and ro	ocket propulsion –		
Differences between	n jet propulsion er	ngines and rocket	propulsion en	gines – Types and ar	eas of applications		
– fundamental of ai	rcraft piston engin	es.					
MODULE 2: INTRO	DUCTION TO GA	S TURBINE ENG	INES		9		
Classification of air	breathing engines	– Principle of turk	pojet, turbo-pi	rop, turbo-jet with r	eheat, by-pass and		
turbo fan concepts -	- Thrust augmenta	tion in jet engines	and its applica	ation to aircraft.			
MODULE 3: THER	MODYNAMICS O	F JET ENGINES			9		
Thermodynamic and	alysis of jet engin	e – components c	of a jet engine	e – Compressor, cor	nbustion chamber,		
turbine and jet no	zzle – their effic	iencies – Introdu	ction to ramj	et, pulse jet and t	heir application –		
Introduction to com	bustion and chem	ical kinetics.					
MODULE 4: RAM	IET AND SCRAMJ	ET PROPULSION			9		
Ram jet -Operating	principle – Sub cri	tical, critical and si	upercritical op	eration – Combustic	on in ramjet engine		
– Ramjet performa	nce - Fundamenta	is of hypersonic a	air birthing ve	hicles, Preliminary	concepts in engine		
airframe integration	n, Various types (of supersonic com	ibustors, Requ	urements for super	rsonic combustors,		
			NI		0		
MODULE 5: ROO	CKET AND ELECT	RIC PROPULSIO			9		
Introduction to rock	et propulsion – Ri	eaction principle –	· Inrust equation	on – Classification c	of rockets based on		
propellants used –	solid, liquid and h	ybrid – Compariso	on of these en	igines with special r	eference to rocket		
performance. electr	ic propulsion – cla	ssification-electro	thermal – ele	ctro static – electror	nagnetic thrusters-		
geometries of ion tr	irusters- beam/plu	ime characteristics	s – nali thruste	r			
REFERENCES							
1. G.C. Oates, "Aeroth	ermodynamics of Airc	raft Engine Componen	c design" AIAA	on Series, Published by A	IAA, New York.		
2. G.C. Oates, And	2. G.C. Oales, Aircrait Propulsion System technology & design, AIAA Education Series.						
5. G.F.Sutton, Rocket Propulsion Elements, John Wiley & Sons Inc., New York, 8th Edition,2010.							
4. H.Conen, G.F.C.Rogers & H.I.H.Saravana muttoo, Gas turbine theory, Longman Co., ELBS Ed.							
Deciproceting Casturbing & lot Propulsion Dower Plante" Ovford & IDU Publishing Ca							
1 bittes://antol.ac.in/courses/101106022/							
2. https://nptel.ac.in/	1. <u>https://nptel.ac.in/courses/101100055/</u> 2. https://nptel.ac.in/downloads/101101002/						
2. https://hptel.ac.m/		~_/					

COURSE TITLE FLIGHT MECHANICS
COURSE CODE AEA3705 CREDITS 3 L-T-P-C 3-0-0-3
CIE 100 Marks (50% weightage) ESE 100 Marks (50% weightage)
Prerequisites : NA
AIM OF THE COURSE: To understand the Aircraft stability & Performance
OUTCOME OF THE COURSE:
At the end of this course, students will be able to
• Be able to understand the different flight vehicles, altitude, True and indicated Air speed
Airplane and its functions
• Have a fundamental knowledge of drag, Reynold's number, drag polar and momentum theory
 Understand the performance parameters like range, endurance, Takeoff, landing and propeller
and its types
Have an understanding of static, dynamic, lateral, longitudinal and directional stability
MODULE 1: INTRODUCTION TO PRINCIPLES OF FLIGHT
Physical properties and structure of the atmosphere, Temperature, pressure and altitud
Relationship, Measurement of speed – True and Indicated Air speed, Components of an Airplan
and their functions, Different types of flight vehicles.
MODULE 2: DRAG OF BODIES
Types of Drag, effects of Reynold' number on skin friction and pressure drag, streamlined And bluff
bodies, Drag reduction of airplanes, Momentum theory of finite wings, Drag polar
MODULE 3: AIRCRAFT PERFORMANCE
Steady level flight conditions for minimum drag and minimum power required, Gliding and Climbin
Tilght, Range and endurance, Take-off and landing, High left devices, Thrust Augmentation, Turnin
Variable pitch propellers
Degrees of freedom of a system static and dynamic stability static longitudinal stability
Contribution of individual components neutral point static margin. Hinge moment Elevato
control effectiveness. Power effects elevator angle to trim elevator angle per g maneuver point
stick force gradient aerodynamic balancing Aircraft equations of motion stability derivatives
stability quartic Phygoid motion
MODULE 5: LATERAL, DIRECTIONAL STABILITY AND CONTROL
Yaw and side slip. Dihedral effect, contribution of various components, lateral control, ailero
control power, strip theory, aileron reversal, weather cock stability, directional control, rudde
requirements, dorsal fin, One engine inoperative condition, Dutch roll, spiral and directiona
divergence, autorotation and spin.
REFERENCES
1. Houghton, E.L., and Caruthers, N.B., Aerodynamics for engineering students, Edward Arnol Publishers, 1988.
2. Perkins C.D., & Hage, R.E. Airplane performance, stability and control, Wiley Toppan,
3. Kuethe, A.M., and Chow, C.Y., Foundations of Aerodynamics, John Wiley & Sons, Clancey,L.J.
Aerodynamics, Pitman, 1986.
4. Babister, A.W. Aircraft stability and response, Pergamon Press, 1980.
5. Nelson, K.C. Flight Stability & Automatic Control, McGraw-Hill, 1989.
o. Wiccomme, B.W., Aerodynamics, Aeronautics & Flight Mechanics John Wiley, 1995.

