M. TECH. DEFENCE TECHNOLOGY (Duration: 2 Years) **CURRICULUM and SYLLABUS** DEPARTMENT OF AERONAUTICAL ENGINEERING HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE # HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE ## Motto: To Make Every Man a Success and No Man a Failure #### Vision: To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society. ### Mission: - To create an ecosystem that promotes learning and world class research. - To nurture creativity and innovation. - To instill highest ethical standards and values. - To pursue activities for the development of the Society. - To develop national and international collaborations with institutes and industries of eminence. - To enable graduates to become future leaders and innovators. ### Value Statement: Integrity, Innovation, Internationalization. # M.Tech Defence Technology #### **ABOUT THE COURSE:** The M.Tech. in defence technology courses has been designed to produce Post Graduates who will have the necessary theoretical & experimental knowledge, skill and aptitude in various defence technologies areas and pursue them to carry out R&D in defence. The students will be provided valuable exposure & knowledge for various state of the art defence systems and contemporary technologies through class lectures & main thesis work with the collaboration of DRDO. During the program, the students would be given opportunities in carrying out their main thesis work in DRDO labs, Defence PSUs & Private Defence Industries. This collaborative effort of DRDO, AICTE and Industries will provide required knowledge to the students and create job opportunities for them. #### **PROGRAM OBJECTIVE:** - To develop Post Graduates who have the necessary theoretical & experimental knowledge, skill and aptitude in defence technologies and systems and can get recruited in the various defence laboratories, defence public sector & private industries, ordnance factories and other similar sectors of the economy at national and international level. - To contrive skilled manpower in the field of defence technologies. - To enhance students" interaction with the senior, experienced manpower engaged in defence labs and defence industries and have real time knowledge / experience in the technology development, technology deployment and defence systems. - To acquaint students for the needs of technologies related to defence & security of nation and to create zeal among students to pursue research and development for defence technologies. | PO1 | Acquire technical competence, comprehensive knowledge and understanding the methodologies and technologies associated with land, air & naval defence systems. Apply knowledge to identify, formulate and analyse complex engineering problems. | Scholarship of
Knowledge | |-----|--|-----------------------------------| | PO2 | Having an ability to apply knowledge of science, mathematics, engineering & technology for development of defence technologies. | Critical Thinking | | PO3 | Having an ability to design a component, subsystem or a system applying all the relevant standards and with realistic constraints, including operational and environmental. | Research Skill | | PO4 | Acquire the skills for uses of contemporary techniques, resources and modern engineering and IT tools | Usages of
Modern
Techniques | | PO5 | An ability to identify, investigate, understand and analyse complex problems, apply creativity, carry out research /investigation and development work to solve practical problems related to defence technological issues. | Design, Development & Solutions | | PO6 | Ability to communicate effectively in both oral and written contexts in the form of technical papers, project reports, design documents and seminar presentations. | Communication | | P07 | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. | Individual &Team
Work | ## **PROGRAM OUTCOME:** #### **PROGRAM STRUCTURE:** It is a 4-semester program with total 80 credits. It is having 4 specializations, as regard to the specializations, semester -1 will have common curriculum and semester 2 curriculum will be varied as per the specialization. Semester 3 & 4 includes dissertation and industrial training. The M.Tech. in Defence Technology will be having following specializations: - 1. Combat Vehicle Engineering - 2. Aerospace Technology - 3. Communication Systems & Sensors - 4. High Energy Materials Technology Semester - 1:Courses will be same for all specializations. Semester -2:Courses will be as per the selected specialization. Semester - 3 &4:Projects and Industrial Training. ### **ELIGIBILITY CRITERIA:** Those who have pursued under graduation in following disciplines are eligible for taking up the M.Tech. Defence Technology courses: | 1) Aerospace Engineering | 26) Electronics and Computer Engineering | |--|---| | 2) Aeronautical engineering | 27) Electronics and Communication | | | Engineering | | 3) Applied Electronics and | 28) Electronics and Computer Science | | Communication Engineering | | | 4) Applied Electronics and | 29) Electronics and Control Systems | | Instrumentation Engineering | | | 5) Chemical Technology | 30) Electronics and Power Engineering | | 6) Chemical engineering | 31) Electronics and Telecommunication | | 7) Computer Science & Engineering | 32) Electronics, Instruments and Control | | | Engineering | | 8) Computer and Communication | 33) Electronics System Engineering | | Engineering | | | 9) Computer Engineering | 34) Instrumentation and Electronics | | 10) Computer Engineering and | 35) Instrumentation Engineering | | Applications | | | 11) Computer Networking | 36) Marine Engineering | | 12) Computer Science and Information | 37) Marine Technology | | Technology | | | 13) Computer Science and Technology | 38) Mechanical and Automation Engineering | | 14) Computer Technology | 39) Mechatronics Engineering | | 15) Electrical and Computer Engineering | 40) Mechanical engineering | | 16) Electrical and Electronics Engineering | 41) Metallurgical and Materials Engineering | | 17) Electrical and Instrumentation
Engineering | 42) Military engineering | |---|------------------------------------| | 18) Electrical and Power Engineering | 43) Optics and Opto-electronics | | 19) Electrical Engineering | 44) Power Electronics Engineering | | 20) Electronics engineering | 45) Radio, Physics and Electronics | | 21) Electrical, Electronics and Power | 46) Software Engineering | | Engineering | | | 22) Electronics and Communication | 47) Structural Engineering | | engineering | | | 23) Instrumentation engineering | 48) Telecommunication Engineering | | 24) Electronics, Instrumentation and | | | Control Engineering | | | 25) Electronics, Science and Engineering | | | | | | | | # M.Tech - Defence Technology | | | | SEMESTER- I | | | | | | | | | |-----------|---|----------------|---------------------------------------|---|---|---|----|---|-----|--|--| | SL.
NO | COURSE
CATEGORY | COURSE
CODE | NAME OF THE COURSE | L | Т | Р | С | S | тсн | | | | 1 | BS | MAA0704 | Advanced Engineering Mathematics | 4 | 0 | 0 | 4 | 1 | 4 | | | | 2 | PC | DTB0701 | Warfare Simulations & Strategies | 4 | 0 | 0 | 4 | 1 | 4 | | | | 3 | PC | DTB0702 | Systems and warfare Platforms | 4 | 0 | 0 | 4 | 1 | 4 | | | | 4 | DE-I | DTB0751 | Rockets and Missiles Fundamentals | 3 | 0 | 0 | 3 | 1 | 3 | | | | 5 | DE-I | DTB0753 | Communication Technology | 3 | 0 | 0 | 3 | 1 | 3 | | | | 6 | DE-II | DTB0752 | Autonomy and Navigation
Technology | 3 | 0 | 0 | 3 | 1 | 3 | | | | | | | PRACTICAL | | | | | | | | | | 7 | PC | DTB0731 | Warfare Simulations & Strategies Lab | 0 | 0 | 2 | 2 | 0 | 2 | | | | 8 | PC | DTB0732 | Systems and Warfare Platforms Lab | 0 | 0 | 2 | 2 | 0 | 2 | | | | 9 | BS | DTA0701 | Seminar | 0 | 0 | 1 | 1 | 0 | 1 | | | | | | | Total | | | | 23 | | 23 | | | | L | L – Lecture; T – Tutorial; P – Practical; C – Credit; S- Self Study; TCH- Total Contact Hours | | | | | | | | | | | | | | SEN | MESTER- II (AEROSPACE TECHNOLOG | iY) | | | | | | |-----------|--------------------|----------------|---|-----|---|---|---|---|-----| | SL.
NO | COURSE
CATEGORY | COURSE
CODE | NAME OF THE COURSE | L | Т | P | C | S | тсн | | 1 | BS | DTB0716 | Aerospace System Configuration,
Design & Simulation | 4 | 0 | 0 | 4 | 1 | 4 | | 2 | PC | DTB0717 | Guidance & control | 4 | 0 | 0 | 4 | 1 | 4 | | 3 | PC | DTB0718 | Aerospace Propulsion | 4 | 0 | 0 | 4 | 1 | 4 | | 4 | DE | DTB0754 | Structural Dynamics and Aero-
Elasticity | 3 | 0 | 0 | 3 | 1 | 3 | | 6 | DE | DTB0755 | Elective 4 | 3 | 0 | 0 | 3 | 1 | 3 | | | | | PRACTICAL | | | | | | | | 7 | PC | DTB0741 | Aerospace System Configuration, Design & Simulation Lab | 0 | 0 | 2 | 2 | 0 | 2 | | 8 | PC | DTB0742 | Guidance & control Lab | 0 | 0 | 2 | 2 | 0 | 2 | | 9 | BS | DTA0701 | Seminar | 0 | 0 | 1 | 1 | 0 | 1 | |---|-----------------|----------------|--|-------|-------|-------|--------|-----|----| | | | | Total | | | | 23 | | 23 | | ı | L – Lecture ; T | – Tutorial ; P | - Practical; C - Credit; S- Self Study | ; TCF | l- To | tal C | ontact | Hou | rs | | | | SEMESTER | - II (COMMUNICATION SYSTEMS & S | SENS | ORS |) | | | | | | |-----------
--|----------------|---|------|-----|---|----|---|-----|--|--| | SL.
NO | COURSE
CATEGORY | COURSE
CODE | NAME OF THE COURSE | L | Т | Р | С | s | тсн | | | | 1 | BS | DTD3703 | Radar Technologies | 4 | 0 | 0 | 4 | 1 | 4 | | | | 2 | PC | DTD3704 | Digital & satellite Communication and Navigation from Space | 4 | 0 | 0 | 4 | 1 | 4 | | | | 3 | PC | DTD3705 | Tactical battlefield Communication & Electronic Warfare | 4 | 0 | 0 | 4 | 1 | 4 | | | | 4 | DE | DE | Elective 3 | 3 | 0 | 0 | 3 | 1 | 3 | | | | 6 | DE | DE | Elective 4 | 3 | 0 | 0 | 3 | 1 | 3 | | | | | | | PRACTICAL | | | | | | | | | | 7 | PC | DTD3791 | Radar Technologies Lab | 0 | 0 | 2 | 2 | 0 | 2 | | | | 8 | PC | DTD3792 | Digital & Satellite Communication and Navigation from Space Lab | 0 | 0 | 2 | 2 | 0 | 2 | | | | 9 | BS | DTD3796 | Seminar | 0 | 0 | 1 | 1 | 0 | 1 | | | | | | | Total | | | | 23 | | 23 | | | | L | L – Lecture ; T – Tutorial ; P – Practical ; C – Credit; S- Self Study; TCH- Total Contact Hours | | | | | | | | | | | | | SEMESTER- III (COMMON FOR ALL SPECIALISATION) | | | | | | | | | | | | |--|---|----------------|--------------------|---|---|----|----|---|-----|--|--|--| | SL.
NO | COURSE
CATEGORY | COURSE
CODE | NAME OF THE COURSE | L | Т | Р | С | S | тсн | | | | | 7 | PC | DTA3797 | Project - Phase 1 | 0 | 0 | 24 | 10 | 0 | 24 | | | | | 8 | PC | DTA3798 | Internship | 0 | 0 | 8 | 4 | 0 | 8 | | | | | Total 14 | | | | | | | | | | | | | | L – Lecture ; T – Tutorial ; P – Practical ; C – Credit; S- Self Study; TCH- Total Contact Hours | | | | | | | | | | | | | | | SEMESTER- IV (COMMON FOR ALL SPECIALISATION) | | | | | | | | | | |-----------|--|----------------|--------------------|---|---|---|---|---|-----|--| | SL.
NO | COURSE
CATEGORY | COURSE
CODE | NAME OF THE COURSE | L | Т | Р | С | S | тсн | | | 1 | PC | DTA3799 | Project - Phase 2 | 0 | 0 | 40 | 20 | 0 | 40 | |---|---------------|----------------|---|-------|-------|-------|--------|-----|----| | | | | Total | | | | 20 | | 0 | | L | – Lecture : T | – Tutorial : P | - Practical ; C - Credit; S- Self Study | : TCF | l- To | tal C | ontact | Hou | rs | # LIST OF DEPARTMENTAL ELECTIVES WITH GROUPING – SEMESTER WISE | SEM | COURSE
CATEGORY | COURSE | NAME OF THE COURSE | L | Т | Р | С | S | тсн | | | |-----|--------------------|----------|---|---|---|---|---|---|-----|--|--| | | ELECTIVE -1 | | | | | | | | | | | | 1 | DE | DTB0751 | Rockets & Missiles Fundamentals | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | | Advanced Thermal Engineering | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | | Numerical Methods for Science and Engineering | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | DTB0753 | Communication Technology | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | | Advanced Mechanical Engineering | 3 | 0 | 0 | 3 | 1 | 3 | | | | | | | ELECTIVE - 2 | • | | | | | | | | | 1 | DE | DTB0752 | Autonomy and Navigation Technology | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | | Optimization Theory & Applications | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | | Military Electronics System Engineering | 3 | 0 | 0 | 3 | 1 | 3 | | | | 1 | DE | | System Engineering and Analysis | 3 | 0 | 0 | 3 | 1 | 3 | | | | | ELECTIVE - 3 | | | | | | | | | | | | 2 | DE | DTA-3730 | Robotics (MSS, MCC) | 3 | 0 | 0 | 3 | 1 | 3 | | | | 2 | DE | DTA-3731 | EMI/EMCIn Military Systems | 3 | 0 | 0 | 3 | 1 | 3 | | | | ĺ | | ĺ | 1 | l | 1 | 1 | |] [| | |---|----|----------|---|---|---|---|---|-----|---| | 2 | DE | DTA-3732 | Defence Electro-Optics and Imaging Systems | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3733 | Structural Dynamics and Aero-
Elasticity | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3734 | Safety, Health & Hazard Management | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3735 | Fundamental of Telemetry,
Telecommand& Transponder | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3736 | Jamming and ECM/ECCM Technologies | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3737 | Software Defined Radios | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3738 | Advanced Lightweight and Composite Structures | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3739 | Test Methodologies for Dew Systems (Lasers & Microwave) | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3740 | Advanced Analytical Techniques/Lab Testing | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3741 | Sonar System Engineering | 3 | 0 | 0 | 3 | 1 | 3 | | | | | ELECTIVE - 4 | | | | | | | | 2 | DE | DTA-3742 | Unmanned Aerial Vehicle Design | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3743 | Naval Ocean Analysis and Prediction | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3744 | Modelling &Simulation Of Laser
Matter Interaction | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3745 | Computational Aerodynamics | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3746 | Launch Vehicle Design & Analysis | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3747 | Acquisition, Tracking & Pointing Technology | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3748 | Data Acquisition, Tracking & Post
Flight Analysis | 3 | 0 | 0 | 3 | 1 | 3 | |---|----|----------|--|---|---|---|---|---|---| | 2 | DE | DTA-3749 | Air Independent Propulsion and Batteries | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3750 | Advanced Digital Modulation Technologies & Standards | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3751 | Trajectories Modelling & Simulation | 3 | 0 | 0 | 3 | 1 | 3 | | 2 | DE | DTA-3752 | Sensor Technology | 3 | 0 | 0 | 3 | 1 | 3 | ## SEMESTER – I | COURS | IRSE TITLE ADVANCED ENGINEERING MATHEMATICS | | | | | | | | | CREDITS | 4 | | | | |--|--|--|----------|----------------------|----------|-----------------|-------------|--------|-----------------------|-------------------|---------------|--|--|--| | COURS | E CODE | | MA | A0704 | | COURSE CATEGORY | | | DE | L-T-P-S | 4-0-0-0 | | | | | Vers | sion | | 1 | 1.0 Approval Details | | | | ls | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | | ASSESSM | ENT SCH | IEME | | | | | | | | | | | | | | First Periodical Assessment Second Periodical Assignments/ Project Surprise Test / Quiz Attended | | | | | | | | | | | ESE | | | | | 15% 15% 10% 5% | | | | | | | | | 5% | 50% | | | | | | Course Ol | bjective | To provide knowledge to the students about probability theory, algebra, solution Differential equations, Transform techniques, special functions & their application the areas with defence relevance. | | | | | | | | | | | | | | Course Outcome Upon completion of this course, the students will be able to 1. Know the methods for solving differential equations, generating functions. 2. Understand basic concepts of Fourier Transform, Laplace Transforms and some problems with periodic functions, step functions, impulse functions convolution. 3. Demonstrate MATLAB programming for engineering problems. 4. Understand the utilization of mathematical methods for solving problems has relevance to defence applications. | | | | | | | | | | | | | | | | CO, PO M | IAPPING | ì | | | | | | | | | | | | | | со | PO-
1 | PO-
2 | PO- | PO- | PO-
5 | PO- | PO-
7 | | | | | | | | | CO-1 | 3 | 3 | - | 3 | 3 | - | - | | | | | | | | | CO-2 | 3 | 2 | - | - | - | - | - | | | | | | | | | CO-3 | 3 | 3 | - | 3 | 2 | - | - | | | | | | | | | CO-4 | 3 | 3 | - | 3 | 2 | - | - | | | | | | | | | | | | 1: | Weakly | / relate | ed, 2: Mo | oderately r | relate | d and 3: Strongly re | elated | | | | | | MODULE | 1: | | | | | | | | | | (7) | | | | | Element
Algebra | | obabi | lity and | d Stati: | stics, o | compo | nents of | oper | ations research, | Linear | CO-1
BTL-3 | | | | | MODULE | 2: | | | | | | | | | | (7) | | | | | | Ordinary Differential equations, Numerical methods for ODE and P.D.E. Generating functions, recurrence relations. BTL-3 | | | | | | | | | | | | | | | MODULE 3: (7) | | | | | | | | | | | | | | | | Transfor | m Tecl | hniqu | es, Fou | ırier se | eries, I | ourier | Transfor | rm, L | aplace Transfori | m | CO-2
BTL-3 | | | | | MODULE | 4: | | | | | | | | | | (6) | | | | | · | s: Power series method, Frobenious method, Legendre equation, omials, Bessel equation, Bessel functions of first kind, Orthogonal | CO-3
BTL-3 | | | | | | | | | |--|---|----------------|--|--|--|--|--|--|--|--| | MODULE 5: | · · · · | | | | | | | | | | | Elements of Rar
block designs. | Elements of Ramsey theory, theorems of Burnside and Polya, and balanced incomplete block designs. CO-3 BTL-3 | | | | | | | | | | | MODULE6: | | (6) | | | | | | | | | | science and o
 reas with defence relevance range from mathematics to computer perations research, applications in probability, game theory, network theory, and experimental design. | CO-4
BTL-4 | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | | | 1. | "Advanced engineering mathematics", by Kreyszig. Publisher: Wiley. | | | | | | | | | | | 2. | 2. "Advanced engineering mathematics", by Jain/Iyenger. Publisher: Narosa. | | | | | | | | | | | 3. "Advanced engineering mathematics", by Taneja. Publisher: I K international . | | | | | | | | | | | | 4. "Advanced engineering mathematics", by Alan Jeffery. Publisher: Academic Press. | | | | | | | | | | | | 5. | "Advanced engineering mathematics", by Peter V. O"Neil. Publisher: Cen | gage Learning. | | | | | | | | | | COURS | E TITLE | | V | VARF4 | ARE SI | CREDITS | 4 | | | | | | |---|---|----------|----------------------|------------------|----------------------------|-------------------------------|---------------------------------|--|-------------------|---------------|--|--| | COURS | E CODE | | DTE | 0701 | | COURS | SE CATEGORY | DE | L-T-P-S | 4-0-0-0 | | | | Ver | sion | | : | 1.0 | | Appr | oval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-4 | | | | ASSESSM | ENT SCH | IEME | | | | | | | | | | | | | First Periodical Assessment Second Periodical Assessment Second Periodical Assignments/ Project Surprise Test / Quiz Attendance | | | | | | | | | | | | | 15 | 5% | | 1 | 5% | | | 10% | 5% | 5% | 50% | | | | Course Objective To provide knowledge to the students about warfare system and affluent them wi combat modeling using mathematical modeling. | | | | | | | | | | | | | | Course O | utcome | | 1. U
2. U
3. U | Inders
Inders | tand t
tand t
tand t | the syst
combat
the war | tems used in
simulation & | its will be able to
warfare scenaric
& modelling
ulation & modell | | factor | | | | CO, PO M | 1APPING | 3 | | | | | | | | | | | | со | PO-
1 | PO-
2 | PO- | PO-
4 | PO-
5 | PO- | PO-
7 | | | | | | | CO-1 | 3 | - | 2 | - | - | - | - | | | | | | | CO-2 | 3 | 2 | 3 | 3 | 3 | - | - | | | | | | | CO-3 | 3 | 2 | 3 | 3 | 3 | - | - | | | | | | | | | | 1: | Weakly | y relate | ed, 2: Mo | oderately relate | ed and 3: Strongly re | elated | | | | | MODUL | E 1: | | | | | | | | | (7) | | | | Types of operation | • | | | ea, air; | Lifec | ycle: co | oncept, desig | n, pre-production | n, production, | CO-1
BTL-2 | | | | MODUL | E 2: | | | | | | | | | (7) | | | | Military capabilities: air warfare, surface warfare, sub surface warfare, littoral warfare CO-2 BTL-2 | | | | | | | | | | | | | | MODULE 3: (7) | g combat and
ibat simulation | I their application | n in support | CO-2