1. https://onlinecourses.nptel.ac.in/noc18_ae06 2. https://nptel.ac.in/syllabus/101106042/

СО	URSE TITLE	PROPULSION LAB							
CO	URSE CODE	AEA3792	Credits	2	L-T-P-C 0-0-4-2				
	CIE	100 Marks (50	% weightage)	ESE	100 Marks (50)% weightage)			
Prer	equisites : - N	A							
AIM OF THE COURSE: To understand the Jet & Rocket propulsion system.									
Ουτ	COME OF THE	E COURSE:							
The	student will be	e able to underst	and						
•	Cascade testin	ng, Flow characte	ristics, Calorific v	alue calculati	on & Rocket moto	r testing			
NAN	/IE OF THE EXF	PERIMENTS							
1.	Cascade test	ing of a model of	axial compresso	r blade row					
2.	Combustion	performance stu	dies in a jet engi	ne combustio	n chamber				
3.	Determinatio	on of heat of com	bustion of aviati	on fuel					
4.	Characteristi	c plots of a free j	et through a non	-circular / cir	cular orifice				
5.	Characteristi	c plots of a wall j	et through a non	-circular / cir	cular orifice				
6.	Hybrid moto	r testing.							

DEPARTMENT ELECTIVE- I

COURSE TITLE		EXPERIM	IENTAL STRE	SS ANALYSIS	
COURSE CODE	AEA3723	CREDITS	3	L-T-P-C	3-0-0-3
CIE	100 Marks (50)% weightage)	ESE	100 Marks (50)% weightage)
Prerequisites : NA		<u> </u>			
AIM OF THE COUR	SE: To bring awa	reness on experi	imental meth	od of finding the re	esponse of the
structure to differe	ent types of load			_	
OUTCOME OF THE	COURSE:				
At the end of this of	course, students	will be able to			
• To Be able to u	understand the ty	pes and its oper	ating method	S	
• Have a fundam	nental knowledge	e transducer for i	measurement	of static and dyna	mic loads
• Understand th	e stress analysis	of 2D and 3D pho	oto elasticity,	stress patterns an	d polar scope
• Be able to und	erstand method,	types or technic	ues and		
Moiré fringes					
• Have an under	standing moderr	n techniques like	C-Scan.		
• Thermograph,	Creep testing, of	otical sensor.			
MODULE 1: INT	RODUCTION				9
Extensometers – T	ypes – Mechanio	al, Electrical, Ele	ctronic and O	ptical – Review of	bridge circuits.
MODULE 2: STRAI	N GAUGE TECHN	IIQUES			9
Strain gauge and	transducers for	measurement of	of static and	dynamic loads -	Instrumentation,
measurement and	recording syster	ns.			
MODULE 3: PHOT	O ELASTIC TECHI	NIQUES			9
Stress analysis by	two and three of	limensional phot	o elasticity –	Interpretation of	stress patterns –
Typical application	is – Description a	nd users of refle	ction polarisc	ope.	
MODULE 4: NON -	- DESTRUCTIVE 1	ESTING			9
Fundamentals of	NDT. Radiograp	hy, ultrasonic, H	lolography, L	aser holography r	magnetic particle
inspection, Fluore	scent penetrant	technique, Edd	y current tes	ting, Acoustic Emi	ssion Technique,
Moire fringes — G	irid methods.				
MODULE 5: OTHEI	R TECHNIQUES				9
Stress analysis by	stress coat —I	nduction heating	g instrumenta	ation, measureme	nt and recording
techniques – Cre	ep testing. X-ra	ay – application	ns. Fundame	ntals of brittle c	oating methods,
Introduction to Mo	oiré techniques,	ultrasonic C- Scai	n, Thermogra	ph, Fiber – optic Se	ensors.
REFERENCES					
1. J.W. Dally and N	1.F. Riley, "Experin	nental Stress Analy	ysis", McGraw-	Hill Book Co., New Y	ork, 1988.
2. P. Forunani, No 3. M. Hetenvi "Ha	indbook of Experir	nental Stress Analy	vsis" John Will	ations, London, 190	o. Vork 1980
 W. HELENYI, HARDOUK OF EXPERIMENTAL SUESS ANALYSIS, JOHN WHEY & SUBSTILL, NEW YORK, 1980. G.S. Holister "Experimental Stress Analysis: Principles and Methods" Cambridge University Press, 1987 					
5. A.J. Durelli and V.J. Parks, "Moire Analysis of Strain". Prentice Hall Inc., Englewood Cliffs, New Jersey.					
E-BOOKS					
COURSEWARE LIN	K				
TUTORIAL LINK					

COURSE TITLE		THE	ORY OF VIBR	ATIONS	
COURSE CODE	AEA3722	CREDITS	3	L-T-P-C	3-0-0-3
CIE	100 Marks (50	% weightage)	ESE	100 Marks (50)% weightage)
Prerequisites : NA					
AIM OF THE COUF	SE: To introduce	e the students, n	atural modes	of vibration, princ	iples of dynamics
and energy and ap	proximate meth	ods for aerospac	e structures.		
OUTCOME OF THE	COURSE:				
At the end of this	course, students	will be able to			
To study the effect	ct of periodic and	d aperiodic force	es on mecha	nical systems with	matrix approach
and also to get the	e natural characte	eristics of large si	ized problem	s using approximat	e methods.
MODULE 1: INT	RODUCTION	<u> </u>			9
Simple harmonic	motion, definition	on of terminold	gies, Review	of Newton's, La	ws, D'Alembert's
principle, Energy n	nethods.		_		
MODULE 2: SINGL	E DEGREE OF FR	EEDOM SYSTEM	S		9
Free vibrations fr	ee damped vibr	ations, forced e	excitations w	ith and without d	lamping, support
excitation, vibratio	on measuring inst	truments.			
MODULE 3: MULT	I-DEGREE OF FRE	EEDOM SYSTEMS	5		9
Two degrees of	freedom system	s, Static and dy	namic coup/	lings, vibration ab	sorber, Principle
coordinates, Princ	ipal modes, orth	logonality condit	ions. Hamilto	on's Principle, Lagr	rangean equation
and applications.	Vibrations of e	lastic bodies, St	ring or stret	tched cord, Longit	udinal vibration,
Lateral vibration, 1	orsional vibratio	n. Approximate	methods for	calculating natural	frequencies.
MODULE 4: ELEM	ENTS OF AERO-E	LASTICITY			9
Aero elastic proble	ems – Collar's tri	iangle of courses	s – Wing dive	ergence – Aileron o	control reversal –
Flutter.					
MODULE 5: SOLUT	FION METHOD				9
Computational te	chnique in vibra	tion, Vibrating	string, Gener	al method, Beam	element, Global
matrices, Transfor	rmation of matr	ices, Equation o	of motion of	complete system	, Consistent and
Lombard mass.					
REFERENCES					
1. Timoshenko.	S, "Vibration Pro	blems in Enginee	ering", John V	Viley & Sons, Inc., 1	.987.
2. Meirovitch, L	, Elements of Vib	oration Analysis",	McGraw-Hil	Inc. <i>,</i> 1986.	
3. F.S. Rse., I.F.	Morse and R.T. H	linkle, "Mechani	cal Vibrations	s", Prentice-Hall of	India, 1985.
4. Fung, Y.C, "A	n Introduction to	the Theory of A	ero elasticity	", John Wiley & Soi	ns Inc., New York,
1985.5. Rac	J.S. and Gupta.k	<, "Theory and P	ractice of Me	echanical Vibration	ıs", Wiley Eastern
Ltd., New De	hli, 1999.				
E-BOOKS					
COURSEWARE LIN	K				
TUTORIAL LINK					
1. <u>https://npt</u>	:el.ac.in/courses/	<u>/112103111/</u>			

COURSE TITLE		ROCKETR	Y AND SPACE M	IECHANICS	
COURSE CODE	AEA 625	CREDITS	3	L-T-P-C	3-0-0-3
CIE	100 Marks (50%	% weightage)	ESE	100 Marks	(50% weightage)
Prerequisites : NA					
AIM OF THE COURSE					
To introduce basic co	ncepts of design a	and trajectory e	stimation of roc	ket , missiles a	and basic concepts
of orbital Mechanics					
LEARNING OUTCOME	OF THE COURSE				
The student will					
• Be able to unders	stand solar system,	Keplers, Newton	n's law of motior	n, escape veloci ⁻	ty, Geosynchronous,
geostationary sate	llites				
Be able to unders	tand principle of ro	ocket and its stag	es, thrust equation	on, one and two	o dimensional rocket
 Understand the log 	ads drag performa	nces at different	altitudes types of	nozzles and lau	nching problems
 Be able to underst 	and materials used	and special coati	ngs and ablative n	naterials	
Satellite injections	, orbit transfer, orbi	it deviation due to	o injection error, §	general perturba	ition approach
MODULE 1: ORBITAL	MECHANICS AND	SATELLITE DYN	AMICS		9
Description of solar sys	stem – Keplers Law	s of planetary m	otion – Newton's	Law of Univers	al gravitation – Two
body and Three-body p	oroblems – Jacobis I	ntegral, Libration	s points – Estima	tor of orbital an	d escape velocities –
geosynchronous and ge	eostationary satellit	es life time – sate	ellite perturbatior	ns – Hohmann o	rbits – calculation of
orbit parameters.					
MODLE 2: ROCKET M	OTION				9
Principle of operation o	f rocket motor - thr	rust equation – or	ne dimensional an	d two dimensio	nal rocket motions in
free space and homoge	eneous gravitationa	al fields – Descrip	tion of vertical, i	nclined and gray	vity turn trajectories
determinations of range	e and altitude – sim	ple approximatio	ns to burnout velo	ocity – staging of	f rockets.
MODULE 3: ROCKET	AERODYNAMICS				9
Description of various lo	bads experienced by	y a rocket passing	through atmospl	nere – drag estin	nation – wave drag,
skin friction drag, and b	ase pressure drag –	- Boat-tailing in m	issiles – performa	ince at various a	ltitudes – conical
and bell snaped nozzles	- adapted nozzles	– rocket dispersio	on – launching pro	oblems.	
NODULE 4: MATERIA	LS FOR SPACECRA	AFT AND MISSIL	ES		9
Selections of materials	for spacecraft and n	nissilės – speciai r	requirements of m	naterials to perfo	orm under adverse
					0
Conoral Aspects of sate	e INJECTION AND	SATELLITE ORD	for Various Case	Orbit Doviat	ions Duo to Injection
Errors – Special and Ge	neral Perturbations – Sa		ord – Encko's Moth	es – Orbit Deviat	wibrations of Orbital
Elements – General Per	turbations Approac	h	Ju – Llicke S Meti	iou – Methou of	
1 G.P. Sutton "Pock	ot Propulsion Flor	nonts" John Wil	lov & Sons Inc	Now York 5th E	dition 1986
1. G.P. Sutton, Kocket Propulsion Elements, John Wiley & Sons Inc., New York, 5" Edition, 1986.					
2. J.w. comellisse, Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd., London.					
J. van ue kallip, Ele	ments of astrolle	nd Spacecraft"			
MOOC				UK CU., IIIC.	
	du loci bin loba - l				
nttps://ecourses.ou.e	uu/cgi-bin/ebook	.cgi?topic=me			