BTL-3 | | | | MODUL | E 4: | | | | | | | | | (7) | | | | War gaming/int | War gaming/interactive simulation, Lanchester"s equations, Mathematical models of | | | | | | | | | | | |---|---|-----------------|--|--|--|--|--|--|--|--|--| | combat. | | | | | | | | | | | | | MODULE 5: (6) | | | | | | | | | | | | | Mar gaming and | d combat modeling in practice, manual war gaming | CO-3 | | | | | | | | | | | war gaming and | d combat modeling in practice, manual war gaming. | BTL-4 | | | | | | | | | | | MODULE 6: | | (6) | | | | | | | | | | | Lluman factors | representation in war gaming and combat modeling | CO-3 | | | | | | | | | | | numan factors | representation in war gaming and combat modeling. | BTL-4 | | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | | | | | "DefenseModeling, Simulation, and Analysis: Meeting the Challeng | e". Publish-er: | | | | | | | | | | | 1. | National Academies Press (October 22, 2006). | | | | | | | | | | | | 2. | "Introduction to Electronic Warfare Modeling and Simulation" by Dav | vid L. Adamy". | | | | | | | | | | | ۷. | Publisher: Artech Print on Demand (October 31, 2002). | | | | | | | | | | | | "Engineering Principles of Combat Modeling and Distributed Simulation", by An | | | | | | | | | | | | | dreasTolk (Editor), Old Dominion University. Publisher : John Wiley & Sons. | | | | | | | | | | | | | 4. | Literature / books suggested by respective course Lecturers. | | | | | | | | | | | | COURS | E TITLE | TLE SYSTEMS AND WARFARE PLATFORMS CREDITS | | | | | | | | | 4 | | | | |--|--|---|----------------|-------------------|----------|----------|--------------------------------|---------|-------------------------|-------------------|---------------|--|--|--| | COURS | | | | | | | | L-T-P-S | 4-0-0-0 | | | | | | | Vers | sion | | : | 1.0 | | Appr | oval Detai | ils | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | | ASSESSM | ENT SCH | HEME | | | | | | | | | | | | | | First Pe
Assess | | I | Second
Asse | Periodi
ssment | | Assi | eminar/
ignments
Project | / | Surprise Test /
Quiz | Attendance | ESE | | | | | 15 | % | | 1 | .5% | | | 10% | | 5% | 5% | 50% | | | | | Course Ol | 1. To provide knowledge to the students about various types of military platforms used in air, naval & land warfare. 2. Students will also be apprised for weapon system and self-protection strategies and techniques. | | | | | | | | | | | | | | | Course O | Course Outcome Upon completion of this course, the students will be able to 1. Understand types of warfare platform used for Army, Air and Marine and their design fundamentals. 2. Understand the weapon systems like guns, ordnance, missiles projectiles, mines/countermines, lasers, undersea weapons, air-launched weapons, anti-aircraft, anti-ship and anti-submarine. | | | | | | | | | | | | | | | CO, PO N | IAPPING | 3 | | | | | | | | | | | | | | со | PO-
1 | PO- | PO- | PO- | PO-
5 | PO- | PO-
7 | | | | | | | | | CO-1 | 3 | - | - | 3 | 2 | 2 | - | | | | | | | | | CO-2 | 3 | - | - | 3 | - | 2 | - | | | | | | | | | | | | 1: | Weakly | y relate | ed, 2: M | oderately | relate | ed and 3: Strongly re | elated | | | | | | MODULE | 1: | | | | | | | | | | (7) | | | | | Types of operation | • | | • | ea, air; | ; Lifec | ycle: co | oncept, d | lesig | n, pre-productio | n, production, | CO-1
BTL-2 | | | | | MODULE | 2: | | | | | | | | | | (7) | | | | | Ship design fundamentals: buoyancy, stability, ship resistance, survivability; damage control, NBCD, crew numbers, power requirements. Submarine design: buoyancy, stability, hull/tank design, air interdependence. | | | | | | | | | | | | | | | | MODULE | MODULE 3: (7) | | | | | | | | | | | | | | | control | Mechanics of flight: fixed and rotary wing, straight and level flight of aircraft, aircraft control and movement, aircraft control surfaces, aerodynamics, power requirements, range; speed, ceiling, survivability, payload. | | | | | | | | | | | | | | | MODULE | 4: | | | | | | | | | | (6) | | | | | Military vehicle | fundamentals: tracked, wheeled, A, B and C vehicles. | CO-1
BTL-2 | | |------------------|--|---------------|-----| | MODULE 5: | | | (6) | | mines/ counter | ns: guns, ordnance, missiles, rockets, bombs, sub- munitions, projectiles, rmines, lasers, undersea weapons, air-launched weapons, anti-aircraft, anti-ship, anti-submarine. | CO-2
BTL-2 | | | MODULE6: | | (| (6) | | | and Protection systems: Armour, smoke, chaff, decoys; Introduction to on, lab tests and flight trials. | CO-2
BTL-2 | | | REFERENCE BOOK | S | | | | 1. | "Light And Heavy Vehicle Technology ", by Nunney. Publisher Elsevier. | | | | 2. | "Practical approach to motor vehicle engineering and maintenance", by E et. Al. Publisher: Yesdee. | Bonnick Allan | l | | 3. | "Automotive Vibration Control Technology: Fundamentals, Materials, Con
Simulation, and Applications", by Trelleborg | struction, | | | 4. | "An Introduction to Weapons Systems", by Yacov Bar-Shlomo. Publisher: Cre
Independent Publishing Platform. | eate Space | | | 5. | "Heavy Vehicle Mechanics", by Ian Nicholson. Publisher: McGraw-Hill Educat | tion – Europe | ·. | | 6. | "Military Laser Technology for Defense: Technology for Revolutionizing 21st Warfare", by Alastair D. McAulay. Publisher: Wiley-Interscience; 1st edition. | Century | | | COURSE | COURSE TITLE WARFARE SIMULATIONS & STRATEGIES LAB CREDITS | | | | | | | | | | | |------------|---|-----|------------------|-----------------------|-------------------|-------|--|--|--|--|--| | COURSE | COURSE CODE DTB0731 COURSE CATEGORY DE L-T-P-S | | | | | | | | | | | | Versi | on | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | | | | LIST OF EX | PERIMEN [*] | ΓS | | | | | | | | | | | 1. | 1. Lab experiments will be added in consultation with DRDO labs
considering the available facilities. CO-BTL-3 | | | | | | | | | | | | COURS | E TITLE | | SYS | 2 | | | | | | | | | |--|--|--|-----|---------|----------|----------|----------|-----------|----------|--------------------|-------|-------------| | COURS | E CODE | | | 0-0-2-0 | | | | | | | | | | Vers | Version 1.0 Approval Details 23 ACM, LEARNING 06.02.2021 LEVEL | | | | | | | | | LEARNING
LEVEL | BTL-3 | | | ASSESSM | SSESSMENT SCHEME | | | | | | | | | | | | | | First Periodical Assessment Second Periodical Assignments/ Project Surprise Test / Quiz Attendance | | | | | | | | | | ESE | | | 15 | 15% 15% 10% 5% 5% | | | | | | | | 50% | | | | | Course Ol | bjective | | | | | 1 | | | | | | | | Course O | utcome | | | Upon | comple | etion of | this cou | ırse, the | e studen | ts will be able to | | | | CO, PO M | 1APPING | 3 | | | | | | | | | | | | со | PO-
1 | P(| _ | PO- | PO-
4 | PO-
5 | PO-
6 | PO-
7 | | | | | | CO-1 | | | | | | | | | | | | | | CO-2 | | | | | | | | | | | | | | CO-3 | | | | | | | | | | | | | | 1: Weakly related, 2: Moderately related and 3: Strongly related | | | | | | | | | | | | | | LIST OF EX | KPERIM | ENT | S | | | | | | | | | | | 1. | | Lab experiments will be added in consultation with DRDO labs considering the available facilities. | | | | | | | | | | CO-
BTL- | # **SEMESTER I - ELECTIVE -1 COURSES** | COURS | E TITLE | | | ROCKE | TS & | MISSIL | ES FUN | IDAMI | ENTALS | CREDITS | 3 | | | |--|---|----------|----------------|-----------------------------|-----------------------|-----------------|-----------------------------|-------------------|--|-------------------|---------------|--|--| | COURS | E CODE | | DTE | 30751 | | COURSE CATEGORY | | | DE | L-T-P-S | 3-0-0-0 | | | | Vers | sion | | : | 1.0 | | Appr | oval De | tails | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | ASSESSM | ENT SCH | HEME | | | | | | | | | | | | | First Pe
Assess | | 1 . | Second
Asse | Periodi
ssment | | Assi | eminar,
gnmen
Project | | Surprise Test /
Quiz | Attendance | ESE | | | | 15% 15% 10% 5% 5% | | | | | | | | | | 5% | 50% | | | | Course Ol | Course Objective To provide knowledge to the students about missile system, classification of missiles, aerodynamics of missiles, subsystems and missile trajectory. | | | | | | | | | | | | | | Course O | utcome | | . Und
inte | erstan
gratior
erstan | d basi
n.
d phy | cs of m | nissile p
hind gu | hysics
uided n | ts will be able to
as well as the el
nissiles and aero
d in missiles. | | | | | | CO, PO N | 1APPING | G | | | | | | | | | | | | | со | PO-
1 | PO-
2 | PO- | PO-
4 | PO-
5 | PO-
6 | PO-
7 | | | | | | | | CO-1 | 3 | - | - | 2 | 2 | - | - | | | | | | | | CO-2 | 3 | - | - | 2 | 2 | - | - | | | | | | | | CO-3 | - | - | 3 | 2 | 2 | - | - | | | | | | | | | | I | 1: | Weakly | / relate | ed, 2: Mo | oderate | y relate | d and 3: Strongly re | elated | | | | | MODUL | E 1: | | | | | | | | | | (5) | | | | Basics o | f Missi | le Ph | ysics, Ir | itrodu | ction t | o Guid | ed Mis | siles, (| Classification of I | Missiles. | CO-1
BTL-2 | | | | MODUL | E 2: | | | | | | | | | | (5) | | | | Missile Aerodynamic Configurations, Introduction to Missile System, Interrelationship between various Missile Sub-Systems. CO-2 BTL-2 | | | | | | | | | | | | | | | MODULE 3: (5) | | | | | | | | | | | | | | | | Basic Characteristics of Guided Missile Systems, Missile System Reliability, Range dispersion and CEP Concept, CO-2 BTL-2 | | | | | | | | | | | | | | MODULE 4: | | (7) | |------------------|--|-----------------| | Design, System | Layout and integration of Sub-Systems. | CO-3 | | | | BTL-4 | | MODULE 5: | | (7) | | | nsformation, Transformation Matrices. Two, Three and Six DOF otion, Ballistic Missile Trajectory. | CO-3
BTL-3 | | MODULE6: | | (7) | | Effect of Curvat | ure of Earth, Rotation of Earth, Variation of Gravity on Missile Trajectory. | CO-3
BTL-2 | | REFERENCE BOOKS | S | | | 1. | "Fundamentals of Guided Missiles",by S. R. Mohan. Publisher: Defence Development Organisation. | Re-search and | | 2. | "Estimation and Prediction of Ballistic Missile Trajectories" by Jeffrey David R. Vaughan. Publisher: RAND (29 May 1996) | y A. Isaac-son, | | 3. | "Introduction to Modern Algebra and Matrix Theory", by O. Schreid Martin David, Melvin Hausner. Publisher: Dover Publications. | er, E. Sperner, | | COURS | E TITLE | | | ADVA | NCED | CREDITS | 3 | | | | | | | |--------------------|---|----------------|--------------------|-------------------|---------------------------|-----------------------------|-----------------------------|-----------|---|--------------------------------|---------------|--|--| | COURS | E CODE | | | | | COURS | E CATE | GORY | DE | L-T-P-S | 3-0-0-0 | | | | Vers | sion | | 1 | 1.0 | | Approval Details | | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | ASSESSM | ENT SCH | IEME | | | | | | | | | | | | | First Pe
Assess | | S | | Periodi
ssment | | Assi | eminar,
gnmen
Project | its/ | Surprise Test /
Quiz | Attendance | ESE | | | | 15% 15% 10% 5% | | | | | | | | | | | 50% | | | | Course
Objectiv | Course Problems of the defence systems and thermal system design & simulation for the various air, land & naval defence systems utilized under different environmentations. | | | | | | | | | | | | | | Course
Outcom | e | 1.
2.
3. | Und
Carr
Und | erstan
y out C | d ther
CFD sind
the | mal de
mulatio
concep | sign a | nd sim | students will be
ulations for syste
heat exchanger
management re | em design.
s, refrigeration | | | | | Prerequis | ites: | | | | | | | | | | | | | | CO, PO N | 1APPING | i | | | | | | | | | | | | | СО | PO- | | | | | | | CO-1 | 3 | 3 | 3 | 3 | 5
3 | 6 | 7 | _ | | | | | | | | 3 | <u> </u> | - | 3 | 3 | <u> </u> | - | _ | | | | | | | CO-2 | 3 | | - | 3 | 3 | - | - | | | | | | | | | <u> </u> | | 1: | Weakly | | d. 2: Ma | oderate | lv relate | ed and 3: Strongly re | elated | | | | | MODUL | F 1: | | | - Tream, | relate | , =: | | ., | | | (7) | | | | | therma | | _ | • | | | | _ | and simulation | , Heat | CO-1
BTL-3 | | | | MODUL | E 2: | | | | | | | | | | (7) | | | | Comput | CO-2 Computation fluid dynamics (CFD), Thermal Finite Element Analysis BTL-4 | | | | | | | | | | | | | | MODUL | MODULE 3: (6) | | | | | | | | | | | | | | Heat Exc | change | rs for: | Heat | Exchar | nger N |
letworl | √ Desig | gn. | | | CO-2
BTL-4 | | | | MODUL | E 4: | | | | | | | | | | (5) | | | | Refrigeration, H | lumidifiers, Air Washers and Cooling Towers. | CO-2 | | | | | | | | |------------------------------|---|-----------------|--|--|--|--|--|--|--| | | | BTL-4 | | | | | | | | | MODULE 5: | | (6) | | | | | | | | | Thermal manag vehicles etc.) | CO-3
BTL-4 | | | | | | | | | | MODULE 6: | MODULE 6: (5) | | | | | | | | | | Thermal testing | CO-3 | | | | | | | | | | systems. | BTL-4 | | | | | | | | | | REFERENCE BOOKS | S | | | | | | | | | | 1. | "Fundamentals of Heat and Mass Transfer", by Incropera and Dewitt. Pul Wiley. | olication: John | | | | | | | | | 2. | "Convective Heat and Mass Transfer", by W M Kays and M E Crawford. Pomos McGraw-Hill publishing Company. | ublisher: | | | | | | | | | 3. | "Thermal Radiation Heat Transfer" by J Siegel and R Howell. Publisher: El | sevier. | | | | | | | | | 4. | "Manohar Prasad, Refrigeration and Air Conditioning", 3rd Edition, New International, 2015. | Age | | | | | | | | | 5. | "Computational Fluid Dynamics – The Basics with Applications", by John Publisher :1st Edition, McGraw Hill, 2012. | D Anderson. | | | | | | | | | 6. | "Thermal System Design and Simulation", by P.L. Dhar, 1st Edition. | | | | | | | | | | COURS | E TITLE | | NUMER | ICAL N | ЛЕТНО | DDS FO | R SCIENCE & | ENGINEERING | CREDITS | 3 | | | | | |--|---|---------|--|--------|----------|-----------|--------------------------------|-------------------------|-------------------|---------|--|--|--|--| | COURS | E CODE | | | | | COURS | E CATEGORY | DE | L-T-P-S |
3-0-0-0 | | | | | | Ver | sion | | : | 1.0 | | Appr | oval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | | | ASSESSM | ENT SCH | IEME | | | | | | | | | | | | | | First Pe
Asses | riodica
sment | I | Second Periodical Assessment | | | Assi | eminar/
gnments/
Project | Surprise Test /
Quiz | Attendance | ESE | | | | | | 15 | 5% | | 1 | .5% | | | 10% | 5% | 5% | 50% | | | | | | Course
Objectiv | v e | | To provide knowledge to the students to develop numerical methods aided by technology to solve algebraic equations, calculate derivatives and integrals, curve fitting and optimization techniques. The course will also develop an understanding of the finite element analysis and computational fluid engineering. | | | | | | | | | | | | | Use the numerical techniques (algorithms) to find the solution (appralgebraic equations and system of equations. Fit the data using interpolation technique and spline methods. Use to finite element analysis, interpretation of analysis results. Understanding of computational engineering process. | | | | | | | | | roximate) | | | | | | | CO, PO N | //APPING | 3 | | | | • | | | | | | | | | | со | PO-
1 | PO
2 | - PO-
3 | PO- | PO-
5 | PO- | PO-
7 | | | | | | | | | CO-1 | 3 | 3 | 2 | - | - | - | - | | | | | | | | | CO-2 | 3 | 3 | - | 3 | - | - | - | | | | | | | | | CO-3 | 3 | 3 | 2 | 3 | - | - | - | | | | | | | | | CO-4 | 3 | 3 | - | - | - | - | - | | | | | | | | | | | I. | 1: | Weakly | y relate | ed, 2: Mo | derately relate | d and 3: Strongly re | elated | | | | | | | MODUL | E 1: | | | | | | | | | (5) | | | | | | Introduction, solution of non-linear equations, solution of linear systems. | | | | | | | | | | | | | | | | MODUL | E 2: | | | | | | | | | (5) | | | | | | | ntroduction and polynomial approximation, curve fitting, Numerical applications & ntergradations, numerical optimization. | | | | | | | | | | | | | | **MODULE 3:** (5) | Matrices and t stability of solu | ypes of linear systems, direct elimination methods, conditioning and | CO-3
BTL-3 | |----------------------------------|--|----------------| | Stubility of 3010 | acions. | | | MODULE 4: | | (7) | | | Finite Element Analysis (FEA) simulation software, Pre- and Post- | CO-4 | | - | ee mesh and Mapped mesh techniques, Quality checks on nodes and ndary conditions. | BTL-4 | | MODULE 5: | indaily conditions. | (7) | | | | | | | o computational fluid engineering, Fundamental equations, | CO-4 | | Computational | Engineering Process. | BTL-3 | | MODULE6: | | (7) | | | | CO-5 | | Fluid Simulatio | BTL-4 | | | REFERENCE BOOK | cs | | | 1. | "Numerical Methods for Scientific and Engineering Computation", by M. S.R.K. Iyengar. Publisher: New Age International Publishers. | K. Jain and | | 2. | "Applied Numerical Analysis", by Gerald & Wheatley. Publisher Addison | – Wesley. | | 3. | "Introductory Methods of Numerical Analysis", by, S.S. Sastry. Publisher: 5th Edition,New Delhi, 2009. | PHI Pvt. Ltd., | | 4. | "Applied Numerical Methods Using MATLAB", by W.Y. Yang, W. Cao, T.S. Morris. Publisher: Wiley India Edn., 2007. | Chung and J. | | 5. | "Numerical Methods for Engineers with Programming and Software App
Steven C. Chapra and Ra P. Canale. Publisher: Tata McGraw Hill, 2014 7th | | | 6. | "Finite Element Procedures", by K.J. Bathe, Prentice Hall of India. | | | 7. | "Finite Elements in Engineering", by Chandrupatla and Belegundu. | | | 8. | "Finite element Method", by J.N.Reddy. | | | | | | | COUR | SE TITI | .E | | | CON | MUN | ICATIO | OGY | CREDITS | 3 | | | |--|-----------------|-------|------|----------|-------------------|----------|-------------------------------------|----------|-----------|-------------------------|-------------------|---------------| | COUR | SE COE | ÞΕ | | DTB | 0753 | | COURS | E CATE | GORY | DE | L-T-P-S | 3-0-0-0 | | Ve | rsion | | | 1 | L.O | | Approval Details | | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSM | ENT SC | НЕМЕ | | | | | | | | | | | | First P
Asse | eriodi
ssmen | | Se | | Periodi
ssment | | Seminar/
Assignments/
Project | | | Surprise Test /
Quiz | Attendance | ESE | | 1 | 15% | | | 1 | 5% | | | 10% | | 5% | 5% | 50% | | Course Objective Course Objective Course Objective To provide knowledge to the students about communication system designal communication of bandwidth and signal-to-noise ratio of a signal, digital communication systems, performance evaluation, explain the concepts of link budget and multiple accesses as it applies to wireless communication. | | | | | | | | | | ommunication | | | | Course Outcome Upon completion of this course, the students will be able to 1. Understand communication system design methodologies, communication system architecture, analogue & digital modulation techniques. 2. Computation of data rates, bandwidth, BER. 3. To carry out the link budget analysis. | | | | | | | | | unication | | | | | CO, PO N | /IAPPIN | IG | | | | | | | | | | | | со | PO-
1 | PO- | -2 | PO-
3 | PO-
4 | PO-
5 | PO-
6 | PO-
7 | | | | | | CO-1 | 3 | - | | - | 2 | 3 | - | - | | | | | | CO-2 | 3 | - | | - | 2 | 3 | - | - | | | | | | CO-3 | 3 | - | | - | - | 3 | - | - | | | | | | | | | [| 1: W | /eakly r | elated, | 2: Mod | erately | related | and 3: Strongly re | lated | | | MODUL | E 1: | | | | | • | | | | | | (6) | | | | on Co | mm | unicat | tion Sy | stems | , Basic | s of w | reless | channel behavio | or. | CO-1 | | | | | | | | | | | | | | BTL-2 | | MODUL | .E 2: | | | | | | | | | | | (6) | | Digital c | lata co | ommı | unic | ation | systen | ıs, dig | ital sig | naling | techni | ques. | | CO-1 | | | | | | | | | | | | | | BTL-2 | | MODUL | .E 3: | | | | | | | | | | | (5) | | Data rat | tes an | d ban | dwi | dth ca | lculati | on in | digital | data c | ommu | nication system | s. | CO-2
BTL-3 | | MODUL | FΔ· | | | | | | | | | | | (7) | | | | error | and | d BER | calcula | ation. | Modul | ation t | echno | logies (analogue | e & digital). | CO-2 | | Voice so | - | | | | | | | | | | | BTL-3 | | MODULE 5: | | (7) | | | | | | | | |--------------------------------|--|---|--|--|--|--|--|--|--| | Communication information syst | CO-1,2
BTL-3 | | | | | | | | | | MODULE 6: | MODULE 6: (5) | | | | | | | | | | Link budget calc | CO-3
BTL-3 | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | | 1. | "Fundamentals of communication systems," by Proakis and Salehi. Publ Pearson. | isher: | | | | | | | | | 2. | "Communication Systems", by Simon Haykin and Michael Moher. Publis | "Communication Systems", by Simon Haykin and Michael Moher. Publisher: Wiley. | | | | | | | | | 3. | "Modern digital and analog communication systems," by B.P. Lathi and Publisher: Oxford University Press. | Zhi Ding. | | | | | | | | | COURS | E TITLE | | А | DVAN | CED I | ИЕСНА | NICAL | IEERING | CREDITS | 3 | | |--|--|--------|------------------|-------------------|----------|-------------------------------------|---------|-----------|-------------------------|-------------------|---------------| | COURS | E CODE | | | | | COURS | E CATE | GORY | DE | L-T-P-S | 3-0-0-0 | | Vers | sion | | 1 | 0 | | Appr | oval De | tails | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSM | ENT SCH | IEME | | | • | | | | | | | | First Pe
Assess | | I S | econd I
Asses | Periodi
ssment | | Seminar/
Assignments/
Project | | | Surprise Test /
Quiz | Attendance | ESE | | 15% 15% | | | | | | | 10% | | 5% | 5% | 50% | | Course Objective To provide knowledge to the students about different methods of mechanical system analysis, mechanical simulation soft-ware and use of computational techniques for structural and fluid dynamics. | | | | | | | | • | | | | | Course O | Course Outcome 1. Understand mechanical analysis software and carry out mathematical modeling for simulation of phenomena behind the structural and fluid dynamics. 2. Carry out design & finite element analysis of components of systems and subsystems. 3. Carry out the CFD analysis. | | | | | | | | nics. | | | | CO, PO M | 1APPING | 3 | | | | | | | | | | | со | PO- | | | | | CO-1 | 3 | 2 | 3 | 3 | 5