COURSE TITLE		FATIGUE A	ND FRACTURE	MECHANICS	
COURSE CODE	AEA3727	CREDITS	3	L-T-P-C	3-0-0-3
CIE	100 Marks (50	% weightage)	ESE	100 Marks	(50% weightage)
Prerequisites : NA					
AIM OF THE COURSE					
To understand the ba	sic characteristics	s of fatigue and c	reep mechanisn	ns in the aircraf	t structures.
LEARNING OUTCOME	OF THE COURSE				
At the end of this cou	rse, students sho	uld be capable o	f		
1. Become familiar	with definitions				
2. Analyze for cumu	lative damage				
3. Analyze for crack	initiation & crack	k growth			
4. Analyze for stren	gth of cracked bo	odies			
5. Analyze damage	tolerant structure	es			
MODULE 1: FATIGUE	OF STRUCTURES				9
S.N. curves - Endurar	nce limit - Effect	of mean stress	- Goodman, Ge	rber and Soder	berg relations and
diagrams - Notches a	and stress conce	ntrations - Neul	per's stress con	centration fact	ors - plastic stress
concentration factors	- S-N curves for t	ypical notched g	eometries.		
MODLE 2: STATISTICA	AL ASPECTS OF FA	ATIGUE BEHAVIC	OUR		9
Low cycle and high cy	cle fatigue - Coffi	n-Manson's relat	tion - Transition	life - Cyclic Stra	ain hardening and
softening - Analysis of	load histories - C	Cycle counting te	chniques - Cum	ulative damage	- Miner's theory
- other theories.					
MODULE 3: PHYSICAL	ASPECTS OF FAT	TIGUE			9
Phase in fatigue life -	Crack initiation -	Crack growth - F	inal fracture - Di	slocations - Fat	igue fracture
surfaces.					
MODULE 4: FRACTUR	E MECHANICS				9
Strength of cracked	bodies - potentia	al energy and s	urface energy -	Griffith's theo	ry - Irwin - Orwin
extension of Griffith's	theory to ductile	e materials - Stre	ess analysis of cr	acked bodies -	Effect of thickness
on fracture toughness	s - Stress intensity	y factors for typic	cal geometries.		
MODULE 5: FATIGUE	DESIGN AND TES	TING		-	9
Safe life and fail safe	design philosoph	hies - Importanc	e of Fracture M	echanics in aer	rospace structure -
Application to compo	site materials and	d structures.			
TEXT BOOKS					
1. Prasanth Kumar -	Elements of fra	cture mechanics	" - Wheeter pub	lication, 1999.	
2. Barrois W, Ripely	<u>, E.L., "Fatigue of</u>	aircraft structur	e", Pergamon pr	ess. Oxford, 19	13.
REFERENCES					
1. Sin, C.G., "Mecha	nics of fracture"	Vol. I, Sijthoff an	d w Noordhoff I	nternational Pu	ıblishing Co.,
Netherlands, 191	.9.				
2. Knott, J.F., "Fundamentals of Fracture Mechanics", Buterworth& Co., Ltd., London, 1913.					
E-BOOKS					
MOOC					
https://ecourses.ou.e	du/cgi-bin/ebook	k.cgi?topic=me			

COURSE TITLE		MECHANI	CS OF STRUCTUR	RAL IMPACT	
COURSE CODE	AEA3729	CREDITS	3	L-T-P-C	3-0-0-3
CIE	100 Marks (509	% weightage)	ESE	100 Marks	(50% weightage)
Prerequisites : SOLID	MECHANICS				
AIM OF THE COURSE					
To provide student wit	h a fundamental kr	nowledge of impa	act mechanics and	d model the bas	sic structural impact
mechanics problems.		C .			
MODULE 1: INTRODU	JCTION TO STRUC	TURAL IMPACT			9L
Introduction to Structu	ral Impact, Rigid Bo	ody Impact Mech	anics, Coefficient	of Restitution,	Oblique Impact, One
Dimensional Impact Me	chanics of Deformation	able Bodies,1-D W	/ave Propagation i	n Solids Induced	d by Impact.
MODULE 2: MULTI DI	MENTIONAL STR	UCTURAL IMPA	CT MECHANICS		9L
Analysis of Stress, Moh	r's Circles, Octahed	ral Stress, Decom	position Into Hyd	rostatic and Pur	re States, Equation of
motion of body in Ca	artesian, Cylindrica	l, Spherical coor	dinates, Analysis	of Strain, Line	earized Stress Strain
Relations, Wave propag	gation in infinite and	d semi-infinite me	edia		
MODULE 3: MODELLI	NG OF DEFORMA	ATION/FAILURE			9L
Constitutive models for	r material deforma	tion and plasticit	y, Isotropic and K	inematic Harde	ening, Thermo Elastic
Plastic, Power law, Joh	nson-Cook , Zerilli	 Amstrong,,Ste 	inberg-Guinan, (Constitutive mo	dels for composites,
Failure and damage mo	dels				
MODULE 4: EXPRIME	NTAL IMPACT ME	CHANICS			9L
Quasi-static material te	st, Pendulum Impac	ct Test, Split-Hopk	kinson's Bar Test,	Taylor Cylinder 1	Test, Drop Impact
Test, Drop Weight Impa	ict Test				
MODULE5: COMPUT	ATIONAL IMPACT	MECHANICS			9L
Principles of numerical	formulations, Class	sical continuum n	nethods, Particle	based Methods	, Meshless Methods,
Numerical Integration N	Methods, and Conta	ict Impact Conside	erations.		
TEXT BOOKS					
1. C. Lakshmana Rao, ISBN:97811192418	, V.Narayanamurthy	γ, Κ. R. Y. Simha, Α	Applied Impact Me	echanics,2016 Pi	rint
2. W.J.Stronge, Impa	ct Mechanics, Camb	oridge University	Press January 201	0	
doi.org/10.1017/C	BO9780511626432	с ,			
3. Norman Jones Stru	uctural Impact,Febr	uary 2012,isbn: 9 [·]	781139200493		
DEEEDENIGEG					
REFERENCES					2
1. Stefan Hiermaier	, Structures Unde	r Crash and Imp	act: Continuum I	viechanics,201	0
2. Tod A. Laursen, C	computational Cor	ntact and Impac	t Mechanics: Spr	inger Publicati	ions 2014
3. C. A. Brebbia, Ad	vances in Dynamic	cs and Impact M	lechanics,2003		
E-BOOKS					
1. onlinelibrary.wile	ey.com/doi/book/	10.1002/978112	19241829		
2. books.google.co.	in/books/about/Ir	mpact_Mechani	cs.html?id=nHgc	SObfZ28C&red	lir_esc=y
3. http://admin.can	nbridge.org/acade	emic/subjects/e	ngineering/solid	-mechanics-an	d-
materials/structu	ural-impact-2nd-e	dition			
MOOC					
https://onlinecourses	.nptel.ac.in/noc17	7 ce25			
https://www.mooc-lis	st.com/course/en	gineering-mech	anics-coursera		
OBJECTIVES OF THE O	COURSE	0			
The course should en	able the students	to understand			
Wave propagatio	n and damage in	metallic and cor	nnosite structur	es due to Impa	ct
Constitutive mod	lole for modeling a	structural impac	t problems for m	otallic and cor	mnositos
Constitutive mou	heiming s	structural impac			nposites
Experimental tec	ninques usea for s		it problems		
Computationally	estimate the stru	ctural damage d	ue to impact		

LEARNING OUTCOME OF THE COURSE

At the end of this course, students should be capable of

- Calculate the stress wave propagation in structures using 1D and multi-dimensional approach for structural impact problems
- Using the appropriate constitutive model for modeling metal plasticity, composite damage
- Using various experimental techniques used for impact damage assessment
- Calculating the structural impact damage using numerical techniques

COURSE TITLE		CRYOGENIC PROPULSION					
COURSE CODE	AEA3733	CREDITS	3	L-T-P-C	3-0-0-3		
AEC	100 Marks (50%	6 weightage)	ESE	100 Marks	50% weightage)		
Prerequisites : HEA	T TRANSFER and AERO ENC	SINEERING THERMOD	YNAMICS				
AIM OF THE COURS	E						
To study the enginee	ering concept of cryogenic a	and its application in v	various fie	eld.			
LEARNING OUTCO	ME OF THE COURSE						
At the end of this cour	se, students should be capable	e of					
• Understand the b	ackground of cryogenic techno	ology and its applicatior	ıs.				
• Understand the p	roperties of cryogenic materia	Is and their production					
• Understand the d	ifferent methods used for cryo	ogenic insulation.					
• Understand the te	echnique for storing cryogenic	S.					
• Understand the d	ifferent cryogenic equipment'	s and their applications					
MODULE 1:INTRO	DUCTION TO CRYOGENIC	ENGINEERING			9		
Thermo physical and f	luid dynamic properties of lic	quid and gas hydrogen,	Thermo p	hysical and fluid	dynamic properties of		
liquid and gas helium	, Liquefaction systems of hyd	rogen and helium gase	es, Liquefa	ction systems of	hydrogen and helium		
gases, Refrigeration a	and liquefaction principals; J	loule Thomson effect	and inver	sion curve; Adia	batic and isenthalpic		
expansion with their co	omparison						
MODULE 2: PROPE	RTIES				9		
Cryogenic fluids, Solid	ls at cryogenic temperatures;	; Superconductivity, Re	cuperative	e - Linde - Hamp	son, Claude, Cascade,		
Heylandt, Kapitza, Co	ollins, Simon; Regenerative -	Stirling cycle and ref	rigerator,	Slovay refrigerat	or, Gifford-McMahon		
refrigerator, Vuilleumi	er refrigerator, Pulse Tube ref	rigerator; Liquefaction o	of natural g	gas			
MODULE 3: CRYOC	SENIC INSULATION				9		
Vacuum insulation, Ev	acuated porous insulation, Ga	s filled Powders and fib	rous mate	rials, Solid foams,	Multilayer insulation,		
Liquid and vapour Shie	elds, Composite insulations.						
MODULE 4: STORA	GE AND INSTRUMENTA	TION OF CRYOGENI	C LIQUID	S	9		
Design considerations	of storage vessel; Dewar ve	essels; Industrial storag	ge vessels;	Storage of cryo	genic fluids in space;		
Transfer systems and	Lines for cryogenic liquids; Cry	ogenic valves in transfe	er lines; Tv	vo phase flow in ⁻	Transfer system; Cool-		
down of storage and	transfer systems, Measureme	ent of strain, pressure,	flow, liqu	id level and Tem	perature in cryogenic		
environment; Cryostat	S						
MODULE 5: CRYOC	SENIC EQUIPMENT				9		
Cryogenic heat exchange	ngers - recuperative and rege	enerative; Variables aff	ecting hea	it exchanger and	system performance;		
Cryogenic compressor	s, Pumps, expanders; Turbo	alternators; Effect of	compone	nt inefficiencies;	System Optimization,		
Magneto-caloric refrig	gerator; 3He-4He Dilution ref	frigerator; Cryopumping	g; Cryoger	nic Engineering a	pplications in energy,		
aeronautics, space, inc	lustry, biology, preservation A	pplication of Cryogenic	Engineerir	ng in Transport.			
TEXT BOOKS							
1.T.M. Flynn, Marcel	Dekker., Cryogenic Engine	ering,					
REFERENCES							
1. Bose and P. Sengu	upta, "Cryogenics: Applications	s and Progress", Tata M	cGraw Hill				
2. J.G. Weisend II, Ta	aylor and Francis, "Handbook o	of Cryogenic Engineerin	g",				
3. R.Barron,"Cryoge	nic Systems", Oxford Universit	y Press.					
4. K.D.Timmerhaus a	and T.M. Flynn, "Cryogenic Pro	ocess Engineering", Plen	um Press.				
5. G.G.Haselden,"Cr	yogenic Fundamentals", Acade	emic Press.					
6. C.A.Bailey,"Advan	ced Cryogenics", PlenumPress	5.					
7. R.W. Vance and V	V.M. Duke , "Applied Cryogeni	c Engineering", John Wi	ley & sons				
E-BOOKS							
www.onlinelibrary.wild	<u>ey.com/doi/10.1002/vipr.1998</u>	<u>30100419/full</u>					