3 | 6 | 7 | | | | | | CO-2 | 3 | 2 | _ | 3 | 3 | _ | _ | | | | | | CO-3 | 3 | 2 | _ | 3 | 3 | - | _ | | | | | | | | | 1: | Weakly | / relate | d, 2: Mo | derate | ly relate | ed and 3: Strongly re | elated | | | MODUL | E 1: | | (5) | • | • | • | | • | <u> </u> | | | | Introduc | | tools | | echani | ical de | esign & | analys | sis | | | CO-1 | | | | | | | | | | | | | BTL-2 | | MODUL | E 2: | (7) | | | | | | | | | | | Stress e | nginee | ring – | theory | / & sin | nulatio | on, me | chanic | s of sol | ids | | CO-1
BTL-2 | | MODUL | E 3: | | | | | | | | | | (7) | | Finite el |
ement | meth | ods in | struct | ural d | ynamic | s, Stru | ctural i | integrity | | CO-2 | | | | | | | | | | | | | BTL-3 | | MODUL | | | | | | | | | | | (5) | | Fluid me | echanic | CS | | | | | | | | | CO-2 | | MODUL | F 5: | | | | | | | | | | BTL-3 (7) | | | _ • | | | | | | | | | | (*) | | Communitational | fluid dunancias | CO-3 | | | | | | | |--|--|-----------------|--|--|--|--|--|--| | Computational | nuid dynamics | BTL-3 | | | | | | | | MODULE 6: | | (5) | | | | | | | | Component design, Applied materials and corrosion CO-BTL- | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | 1. | "An Introduction to Computational Fluid Dynamics: The Finite Volume Method "by H. Versteeg. Publisher: Pearson. | | | | | | | | | 2. | "Computational Fluid Dynamics the Basics with Applications", by Joh
Publisher: McGraw Hill Education (1 July 2017) | n D. Ander Jr. | | | | | | | | 3. | "Fluid Mechanics: Volume 2: Foundations and Applications of Mechanic iisc)" by C. S. Jog. Publisher: Cambridge University Press. | cs (Cam-bridge- | | | | | | | | 4. | Fundamentals of Machine Component Design", by Robert C. Juvinall, Ku
Publisher: John Wiley & Sons | rt M. Marshek. | | | | | | | # **SEMESTER I - ELECTIVE - 2 COURSES** | COURS | E TITLE | Α | UTONO | OMY A | ND N | AVIGA | TION T | ECHNO | DLOGY | CREDITS | 3 | |--|--|----------|-------|--------|-------------------------------------|-----------|----------|-------------------------|-------------------------------------|-------------------|---------------| | COURS | E CODE | | DTB | 0752 | | COURS | SE CATE | GORY | DE | L-T-P-S | 3-0-0-0 | | Vers | sion | | 1 | 1.0 | | Appr | oval Det | ails | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSM | ASSESSMENT SCHEME | | | | | | | | | | | | First Periodical Second Per
Assessment Assessm | | | | | Seminar/
Assignments/
Project | | | Surprise Test /
Quiz | Attendance | ESE | | | 15 | 5% | | 1 | 5% | | | 10% | | 5% | 5% | 50% | | Course Objective To provide knowledge to the students about technology of modern navigati systems, particularly satellite-based systems, UAV guidance systems, GPS, SLAM. | | | | | | | | _ | | | | | Course O | Course Outcome Upon completion of this course, the students will be able to Describe the basic principle of operation of a global navigation satellite system Understand the navigation systems and derive the navigation equations. Carry out path planning the UGV / UAV. Solve the equations for calculating a position estimate from a given satellite constellation. | | | | | | | tions. | | | | | CO, PO M | CO, PO MAPPING | | | | | | | | | | | | со | PO-
1 | PO-
2 | PO- | PO- | PO-
5 | PO- | PO-
7 | | | | | | CO-1 | 3 | - | 2 | - | 3 | - | - | | | | | | CO-2 | 3 | - | 3 | - | 3 | - | - | | | | | | CO-3 | 3 | - | 2 | - | 3 | - | - | | | | | | CO-4 | 3 | - | - | - | 3 | - | - | | | | | | | | | 1: | Weakly | / relate | ed, 2: Mo | oderatel | y relate | d and 3: Strongly re | elated | | | MODUL | E 1: | | | | | | | | | | (6) | | Introduc
guidance | | | _ | _ | | • | | uidanc | e approaches: co | onventional | CO-1
BTL-3 | | MODUL | E 2: | | | | | | | | | | (7) | | | | | | _ | | | ٠. | | ce- and coordina
gon the surface | • | CO-2
BTL-3 | | MODUL | E 3: | | | | | | | | | | (7) | | Geomet
for UGV | _ | | | | ng and | d follov | ving, ar | nd opti | mal guidance; p | ath planning | CO-3
BTL-3 | | MODULE 4: | | (5) | | | | | | | |--------------------------------|--|-----------------|--|--|--|--|--|--| | Navigation app
System (GPS) | roaches: navigation systems, Understanding the Global Positioning | CO-1,3
BTL-3 | | | | | | | | MODULE 5: | | (6) | | | | | | | | GNSS (Global N | CO-3
BTL-3 | | | | | | | | | MODULE 6: (5 | | | | | | | | | | SLAM (Simultar avoidance. | CO-4
BTL-3 | | | | | | | | | REFERENCE BOOK | S | | | | | | | | | 1. | "Global Navigation Satellite Systems: Insights Into GPS", by Bhatta, B., Global Compass, and Others. Publisher: BS Publications, New Delhi 2010. | onass, Galileo, | | | | | | | | 2. | "Global Positioning Systems, Inertial Navigation, and Integration", by Gre
Weill, L. R., Andrews, A. P., Publisher: John Wiley & Sons, New York, 2006 | | | | | | | | | 3. | "GNSS – Global Navigation Satellite Systems", by Verlag Wien. Hofmann-
Lichtenegger, H., Wasle, E. Publisher: Springer 2008. | Wellenhof, B., | | | | | | | | 4. | "Global Positioning System Theory and Practice", Hofmann-Wellenhof, B
Lichtenegger, H., Verlag Wien, Collins, J. Publisher: Springer 2001. | ., | | | | | | | | COURSE TITLE | OPTIN | /IIZATIO | N THE | ORY & | APPLICA | ATION | IS | CREDITS | 3 | | |---|--|---|----------|-------------------------------------|-----------|--------|-------------------------|-------------------|---------|--| | COURSE CODE | | | | COURS | E CATEG | ORY | DE | L-T-P-S | 3-0-0-0 | | | Version | | 1.0 | | Appr | oval Deta | ails | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT SCH | EME | | | | | | | | | | | First Periodical
Assessment | | nd Period
sessmen | | Seminar/
Assignments/
Project | | | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | 15% | | | 10% | | 5% | 5% | 50% | | | Course Objective To cover the concepts of optimization methods and algorithms developed for solving various types of optimization problems. Apply the mathematical results and numerical techniques of optimization theoretical and applied research areas. | | | | | | | | | | | | Course Outcome | 1. U production of the product | Upon completion of this course, the students will be able to Understand mathematical modeling and the formulation of optimization problems. Create programs based on different optimization algorithms using IT tools, such as MATLAB etc. Understand theory about linear programming, integer programming, and stochastic programming Understand the process of finalizing design of engineering systems by applying the numerical optimization. | | | | | | | | | | Prerequisites: | | | | | | | | | | | | CO, PO MAPPING | | | | | | | | | | | | CO PO- | PO- PO |)- PO- | PO- | PO- | PO- | | | | | | | 1 | 2 3 | 4 | 5 | 6 | 7 | | | | | | | CO-1 3 | | - | 1 | - | - | | | | | | |
CO-2 3 | - 2 | - | 3 | - | - | | | | | | | CO-3 3 | - 2 | - | 3 | - | - | | | | | | | CO-4 3 | | - | - | - | - | | | | | | | | | 1: Weakl | y relate | ed, 2: Mo | oderately | relate | d and 3: Strongly r | elated | | | | MODULE 1: | | | | | | | | | (| | | Introduction to | optimizat | ion, class | ical op | timizat | ion tech | nique | | | CO-1 | | | | | | | | | | | | BTL-1 | | $Linear\ programming\ \&non-linear\ programming\ and\ dimensional\ minimization\ methods.$ BTL-2 | MODULE 3: | | (7) | | | | | | | | | |--|--|----------------|--|--|--|--|--|--|--|--| | Non coordinatio | n optimization techniques, coordinated optimization techniques, gramming. | CO-2
BTL-3 | | | | | | | | | | MODULE 4: | MODULE 4: (6) | | | | | | | | | | | Dynamic programming, integer programming, stochastic programming. | | | | | | | | | | | | MODULE 5: | , | (5) | | | | | | | | | | Solution of a variety of design problems in mechanical engineering, using numerical optimization techniques. | | | | | | | | | | | | MODULE6: (5) | | | | | | | | | | | | Additional Topic | cs: multi-objective, optimization, game theory, optical control theory. | CO-4
BTL-2 | | | | | | | | | | REFERENCE BOOKS | 5 | | | | | | | | | | | 1. | "Numerical Optimization", by Jorge Nocedal and Stephen J.Write. Publish 2006. | ner: Springer, | | | | | | | | | | 2. | "Practical methods of Optimization" by R.Fletcher. Publisher: Wiley, 198 | 7. | | | | | | | | | | 3. | "Iterative method for optimization" by C. T. Kelley. Publisher: SIAM, 1999 | Э. | | | | | | | | | | 4. | "Introduction to Nonlinear Optimization:Theory, Algorithm, and Application MATLAB. MOS-SIAM Series on Optimization", by Amir Becker. | ionwith | | | | | | | | | | 5. | "Dynamic Programming and Optimal Control (Volumel) " by Dimitri P. Be Publisher: Athena Scientic, 2005. | rtsekas. | | | | | | | | | | 6. | Optimization Theory and Applications", by SS Rao. | | | | | | | | | | | COURS | E TITLE | M | ILITAR | Y ELEC | CTRON | NICS SY | STEM | ENGIN | EERING | CREDITS | 3 | |---|--|----------|---------------------------------|----------|----------|------------------|----------------------------|-----------|---|-------------------|---------------| | COURS | E CODE | | | | | COURS | SE CATE | GORY | DE | L-T-P-S | 3-0-0-0 | | Vers | sion | | 1 | 1.0 | | Approval Details | | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSM | ENT SCH | IEME | | | | | | | | | | | First Pe
Assess | | I S | Second Periodical
Assessment | | | Assi | eminar
gnmen
Project | its/ | Surprise Test /
Quiz | Attendance | ESE | | 15 | 15% 15% 10% 5% 5% | | | | | | | 5% | 50% | | | | Course Ol | ojective | re | quiren | nent fo | or mili | tary er | vironr | nent, g | about the learni
eneration of sys
s on the electron | tem requireme | • | | Upon completion of this course, the students will be able to 1. Understand the military electronics systems. 2. Generate system design requirements as per mission needs & operational requirements. 3. To create digital simulation models. 4. Understand the limitations of the COTS available electronics systems. 5. Evaluate the radiation effects on the performance of electronics systems. | | | | | | | | | tems. | | | | CO, PO M | APPING | i | | | | | | | | | | | со | PO-
1 | PO-
2 | PO- | PO- | PO-
5 | PO- | PO- | | | | | | CO-1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | CO-2 | 3 | - | - | 2 | - | - | - | - | | | | | CO-3 | 3 | - | 2 | - | - | - | - | - | | | | | CO-4
CO-5 | 3 | - | - | 3 | - | -
 _ | - | | | | | | | 3 | | | | L | 1 2 24 | | | | | | | MODIII | F 4 | | 1: | vveakiy | y relate | :a, 2: IVI | oaerate | iy relate | d and 3: Strongly re | eiated | /=\ | | MODUL | | ا علم د | | A 10 - 1 | | | | التعميلة | ada fantle e de 1 | | (5) | | integrat | | | | _ | _ | | pts an | a metr | ods for the desi | gn and | CO-1
BTL-2 | | MODUL | E 2: | | | | | | | | | | (5) | | Familiar
defense | • | | system | s engi | neerir | ng proc | ess th | rough o | ase studies of re | epresentative | CO-2
BTL-2 | | MODUL | | <u> </u> | | | | | | | | | (6) | | | ntroduction to methods used for determination of system requirements from mission cO-2 needs and operational requirements. | | | | | | | | | | | | MODULE 4: (7) | | | | | | | | | | |--------------------------------------|---|--|--|--|--|--|--|--|--| | Digital simulation | CO-3
BTL-4 | | | | | | | | | | MODULE 5: (7) | | | | | | | | | | | Limitations of c
electrostatic br | CO-3
BTL-3 | | | | | | | | | | MODULE 6: (6) | | | | | | | | | | | Radiation effect
military integra | CO-4
BTL-3 | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | | 1. | "Introduction to Electronic Defense Systems", by Neri Filippo. Publisher: Artech House Publishers. | | | | | | | | | | 2. | "Military Handbook of Electronic Reliability design", by US Department of Defence. | | | | | | | | | | 3. | "Defence Electronics Standards and Quality Assurance", by Ray Tricker. Pub-: Elsevier | | | | | | | | | | 4. | "Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems", by Anil K. Maini. Publisher: John Wiley & Sons Ltd | | | | | | | | | | 5. | "Digital Simulation Methods", by M.G. Hartley. Publisher: P. Peregrinus Ltd | | | | | | | | | | 6. | 6. "Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems", By Alper Demir. Publisher: Springer. | | | | | | | | | | COURS | E TITLE | S | SYSTEM ENGINEERING & ANALYSIS | | | | | | | CREDITS | 3 | | |--|--|---|-------------------------------|--------|----------|-------------------------------------|---------|-----------|-------------------------|-------------------|---------|--| | COURSE CODE | | | | | | COURSE CATEGORY | | | DE | L-T-P-S | 3-0-0-0 | | | Version | | | 1.0 | | | Approval Details | | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT SCHEME | | | | | | | | | | | | | | First Periodical Assessment | | 1 5 | Second Periodical Assessment | | | Seminar/
Assignments/
Project | | | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | | 15% | | | 10% | | | 5% | 5% | 50% | | | Course Ol | bjective | To provide knowledge to the students about the military systems engineering, system requirements, basics of system design, architecture, operational requirements, system reliability and management. | | | | | | | | | | | | Course O | Course Outcome Upon completion of this course, the students will be able to 1. Understand the system design requirements, architecture, functional requirements 2. Generate the system requirements documents as per the requirement analysis. 3. Understand the system reliability, maintainability, usability issues. 4. Carry out the system reliability analysis. | | | | | | | | | | | | | CO, PO MAPPING | | | | | | | | | | | | | | со | PO- | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | CO-1 | 3 | - | - | - | - | - | - | | | | | | | CO-2 | 3 | 3 | - | - | - | - | - | | | | | | | CO-3 | 3 | 3 | 2 | - | - | - | - | | | | | | | CO-4 | 3 | 3 | - | - | 4 | - | - | | | | | | | | | | 1: | Weakly | y relate | ed, 2: Mo | oderate | ly relate | d and 3: Strongly re | elated | | | | MODUL | E 1: | | | | | | | | | | (5) | | | Fundamentals of systems engineering and system architecting of weapon system, system engineering. standards 15288, requirements analysis, functional analysis and allocation, preliminary system architecture. | | | | | | | | | | | | | | MODUL | | | , , , | | | | | | | | (5) | | | 1 | Systems analysis, system design, and the basics of test and evaluation, Introduction to combat systems, CO-2 BTL-3 | | | | | | | | | | | | | MODULE 3: (6) | | | | | | | | | | | | | | System | System development phases (Conceiving, Designing, Implementing, and Operating), BTL- | | | | | | | | | | | | | MODULE 4: (7) | | | | | | | | | | | | | | Techniques of system design and assessment for operational feasibility, including co-3 | | | | | | | | | |---|--|-----------------|--|--|--|--|--|--| | reliability, maintainability, usability (including human factors and human performance). BTL-3 | | | | | | | | | | MODULE 5: | | (7) | | | | |
 | | Supportability | and producibility, System cost assessment and effectiveness estimation. | CO-3 | | | | | | | | | and productionity, system cost assessment and effectiveness estimation. | BTL-3 | | | | | | | | MODULE 6: | | (6) | | | | | | | | Reliability analy | sis and management (basic tools and methods of reliability for | | | | | | | | | developing com | plex systems including electronic components, mechanical components, | CO-4 | | | | | | | | and software), r | redundancy, graceful degradation, fault tolerance, MTBF. | BTL-3 | | | | | | | | | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | 1. | "The Engineering Design of Systems: Models and Methods", by Buede D. | M.2. | | | | | | | | <u> </u> | Publisher: John Wiley & Sons Inc. | | | | | | | | | 2. | "Systems engineering fundamentals", by Defense Acquisition University I | Pressfort | | | | | | | | | Belvoir, Virginia | | | | | | | | | 3. | "System Analysis Design and Development", by Charles S. Wasson. Publis | her : Wiley | | | | | | | | | Series in System Engineering and Management. | | | | | | | | | 4. | "Principles of Planned Maintenance", by Clifton R H. Publisher: McGraw I | Hill, New York. | | | | | | | | 5. | "An introduction to Reliability and Maintainability Engineering", by Ebling | g CE. Tata Mc | | | | | | | | J. | Graw Hill. | | | | | | | | | 6. | "Reliability Engineering", by Srinath L S. Publisher: Affiliated East-West P | ress Limited, | | | | | | | | 0. | New Delhi, 2002. | | | | | | | | | 7. | "Engineering Maintainability", by Dhillon B S. Publisher: Prentice Hall of | India. | | | | | | | ## **SEMESTER – II (AEROSPACE TECHNOLOGY)** | COURSE TIT | TLE | AEROSI
SIMULA | | EM CONFIGURAT | TION, D | ESIGN & | CREDITS | 4 | |---|---------|------------------|---------------|-------------------------|-------------|--------------------|-------------------|-------------------| | COURSE CO | DDE | | | COURSE CATEGOR | Υ | BS | L-T-P-S | 4-0-0-0 | | Version | | | 1.0 | Approval Details | | 3 ACM,
.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT | SCHEM | IE | | | | | | | | First Period | lical | Second | l Periodical | Seminar/ | Surp | rise Test / | Attendance | ESE | | Assessme | | _ | essment | Assignments/ | | Quiz | | | | | | | | Project | | | | | | 15% | | | 15% | 10% | | 5% | 5% | 50% | | Course Object | tive | The ma | in objective | of the course is | to provid | de knowled | dge to the stud | ents about the | | | | | - | ues of aerospace | • | | _ | | | | | - | - | will also learn ab | • | • | | _ | | | | • | • | ation of aircraft ar | | _ | • | , , | | Course Outco | me | • | | of this course, the stu | | · · | | | | | | | | e concept of mi | | | its design requ | uirements and | | | | | cess. | • | , | | 0 1 | | | | | • | | ospace vehicle ar | nd articu | ılate its b | enefits in writt | en and verbal | | | | forr | _ | opace remote a. | | | eneries in write | en and versa | | | | | | e methods for a | ro-plast | ic analysis | computationa | l fluid analysis | | | | | | n aero-dynamics. | .io ciast | ic arranysis, | , computationa | i ilala allalysis | | | | | | • | nd +a a | ir oir to | around wooner | s system IIAV | | | | | | e air to air, grou | iliu to a | ir, air to g | ground weapor | i system, uav | | CO, PO Mapp | · | ШО | unted GW a | na ucavs. | | | | | | СО, РО Марр | PO-1 | 1 | PO-2 | PO-3 PO |)-4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | | 1 | 3 - | /- 4 | - | 2 | 2 | | CO-2 | 3 | | 3 | 3 2 | | 2 | 3 | 2 | | CO-3 | 3 | | 1 | - - | | - | - | - | | C0-4 | 3 | | 1 | | | - | - | - | | MODULE 1: | | | | | | | | (6) | | Introduction | n (aero | o-elastic | phenomena | and design requi | rements |), Introduc | tion to | CO-1 | | missiles & s | ystem | s, Desigr | n process. | | | | | BTL-3 | | MODULE 2: | | | | | | | | (6) | | | • | | | d aerodynamic stif | | atic aero-e | elasticity: | CO-2 | | torsional divergence, Structural vibration and modal analysis. | | | | | | | BTL-3 | | | MODULE 3: (7) | | | | | | | | (7) | | The say that the sadd of the sound and sound as the same says and | | | | | | | CO-2 | | | important design parameters, Methods for aero-elastic analysis, Computational fluid | | | | | | BTL-3 | | | | | dvanc | es in aer | o dynamics | (Hypersonic Flow | s and Ae | rodynamic | Heating). | | | MODULE 4: | | | | | | | | (7) | | Aircraft per | forma | nce (crui | ising, climb, | descent, takeoff, | landing, | maneuver, | flight path). | CO-3 | | | | | | | | | | BTL-3 | | MODULE 5: | | (7) | | | | | | |--|--|-----------------|--|--|--|--|--| | System's stability & control, aerodynamics control, Introduction to dynamic stability, | | | | | | | | | first and second | order responses, Equations of motion and modal characteristics. | BTL-3 | | | | | | | MODULE6: | | (7) | | | | | | | Introduction to | o air to air, ground to air, air to ground weapon systems, UAV mounted | CO-4 | | | | | | | GW and UCAV | S. | BTL-4 | | | | | | | REFERENCE BOOKS | 3 | | | | | | | | 1. | "Aircraft design: a conceptual approach", by D. Raymer | | | | | | | | 2. | "Flight Dynamics Principles", by Michael V. Cook | | | | | | | | 3. | "IntroductiontoStructuralDynamicsandAeroelasticity",byDeweyH.Hodge | s,G.AlvinPierce | | | | | | | 4. | 4. "Airplane Aerodynamics and Performance", by Chuan Tau Edward Lan | | | | | | | | 5. "Fundamentals of Structural Dynamics", by Roy R. Craig Jr., Andrew J. Kurdila. | | | | | | | | | 6. | Literature / books suggested by respective course Lecturers. | | | | | | | | COURSE TITLE | GUIDA | GUIDANCE & CONTROL CREDITS | | | | | | | |---------------------------------|--|--|--|---|-------------------|---------------|--|--| | COURSE CODE | | | COURSE CATEGORY | PC | L-T-P-S | 4-0-0-0 | | | | Version | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | ASSESSMENT SCHEME | | | | | | | | | | First Periodica
Assessment | | d Periodical
essment | Seminar/
Assignments/
Project | Surprise Test /
Quiz | Attendance | ESE | | | | 15% | | 15% | 10% | 5% | 5% | 50% | | | | Course Objective | e fundan | nental of sa | e of the course is to
stellite navigation,
SS integration and m | navigation math | nematics, princ | | | | | Course Outcome | 1. Uno pos
2. Uno 3. Dev | derstand th
sitioning.