COURSE TITLE	COMPUTATIONAL FLUID DYNAMICS					
COURSE CODE	AEA3731	CREDITS	3	L-T-P-C	3-0-0-3	
CIE	100 Marks (50%	weightage)	ESE	100 Marks (50%	weightage)	
Prerequisites : Fl	uid Mechanics and Ma	achinery Numeri	cal Method	S		
AIM OF THE COU	JRSE					
Give the student	a working knowledge	of a variety of	computatio	nal techniques that	t can be used	
for solving engine	eering problems.					
LEARNING OUTC	OME OF THE COURSE					
At the end of this	s course, students sho	uld be capable o	f			
1. Describe the	flow phenomena in a	flow field with	correspond	ence with elliptic, i	parabolic and	
hyperbolic e	quations. Clearly und	derstand the st	eps involve	ed in source and	vortex panel	
methods. Cle	arly understand steps	involved in grid	generation	methods.		
2. Describe the	upwind concept and i	its effects in a gi	ven flow. C	an understand the	discretization	
of a flow mo	del for analysis		c 1			
3. Can clearly	understand the weigi	ned variational	formulae a	nd Galerkin meth	od for finite	
4 Know the nu	inique imerical finite volume	methods (Rung	e Kutta me	thod Lax Wendro	ff method) in	
computation	al analysis				in methody in	
5. Able to solve	the complex flow fie	ld problems wit	h suitable t	urbulence models	with detailed	
understandir	ng of its physics.					
MODULE 1: FUN	DAMENTAL CONCEPTS	S			9	
Equations - Ellip posed- ill Posed Unstructured Gri papel method - V	tic, Parabolic and Hyp problems - discret ids-Grids and equation (ortex panel method	perbolic equatic ization of partia n transformation	ons- Initial a al Different ns Implio	and Boundary conc ial Equations – St cit and Explicit sche	litions - Well ructured and emes -Source	
MODULE 2 : DI	SCRETIZATION				9	
Implicit time de	pendent methods fo	r in viscid and	viscous co	mpressible flows	- Concept of	
numerical dissipa	ationStability proper	rties of explicit a	and implicit	methods - Conserv	vative upwind	
discretization for	Hyperbolic systems -	Further advanta	ges of upwi	nd differencing.	·	
MODULE 3:FINIT	E ELEMENT TECHNIQU	JES	<u> </u>		9	
Finite Element T	Techniques in Compu	tational Fluid D	ynamics; ir	ntroduction - Stror	ng and Weak	
Formulations of a	a Boundary Value Prok	olem - Strong for	mulation - N	Weighted Residual	Formulation -	
Galerkin Formula	ition - Weak Formulati	ion - Variational	Formulation	י ר		
MODULE 4: FINIT	FE VOLUME TECHNIQI	JES			9	
Finite Volume Te	echniques - Cell Cente	red Formulation	n - Lax – We	endroff Time Stepp	oing - Runge -	
Kutta Time Step	pping - Multi - stage	e Time Stepping	g - Accurac	y Cell Vertex F	ormulation -	
Multistage Time Stepping - FDM -like Finite Volume Techniques - Central and Up-wind Type						
Discretization –						
MODULE 5: FLOV	V FIELD ANALYSIS AN	D TURBULENCE	MODELS		9	
Pressure and Vel	ocity corrections - Pre	ssure Correction	equation, S	SIMPLE algorithm an	nd its	
variants – PISO A	Igorithms Turbulence	models, mixing l	ength mode	el, Two equation (k-	-E) models –	
High and low Rey	nolds number models					
TEXT BOOKS						
1. Computation	al Fluid Mechanics a	and Heat Trans	fer, R.H. Pl	etcher, J.C. Tanne	hil, and D.A.	

Anderson, 3rd Edition, Taylor & Francis, 2013, ISBN 1-56032-046-X

 H. Malalasekara and W. Versteeg, "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", 2nd Ed., Pearson Education, 2010.

REFERENCES

- 1. J. D. Anderson, "Computational Fluid Dynamics: The Basics with Applications", 2nd Ed., McGraw Hill Education, 2012
- 2. John F. Wendt (Editor), "Computational Fluid Dynamics: An Introduction", (Von Karman Institute Book) 3rd ed. 2009 Edition
- 3. K. Muralidhar and T. Sundararajan (Editors), "Computational Fluid Flow and Heat Transfer", 3rd Ed., Narosa Publishing House, 2009
- Klaus A. Hoffmann and Steve T. Chiang, "Computational Fluid Dynamics for Engineers", Vols. I, II and III, 4th Ed., Engineering Education System, P. O. Box 20071, Wichita, KS, USA, 2000
- SedatBiringen and Chuen-Yen Chow, "An Introduction to Computational Fluid Mechanics by Example", 2nd Ed., John Wiley and Sons, New York, 2011
- 6. C. A. J. Fletcher, "Computational Techniques for Fluid Dynamics", Vols. I and II, 2nd Ed., Springer-Verlag, Berlin, 1990

E-BOOKS

- 1. https://books.google.co.in/books?isbn=3540850562
- 2. https://books.google.co.in/books?isbn=0070016852
- 3. https://books.google.co.in/books?isbn=0081012446
- 4. https://books.google.co.in/books?isbn=1139446835