derstand var
velop mathe | of this course, the student
e principles of sat
ious aspects of design
matical model of mis
ation for aircraft/mis | tellite navigation ning a navigation sile dynamics. | n system. | | | | | CO, PO Mapping | 3 | | | | | | | | | со | PO-1 | PO-2 | PO-3 PO-4 | PO-5 | PO-6 | PO-7 | | | | CO-1 | 3 | - | | - | - | - | | | | CO-2 | 3 | - | 2 - | 2 | - | - | | | | | 3 | 2 | 3 - | 3 | 2 | 2 | | | | | 3 | 3 | 3 3 | 3 | 2 | 3 | | | | MODULE 1: | | | | | | (6) | | | | Introduction t | o Navigatio | n, Navigatior | Mathematics. | | | CO-1
BTL-3 | | | | MODULE 2: | | | | | | (7) | | | | GNSS: fundam
Inertial Naviga | ation, Advar | nced satellite | ellites: Fundamentals
Navigation, Principlonge Positioning, Sate | es of radio Positi | oning, | CO-2
BTL-3 | | | | MODULE 3: | | | | | | (6) | | | | | Errors and Geometry, Dead Reckoning, Attitude, and Height Measurement, Feature matching, INS/GNSS Integration. CO-2 BTL-3 | | | | | | | | | MODULE 4: (6) | | | | | | | | | | Missile Contro
Control. | Missile Control Methods: Aerodynamic and Thrust Vector Control, Polar and Cartesian Co-3 BTL-3 | | | | |
| | | | MODULE 5: | | | | | | (8) | | | | Mathematical
Roll Rate Stab | _ | of Missile Dyr | namics; Missile Actua | ators and Sensor | s. Roll and | CO-3
BTL-3 | | | | MODULE6: | | | | | | (7) | | | | Design and Ar
MATLAB | Design and Analysis of Lateral Autopilots, 6 DOF simulation for aircraft/missile using MATLAB | | | | | | | |-------------------------|--|------------------|--|--|--|--|--| | REFERENCE BOOK | S | | | | | | | | 1. | "ModernInertialTechnologyNavigation,Guidance,andControl",byAnthon 2012. Publisher:Springer New York. | yLawrence | | | | | | | 2. | "The Global Positioning System & Inertial Navigation", by Jay Farrell. Published Education (16 December 1998). | er : McGraw-Hill | | | | | | | 3. | "MATLAB for Engineering Applications", by William Palm. Publisher: McGraw-H4th edition (February 6, 2018). | Iill Education; | | | | | | | 4. | "Global Navigation Satellite Systems, Inertial Navigation, and Integration", by Andrews, A. P., Bartone, C. G. (2013). Publisher: John Wiley and Sons Inc. | y Grewal, M. S., | | | | | | | 5. | "Principles of GNSS, inertial and multi-sensor integrated navigation systems" D. Publisher: ArtechHouse. | , by Groves, P. | | | | | | | 6. | "Optimal State Estimation", by Kalman, H Infinity. | | | | | | | | 7. | "Nonlinear Approaches", by Simon, D. (2006). Publisher: Wiley-Interscienc | e | | | | | | | 8. | Literature / books suggested by respective course Lecturers. | | | | | | | | COURSE TIT | LE | AEROSI | AEROSPACE PROPULSION CREDITS | | | | | | | |--------------------------|--|--|------------------------------------|--|---------------|-------------------------|-------------------|---------------|--| | COURSE CO | DE | | | COURSE CATEGOR | Υ | PC | L-T-P-S | 4-0-0-0 | | | Version | | | 1.0 | Approval Details | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT S | ASSESSMENT SCHEME | | | | | | | | | | First Period
Assessme | | | l Periodical
essment | Seminar/
Assignments/
Project | | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | | 15% | 10% | | 5% | 5% | 50% | | | Course Object | ive | differer
systems | nt criteria fo | e of the course is
or the selection a
f propulsion syste
system. | and | evaluation of | different types | of propulsion | | | Course Outcor | me | Kno syst Uno Uno | owledge abo
tem.
derstanding | of this course, the stud
out thermodynam
of Rocket motor d
of different desig | nics
Iesig | and fluid dyn
gn | | · | | | CO, PO Mappi | ng | | | | | | | | | | со | PO-1 | | PO-2 | PO-3 PC | D-4 | PO-5 | PO-6 | PO-7 | | | CO-1 | 3 | | 2 | 1 - | | - | - | - | | | CO-2 | 3 | | 2 | 1 - | | - | - | - | | | CO-3 | 3 | | 2 | 1 - | | | - | - (7) | | | MODULE 1: | n 0. m | odo of o | noration of | various propulsior | 0.614 | stoms basis | | (7)
CO-1 | | | thermodyna | | | • | various propuisioi | пэу | sterris, basis | | BTL-3 | | | MODULE 2: | | <u> </u> | 7,1141111001 | | | | | (8) | | | Rocket moto | | _ | • | urbine Engine des | ign, | GT engine effic | iency, GT | CO-2
BTL-3 | | | MODULE 3: | | | | | | | | (6) | | | Aircraft perf | orma | nce, jet (| engine perfo | rmance. | | | | CO-2
BTL-3 | | | MODULE 4: (7) | | | | | | | | | | | _ | Jet engine control (compressor performance, axial turbine performance, Fuel systems & co-3 pumps, airframe fuel systems, hydro-mechanical fuel metering, Electronics engine control) CO-3 BTL-3 | | | | | | | | | | MODULE 5: | | | | | | | | (6) | | | System integ | System integration CO-3 BTL-3 | | | | | | | | | | MODULE6: | | | | | | | | (6) | | | Computational fluid dynamics (flow modelling strategies, physical modelling, finite difference equations, etc.) | | | | | | | |---|---|------------|--|--|--|--| | REFERENCE BOOKS | | | | | | | | 1. | "Rocket Propulsion Elements", by George Paul Sutton and Oscar Biblarz. Pub-lis Wiley & Sons | sher: John | | | | | | 2. | "Modern Engineering for Design of Liquid-Propellant Rocket Engines: Progre Astronautics and Aeronautics Series" by Dieter K. Huzel, David H. Huang. | essin | | | | | | 3. | "An Introduction to Computational Fluid Dynamics: The Finite Volume Method Versteeg. Publisher: Pearson; 2nd edition. | d" by H. | | | | | | 4. "Computational Fluid Dynamics the Basics with Applications" by John D. An-derson, Jr. Publisher: McGraw Hill Education (1 July 2017) | | | | | | | | 5. | "Fluid Mechanics: Volume 2: Foundations and Applications of Mechanics", by C
Publisher: Cambridge University Press; 3rd edition. | C.S.Jog. | | | | | | COURSE | TITLE | AEROSPACE SYSTEM | AEROSPACE SYSTEM CONFIGURATION, DESIGN & CREDITS SIMULATION LAB | | | | | | | | | |------------|---|------------------|---|----|---------|---------|--|--|--|--|--| | COURSE | CODE | | COURSE CATEGORY | DE | L-T-P-S | 0-0-2-0 | | | | | | | Versi | Version 1.0 Approval Details 23 ACM, 06.02.2021 | | | | | BTL-3 | | | | | | | LIST OF EX | PERIMEN [*] | rs | | | | | | | | | | | 1. | 1. Lab experiments will be added in consultation with DRDO labs considering the available facilities. | | | | | | | | | | | | COURSE | TITLE | GUIDA | CREDITS | 2 | | | | |-------------|----------|-------|--------------------------------------|----|-------------------|---------|--| | COURSE | CODE | | COURSE CATEGORY | DE | L-T-P-S | 0-0-2-0 | | | Versi | on | 1.0 | Approval Details 23 ACM, 06.02.2021 | | LEARNING
LEVEL | BTL-3 | | | LIST OF EXI | PERIMENT | rs | | | | | | | 1. | | | | | | | | ## **SEMESTER- II (COMMUNICATION SYSTEMS & SENSORS)** | COURSE CODE DTD3703 COURSE CATEGORY DE L-T.P-S 4-0-0 | COURSE TITLE | | Radar | Technologie | s | | | CREDITS | 3 | |---|--|----------------------------------|----------|---------------|---|----------------|------------------|---------------|----------------| | ASSESSMENT SCHEME First Periodical Assessment | COURSE CODE | | DTD37 | 03 | COURSE CATEGO | ORY | DE | L-T-P-S | 4-0-0-0 | | Second Periodical Assessment Assessment Assignments Assignments Project Assignments Quiz Attendance ESE | Version | /ersion 1.0 Δnnroval Details | | | | | | | BTL-3 | | Assessment | ASSESSMENT S | SCHEN | 1E | | | | | | | | The main objective of the course is to provide knowledge to the students about learning on the radar systems, radar parameters, radar environment, theory of detection and design of radar elements, different types of radars & their application. Upon completion of this course, the students will be able to 1. Understand the design of radar systems, solve range equations. 2. Apply appropriate mathematical
and computer models relevant to radar systems to calculate system performance, and assess the limitations of particular cases 3. Understand the major components of a modern radar system 4. Learn basic radar signal processing techniques. 5. Understand advanced radar techniques. 6. Know the major functions and applications of a modern radar systems. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 1 1 - 1 - 1 | | dical | | | Assignments/ | | • | Attendance | ESE | | Learning on the radar systems, radar parameters, radar environment, theory of detection and design of radar elements, different types of radars & their application. Upon completion of this course, the students will be able to | 15% | | 15% | | 10% | | 5% | 5% | 50% | | 1. Understand the design of radar systems, solve range equations. 2. Apply appropriate mathematical and computer models relevant to radar systems to calculate system performance, and assess the limitations of particular cases 3. Understand the major components of a modern radar system 4. Learn basic radar signal processing techniques. 5. Understand advanced radar techniques. 6. Know the major functions and applications of a modern radar systems. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 1 - 1 | Course Object | ive | learnin | g on the ra | adar systems, | radar | parameters, ra | ıdar environm | ent, theory of | | CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 1 - 1 - - - CO-2 3 2 1 - | Understand the design of radar systems, solve range equations. Apply appropriate mathematical and computer models releasystems to calculate system performance, and assess the particular cases Understand the major components of a modern radar system Learn basic radar signal processing techniques. Understand advanced radar techniques. | | | | nge equations.
er models rele
nd assess the
radar system | limitations of | | | | | CO-1 3 2 1 - 1 | CO, PO Mappi | ng | | | | | | | | | CO-2 3 2 1 | со | PO- | 1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | | CO-3 | CO-1 | 3 | | 2 | 1 | - | 1 | - | - | | CO-4 3 | CO-2 | 3 | | 2 | 1 | - | - | - | - | | CO-5 3 2 1 | | | | 2 | 1 | - | - | - | - | | CO-6 3 2 1 | | | | _ | | | | | | | MODULE 1: Introduction to RADAR, Radar parameters/definitions, radar equations. MODULE 2: Radar cross section (RCS) & Theory of detection, Clutter. MODULE 3: CO-1 BTL-3 CO-2 BTL-3 CO-2 CO-2 CO-2 CO-2 CO-2 BTL-3 | | | | | | | - | - | - | | Introduction to RADAR, Radar parameters/definitions, radar equations. MODULE 2: Radar cross section (RCS) & Theory of detection, Clutter. MODULE 3: CO-1 BTL-3 CO-2 BTL-3 CO-2 CO-2 BTL-3 CO-2 CO-2 CO-2 BTL-3 | | 3 | | 2 | 1 | - | - | - | - (6) | | Radar cross section (RCS) & Theory of detection, Clutter. MODULE 3: CO-2 BTL-3 (6) CO-2 CO-2 CO-2 | | to R | ADAR, R | adar parame | eters/definition | s, rada | ar equations. | | CO-1 | | Radar cross section (RCS) & Theory of detection, Clutter. MODULE 3: CO-2 BTL-3 (6) CO-2 CO-2 CO-2 | MODULE 2: | | | | | | | | (6) | | Atmospheric propagation, Surveillance and Tracking Radar, Radar Designs | Radar cross section (RCS) & Theory of detection Clutter | | | | | | | | | | Atmospheric propagation, Surveillance and Tracking Radar, Radar Designs | MODULE 3: | | | | | | | | (6) | | | Atmospheric | c pro _l | pagation | , Surveillanc | e and Tracking | Radar | , Radar Designs. | | | | MODULE 4: (7) | MODULE 4: | | | | | | | | (7) | | Radar elements
switch & Radar | CO-3
BTL-3 | | | | | | | |---|---|------------------|--|--|--|--|--| | MODULE 5: | | (7) | | | | | | | micro-doppler p | and networks, Radar signal processing chain, Pulse compression and processing, Tracking algorithms | CO-3
BTL-3 | | | | | | | MODULE 6: | | (8) | | | | | | | • | adar, Data processing for phased array radar, Airborne radar, imaging ic aperture radar, inverse synthic aperture radar, adaptive array | CO-4
BTL-3 | | | | | | | REFERENCE BOOKS | | | | | | | | | 1. | "Introduction to Radar Systems", by M.I. Skolnik. Publisher: Tata Mcgra 2001. | aw hill edition, | | | | | | | 2. | "Radar Systems Analysis and Design using MATLAB", by B.R.Mahafza. Press, 2013. | Publisher CRC | | | | | | | 3. | "Monopulse Principles and Techniques", by S.M.sherman and D.K.Bart Artech house, 2011 | on. Publisher : | | | | | | | 4. | "Fundamentals of Radar Signal Processing", by M.A.Richards. Publishe hill. | r Tata Mcgraw | | | | | | | "Ground Penetrating Radar: Theory and Applications",by, Editor: H.M. Jolt. Publisher: Elsevier. | | | | | | | | | 6. "Radar, Sonar And Navigation Engineering", by K. K Sharma. Publisher: S K Kataria8 Sons. | | | | | | | | | 7. Literature / books suggested by respective course Lecturers. | | | | | | | | | COLUDES TITLE | | Digital & satellite Communication and | | | | | | NEDITC . | 2 | | |--|---|---------------------------------------|--|---|---|---|------------------------------|--------------------|---------------|----------| | COURSE TITLE | | Navigation from Space | | | | | CF | REDITS | 3 | | | COURSE CODE DTD3704 | | | | COURSE CATEGO | DRY | DE | L- | T-P-S | 4-0-0-0 | | | Version | | 1.0 | | Approval Details | 5 | 23 AC | | EARNING
EVEL | BTL-3 | | | ASSESSMENT S | SCHEN | ΛE | | | | | | | | | | First Period
Assessment | dical | Second
Assessm | Periodical
nent | Seminar/ Assignments/ Project | | Surprise Test
Quiz | t / A | ttendance | ESE | | | 15% | | 15% | | 10% | | 5% | 59 | % | 50% | | | Course Objecti | ive | analogu
commu | ue and digi | of the course
tal communic
ystems, modu
es. | ation | systems, o | ptical | communic | ation, s | atellite | | Course Outcon | me | 1.
2.
3.
4. | Understand
Evaluate the
Design the a
Understand | this course, the
the communical
performance of
nalogue and di
and analyse the
the different ty | ation to
of com
gital c
e sign | echniques
nmunication s
ommunication
al transmission | systen
on syst
on effe | ns
tems
ects | | | | CO, PO Mappi | ng | l | | | | | | | | | | СО | PO- | 1 | PO-2 | PO-3 | PO-4 | PO-5 | | PO-6 | PO-7 | 7 | | CO-1 | 3 | | 2 | - | - | - | | - | - | | | CO-2 | 3 | | 3 | 3 | 3 | 3 | | 2 | 3 | | | CO-3 | 3 | | 2 | 3 | 2 | 2 | | 2 | 2 | | | CO-4
CO-5 | 3 | | 2 | - | 2 | 2 | | 1 | - | | | MODULE 1: | <u> </u> | | | | - | - | | | | (6) | | | a cor | mmunica | tions system | and their relat | tionsh | ip to system | perfor | mance. | CO-1
BTL-3 | (0) | | MODULE 2: | | | | | | | | | L | (7) | | • | Free space optical communication, Fiber optics communication, Wireless/cellular communications. | | | | | | CO-2
BTL-3 | | | | | MODULE 3: | MODULE 3: (7) | | | | | | | | | | | Fundamental concepts such as current/voltage relationships, time and frequency domains, power spectral density, random signals, Communications system components and functions, analog and digital communications systems, | | | | | | | | | | | | MODULE 4: | | | | | | | | | | (7) | | Modulation transmission and reception; baseband and passband digital modulation; system, noise, transmission lines, waveguides and antennas, FEC techniques for mitigating channel errors. CO-3 BTL-3 | | | | | | | | | | | | MODULE 5: | | (7) | | | | | |--------------------------|---|-----------------|--|--|--|--| | and RF system | ffects on signal transmission; end-to-end path calculations for wire/coax, as including terrestrial ground links and satellite communications, Spread ecpt of frequency hoping. | CO-3
BTL-3 | | | | | | MODULE 6: | | (6) | | | | | | Navigation te
Galileo | chniques from space regarding functioning of GPS, GLONASS, IRNSS & | CO-4
BTL-3 | | | | | | REFERENCE BOO | KS | I | | | | | | 1. | "Satellite communication", by T. Pratt, C. W. Bostian, J. E.Allnut. Publish and sons | er: John Willey | | | | | | 2. | "Satellite Communications Systems: systems, techniques and techn
Maral, M. Bousquet, Z. Sun. Publisher:John Willy and sons | nology", by G. | | | | | | 3. | "Digital Communications: Fundamentals and Applications", B. Sklar . Prentice-Hall, Inc | | | | | | | 4. | 4. "Understanding of GPS/GNSS: Principles and Applications", by E. Kaplan and C. Hegarty Publisher: Artech House Publishers. | | | | | | | 5. | Literature / books suggested by respective course Lecturers. | | | | | | | COURSE TITLE | | Tactical battlefield Communication &
Electronic Warfare | | | | | CREDITS | 3 | | |---|---------------------------------------|--
--|--|--|--|--|----------------------------------|--------------| | COURSE CODE | <u> </u> | DTD3705 | | COURSE CATEGO | DRY DE | | L-T-P-S | 4-0-0-0 | | | Version 1.0 | | | | Approval Details | 23 | ACM, | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT | SCHEN | 1E | | | <u> </u> | | | 1 | | | First Periodical
Assessment | | Second
Assessm | Periodical
nent | Seminar/
Assignments/
Project | Surp
Quiz | rise Test / | Attendance | ESE | | | 15% | | 15% | | 10% | 5% | | 5% | 50% | | | Course Object | tive | techniq
against
links, co
and jam | ues for sett
ground to
ell phone lin
nming perfor | | pt and jam
communion
control li | ming links
cation signa
nks, techni | for Electronic
als, UAV comi
ques for pred | Warfare
mand and | (EW)
data | | | | 1. | Understand | this course, the nature of ta | actical batt | lefield com | | | | | Course Outco | me | 3.
4. | Calculate th
tactical com
links. | requirements e requirement e requirement im. Signals incl | for interce
s for emit
luding wea | ption of tac
ter location
pon contro | n, intercept a
ol link, UAV lii | nd jammir | _ | | CO, PO Mappi | | 3.
4. | Calculate the
Calculate the
tactical come
links. | e requirements
e requirement
im. Signals incl | for interce
s for emit
luding wea | ption of tac
ter location
pon contro | n, intercept a
ol link, UAV lii | nd jammir | _ | | | | 3.
4.
5. | Calculate the
Calculate the
tactical come
links. | e requirements
e requirement
im. Signals incl | for interce
s for emit
luding wea | ption of tac
ter location
pon contro | n, intercept a
ol link, UAV lii | nd jammir | _ | | CO, PO Mappi
CO | ing | 3.
4.
5. | Calculate the Calculate the tactical com links. Use various | e requirements
e requirement
im. Signals incl
tools to perforr | for interce
s for emit
luding wea
m electroni | ption of tac
ter location
pon contro
c warfare c | n, intercept a
ol link, UAV lii
alculations | nd jammii
nks, Cell p | _ | | CO, PO Mappi
CO
CO-1 | ing
PO- | 3.
4.
5. | Calculate the Calculate the tactical comlinks. Use various | e requirements e requirement im. Signals incl tools to perforr | for interce
s for emit
luding wea
m electroni | ption of tac
ter location
pon contro
c warfare c | n, intercept a ol link, UAV lint alculations | nd jammii
nks, Cell p | _ | | CO, PO Mappi
CO
CO-1
CO-2 | PO- | 3.
4.
5. | Calculate the Calculate the tactical comlinks. Use various PO-2 2 | e requirements e requirement im. Signals incl tools to perforr PO-3 - | for interces for emits for emits wear for emits wear for emits wear for electronic electroni | ption of tacter location pon control c | n, intercept a old link, UAV lint alculations PO-6 - | nd jammii
nks, Cell p
PO-7 | _ | | CO, PO Mappi
CO
CO-1
CO-2
CO-3
CO-4 | PO- | 3.
4.
5. | Calculate the Calculate the Calculate the tactical combines. Use various PO-2 2 3 3 2 | e requirements e requirement im. Signals incl tools to perforr PO-3 | for interces for emit luding wear melectroni PO-4 - 2 2 | ption of tacter location pon control c | PO-6 - 2 2 2 | nd jammii
nks, Cell p
PO-7 | _ | | CO, PO Mappi
CO
CO-1
CO-2
CO-3 | ing PO-: | 3.
4.
5. | Calculate the Calculate the tactical comlinks. Use various PO-2 2 3 3 | e requirements e requirement im. Signals incl tools to perforr PO-3 3 | for interces for emit luding wear melectroni PO-4 - 2 | ption of tacter location pon control c | n, intercept a ol link, UAV link alculations PO-6 - 2 2 | PO-7 - 3 1 | _ | | CO, PO
Mappi
CO
CO-1
CO-2
CO-3
CO-4 | ing PO-1 | 3.
4.
5. | Calculate the Calculate the Calculate the tactical combines. Use various PO-2 2 3 3 2 | e requirements e requirement im. Signals incl tools to perforr PO-3 3 2 | for interces for emit luding wear melectroni PO-4 - 2 2 | ption of tacter location pon control c | PO-6 - 2 2 2 | PO-7 - 3 1 | _ | | CO, PO Mappi
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1: | PO-
3
3
3
3
3 | 3.
4.
5. | Calculate the Calculate the Calculate the tactical comlinks. Use various PO-2 2 3 3 2 2 | e requirements e requirement im. Signals incl tools to perforr PO-3 3 2 | ror interces for emit luding wear melectroni PO-4 - 2 2 2 2 | ption of tacter location pon control c | PO-6 - 2 2 2 2 | PO-7 - 3 1 | hone | | CO, PO Mappi
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1: | PO-
3
3
3
3
3 | 3.
4.
5. | Calculate the Calculate the Calculate the tactical comlinks. Use various PO-2 2 3 3 2 2 | e requirements e requirement im. Signals incl tools to perforr PO-3 3 2 2 | ror interces for emit luding wear melectroni PO-4 - 2 2 2 2 | ption of tacter location pon control c | PO-6 - 2 2 2 2 | PO-7 - 3 1 1 1 CO-1 | hone | | CO, PO Mappi
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1:
Radiometry | PO-
3
3
3
3
3 | 3. 4. 5. | Calculate the Calculate the Calculate the Calculate the tactical complex of the Calculation Calculati | e requirements e requirement im. Signals incl tools to perforr PO-3 3 2 2 | ror interces for emit luding wear melectroni PO-4 - 2 2 2 2 ion, atmos | ption of tacter location pon control c | PO-6 - 2 2 2 2 2 | PO-7 - 3 1 1 1 CO-1 | hone (6) | | CO, PO Mappi
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1:
Radiometry | PO-
3
3
3
3
3
and p | 3. 4. 5. | Calculate the Calculate the Calculate the Calculate the tactical complex of the Calculation Calculati | PO-3 3 2 2 mature generat | ror interces for emit luding wear melectroni PO-4 - 2 2 2 2 ion, atmos | ption of tacter location pon control c | PO-6 - 2 2 2 2 2 | PO-7 - 3 1 1 1 CO-1 BTL-3 | hone (6) | | CO, PO Mappi CO CO-1 CO-2 CO-3 CO-4 CO-5 MODULE 1: Radiometry MODULE 2: Radar ES opstrategies, j. MODULE 3: Introduction characterist | PO- 3 3 3 3 3 and peration | 3. 4. 5. oower ca onal use, ng of SA radar f electro | Calculate the Calculate the Calculate the Calculate the tactical complex of the Calculation Calculati | PO-3 3 2 2 2 cnature generate etection battle, interception Signal process | ror interces for emit luding wear melectronic PO-4 - 2 2 2 2 cion, atmos quiet rada | ption of tacter location pon control c | PO-6 - 2 2 2 2 2 tests. | PO-7 - 3 1 1 1 CO-1 BTL-3 | (6) | | Decision theory systems, error p | CO-3
BTL-3 | | | | | |---|--|---------------|-----|--|--| | MODULE 5: | | | (7) | | | | • | k Issues, cell phone issues, Intercept links, Frequency hopping and other ial techniques for jamming LPI signals | CO-3
BTL-3 | | | | | MODULE 6: | | | (7) | | | | Introduction to | electronic counter measures and counter-counter measures. | CO-4
BTL-3 | | | | | 1. "Tactical Battlefield Communications Electronic Warfare", by David Adamy 2008 | | | | | | | 2. "Military Communications in the Future Battlefield", by Marko Suojanen. | | | | | | | 3. "Electronic Warfare for the Digitized Battlefield", by Michael Frater, Michael Ryan. | | | | | | | 4. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE | TITLE | RADAR TECHNOLO | CREDITS | 2 | | | |------------|---------|--|------------------------|-----------------------|-------------------|-------------| | COURSE | CODE | DTD3791 | COURSE CATEGORY | PC | L-T-P-S | 0-0-2-0 | | Versi | ion | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | LIST OF EX | PERIMEN | rs | | | | | | 2. | | experiments will be a ilable facilities. | dded in consultation v | with DRDO labs co | onsidering the | CO-
BTL- | | COURSE TITLE | | DIGITAL & SATELLITE COMMUNICATION AND CRED NAVIGATION FROM SPACE LAB | | | | | | | |------------------|---|--|-----------------------|-------------------|-------------|--|--|--| | COURSE CODE | DTD3792 | COURSE CATEGORY | PC | L-T-P-S | 0-0-2-0 | | | | | Version | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | | | LIST OF EXPERIME | NTS | | | | | | | | | | b experiments will be a
vailable facilities. | added in consultation v | with DRDO labs co | onsidering the | CO-
BTL- | | | | ## **SEMESTER II - ELECTIVE - 3 COURSES** | | TTLE | Robotio | cs (MSS, MC | C) | | CREDITS | 3 | |--|--|---|---|--|---|--|-----------------------------------| | COURSE C | ODE | DTA-3730 COURSE CATEGORY DE | | | L-T-P-S | 3-0-0-0 | | | Version | | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMEN [*] | T SCHEN | 1E | | | | | | | First Periodical
Assessment | | | l Periodical
essment | Seminar/ Assignments/ Project Surprise Test / Quiz | | Attendance | ESE | | 15% | | | 15% | 10% | 5% | 5% | 50% | | Course Obje | ctive | coordin
sensors | ate transfor
and devices | o a broad range of to
mation and kinema
, robot applications
f this course, the stu | atics, trajectory and economics a | planning, conti
nalysis. | • | | | | 1. Use | • | bra and Lie algebra | | | robots. | | Course Outc | | rob
3. Cald
4. To | oots.
culate the Ja
do the path _l | orward kinematics
cobian for serial and
planning for a robot
e tools for analysis a | I parallel robot.
ic system. | | al and parallel | | CO, PO Map | ping | rob
3. Cald
4. To 0
5. To 0 | oots.
culate the Ja
do the path I
use software | cobian for serial and
planning for a robot
e tools for analysis a | I parallel robot.
ic system.
nd design of robo | otic systems. | | | CO, PO Map | ping PO-1 | rob
3. Cald
4. To 0
5. To 0 | ots. culate the Ja do the path use software | cobian for serial and
planning for a robot | I parallel robot.
ic system.
nd design of robo | | PO-7 | | CO, PO Map
CO
CO-1 | ping PO-1 | rob
3. Cald
4. To 0
5. To 0 | oots. culate the Ja do the path use software | cobian for serial and planning for a robot e tools for analysis at PO-4 | I parallel robot. ic system. id design of robo PO-5 | PO-6 | PO-7 | | CO, PO Map
CO
CO-1
CO-2 | ping PO-1 | rob
3. Cald
4. To 0
5. To 0 | ots. culate the Ja do the path use software | cobian for serial and
planning for a robot
e tools for analysis a | I parallel robot.
ic system.
nd design of robo | otic systems. | | | CO, PO Map
CO
CO-1
CO-2
CO-3 | ping PO-1 | rob
3. Cald
4. To 0
5. To 0 | ots. culate the Ja do the path use software PO-2 2 3 | cobian for serial and planning for a robot e tools for analysis as PO-3 PO-4 - 2 2 | I parallel robot. ic system. id design of robo PO-5 | PO-6 | PO-7 | | CO, PO Map
CO
CO-1
CO-2
CO-3
CO-4 | ping PO-1 3 3 3 3 | rob
3. Cald
4. To 0
5. To 0 | oots. culate the Ja do the path use software PO-2 2 3
2 | cobian for serial and planning for a robot e tools for analysis at PO-4 2 2 2 | I parallel robot. ic system. id design of robo PO-5 - 2 - | PO-6 - 2 - | PO-7 - 2 - | | CO, PO Map | ping PO-1 3 3 3 3 3 3 3 3 | rob
3. Cald
4. To 0
5. To 0 | pots. culate the Ja do the path use software PO-2 2 3 2 | cobian for serial and planning for a robot e tools for analysis at PO-4 2 2 2 2 2 | I parallel robot. ic system. id design of robo PO-5 2 - 2 2 | PO-6 - 2 - 2 | PO-7 - 2 - 1 | | CO, PO Map
CO
CO-1
CO-2
CO-3
CO-4
CO-5 | ping PO-1 3 3 3 3 3 3 1: | rob 3. Calc 4. To c 5. To c | PO-2 2 3 2 3 | cobian for serial and planning for a robot e tools for analysis at PO-4 2 2 2 2 2 | PO-5 - 2 - 2 3 | PO-6 - 2 - 2 2 2 | PO-7 - 2 - 1 2 | | CO, PO Map
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1 | ping PO-1 3 3 3 3 1: ttals of | rob 3. Cald 4. To 0 5. To 0 | PO-2 2 3 2 2 3 seed robotic so | PO-3 PO-4 2 2 2 2 3 3 3 | PO-5 - 2 - 2 3 areas of locomot | PO-6 - 2 - 2 2 2 | PO-7 - 2 - 1 2 (7) | | CO, PO Map
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1 | ping PO-1 3 3 3 3 L: stals of ion, gra | rob 3. Cald 4. To 0 5. To 0 | PO-2 2 3 2 2 3 seed robotic so | cobian for serial and planning for a robot e tools for analysis and PO-4 | PO-5 - 2 - 2 3 areas of locomot | PO-6 - 2 - 2 2 2 | PO-7 - 2 - 1 2 (7) | | CO, PO Map CO CO-1 CO-2 CO-3 CO-4 CO-5 MODULE 1 Fundamen manipulati MODULE 2 | ping PO-1 3 3 3 3 1: stals of ion, gra 2: | rob 3. Cald 4. To 0 5. To 0 | PO-2 2 3 2 2 3 seed robotic syensory perce | cobian for serial and planning for a robot e tools for analysis and PO-4 | PO-5 - 2 - 2 3 areas of locomoration. | PO-6 - 2 - 2 2 2 | PO-7 - 2 - 1 2 (7) CO-1 BTL-3 (5) | | CO, PO Map
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1
Fundamen
manipulati
MODULE 2
Kinematics | ping PO-1 3 3 3 3 L: stals of ion, gra 2: s, dynar | rob 3. Cald 4. To 0 5. To 0 | PO-2 2 3 2 2 3 sed robotic syensory perce | PO-3 PO-4 2 2 3 3 ystems covering the ption, and teleopera | PO-5 - 2 - 2 3 areas of locomoration. | PO-6 - 2 - 2 2 tion, | PO-7 - 2 - 1 2 (7) CO-1 BTL-3 (5) | | CO, PO Map
CO
CO-1
CO-2
CO-3
CO-4
CO-5
MODULE 1
Fundamen
manipulati
MODULE 2
Kinematics | ping PO-1 3 3 3 3 L: stals of ion, grading, grad | rob 3. Cald 4. To 0 5. To 0 | PO-2 2 3 2 2 3 sed robotic syensory perce | PO-3 PO-4 2 2 2 2 3 3 3 ystems covering the ption, and teleopera | PO-5 - 2 - 2 3 areas of locomoration. | PO-6 - 2 - 2 2 tion, | PO-7 - 2 - 1 2 (7) CO-1 BTL-3 (5) | | CO, PO Map CO CO-1 CO-2 CO-3 CO-4 CO-5 MODULE 1 Fundamen manipulati MODULE 2 Kinematics controller | ping PO-1 3 3 3 3 L: stals of ion, grader, gra | rob 3. Cald 4. To 0 5. To 0 | PO-2 2 3 2 2 3 sed robotic syensory perce | PO-3 PO-4 2 2 2 2 3 3 3 ystems covering the ption, and teleopera | PO-5 - 2 - 2 3 areas of locomoration. | PO-6 - 2 - 2 2 tion, | PO-7 - 2 - 1 2 (7) CO-1 BTL-3 (5) | | CO, PO Map CO CO-1 CO-2 CO-3 CO-4 CO-5 MODULE 1 Fundamen manipulati MODULE 2 Kinematics controller system des MODULE 3 | ping PO-1 3 3 3 3 L: stals of ion, grades, dynar archite sign. 3: | rob 3. Calc 4. To c 5. To c I Iland-bases asping, see mics, ma cture, m | PO-2 2 3 2 2 3 seed robotic seensory perceenipulability, otion planni | PO-3 PO-4 2 2 2 2 3 3 ystems covering the ption, and teleopera | PO-5 PO-5 2 2 3 areas of locomoration. | PO-6 - 2 - 2 2 tion, ramming, n, Control | PO-7 - 2 - 1 2 (7) CO-1 BTL-3 (5) | | MODULE 4: | | (7) | | | | | |------------------------------------|---|---------------|--|--|--|--| | Modelling Cont
Derivative (PID) | CO-3
BTL-3 | | | | | | | MODULE 5: | | (7) | | | | | | Feedback Contr | ol System, Motion and path planning, Collision avoidance and navigation | CO-3
BTL-3 | | | | | | MODULE 6: | | (6) | | | | | | Fundamental of | Fundamental of AI, Programming methods for robotics, Human-Robot interaction. | | | | | | | REFERENCE BOOK | S | | | | | | | 1. | Text Book: Introduction to Robotics by S.K. Saha (Tata McGraw-Hill, New 2008, 1st Reprint 2009) | Delhi, India | | | | | | 2. | "Introduction to Robitcs: Mechanics and Control", by Craig, J.J. Publisher Delhi. | : Pear-son, | | | | | | 3. | "Fundamentals of Robotics: Analysis and Control" by Schilling Robert I. Pub-lisher: | | | | | | | 4. | "An Introduction to Robotics Analysis Systems Applications" by Niku Saeed B | | | | | | | 5. | Stuart Russell and Peter Norvig, Publisher: Prentice Hall | | | | | | | 6. | Literature / books suggested by respective course Lecturers. | | | | | | | COURSE TIT | ΓLE | EMI/EN | ИС in Militar | ry Systems | | CREDITS | 3 | |---------------|---|--------|-----------------------------|--|---------------------------------------|--|-----------------| | COURSE CO | DE | DTA-37 | '31 | COURSE CATEGORY | DE | L-T-P-S | 3-0-0-0 | | Version 1.0 | | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT | SCHEN | ΛE | | | | | | | | | | l Periodical
essment | Seminar/ Assignments/ Project Surprise Test / Quiz | | Attendance | ESE | | 15% | | | 15% | 10% | 5% | 5% | 50% | | Course Object | techniques for prevention of electronic equipment through good E techniques – grounding, shielding, cable management, and power i troubleshooting techniques, EMI/EMC standards. Upon completion of this course, the students will be able to 1. Understand the concept of EMI / EMC protection of equipment 2. Identify and prevent the common EMI/EMC problems in milital | | | | | and power in
e to
of equipment
lems in military | terface design, | | СО, РО Марр | | 5. | Learn gener | EMI/EMC troubleshoate EMI/EMC require | ements documer | it. | | | CO | PO- | 1 | PO-2 | PO-3 PO-4 | PO-5 | PO-6 | PO-7 | | CO-2 | 3 | | 2 | | 2 | 2 | 2 | | CO-2 | 3 | | 2 | | | - | | | CO-4 | 3 | | 2 | | 2 | 2 | 3 | | CO-5 | 3 | | 3 | 2 - | 2 | 3 | 3 | | MODULE 1: | | | | <u> </u> | | | (6) | | | uplin | | - | C and EMP, Classifica
mena and effects, Tr | · · · · · · · · · · · · · · · · · · · | | CO-1
BTL-3 | | MODULE 2: | | | | | | | (6) | | • | | | • | ems, Non-ideal Beha
II measurements, EM | • | | CO-2
BTL-3 | | MODULE 3: | | | | | | | (6) | | and shieldir | EMI Control Methods: Conducted and radiated emissions and susceptibility, Crosstalk and shielding, Grounding, Bonding, Filtering, EMI gasket, Isolation transformer, opto isolator; Faraday cage, isolation of shelters | | | | | CO-2
BTL- | | | MODULE 4: | | | | | | | (5) | | | | _ | tions: Nation
ectrum con | nal and Intentional s
versation; | tandardizing orga | anizations, | CO-3
BTL-3 | | MODULE 5: | MODULE 5: (7 | | | | | | | |--------------------------------|--|---------|--|--|--|--|--| | EMC Design and selection and m | CO-3
BTL-3 | | | | | | | | MODULE 6: | | (6) | | | | | | | , | EMC analysis and detection techniques: Using tools for signal integrity analysis, Study eye diagrams for communication systems. | | | | | | | | REFERENCE BOOKS | S | | | | | | | | 1. | "EMI/EMC Computational Modeling Handbook", by brucearchambeault, Ramahi, et al. | Omar M. | | | | | | | 2. | "EMI/EMC Computational Modeling Handbook: 630 (The Springer International Series in Engineering and Computer Science)", by Bruce R. Archambeault, Omar M. Ramahi, et al. | | | | | | | | 3. | "A practical approach to electromagnetic compatibility", by Chetan Katha | alay | | | | | | | 4. | Literature / books suggested by respective course Lecturers. | | | | | | | | COURSE TIT | LE | Defenc | e Electro-Op | tics and Imaging Sy | stems | CREDITS | 3 | |---------------|--|--|-------------------------------------|---|--------------------------------------|-----------------------------|----------------| | COURSE CO | DE | DTA-37 | 32 | COURSE CATEGORY | DE | L-T-P-S | 3-0-0-0 | | Version | | | 1.0 | Approval Details 23 ACM, 06.02.2021 | | LEARNING
LEVEL | BTL-3 | | ASSESSMENT | SCHEN | 1E | | | | | | | | | | l Periodical
essment | Seminar/ Assignments/ Project Surprise Tes Quiz | | Attendance | ESE | | 15% | | | 15% | 10% | 5% | 5% | 50% | | Course Object | ive | current
student
applicat | and future
s to light o
tion. | rse is to provide an electro-optic and n application of electro-optic fthis course, the stu | imaging devices
ectro- optics and | . Course will dimaging syst | also to enable | | Course Outco | me | Understand the technology and principles underpinning electro-o systems. Apply their knowledge to practical electro-optic design and acquis lems. Understand the trade-offs in electro-optic systems design. | | | | | | | CO, PO Mappi | ng | | | | | | | | СО | PO- | 1 | PO-2 | PO-3 PO-4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | | 2 | | - | - | - | | CO-2 | 3 | | 3 | 2 1 | 2 | 2 | 2 | | CO-3 | 3 | | 2 | 2 - | - - | | - | | MODULE 1: | | | | | | | (6) | | Principles of |
radio | ometry, T | The human e | eye, Visible band opt | ical sighting syste | ems. | CO-1 | | MODULE 2: | | | | | | | BTL-3 | | WIODULE 2: | | | | | | | (6)
CO-2 | | Camera syst | ems, | Image in | itensifiers, M | 1issile seekers. | | | BTL-3 | | MODULE 3: | | | | | | | (6) | | Electro-opti | c cou | ntermea | sures. | | | | CO-2
BTL- | | MODULE 4: | | | | | | | (7) | | Thermal ima | Thermal imagers, II cameras, Hyper-spectral imaging, Digital image processing. CO-3 BTL-3 | | | | | | | | MODULE 5: | | | | | | | (5) | | | | | | | | | CO-3 | | EO sensors f | or La | sers and | iaser DEW | | | | BTL-3 | | MODULE 6: | | (6) | | | | | |---|--|---------------|--|--|--|--| | Electro-optic protection measures. CO-4 BTL-3 | | | | | | | | REFERENCE BOOKS | 5 | | | | | | | 1. | "Systems engineering analysis of electro-optical and Infra red system", b
Wolfgang Arrasmith. | y William | | | | | | 2. | "Introduction to Infrared and Electro-Optical Systems", by Author Ronald Ronald G. Driggers. | d G. Driggers | | | | | | 3. | "Handbook of Defence Electronics and Optronics: Fundamentals, Techno Systems", by Author(s): Anil K. Maini | logies and | | | | | | 4. | "Building Electro-Optical Systems: Making It all Work", by Author Philip C | C. D. Hobbs. | | | | | | 5. | "Electro-Optical Instrumentation: Sensing and Measuring with Lasers", by Author Silvano Donati. | | | | | | | 6. "Electro-optical systems design, Analysis and testing", by Author Michael C. Dudzik. | | | | | | | | 7. | Literature / books suggested by respective course Lecturers. | | | | | | | COURSE TIT | LE | Structu | ral Dynamic | s and Aero-Elastici | ty | | CREDITS | 3 | | |-----------------------------|---|------------------------------|--------------------------|--|-----------------|------------------------------|------------------------------------|---------------|-----| | COURSE CO | DE | DTA-37 | '33 | COURSE CATEGORY | | DE | L-T-P-S | 3-0-0-0 | ١ | | Version | | 1.0 | | Approval Details | | 3 ACM,
.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT | SCHEN | ΛE | | | | | | | | | First Periodical Assessment | | Second Periodical Assessment | | Seminar/
Assignments/
Project | Surp | rise Test /
Quiz | Attendance | ESE | | | 15% | | | 15% | 10% | | 5% | 5% | 50% | | | Course Object | ive | comput
various | ational anal | ended to provide
ysis, Different met
a related to vibrati
acture. | nods of | analysis, I | Mathematical r | nodeling of | the | | Course Outco | me | 1.