моос

- 1. https://nptel.ac.in/courses/112105045
- 2. www.engr.uky.edu/~acfd/me691-lctr-nts.pdf

COURSEWARE LINK

OBJECTIVES OF THE COURSE

The course should enable the students to understand and calculate:

- Understand the basic flow equations, characteristics of mathematical models for a given flow. Know the importance and significance of panel methods and grid generation
- Understand the importance of discretization, upwind differencing and implicit explicit solutions
- Familiarize with Finite Element Techniques (FEM) in Computational Fluid Dynamics (CFD)
- Familiarize with Finite Volume Techniques (FVM) in Computational Fluid Dynamics (CFD)
- To create confidence to solve complex problems in the field of fluid flow and heat transfer. Know the importance and significance of Turbulence models

COURSE TITLE	HIGH TEMPERATURE GAS DYNAMICS						
	-)						
	AEA3728 CREDITS	3	L-1-P-C	3-0-0-3			
	100 Marks (50% Weightage)	ESE	100 Marks (50	% weightage)			
Prerequisites : NIL							
AIM OF THE COU	RSE						
To provide the st	tudent with fundamental knowled	lge and unde	rstanding in High 1	remperature Gas			
Dynamics.							
LEARNING OUTC	OME OF THE COURSE						
At the end of this	course, students should be capab	le of					
 acquiring con 	nprehensive knowledge on high te	mperature ga	s dynamics.				
 applying varie 	ous approaches of high temperatu	re gas dynam	ics				
carrying out o	calculations in high temperature flo	ows in aerosp	ace field.				
MODULE 1: INTR	ODUCTION			8			
Importance of Hi	gh-Temperature Flows, Nature of I	High-Tempera	ature Flows, Chemi	ical Effects in Air:			
Definition of Por	ude Map, Thermodynamics of Chi Lesses and Perfect Cases, Vario	emically Read	the Perfect Cas E	c theory of gases,			
Collision Frequen	ar Gases and Perfect Gases, Valid	nd Speed Dist	tribution Functions	Classification of			
Gases, First Law (of Thermodynamics. Second Law o	f Thermodyna	amics. Calculation	of Entropy, Gibbs			
Free Energy, Hea	t of Reaction.	. memory m					
MODULE 2: STAT	ISTICAL THERMODYNAMICS			10			
Introduction, Microstates & Macrostates, Boltzmann Distribution, Evaluation of Thermodynamic Properties in Terms of the Partition Function, Evaluation of the Partition Function in terms of T and V, Thermodynamic Properties for a Single Chemical Species, Calculation of the Equilibrium Constant, Chemical Equilibrium, Calculation of the Equilibrium Composition or High-Temperature Air, Thermodynamic Properties of an Equilibrium Chemically Reacting Gas, Equilibrium Properties of High-Temperature Air							
MODULE 3: INVISCID HIGH TEMPERATURE EQUILIBRIUM AND NON-EQUILIBRIUM FLOWS 10							
Introduction, Governing Equations for Inviscid High-Temperature Equilibrium Flow, Equilibrium Normal and Oblique Shock-Wave Flows, Equilibrium Quasi-One-Dimensional Nozzle Flows, Frozen and Equilibrium Flows: The Distinction, Equilibrium and Frozen Specific Heats, Equilibrium Speed of Sound, Equilibrium Conical Flow, Equilibrium Blunt-Body Flows. Governing Equations for Inviscid, non-equilibrium flows, Non-equilibrium Normal and Oblique Shock-Wave Flows.							
MODULE 4:TRANSPORT PROPERTIES IN HIGH TEMPERATURE GASES 8							
Introduction, Def	finition of Transport Phenomena,	Transport Co	efficients, Mechan	ism of Diffusion,			
Energy Transport by Thermal Conduction and Diffusion: Total Thermal Conductivity, Transport							
Properties for High-Temperature Air.							
MODULE 5: VISCOUS HIGH TEMPERATURE FLOWS 9							
Introduction, Governing Equations for Chemically Reacting Viscous Flow, Alternate Forms of the Energy							
Equation, Boundary-Layer Equations for a Chemically Reacting Gas, Boundary Conditions: Catalytic Walls,							
Boundary-Layer Solutions: Stagnation-Point Heat Transfer for a Dissociating Gas, Parabolized Navier-Stokes							
Solutions to Chemically Reacting Flows.							
REFERENCES							
John D. Anderson Jr., "Hypersonic and High-Temperature Gas Dynamics",							
2 nd Edition, AIAA Education Series, 2006.							
Tarit K. Bose, "High Temperature Gas Dynamics", 2 nd Edition, Springer, 2014.							