2. | Understand
Understand | f this course, the st
vibrations and fluid
of different design a
m dynamic analysis | dynam
spects | ics behind t
related to l | the aerospace s
oading in aeros | • | ١. | | CO, PO Mappi | ing | | | | | | | | | | со | PO- | 1 | PO-2 | PO-3 PO- | 4 | PO-5 | PO-6 | PO-7 | | | CO-1 | 3 | | 2 | | | - | - | - | | | CO-2 | 3 | | 2 | | | - | - | - | | | CO-3 | 3 | | 2 | 2 2 | | 2 | 2 | 2 | 4-1 | | MODULE 1: | | | | | | | | T | (6) | | Principles a | nd me | ethods of | computation | nal structural dyna | mics ar | ıd vibratioi | n analysis. | CO-1
BTL-3 | | | MODULE 2: | | | | | | | | BIL-3 | (6) | | | | unamia a | nalucia usias | the finite element | motha | d Calaulat | ion of model | CO-2 | (6) | | parameters | | yriaiiic a | illalysis usili | g the finite element | metho | u, Calculat | ion or modal | BTL-3 | | | MODULE 3: | | | | | | | | 1 | (6) | | System dyn | amic | • | | uperposition, frequ
chniques, Fatigue a | - | sponse, m | odel | CO-2
BTL- | - | | MODULE 4: | | . actarar | 5,110110313 100 | ques, rangue u | , 515. | | | | (7) | | | n to a | | • | vnamic Loading, Be | nding N | loment, Se | ectional | CO-3 | (7) | | properties (| ,, ACI | 51511, V 1 | . Diagraili, | | | | | BTL-3 | | | MODULE 5: | | | | | | | | | (5) | | Basic theory | of lii | near elas | tic fracture r | nechanics; strain e | nergy re | elease rate | ; | CO-3 | | | • | Basic theory of linear elastic fracture mechanics; strain energy release rate; BTL-3 | | | | | | | | | | MODULE 6: | | (6) | | | | |--|--|--------------|--|--|--| | Applications to delamination crack growth in polymer composite laminates, Damage tolerance issues in composites CO-4 BTL-3 | | | | | | | REFERENCE BOOK | S | | | | | | 1. | "Elements of vibration analysis", by Leonard Meirovitch. Publisher : McG Inc.,US; 2nd edition (1 March 1986) | raw-Hill | | | | | 2. | "Finite Element Analysis Theory And Application With ANSYS", by Moaveni Publisher: Pearson Education; 3rd edition (1 January 2011) | | | | | | 3. | "Mechanical Vibrations SI Edition Sixth Edition", by Singiresu S. Rao. Publisher: Pearson | | | | | | 4. | "Elements of Fracture Mechanics", by Prashant Kumar. Publisher : McGraw Hill Education. | | | | | | 5. | "Introduction to Structural Dynamics and Aeroelasticity", by Dewey H. Ho Alvin Pierce. Publisher: Cambridge University Press. | odges and G. | | | | | 6. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE T | ITLE | Safety, | 3 | | | | | | |---|--|-----------|----------------------------|--|------------------------|---------------------|----------------|----------------| | COURSE CO | ODE | DTA-37 | 734 | COURSE CATEGO | RY | DE | L-T-P-S | 3-0-0-0 | | Versior | Version1.0Approval Details23 ACM, 06.02.2021LEARNING LEVEL | | | | | | BTL-3 | | | ASSESSMENT SCHEME | | | | | | | | | | First Periodical Second Periodical Assignme Assessment Assessment Project | | | | | Surp | rise Test /
Quiz | Attendance | ESE | | 15% | | | 15% | 10% | | 5% | 5% | 50% | | Course Objec | ctive | safety l | nealth and h | es of the course azard management of the | nt. The c | ourse will | provide unders | tanding on the | | Course Outco | ome | 1.
2. | Understand
Handle toxic | f this course, the
chemical safety si
cliquids & gases, e
the NBC warfare | tandards,
xplosives | fire safety, | hazard manage | | | CO, PO Mapp | | | | | | | | | | СО | PO- | 1 | PO-2 | PO-3 P | 0-4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | | 2 | | | - | 1 | 2 | | CO-2
CO-3 | 3 | | 2 | | | 1 | 2 2 | 2 | | MODULE 1 | | | | | | | | (6) | | Chemical S
Laboratori | afety:
es, Sto | rage of h | • | ations of chemica
emicals, Compat
nt | - | | | CO-1
BTL-3 | | MODULE 2 | : | | | | | | | (4) | | Fire triangl | e and | Handling | g of Toxic, Inc | dustrial Gases | | | | CO-2
BTL-3 | | MODULE 3 | : | | | | | | | (7) | | | _ | | | ZAN techniques, I
ardous materials; | | manufactu | re, Hazard | CO-2
BTL- | | MODULE 4 | : | | | | | | | (7) | | Warfare: Classifications of explosives based on hazards, Nuclear, biological and chemical warfare safety; CO-3 BTL-3 | | | | | | | | | | | | | | | | | | _ | | MODULE 5 | : | | | | | | | (6) | | | | ant of bo | man factors | . Health & Enviro | amont sci | Foty | | | | MODULE 6: | | (6) | | | | |---|--|----------------------|--|--|--| | Nano materials safety (Toxicology study) co- BTL- | | | | | | | REFERENCE BOOKS | S | | | | | | 1. | "Occupational Health and Safety Management A Practical Approach", by Reese. Publisher: CRC Press. | Charles D. | | | | | 2. | "Occupational and Environmental Safety and Health", Arezes, P.M., Baptista, J.S., Barroso, M.P., Carneiro, P., Cordeiro, P., Costa, N., Melo, R.B., Abreu dos Santos Baptista, J.M., Perestrelo, G. (Eds.). Publisher: Springers, 2019 | | | | | | 3. | "Handbook of Occupational Safety and Health", by S. Z. Mansdorf. Publis | her : Wiley. | | | | | 4. | "Institution of Chemical Engineers", by Trevor Kletz"Hazop and Hazan | | | | | | 5. | "Handbook Of Toxicology Of Chemical Warfare Agents", by Ramesh C. Go
Edition Elsevier, 2015 | upta 2 nd | | | | | 6. | "Nanomaterials Safety Toxicity And Health Hazards", by Shyamasree Gho | osh De Gruyter. | | | | | 7. | "Hazardous Chemicals Handbook", by Phillip Carson, Clive Mumford Butt
Heinemann. | terworth- | | | | | 8. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE TIT | LE | FUND | | F TELEMETRY, | | COMMAND & | CREDITS | 3 | | |----------------------------|--|----------------|---|--|--|---
--|---------------|------| | COURSE COI | <u> </u> | DTA-37 | | TRANSPONDEI COURSE CATEG | | DE | L-T-P-S | 3-0-0-0 | | | Version | JE | DIA-57 | 1.0 | Approval Deta | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT SCHEME | | | | | | | | | | | First Periodi
Assessmer | | | d Periodical
essment | Seminar/
Assignment
Project | s/ | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | | 15% | 10% | | 5% | 5% | 50% | | | Course Objecti | ve | the sate | ellite commu | | etry, | e to provide kno
modulation tech | _ | | | | Course Outcon | ne | 1.
2.
3. | Satellite con
Overall cont
data.
Determinati
processing, a
Proper cont | nmunication an
rol of satellites
on of the satell
and transmittin
rol of satellite t | d rela
throu
ite's e
g of ra
hroug | dents will be ableted technologie gh collection, property act location the anging signals. In the reception, ansmitted from | s. Tocessing, and toc | otion, | n of | | CO, PO Mappir | ng | | | | | | | | | | СО | PO- | 1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | | | CO-1 | 3 | | 2 | - | - | - | - | - | | | CO-2 | 3 | | 2 | - | - | - | - | - | | | CO-3 | 3 | | 2 | - | 2 | 2 | 2 | 2 | | | CO-4 | 3 | | 2 | - | 2 | 2 | 2 | 3 | | | MODULE 1: | | | | | | | | 1 | (6) | | Fundamenta schemes. | l of s | atellite (| communicati | on, different m | odula | tion and multipl | exing | CO-1
BTL-3 | | | MODULE 2: | | | | | | | | | (6) | | Telemetry, D | ata ⁻ | Transmis | sion, Metho | | n, Tir | Access Technique Division and Idding Schemes. | | CO-2
BTL-3 | | | MODULE 3: | | | | | | | | | (6) | | Satellite Pac | Satellite Packet Communications, Tracking and Telemetry. CO-2 BTL- | | | | | | | | | | MODULE 4: | | | | | | | | 1 | (6) | | Doppler and | Elec | tro-Optio | cal methods | of tracking, Airl | oorne | Missile. | | CO-3
BTL-3 | | | MODULE 5: | | (6) | | | | | |--|---|---------------|--|--|--|--| | Signal Processing: Processing of Signal, Data Acquisition and Reduction. | | | | | | | | BTL | | | | | | | | MODULE 6: | | (6) | | | | | | Introduction to satellite communication, transponders. | | | | | | | | REFERENCE BOOKS | S | | | | | | | 1. | "Spacecraft TT&C and Information Transmission Theory and Technologies", by, Jiaxing Liu.Publisher: Springer, 2014 | | | | | | | 2. | "Introduction to PCM Telemetering Systems", by Stephen Horan. Publish | er: CRC Press | | | | | | 3. | "Satellite Communications Systems: Systems, Techniques and Technology", by Gerard Maral, Michel Bousquet, Zhili Sun. Publisher: Wiley, 2020 | | | | | | | 4. | "Satellite Communications", by Timothy Pratt, Jeremy F. Allnutt, 3rd Edition Publisher: | | | | | | | 5. | "Principles of Modern Communication Systems", by Samuel O. Agbo , Ma
Sadiku 2017 | atthew N. O. | | | | | | 6. | Literature / books suggested by respective course Lecturers. | | | | | | | | ITLE | J | AMMING AN | D ECM/ECCM TECHI | NOLOGIES | CREDITS | 3 | | |--|---|--|---|---|-------------------------|-------------------|------------------------------------|--| | COURSE CO | ODE | | DTA-3736 COURSE CATEGORY DE L-T-P-S | | | | | | | Version | n | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT | SCHEME | | | | | | | | | First Perio | | | nd Periodical
ssessment | Seminar/
Assignments/
Project | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | | 15% | 10% | 5% | 5% | 50% | | | Course Object | tive | jamr | ming, different | uous interference, fa
types of jamming syste | ems, ECM technic | ques, and ECCI | • | | | Course Outcome | | | | oncept of electronic a | | | | | | Course Outco | me | electr | onic jamming
erstand the dif | rinciples and the prac
g technology
ferent types of electro | | | | | | Course Outco | | electr
3.Und | onic jamming
erstand the dif | g technology | | | | | | | | electr
3.Und | onic jamming
erstand the dif | g technology | | | | | | CO, PO Mar
co
co-1 | pping PO-1 | electr
3.Und | erstand the difures. PO-2 | rechnology ferent types of electro PO-3 PO-4 | nic counter meas | ures and counter | r–counter | | | CO, PO Mar
CO
CO-1
CO-2 | PO-1 3 3 | electr
3.Und | erstand the diffures. PO-2 2 | PO-3 PO-4 | PO-5 | PO-6 | PO-7 | | | CO, PO Mar
CO
CO-1
CO-2
CO-3 | PO-1 3 3 3 | electr
3.Und | erstand the difures. PO-2 | rechnology ferent types of electro PO-3 PO-4 | nic counter meas | ures and counter | PO-7 | | | CO, PO Map
CO
CO-1
CO-2
CO-3
MODULE 1:
Principals of
Through, Co | pping PO-1 3 3 5 FElectro | electr
3.Und
measu | PO-2 2 2 ck(EA),Jammin | PO-3 PO-4 | PO-5 mingTypesBurn- | PO-6 | PO-7 (7) CO-1 BTL-2 | | | CO, PO Map CO CO-1 CO-2 CO-3 MODULE 1: Principals of Through, Co | PO-1 3 3 3 FElectro | electr
3.Und
measu
micAtta
mming, | PO-2 2 2 ck(EA),Jammin | PO-3 PO-4 | PO-5 | PO-6 | PO-7 (7) CO-1 BTL-2 (6) | | | CO, PO Map
co
co-1
co-2
co-3
MODULE 1:
Principals of
Through, Co
MODULE 2:
RepeaterJa | pping PO-1 3 3 3 ifElectro | electr
3.Und
measu
micAtta
mming, | PO-2 2 2 ck(EA),Jammin | PO-3 PO-4 | PO-5 | PO-6 | PO-7 (7) CO-1 BTL-2 | | | CO, PO Map
co
co-1
co-2
co-3
MODULE 1:
Principals of
Through, Co
MODULE 2:
RepeaterJa | pping PO-1 3 3 3 FElectro overJar mmingling vs. N | electr
3.Und
measu
micAtta
mming, | PO-2 2 2 ck(EA),Jammin | PO-3 PO-4 | PO-5 | PO-6 | PO-7 (7) CO-1 BTL-2 (6) CO-1 BTL-2 | | | CO, PO Map CO CO-1 CO-2 CO-3 MODULE 1: Principals of Through, Co MODULE 2: RepeaterJa lobe Jamm MODULE 3: | pping PO-1 3 3 3 ifElectro overJar ing vs. N | electr
3.Und
measu
micAtta
mming,
Equatio
Main lob | PO-2 2 2 ck (EA), Jammin Range Decept ns, Noise Jamming. Jamming, Self- | PO-3 PO-4 | PO-5 | PO-6 nder, Side | PO-7 (7) CO-1 BTL-2 (6) | | | Infrared Count | ermeasures (IRCM), Off-Board ECM Systems, Communications | CO-2 | | | | |--------------------------------|---|-----------------|--|--|--| | Countermeasu | BTL-3 | | | | | | MODULE 5: | | (6) | | | | | | al Jamming System, Shipboard Self-Defense System, EA/Susceptibility against ns. Search Radar Counter-Countermeasures, Tracking Radar. | CO-1,2
BTL-3 | | | | | MODULE 6: | | (6) | | | | | Counter-Counte
Countermeasu | rmeasures, Infrared Counter-Countermeasures, Communications Counter-
ires. | CO-3
BTL-3 | | | | | REFERENCE BOO | KS | 1 | | | | | 1. | "Electronic Countermeasure and Electronic Counter-Countermeasure", by Zohuri. | yBahman | | | | | 2. | "Fundamentals of Electronic Warfare 2001", by S.A. Vakin , L.N. Shustov, R.H. I | Dunwell. | | | | | 3. | "Fundamentals of Electronic Warfare 2001", by S.A. Vakin , L.N. Shustov, R.H. Dunwell. | | | | | | 4. | "Electronic Warfare & Radar Systems Engineering Handbook" 2013, Naval Center Weapons Division. | AirWarfare | | | | | 5. | "EW 101: A First Course in Electronic Warfare (Artech House Radar Library) | ,1st Edition | | | | | COURSE TI | TLE | SOFT | WARE DEFINE | D RADIOS | CREDITS | 3 | | | |--------------------------
--|-------------------------|-------------------------------------|---|---|---|------------------------------|--| | COURSE CO | DDE | D | DTA-3737 COURSE CATEGORY DE L-T-P-S | | | | | | | Version | l | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT | SCHEME | | | | | | | | | First Period
Assessme | | | nd Periodical
sessment | Seminar/
Assignments/
Project | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | | 15% | 10% | 5% | 5% | 50% | | | Course Outcor | | Upon 1.Und 2.Und 3.Gair | completion of an knowledge of | of this course, the st
oncept, application
alog RF components
of digital hardware ar | udents will be ab
of SDRs.
as front end block | le to
k in implementa
s development | ation of SDR.
techniques. | | | CO, PO Map | ping | 4.Gaii | Tkilowieuge c | of software developr | Territion embedde | eu wireless syst | ems. | | | со | PO-1 | | PO-2 | PO-3 PO-4 | PO-5 | PO-6 | PO-7 | | | CO-1 | 3 | | 2 | | - | - | - | | | CO-2 | 3 | | 2 | | - | - | - | | | CO-3 | 3 | | 2 | | - | - | - | | | CO-4 | 3 | | 2 | | - | - | - (5) | | | MODULE 1: | | | | | | | (6) | | | | | - | | chitecture, SDR enab | ers,advantage/ | | CO-1 | | | disadvanta | ges, Ap | plicatio | ns. | | | | BTL-2 | | | MODULE 2: | | | | | | | (6) | | | and non-lin | ear ba | ndwidtl | h efficient mo | ckseparation, digital r
odulations. Bandwid
eanderrorprobabili | th and power eff | | CO-1
BTL-2 | | | MODULE 3: | | | | | | | (6) | | | | SDRHardware, super-heterodynearchitecture, homodynearchitecture, advantages & CO-2 disadvantages, Software for SDR, Processing architecture for SDR. BTL-3 | | | | | | | | | MODULE 4: | | | | | | | (6) | | | code divisio | n techn | iques as | well as carrier | n, multiple access tecl
sensing, Wireless ser
eranalogue signal pr | sor networks and | beam | CO-2
BTL-3 | | | processing | | | | | | | |---|--|----------------|--|--|--|--| | MODULE 5: | | (7) | | | | | | Sourceandchannelcoding (Sourceandchannelcoding, sampling, entropy, data compression, voice coding, block and convolution coding, turbo coding, space-time coding and trellis coding). | | | | | | | | MODULE 6: | | (5) | | | | | | Case studies in so | Case studies in software radio design, Introduction and a Historical perspective | | | | | | | REFERENCE BOOKS | | | | | | | | 1. | "Software Radio, (A modern approach to radio engineering)", by Jeffery H.Red
PHI PTR. | ed Publisher : | | | | | | 2. | "RF and Digital Signal Processing for Software Defined Radio", by John J. Rouphael. 2. Publisher: Elesiver. | | | | | | | 3. | "Digital Techniques in Frequency Synthesis", by B.G.Golderg. Publisher: McGra | w-Hill. | | | | | | 4. | "Multirate Signal Processing", by N.J. Fliege. Publisher: John Wiley and sons | | | | | | | | ITLE | | NCED LIGHT
CTURES | WEIGHT AND COMP | CREDITS | 3 | | |--|--------------------------|---------------------------------|--|--|--|--|---| | COURSE C | ODE | | DTA-3738 | COURSE CATEGORY | DE | L-T-P-S | 3-0-0-0 | | Version | | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT | SCHEME | Ē | | | | | | | First Perio
Assessm | | | nd Periodical
ssessment | Seminar/
Assignments/
Project | Surprise Test /
Quiz | Attendance | ESE | | 15% | | | 15% | 10% | 5% | 5% | 50% | | Course Object | tive | com
mat
of st
und | posite mate
hematical mo
ructures used
erstaticandd | erials, their manuodels & design structured by the structure of this course, the students of this course, the students of this course, the students of stu | ifacturing tech
ures made of cor
ike missiles and a
dingcrashandbir | iniques and mposites. Basic of the sircrafts& their dstrike willalso | to develop
understanding
performance | | Course Outcome | | 1. Und | derstandthed | esign of advanced struc | tures and lightwe | iaht matarials fo | raerosnace | | | | mater
2. Und
comp | ials.
derstand the I
ositeand met | numericalandanalytic
tallic components.
to solve real enginee | calskillsin struct | | • | | CO, PO Ma _l | oping | mater
2. Und
comp | ials.
derstand the I
ositeand met
Ily knowledge | numericalandanalytic
tallic components.
to solve real enginee | calskills in struct
ring problems. | ural mechanics | for both | | CO, PO Ma _l | pping PO-1 | mater
2. Und
comp | ials.
derstand the ositeand metally knowledge | numerical and analytic
tallic components. | calskillsin struct | | • | | CO, PO Ma _l
CO
CO-1 | poping PO-1 | mater
2. Und
comp | ials. derstand the i ositeand met ly knowledge PO-2 2 | numerical and analytic tallic components. to solve real enginee | ring problems. PO-5 | ural mechanics PO-6 - | for both PO-7 | | CO, PO Maj
CO
CO-1
CO-2 | pping PO-1 | mater
2. Und
comp | ials.
derstand the ositeand metally knowledge | numericalandanalytic
tallic components.
to solve real enginee | calskills in struct
ring problems. | ural mechanics | for both | | CO, PO Ma _l
CO
CO-1 | PO-1 3 3 3 | mater
2. Und
comp | ials. derstand the ositeand metoly knowledge PO-2 2 | numericalandanalytic tallic components. to solve real enginee PO-3 PO-4 2 2 2 | ring problems. PO-5 - 2 | PO-6 | PO-7 | | CO, PO Maj
CO
CO-1
CO-2
CO-3
MODULE 1: | PO-1 3 3 3 trength | mater 2. Und comp 3.App | ials. derstand the i ositeand met oly knowledge PO-2 2 2 2 | numericalandanalytic tallic components. to solve real enginee PO-3 PO-4 2 2 2 | ring problems. PO-5 - 2 2 | PO-6 - 2 2 | PO-7 - 2 2 | | CO, PO Mal
CO
CO-1
CO-2
CO-3
MODULE 1: | PO-1 3 3 3 Compo | mater 2. Und comp 3.App | ials. derstand the i ositeand met oly knowledge PO-2 2 2 2 | PO-3 PO-4 2 2 2 2 2 | ring problems. PO-5 - 2 2 | PO-6 - 2 2 | PO-7 - 2 2 2 (6) | | CO, PO Map
CO
CO-1
CO-2
CO-3
MODULE 1:
Review of S
Reinforced | PO-1 3 3 3 trength Compo | mater 2. Und comp 3.App of Mate | rials. derstand the rosite and metally knowledge PO-2 2 2 2 2 erials, Introduct | PO-3 PO-4 2 2 2 2 2 | PO-5 - 2 2 erials — Metal Allo | PO-6 - 2 2 2 oys and Fiber | FO-7 - 2 2 2 (6) CO-1 BTL-2 | | CO, PO Map CO CO-1 CO-2 CO-3 MODULE 1: Review of So Reinforced MODULE 2: Introductio | PO-1 3 3 3 trength Compo | mater 2. Und comp 3.App of Mate | rials. derstand the rosite and metally knowledge PO-2 2 2 2 2 erials, Introduct | PO-3 PO-4 2 2 2 tion to Aerospace Mat | PO-5 - 2 2 erials — Metal Allo | PO-6 - 2 2 2 oys and Fiber | FO-7 - 2 2 2 (6) CO-1 BTL-2 (7) | | CO, PO Mal
CO
CO-1
CO-2
CO-3
MODULE 1:
Review of S
Reinforced
MODULE 2:
Introductio
Corrugated | PO-1 3 3 3 trength Compo | of Mate | PO-2 2 2 2 2 crials, Introductions of constructions | PO-3 PO-4 2 2 2 tion to Aerospace Mat | PO-5 - 2 - 2 erials — Metal Allo | PO-6 - 2 2 oys and Fiber Truss,
and | FO-7 - 2 2 2 (6) CO-1 BTL-2 (7) | | CO, PO Mal
CO
CO-1
CO-2
CO-3
MODULE 1:
Review of S
Reinforced
MODULE 2:
Introductio
Corrugated | PO-1 3 3 3 trength Compo | of Mate | PO-2 2 2 2 2 crials, Introductions of constructions | PO-3 PO-4 2 2 2 tion to Aerospace Mat | PO-5 - 2 - 2 erials — Metal Allo | PO-6 - 2 2 oys and Fiber Truss, and | FO-7 | | CO, PO Map CO CO-1 CO-2 CO-3 MODULE 1: Review of So Reinforced MODULE 2: Introductio Corrugated MODULE 3: Introductio | PO-1 3 3 3 trength Compo | of Mater | PO-2 2 2 2 2 crials, Introductions of constructions | PO-3 PO-4 2 2 2 tion to Aerospace Mat | PO-5 - 2 - 2 erials — Metal Allo | PO-6 - 2 2 oys and Fiber Truss, and | For both PO-7 - 2 2 2 (6) CO-1 BTL-2 (7) CO-1 BTL-2 (6) CO-2 BTL-3 | | MODULE 5: | | (5) | | | | |-------------------|--|-----------------|--|--|--| | Material Consti | tutive Relations. | CO-1,2
BTL-3 | | | | | MODULE 6: | | (5) | | | | | Failure Theories; | Fatigue theory. | CO-3
BTL-3 | | | | | REFERENCE BOOKS | | | | | | | 1. | "Composite Structures Safety Management", by Dr. Bjorn Backman. Publisher Science. | r: Elsevier | | | | | 2. | "Composite Structures: Design, Mechanics, Analysis, Manufacturing and Testing", by Manoj Kumar Buragohain. Publisher: CRC Press. | | | | | | 3. | "Lightweight Composite Structures in Transport: Design, Manufacturin and Performance", by James Njuguna Woodhead Publishing, 2016. | ng, Analy-sis | | | | | 4. | "Structural and Stress Analysis", by T.H.G. Megson. Publisher: Butterworth- | Heinemann. | | | | | COURSE CODE DTA-3739 COURSE CATEGORY DE | COURSE TI | TLE | - | 3 | | | | | |--|---------------|----------|-----------|---------------------------------------|---|---|---------------------------------------|---------| | ASSESSMENT SCHEME First Periodical Assessment Second Period | COURSE CO | DE | [| DTA-3739 | COURSE CATEGORY | DE | L-T-P-S | 3-0-0-0 | | First Periodical Assessment Second Periodical Assessment Assignments/ Project 15% 15% 10% 5% 5% 50% The course is intended to provide learning on the testing requirements, characterization, system performance testing procedures, test setups, safety standards, safety tools of laser and microwave based DEW systems. Upon completion of this course, the students will be able to 1.Understand the characterization and testing requirements of DEW systems. 2.Carry out the indoors & outdoors system performance testing. 3.Understand the safety issues, safety standards, handling high power sources. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 | Version | | | 1.0 | Approval Details | | | BTL-3 | | Assessment Quiz Qui | ASSESSMENT S | | | | | | | | | The course is intended to provide learning on the testing requirements, characterization, system performance testing procedures, test setups, safety standards, safety tools of laser and microwave based DEW systems. Course Outcome | | | _ | | Assignments/ | • | Attendance | ESE | | Course Objective characterization, system performance testing procedures, test setups, safety standards, safety tools of laser and microwave based DEW systems. Course Outcome | 15% | | | 15% | 10% | 5% | 5% | 50% | | 1. Understand the characterization and testing requirements of DEW systems. 2. Carry out the indoors & outdoors system performance testing. 3. Understand the safety issues, safety standards, handling high power sources. CO, PO Mapping | Course Object | ive | char | racterization, | system performa | nce testing prod | cedures, test s | • | | CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 | | | 1.Und | lerstand the cl
ry out the indo | haracterization and
oors & outdoors syst | testing requireme
em performance | ents of DEW sys
testing. | | | CO-1 3 2 1 1 1 2 CO-3 3 2 2 - 1 1 1 2 CO-3 3 2 2 CO-3 - 2 MODULE 1: (6) Testing requirements of DEW system, types of testing, laser effect testing on target, system output testing. (7) System performance testing, System outdoor test & measurement instruments. (7) MODULE 3: (5) Laser testing issues, Laser safety, Laser safety standards, laser safety tools. (5) MODULE 4: (5) Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. (CO-2 BTL-3) MICROWAVE System testing Impedance measurement, S-Parameters and the Smith Chart. (CO-2 BTL-3) | | | | | | T = = = | | T | | CO-2 3 2 1 1 1 2 CO-3 3 2 2 2 MODULE 1: (6) Testing requirements of DEW system, types of testing, laser effect testing on target, system output testing. MODULE 2: (7) System performance testing, System outdoor test & measurement instruments. MODULE 3: (5) Laser testing issues, Laser safety, Laser safety standards, laser safety tools. MODULE 4: (5) Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | | | | | | | | PO-7 | | CO-3 3 2 2 MODULE 1: CO-1
BTL-2 MODULE 2: (7) System performance testing, System outdoor test & measurement instruments. CO-1
BTL-2 MODULE 3: (5) Laser testing issues, Laser safety, Laser safety standards, laser safety tools. CO-2
BTL-3 MODULE 4: (5) Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2
BTL-3 | | | | | | | | - | | MODULE 1: Testingrequirements of DEW system, types of testing, laser effect testing on target, system output testing. MODULE 2: System performance testing, System outdoor test & measurement instruments. MODULE 3: Laser testing issues, Laser safety, Laser safety standards, laser safety tools. MODULE 4: MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. MICO-2 BTL-3 MICO-2 BTL-3 | | | | | | 1 | 1 | | | Testing requirements of DEW system, types of testing, laser effect testing on target, system output testing. MODULE 2: System performance testing, System outdoor test & measurement instruments. MODULE 3: Laser testing issues, Laser safety, Laser safety standards, laser safety tools. CO-2 BTL-3 MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | | <u> </u> | | | - | - | | | | outputtesting. MODULE 2: System performance testing, System outdoor test & measurement instruments. CO-1 BTL-2 MODULE 3: Laser testing issues, Laser safety, Laser safety standards, laser safety tools. CO-2 BTL-3 MODULE 4: (5) Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | | | + | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | MODULE 2: System performance testing, System outdoor test & measurement instruments. MODULE 3: Laser testing issues, Laser safety, Laser safety standards, laser safety tools. MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 MIL-3 | | | ISOIDE | w system, type | es or testing, laser ene | cttestingontarget | ., system | | | System performance testing, System outdoor test & measurement instruments. MODULE 3: Laser testing issues, Laser safety, Laser safety standards, laser safety tools. MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 MICROWAVE SYSTEM TESTING IMPEDANCE MEASUREMENT, S-Parameters and the Smith Chart. CO-2 BTL-3 | <u> </u> | ııg. | | | | | | | | MODULE 3: Laser testing issues, Laser safety, Laser safety standards, laser safety tools. MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 MICROWAVE SYSTEM TESTING IMPEDANCE MEASUREMENT, S-Parameters and the Smith Chart. BTL-3 | | | | | | | | | | Laser testing issues, Laser safety, Laser safety standards, laser safety tools. MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. BTL-3 CO-2 BTL-3 | System per | formar |
nce test | ting, System o | utdoor test & meas | urement instrum | ents. | | | MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | MODULE 3: | | | | | | | (5) | | MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | Laser testin | g issue | s. Lase | r safety. Lasei | r safety standards. | aser safety tools. | | CO-2 | | MODULE 4: Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | | 5 -5 -6 | , =5.00 | 22,, 2000. | , | 1 1111111111111111111111111111111111111 | | | | Microwave system testing Impedance measurement, S-Parameters and the Smith Chart. CO-2 BTL-3 | MODULE 4: | | | | | | | | | BTL-3 | | vstem t | esting lı | mpedance mea | asurement. S-Parame | eters and the Smith | Chart. | | | | | , | | p = 1 = 1.10 | 2, 2 | | · · · · · · · · · · · · · · · · · · · | | | (// | MODULE 5: | | | | | | | (7) | | Power Measurement, Noise Figure and Phase Noise measurement, Frequency measurements (Spectrum Analysis), Gain Compression and Intermodulation, Network Analysis. | | | | | | | |--|---|-----|--|--|--|--| | MODULE 6: | | (6) | | | | | | Microwave subsys | Microwave subsystem/system characterization techniques. HPM safety tools, safety standards. | | | | | | | REFERENCE BOOKS | | | | | | | | 1. | "An Introduction to Microwave Measurements", by Ananjan Basu. | | | | | | | COURSE T | ITLE | ADVAN | NCED ANALY | CREDITS | 3 | | | |---|--|--|--|---|--|-------------------------------------|---| | COURSE CO | ODE | DTA | A-3740 | COURSE CATEGORY | DE | L-T-P-S | 3-0-0-0 | | Version | 1 | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT | SCHEME | | | | | | | | First Period
Assessmo | | | Periodical
essment | Seminar/
Assignments/
Project | Surprise Test /
Quiz | Attendance | ESE | | 15% | | 1 | 15% | 10% | 5% | 5% | 50% | | Course Object | tive | charac
The co | cterization b
ourse provid | ye of the course is to
y all the conventiona
les understanding or
c techniques, chroma | Iwellestablished
the material ch | I techniques uso
naracterization | ed worldwide. | | Course Outcome | | Upon co | ompletion o | f this course, the stu | dents will be abl | le to | | | | - | 2.Apply | rstand differ | ent characterization
analytical technique
ner etc. | • | | /inorganic/ | | CO, PO Mar | oping | 2.Apply a | rstand differ
appropriate
iterial/polym | analytical technique
ner etc. | foraparticular m | aterial organic, | | | CO, PO Mar | oping
PO-1 | 2.Apply ananomat | rstand differ
appropriate
iterial/polym | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, | PO-7 | | CO, PO Map
CO
CO-1 | poping PO-1 | 2.Apply a nanomate | rstand differ appropriate terial/polym | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, PO-6 | PO-7
- | | CO, PO Map
CO
CO-1
CO-2 | PO-1
3 | 2.Apply ananomat | rstand differ appropriate terial/polym | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, | PO-7
-
2 | | CO, PO Map
co
CO-1
CO-2
MODULE 1: | PO-1 3 3 | 2.Apply ananomate | rstand differ appropriate terial/polym | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, PO-6 | PO-7
- | | CO, PO Map
co
co-1
co-2
MODULE 1: | PO-1 3 3 Analys | 2.Apply ananomate | rstand differ appropriate terial/polym | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, PO-6 | PO-7 - 2 (4) | | CO, PO Mar
CO
CO-1
CO-2
MODULE 1:
Instrumenta | PO-1
3
3 | 2.Apply a nanomate Policy 2 2 sis: Qualita | rstand differ appropriate aterial/polymero-2 | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, PO-6 | PO-7 - 2 (4) CO-1 BTL-2 | | CO, PO Mar
CO
CO-1
CO-2
MODULE 1:
Instrumenta | PO-1 3 3 instrum | 2.Apply a nanomate Policy 2 2 sis: Qualita | rstand differ appropriate aterial/polymero-2 | analytical technique ner etc. PO-3 PO-4 | foraparticular m | aterial organic, PO-6 | PO-7 - 2 (4) CO-1 BTL-2 (4) CO-1 | | CO, PO Map CO CO-1 CO-2 MODULE 1: Instrumenta MODULE 2: Genesis of MODULE 3: Polymeric T | PO-1 3 3 instrum echniqu Thermo | 2.Apply a nanomate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | rstand differ appropriate aterial/polyments and series analysis alysis, hyphology Technicy (TG), Differ | analytical technique ner etc. PO-3 PO-4 | PO-5 - 1 | PO-6 1 on; Thermal | PO-7 - 2 (4) CO-1 BTL-2 (4) CO-1 BTL-2 | | CO, PO Mar
CO
CO-1
CO-2
MODULE 1:
Instrumenta
MODULE 2:
Genesis of
MODULE 3:
Polymeric T
Techniques: | PO-1 3 3 instrum Gechniqu Thermo | 2.Apply a nanomate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | rstand differ appropriate aterial/polyments and series analysis alysis, hyphology Technicy (TG), Differ | PO-3 PO-4 | PO-5 - 1 | PO-6 1 on; Thermal | PO-7 - 2 (4) CO-1 BTL-2 (4) CO-1 BTL-2 (8) | | CO, PO Mar
CO
CO-1
CO-2
MODULE 1:
Instrumenta
MODULE 2:
Genesis of
MODULE 3:
Polymeric T
Techniques:
Scanning Ca
MODULE 4:
Chromatogra | PO-1 3 3 al Analys instrum fechniqu Thermo | 2.Apply a nanomal 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | rstand differ appropriate aterial/polyments and steel aterial at a second and second alysis. alysis, hyphology Technic (TG), Differ a second at sec | PO-3 PO-4 | PO-5 1 Sight determinations (DTA), and Different erformance Liquid | PO-6 - 1 | PO-7 - 2 (4) CO-1 BTL-2 (4) CO-1 BTL-2 (8) CO-2 BTL-3 | | | Ultra Violet-Visible Spectroscopy UV-VIS, Infra-Red spectroscopy (IR), Nuclear nance (NMR), Mass spectroscopy, Atomic Absorption Spectroscopy (AAS). | CO-1,2
BTL-3 | |---------------|--|-----------------| | MODULE 6: | | (4) | | XRD and SEM | techniques, Sensitivity studies | CO-3
BTL-3 | | REFERENCE BOO | KS | | | 1. | "Fundamentals of molecular spectroscopy" by C. N. Banwell. Publisher : McG | raw Hills. | | 2. | "Introduction to Spectroscopy" by Donald L. Pavia, Gary M. Lampman, an
Kriz. Publisher: Cengage Learning, 2014. | nd George S. | | 3. | "Chromatography: Concepts and Contrasts" by James M. Miller. Publisher: W | iley. | | 4. | "Chromatography: Principles and Instrumentation", by Mark F. Vitha. Publi | sher: Wiley. | | 5. | "Elements of X-Ray Diffraction" by B.D. Cullity Deceased, S.R. Stock. Publisher | : Pearson. | | 6. | "Electron Microscopy: Principles and Fundamentals" by S. Amelinckx, Dirk van Landuyt, Gustaaf van Tendeloo. Publisher: Wiley. | c van Dyck, J. | | 7. | "Polymer Characterization: Physical Techniques", by Dan Campbell, Richard A
R. White 2nd Edition. Publisher CRC Press. | . Pethrick, Jim | | COURSE TI | TLE | so | SONAR SYSTEM ENGINEERING | | | CREDITS | 3 | |--------------------------|--------|--|---
---|---|---|----------------------| | COURSE CO | DDE | DTA-3741 COURSE CATEGORY DE | | | | | 3-0-0-0 | | Version | l | 1.0 | Арі | proval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT | SCHEME | | | | | | | | First Period
Assessme | | Second Period
Assessmen | dical As | Seminar/
signments/
Project | Surprise Test /
Quiz | Attendance | ESE | | 15% | | 15% | | 10% | 5% | 5% | 50% | | Course Object | ive | acoustic pri | nciples, son | • | de an in-depth u
and applicatio
design. | _ | | | Course Outcome | | 1. Know the back 2. Have an in-day 3. Know about 4. Know the phasonar. | asic building
lepth knowl
the ambigu
rysics behind | s blocks of a rad
edge on differe
ity function an
d sound propag | dents will be ab
lar system.
ent types of signa
d its significance
ration in water ar
ourse in real time | ıls that are used
in radar signal p
nd principle of o | processing. | | CO, PO Map | | | | | | | | | СО | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | 2 | - | - | - | - | - | | CO-2 | 3 | 2 | - | - | - | - | - | | CO-3 | 3 | 2 | - | - | | - | - | | CO-4 | 3 | 2 | - | - | - | - | - | | CO-5 | 3 | 3 | - | | | - | - | | | | opment and disc
ssive and active: | | • | ciples that pertair val operation. | n tothedesign | (6)
CO-1
BTL-2 | | MODULE 2: | | | | | | | (6) | | Topics from | compl | ex aperture the | eory, array t | heory. | | | CO-1
BTL-2 | | MODULE 3: | | | | | | | (5) | | Signal proce | ssing | | | | | | CO-2
BTL-3 | | MODULE 4: | | | | | | | (6) | | | | | | | | | (0) | | Introduction to u | ndersea warfare and engineering acoustics. | CO-2 | | | | | |-----------------------------|---|-----------|--|--|--|--| | | | BTL-3 | | | | | | MODULE 5: | | (7) | | | | | | | Principles of optimal signal processing techniques for detecting signals in noise, maximum ikelihood, Bayes risk. | | | | | | | MODULE 6: | | (6) | | | | | | Neyman-Pearson (ROCcurves). | CO-3
BTL-3 | | | | | | | REFERENCE BOOKS | | | | | | | | 1. | "Fundamentals of Radar, Sonar and Navigation Engineering", by K. K. Sharr | ma. | | | | | | 2. | "Principles of Modern Radar: Advanced techniques", by editor William L. N | ∕lel-vin. | | | | | | 3. | "Principles of Modern Radar: Advanced techniques", by editor William L. Mel-vin. | | | | | | | 4. | "Sonar for practicing engineers", by A. D. Waite. | | | | | | | 5. | "Underwater Acoustics: Analysis, Designand Performance of Sonar", by Rich Hodges. | n-ardP. | | | | | ## **SEMESTER II - ELECTIVE - 4 COURSES** | COURSE TI | TLE | UNMANNED AERIAL VEHICLE DESIGN CRED | | | | | | 3 | |--|----------|-------------------------------------|---------------------------------|--|--|-----------------|----------------|---------------| | COURSE CO | DE | DT | A-3742 | COURSE CATEGORY | DE | | L-T-P-S | 3-0-0-0 | | Version | | | 1.0 | Approval Details | 23 ACI
06.02.2 | - | LEARNING BTL-3 | | | ASSESSMENT | SCHEN | ΛE | | | | | | | | First Period
Assessme | | | d Periodical
essment | Seminar/
Assignments/
Project | Surprise Quiz | - | Attendance | ESE | | 15% | | | 15% | 10% | 5% | | 5% | 50% | | Course Objec | tive | process | s for rapidly $\mathfrak g$ | ded to provide the growing fixed – wir ability analysis, air | g UAV techi | nology, | integrated wit | th its | | Course Outcome Upon completion of this course, the students will be able to a. Understand the design requirements, design paramete b. Perform the aerodynamic analysis, performance and st c. Understand the performance testing of the UAVs. d. Understand the airworthiness and safety requirements | | | | | gn parameters on ance and stable UAVs. | ility analysis. | | | | CO, PO Mapp | ing | | | | | | | | | СО | PO- | 1 | PO-2 | PO-3 PO | 4 P | 0-5 | PO-6 | PO-7 | | CO-1 | 3 | | 2 | | - | | - | - | | CO-2 | 3 | | 2 | - - | - | | - | - | | CO-3 | 3 | | 2 | - - | - | | - | - | | CO-4 | 3 | | 2 | - - | - | | - | - | | MODULE 1: | : | | | | | | | (6) | | UAV design | Requ | irements | s, design par | ameters, design alg | orithms, Ce | rtificat | ion | CO-1 | | | | afts and | UAVs. Airwo | orthiness of aircraft | s and UAVs | • | | BTL-3 | | MODULE 2: | ; | | | | | | | (6) | | • | | _ | g qualities. M
m identificat | laneuverability req
ion | uirements. <i>i</i> | Aircraft | t design; UAV | CO-2
BTL-3 | | MODULE 3: | : | | | | | | | (7) | | UAV aerody | /nami | cs, struct | tures and pro | opulsion, performa | nce and stal | oility ar | nalysis. | CO-2
BTL- | | MODULE 4 | | | | | | | | (6) | | UAV projec | t life c | cycles. St | ages of Aircr | aft design. Initial si | zing: aircraf | ts and | of UAVs. | CO-3
BTL-3 | | MODULE 5: | | | | | | | | | | THE STATE OF S | • | | | | | | | (5) | | MODULE 6: | | (6) | | | | |--|---|---------------|--|--|--| | Wind Tunnel Testing, Aerodynamic Characterization through Wind Tunnel Testing. | | | | | | | REFERENCE BOOK | S | | | | | | 1. | "Introduction to Flight", by John D. Anderson | | | | | | 2. | "Performance, Stability, Dynamics, and Control of Airplanes", by Bandu N. Pa | amadi. | | | | | 3. | "Aircraft performance and design", by John D. Anderson. | | | | | | 4. | "Unmanned Aircraft Design A review of fundamentals", by Mohammad H. Sadraey. | | | | | | 5. | "Aircraft Design : A Conceptual Approach", by Daniel P. Raymer. | | | | | | 6. | "Unmanned Aircraft Systems: UAVs Design Development and Deployment", b | y Reg Austin. | | | | | 7. | "SmallUnmannedFixed-wingAircraftDesign:APracticalApproach",byAndrand James P.Scanlan. | rewJ.Keane | | | | | 8. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE TIT | LE | NAVAL | OCEAN ANA | CREDITS | 3 | | | | |----------------------------|---|-------------------|--|--|--------------------------|--|---|---------------| | COURSE CO | DE | DT | A-3743 | COURSE CATEGOR | Y | DE | L-T-P-S | 3-0-0-0 | | Version | | | BTL-3 | | | | | | | ASSESSMENT S | SCHEN | 1E | | | | | | | | First Periodi
Assessmen | | | l Periodical
essment | Seminar/
Assignments/
Project | | Surprise Test /
Quiz | Attendance | ESE | | 15% | | | 15% | 10% | | 5% | 5% | 50% | | Course Object | ive | Ocean.