COURSE TITLE	HYPERSONIC AERODYNAMICS							
COURSE CODE	AEA3728	CREDITS	3	L-T-P-C	3-0-0-3			
CIE	100 Marks (50	% weightage)	ESE	100 Marks (50)% weightage)			
Prerequisites : NIL								
AIM OF THE COURSE								
To prepare the students for futuristic design of aerospace vehicles and give them a capability to work out on the								
technical aspect of	the high-speed vehi	cles in the hypersor	nic range.					
LEARNING OUTCOME OF THE COURSE								
At the end of this course, students should be capable of								
Differentiate the hypersonic regime from other non-hypersonic high-speed regimes.								
Use simple solu	ution methods viz. Ic	ocal surface inclinati	ion method, sh	ock and expansion wa	ave method and			
approximate m	ethod and solve sim	ple inviscid hyperso	onic flow probl	ems.				
Understand an	d work out with the	viscous flow in the	hypersonic reg	ime and will be able t	to solve simple			
problems in the	e same.							
Understand an	d conceptualize the	viscous interaction	with the hyper	sonic flow and differe	entiate the weak			
and strong inte	ractions.							
Analyse and wo	ork out with the hea	t transfer related p	roblems in the	hypersonic regime.				
MODULE 1 : FUNI	DAMENTALS OF H	PERSONIC AERO	DYNAMICS		9			
Introduction to h	ypersonic aerodyna	imics- differences	between hyp	ersonic aerodynami	ics and supersonic			
aerodynamics – co	ncept of thin shock	layer and entropy	layers – hyper	sonic flight paths – h	ypersonic similarity			
parameters - Shock	wave and expansion	n wave relations of	inviscid hypers	onic flows				
MODULE 2: SIMPLE SOLUTION METHODS FOR HYPERSONIC INVISCID FLOWS 9								
Local surface inclination method – Newtonian theory – modified Newtonian law								
Tangent wedge and tangent cone and shock expansion methods								
Approximate methods – hypersonic small disturbance theory – thin shock layer theory								
MODULE 3: VISC	OUS HYPERSONIC	FLOW THEORY			9			
Boundary layer equation for hypersonic flow – hypersonic boundary layers – self similar and non-self-similar								
layers – solution methods for non-self-similar boundary layers Aerodynamic heating								
MODULE 4: VISCOUS INTERACTION IN HYPERSONIC FLOWS 9								
Introduction to the	concept of viscous i	nteraction in hyper	sonic flows – St	rong and weak intera	actions – hypersonic			
viscous interaction similar parameter - Introduction to shock wave layer interactions								
MODULE 5: HEAT TRANSFER PROBLEMS IN AEROSPACE ENGINEERING 9								
Nature of the high temperature flows – chemical effects in air – real and perfect gases – Gibb's free energy and								
entropy Chemically reacting mixtures – recombination and dissociations								
Text Book								
John D. Anderson Jr., "Hypersonic and High Temperature Gas Dynamics," McGraw Hill Series, New York, 1996.								
REFERENCES								
1. William, H. D.,	"Viscous Hypersonic	Flow – Theory of Re	eacting and Hy	personic Boundary La	yers," Dover			
Publications In	c. Mineola, New Yor	k, 2017.						
2. Murthy, T. K. S.	., "Computational M	ethods in Hyperson	nic Aerodynami	cs," Springer, New De	elhi, 1992 edition.			
3. Dr. Mukarram	Hussain, "Hypersoni	c Aerodynamic Perf	ormances of As	symmetric Re-Entry V	ehicles," LAP			
Lambert Acade	mic Publishing, Saar	brücken, Germany,	2011.					
4. John D. Anders	on Jr., "Modern Con	pressible Flow with	n Historical Pers	<i>spective"</i> . McGraw Hi	II Publishing			
Company, New	[,] York, 1996.							

5. John T. Bertin, "Hypersonic Aerothermodynamics", published by AIAA Inc.,

COURSE TITLE	FINITE ELEMENT METHODS							
COURSE CODE	AEA3730	Credits	3	L-T-P-C	3-0-0-3			
CIE	100 Marks (50	% weightage)	ESE	100 Marks (50% weightage)				
Prerequisites : NIL								
AIM OF THE COURSE								
To introduce the concept of Numerical analysis of structural components								
LEARNING OUTCO	LEARNING OUTCOME OF THE COURSE							
At the end of this c	At the end of this course, students should be capable of							
1. Be able to und	1. Be able to understand stiffness and flexibility matrices.							
2. Be able to und	lerstand bar & bea	am elements with	computer aid	ed engineering				
3. Understand th	ne applications of p	plane stress-strair	n and axi- sym	metric problems				
4. Know the 2D,	3D elements with	reference to Airc	raft structural	parts wing, fuselag	e and turbine			
5. Have an under	rstanding static, dy	ynamic problems	and compute	r engineering softw	/are			
Deview of various		thoda in structu	ral analysis	Stiffnass and flavik	jilitu matricas for			
simple cases Bas	ic concents of fi	nite element m	ethod Form	ulation of governir	only matrices for			
convergence criter	ia.	finde element m		action of governin				
MODULE 2: DISCRI	ETE ELEMENTS				9			
Use of bar and bea	im elements in str	uctural analysis. C	Computer imp	lementation of prod	cedure for these			
elements.		,						
MODULE 3: CONT		s			9			
Different forms of 2	2-D elements and	their applications	s for plane stre	ess, plane strain and	d axi- symmetric			
problems. Consiste	ent and lumped fo	rmulation. Use of	local co-ordir	ates. Numerical int	egration.			
MODULE 4: ISOPARAMETRIC ELEMENTS 9								
Definition and use	of different forms	of 2-D and 3-D e	lements. Com	puter implementati	ion of formulation			
of these elements for the analysis of typical aircraft structural parts like, wing, fuselage, turbine blades.								
MODULE 5: SOLUTION SCHEMES 9								
Different methods of solution of simultaneous equations governing static, dynamics and stability								
problems. General purpose Software packages.								
REFERENCES								
1. L.J. Segerlind, York, 1984.	"Applied Finite E	lement Analysis"	, Second Edit	ion, John Wiley an	nd Sons Inc., New			
2. K.J. Bathe and Ltd., 1983.	E.L. Wilson, "Nui	merical Methods	in Finite Elem	ents Analysis", Pre	ntice Hall of India			
3. R.D. Cook, "Co	oncepts and Appli	cations of Finite	Element Anal	ysis", 3 rd Edition, Jo	ohn Wiley & Sons,			
4. C.S. Krishnamu	C.S. Krishnamurthy, "Finite Elements Analysis", Tata McGraw-Hill. 1987.							
5. V.Ramamurthi, "Computer Aided Design in Mechanical Engineering", Tata McGraw-Hill.								
E-BOOKS								
MOOC								
COURSEWARE LIN	К							