generat | They will lea | led to provide und
rn methods of and
an circulation pre-
VAFS). | alysi | is of ocean data | , to model Nav | al ocean, to | | Course Outcor | me | 1 2 | L. Understa
2. Perform t
3. Understa | f this course, the sond the design required he aerodynamic and the performan | uirei
analy
ice te | ments, design p
ysis, performan
esting of the UA | arameters of U
ce and stability
Vs. | analysis. | | CO, PO Mappi | ng | | | | | | | | | СО | PO- | 1 | PO-2 | PO-3 PC | D-4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | | 2 | | | - | - | - | | CO-2 | 3 | | 2 | | | - | - | - | | CO-3 | 3 | | 2 | | | - | - | - | | MODULE 1: | | | 2 | - - | | - | - | (6) | | | 00146 | das of th | ha Indian Na | uu aaaan analusis | and | prodiction suct | omes | CO-1 | | Auvanceu ki | IOWIE
 euge or ti | ne mulan Na | vy ocean analysis | anu | prediction syst | ems. | BTL-3 | | MODULE 2: | | | | | | | | (5) | | Naval Ocean | n Mod | deling Pro | ogram (NON | IP), Naval ocean d | lata | systems. | | CO-2
BTL-3 | | MODULE 3: | | | | | | | | (6) | | Atmospheric | c forc | ing syste | ems, data ass | imilation systems |) . | | | CO-2
BTL- | | MODULE 4: | | | | | | | | (6) | | Optimal The (TOPS). | Optimal Thermal Interpolation System (OTIS), Thermal Ocean Prediction Systems CO-3 | | | | | | | | | MODULE 5: | | | | | | | | (6) | | | | - | | The atmospheric _l ula for estimating | • | | layer, | CO-3
BTL-3 | | MODULE 6: | | | | | | | |--|---|--|--|--|--|--| | The global ocean circulation prediction system, Shallow Water Analysis and Forecast System (SWAFS), Knowledge of ocean eddies. BT | | | | | | | | REFERENCE BOOKS | | | | | | | | 1. | Indian Navy: Ocean of opportunities (Defence Series Books) Author: by PRANAV ZOPE | | | | | | | 2. | 2. Elements of Ocean Engineering. Author Robert E. Randall | | | | | | | 3. | Ocean Modelling for Beginners - Using Open-Source Software. Author Jochen Kaempf. | | | | | | | 4. | Literature / books suggested by respective course Lecturers. | | | | | | | COURSE TIT | LE | ELLING &SIMU | JLATION OF LASER | | | CREDITS | 3 | |----------------------------|--------------------|--|--|--|-------------------------------|--------------------------------|---------------| | COURSE COI | DE D | ГА-3744 | L-T-P-S | 3-0-0-0 | | | | | Version | | 1.0 | Approval Details | | ACM,
2.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT S | СНЕМЕ | | | | | | | | First Periodi
Assessmer | | d Periodical
sessment | Seminar/
Assignments/
Project | · | e Test /
uiz | Attendance | ESE | | 15% | | 15% | 10% | 5 | % | 5% | 50% | | Course Objecti | interac
lethali | ction with me
ty modelling, | led to provide und
tals and composite
damage mechanis
formance evaluatio | materials
n & dama | s, physics
ge thres | based models
hold measuren | for the | | Course Outcon | 1.
2.
ne | Understand
Developphy
composites
Understand | on of this course, the of the laser matter raics-based model for the laser parameter performance of high | interactio
or evaluati
r measure | n.
on of effe
ement tee | ect of laser on m
chniques. | etals and | | MODULE 1: | | | | | | | (6) | | со | PO-1 | PO-2 | PO-3 PO | 4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | 2 | 2 - | | - | - | - | | CO-2
CO-3 | 3 | 2 | - 2 | | <u>-</u> | 1 - | 2 | | CO-4 | 3 | 2 | 2 2 | | 2 | 1 | 2 | | CO-4 | 3 | | 2 | | | | | | Laser beam composite m | | cs, Laser letha | ality modeling & si | nulation v | vith meta | al targets & | CO-1
BTL-3 | | _ | | r vulnerability | assessment, Effec | t of laser o | on metal: | s & | CO-2 | | composite m | naterials. | | | | | | BTL-3 (6) | | Measureme | | cterization of
ir Interpretati | Damage Threshol | ds, Mecha | nisms of | Damage, | CO-2
BTL- | | MODULE 4: | | | | | | | (6) | | Analysis Too techniques. | ls for the Est | imation of Ha | azards, Laser paran | neters mea | asureme | nt | CO-3
BTL-3 | | MODULE 5: | | | | | | | (7) | | Tools to ana | lyse and nre | dict Laser Sve | tem performance (| ınder diffa | erent con | nditions like | CO-3 | | 10013 to arra | ., se and pre | alet Laser sys | - Periormance (| acr unit | | IGIGIOTIS IINC | BTL-3 | | land, sea air, etc | c. | | | | | |---|---|-----|--|--|--| | MODULE 6: | | (6) | | | | | Introduction of full scale end to end modeling of laser system performance. | | | | | | | REFERENCE BOOKS | 5 | | | | | | 1. | "High Power Laser-Matter Interaction", by Mulser, Peter, Bauer, Dieter. Publisher : Springer. | | | | | | 2. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE TITI | LE | COMPL | JTATIONAL / | CREDITS | 3 | | | | | |---|------------------------------|-------------------------------------|-------------------------|--|--------------|-----------------|-------------------|---------------|--------------| | COURSE COL | DE | DTA-3745 COURSE CATEGORY DE L-T-P-: | | | | | | 3-0-0-0 |) | | Version | Version 1.0 Approval Details | | | | | | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT S | CHEN | 1E | | | | | | | | | First Periodi
Assessmen | | | l Periodical
essment | Seminar/
Assignments/
Project | _ | e Test /
uiz | Attendance | ESE | | | 15% | | | 15% | 10% | 5 | % | 5% | 50% | | | Course Objecti | ve | numeri | cal methods | ded to provide lear
for solving system
ence modelling. | _ | • | | • | , | | Course Outcome Upon completion of this course, the students will be able to 1. Understand the CFD analysis, fluid mechanics, heat transfer analysis, numerical modelling of fluids. 2. Generate numerical model related to fluid dynamics 3. To do the pre and post processing of CFD analysis. | | | | | | llysis, | | | | | CO, PO Mappir | ng | | | | | | | | | | СО | PO-1 | L | PO-2 | PO-3 PO | -4 | PO-5 | PO-6 | PO-7 | | | CO-1 | 3 | | 2 | | | - | - | - | | | CO-2 | 3 | | 2 | 3 3 | | 3 | 2 | 2 | | | CO-3 | 3 | | 2 | 3 3 | | 3 | 2 | 2 | /=\ | | MODULE 1: | | | | | | | | | (5) | | Introduction | n to f | luid mec | hanics & hea | at transfer. | | | | CO-1
BTL-3 | | | MODULE 2: | | | | | | | | DIL-3 | (6) | | | to n | ımorical | analysis Die | scretization approa | chas: finit | a diffora | nce finite | CO-2 | (0) | | volume, finit | | | • | • • | CHES. IIIIIL | c unitere | nce, mile | BTL-3 | | | MODULE 3: | | ciic ali | a spectrum | | | | | | (6) | | | | da fan al | | | aa.t.:a.u.a | Nivenania | | CO-2 | (-) | | | | | | ations/systems of e
ystems and for flui | • | | cai schemes | BTL- | | | MODULE 4: | ic, pa | | | ysterns and for har | a dynamic | | | | / 7 \ | | | | | | | | | | | (7) | | CFD analysis | • | | | | | | | CO-3 | | | | | | | | | | | BTL-3 | | | MODULE 5: | | | | | | | | | (6) | | Numerical m | nodel | ling of co | mpressible | & in-compressible | flow turb | ulence n | nodelling | CO-3 | | | | .ouci | 01 66 | 7.11p1 C331b1C | | , | archice II | | BTL-3 | | | MODULE 6: | | | | | | | | | (6) | | Grid generation | /CAD, data analysis and uncertainties | CO-4
BTL-3 | |-----------------|--|-------------------| | REFERENCE BOOKS | S | | | 1. | "ATextbookofHeatTransferPaperback", by S.P. Sukhatme. Publisher: Univer | -sitiesPress. | | 2. | "An Introduction to Computational Fluid Dynamics: The Finite Volume Metho Versteeg. Publisher: Pearson. | d", by H. | | 3. | "Computational Fluid Dynamics the Basics with Applications", by John D. An-der Publisher: McGraw Hill Education | son,Jr. | | 4. | "Fluid Mechanics: Volume 2: Foundations and Applications of Mechanics (Cambo. S. Jog. Publisher: Cambridge University Press; 3rd edi-tion. | oridge-iisc)", by | | 5. | "Numerical Modeling and Computer Simulation", Edited by DraganCvetk intechopen. | ović, publisher | | 6. | Literature / books suggested by respective course Lecturers. | | | COURSE CODE DTA-3746 COURSE CATEGORY DE L-T-P-S 3-0-0-0 | COURSE TITLE | LAUNC | H VEHICLE D | ESIGN & ANALYS | IS | | CREDITS | 3 | |
--|------------------|---------------|----------------------------|--|-----------------------|---------------|----------------|---------|-----| | ASSESSMENT SCHEME First Periodical Assessment | COURSE CODE | DT | A-3746 | COURSE CATEGOR | Υ | DE | L-T-P-S | 3-0-0-0 | | | First Periodical Assessment Assessment 15% 15% 15% 10% 5% 5% 5% 50% Course Objective The course is intended to provide learning on the launch vehicle design and analysis, components and subsystems of the launch vehicle, propulsion systems. Upon completion of this course, the students will be able to 1. Understand the launch vehicle requirements, its functioning. 2. Design and analysis of launch vehicles. 3. Understand the propellant requirement for launch vehicles. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 2 2 2 CO-2 3 2 2 2 CO-3 3 2 MODULE 1: (6) Introduction to propulsion for launch vehicles, beginning with mission energy requirements and an overview of current and proposed launch propulsion devices. MODULE 2: (5) Performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis, operating characteristics and propellant selection criteria for air performance analysis operating characteristics and propellant selection criteri | Version | | 1.0 | Approval Details | | • | | BTL-3 | | | First Periodical Assessment Assessment Assessment Sproject Quiz Attendance ESE 15% 15% 10% 5% 5% 50% Course Objective The course is intended to provide learning on the launch vehicle design and analysis, components and subsystems of the launch vehicle, propulsion systems. Upon completion of this course, the students will be able to 1. Understand the launch vehicle requirements, its functioning. 2. Design and analysis of launch vehicles. 3. Understand the propellant requirement for launch vehicles. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 2 | ASSESSMENT SCH | HEME | | | | | | | | | Course Objective The course is intended to provide learning on the launch vehicle design and analysis, components and subsystems of the launch vehicle, propulsion systems. Upon completion of this course, the students will be able to 1. Understand the launch vehicle requirements, its functioning. 2. Design and analysis of launch vehicles. 3. Understand the propellant requirement for launch vehicles. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 | | | | Assignments/ | • | | Attendance | ESE | | | Course Objective components and subsystems of the launch vehicle, propulsion systems. Upon completion of this course, the students will be able to 1. Understand the launch vehicle requirements, its functioning. 2. Design and analysis of launch vehicles. 3. Understand the propellant requirement for launch vehicles. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 2 | 15% | | 15% | 10% | | 5% | 5% | 50% | | | Course Outcome 1. Understand the launch vehicle requirements, its functioning. 2. Design and analysis of launch vehicles. 3. Understand the propellant requirement for launch vehicles. CO, PO Mapping CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 2 | Course Objective | ! I | | • | • | | • | • | is, | | CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 CO-1 3 2 2 | Course Outcome | 1.
2. | Understand
Design and a | the launch vehicle
analysis of launch v | requiren
vehicles. | nents, its fu | ınctioning. | | | | CO-1 3 2 2 | CO, PO Mapping | | | | | | | | | | CO-2 3 2 2 3 - 2 | | | | PO-3 PO | D-4 | PO-5 | PO-6 | PO-7 | | | CO-3 3 2 | | | | | | | | - | | | MODULE 1: Introduction to propulsion for launch vehicles, beginning with mission energy requirements and an overview of current and proposed launch propulsion devices. MODULE 2: Performance analysis, operating characteristics and propellant selection criteria for air breathing and solid. MODULE 3: Liquid and nuclear rocket motor propulsion systems. MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: (6) EF modelling: Idealization, Discretization, Meshing and Post Processing. | | | | | | | | | | | Introduction to propulsion for launch vehicles, beginning with mission energy requirements and an overview of current and proposed launch propulsion devices. MODULE 2: Performance analysis, operating characteristics and propellant selection criteria for air breathing and solid. MODULE 3: CO-2 BTL-3 MODULE 3: (7) Liquid and nuclear rocket motor propulsion systems. MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: CO-3 BTL-3 CO-3 BTL-3 CO-3 BTL-3 CO-3 BTL-3 CO-3 BTL-3 | | | | <u> -</u> | | <u> </u> | | | (6) | | requirements and an overview of current and proposed launch propulsion devices. MODULE 2: Performance analysis, operating characteristics and propellant selection criteria for air breathing and solid. MODULE 3: Liquid and nuclear rocket motor propulsion systems. CO-2 BTL-3 CO-2 BTL-3 CO-2 BTL-3 CO-2 BTL-3 CO-2 BTL-3 CO-3 BTL-3 MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: (6) CO-3 CO-3 CO-3 CO-3 CO-3 CO-3 CO-3 CO- | | n propulsion | n for launch | vehicles heginnin | a with m | ission ana | cav | CO-1 | (0) | | MODULE 2: Performance analysis, operating characteristics and propellant selection criteria for air breathing and solid. MODULE 3: Liquid and nuclear rocket motor propulsion systems. CO-2 BTL-3 CO-2 BTL-3 CO-2 BTL-3 CO-2 BTL-3 CO-3 BTL-5 MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: (6) EF modelling: Idealization, Discretization, Meshing and Post Processing. | | • | | , • | _ | | 0, | | | | Performance analysis, operating characteristics and propellant selection criteria for air breathing and solid. MODULE 3: Liquid and nuclear rocket motor propulsion systems. MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-2 BTL-3 CO-2 BTL- CO-2 BTL- CO-3 BTL-3 MODULE 5: (6) | • | | | от от от от от от от от | | | <u></u> | | (5) | | breathing and solid. MODULE 3: Liquid and nuclear rocket motor propulsion systems. MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: (6) | Performance a | analysis, ope | erating chara | acteristics and pro | pellant s | election cr | iteria for air | CO-2 | | | Liquid and nuclear rocket motor propulsion systems. CO-2 BTL- MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: (6) | breathing and | solid. | _ | · | | | | BTL-3 | | | Liquid and nuclear rocket motor propulsion systems. MODULE 4: Advanced cycles and concepts are presented. Design of components and subsystems CO-3 BTL-3 MODULE 5: (6) | MODULE 3: | | | | | | | | (7) | | Advanced cycles and concepts are presented. Design of components
and subsystems CO-3 BTL-3 MODULE 5: (6) CO-3 CO-3 CO-3 CO-3 CO-3 | Liquid and nuc | lear rocket | motor propi | ulsion systems. | | | | | | | MODULE 5: EF modelling: Idealization, Discretization, Meshing and Post Processing. CO-3 CO-3 | MODULE 4: | | | | | | | | (7) | | FF modelling: Idealization, Discretization, Meshing and Post Processing. | Advanced cycle | es and cond | epts are pre | sented. Design of | compon | ents and su | ubsystems | | | | FF modelling: Idealization, Discretization, Meshing and Post Processing. | MODULE 5: | | | | | | | | (6) | | DIL-3 | FE modelling: I | Idealization | , Discretizati | on, Meshing and | Post Proc | essing. | | | | | MODULE 6: (5) | MODULE 6: | | | | | | | II. | (5) | | Tracking and co | ontrolling errors, Nonlinear analysis in FEM, Launch dynamic analysis. | CO-4
BTL-3 | |-----------------|---|-------------------| | REFERENCE BOOK | S | | | 1. | "Design of Rockets and Space Launch Vehicles", by Don Edberg, Willie Co
American Institute of Aeronauti cs & Ast. (August 21, 2020) | osta. Publisher : | | 2. | "Modern Engineering for Design of Liquid Propellant Rocket Engine
Astronautics and Aeronautics)", by Dieter K Huzel, David H Huang. Pu
(American Institute of Aeronautics & Astronautics); Revised, Subse-quent edi | ıblish-er : AIAA | | 3. | "Fundamentals of Astrodynamics 1st Edition", by Roger R. Bate, Dona Publisher: The American Design Ethic, MIT, USA. | ald D. Mueller. | | 4. | "Commercial Launch Vehicle Design", by Nickolay Mykola Zosimovych. Pub-lis Lambert Academic Publishing. | her: Lap | | 5. | "Space Vehicle Design, Second Edition", by Michael D. Griffin and James R. Frence American Institute of Aeronautics and Astronautics, Inc. | ch. Publisher The | | 6. | Literature / books suggested by respective course Lecturers. | | | | | ACQUISITION, TRA | CKING & POINTING | | | | | |--|-------------------------------------|--|--|--|-------------------------|--|--| | COURSE TI | TLE | TECHNOLOGY | | | CREDITS | 3 | | | COURSE CO | DDE | DTA-3747 | COURSE CATEGORY | DE | L-T-P-S | 3-0-0-0 | | | Version | | 1.0 | Approval Details | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT | SCHEN | ΛE | | | | | | | First Period
Assessme | | Second Periodical Assessment | Seminar/
Assignments/
Project | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | 15% | 10% | 5% | 5% | 50% | | | Course Objec | tive | | ded to provide learni
lopment of tracking a | • | • | . • | | | | | 1. Understand | ion of this course, the | sic systems requ | irements track | • | | | Course Outco | ome | required in the
introduction to
3. Understand | d the system configur
de design of stabilized posome more advance
d the control system a
dized in the design of t | pointing and traced concepts. and algorithm tea | king systems, a | long with an | | | CO, PO Mapp | | required in the
introduction to
3. Understand | e design of stabilized posome more advanced the control system a | pointing and traced concepts. and algorithm tea | king systems, a | long with an | | | | | required in the
introduction to
3. Understand
commonly util | e design of stabilized posome more advanced the control system a | pointing and traced concepts. and algorithm tecracking systems. | king systems, a | long with an | | | CO, PO Mapp
CO
CO-1 | ing | required in the introduction to 3. Understand commonly util | e design of stabilized possible some more advanced the control system a lized in the design of t | pointing and traced concepts. and algorithm tecracking systems. | king systems, a | long with an ractices | | | CO, PO Mapp
CO
CO-1
CO-2 | PO- | required in the introduction to 3. Understand commonly util | e design of stabilized posome more advanced the control system a ized in the design of the position pos | pointing and traced concepts. and algorithm tearscking systems. PO-5 | king systems, a | long with an ractices | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3 | PO- | required in the introduction to 3. Understand commonly util | e design of stabilized posome more advanced the control system a sized in the design of the posterior | pointing and traced concepts. and algorithm tectracking systems. PO-5 1 | chniques and p PO-6 - | PO-7 | | | CO, PO Mapp
CO
CO-1
CO-2 | PO- | required in the introduction to 3. Understand commonly util | e design of stabilized posome more advanced the control system a sized in the design of the posterior | pointing and traced concepts. and algorithm tearscking systems. PO-5 1 1 | chniques and p PO-6 - | PO-7 (6) | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1 | PO-
3
3
3 | required in the introduction to 3. Understand commonly util | e design of stabilized posome more advanced the control system a sized in the design of the posterior | pointing and traced concepts. and algorithm tearscking systems. PO-5 1 1 1 | chniques and p PO-6 - | PO-7 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1 | PO-
3
3
3
: | required in the introduction to 3. Understand commonly util | e design of stabilized posome more advanced the control system a ized in the design of the posterior | pointing and traced concepts. and algorithm tearscking systems. PO-5 1 1 1 | chniques and p PO-6 - | PO-7 (6) CO-1 BTL-3 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Acquisition |
PO-
3 3
3 ::
, track | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 2 cing, and pointing (A | e design of stabilized posome more advanced the control system a sized in the design of o | pointing and traced concepts. and algorithm tectoracking systems. PO-5 1 1 1 y systems | PO-6 | PO-7 (6) | | | CO, PO Mapp CO CO-1 CO-2 CO-3 MODULE 1 Acquisition MODULE 2 Target track | PO-
3
3
3
:
, track | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 2 cing, and pointing (A | e design of stabilized posome more advanced the control system a sized in the design of o | pointing and traced concepts. and algorithm tectoracking systems. PO-5 1 1 1 y systems | PO-6 | PO-7 (6) CO-1 BTL-3 (6) | | | CO, PO Mapp CO CO-1 CO-2 CO-3 MODULE 1 Acquisition MODULE 2 Target track | PO- 3 3 3 : , track | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ing, and pointing (Aunderstand poi | e design of stabilized posome more advanced the control system a sized in the design of o | pointing and traced concepts. and algorithm tectoracking systems. PO-5 1 1 1 y systems | PO-6 | PO-7 (6) CO-1 BTL-3 (6) | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Acquisition
MODULE 2
Target trac
probability
MODULE 3 | PO-
3
3
3
:
, track | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ing, and pointing (August 1) and related mathemation, detection of the second common co | PO-3 PO-4 TP) design for military | pointing and traced concepts. and algorithm tectoracking systems. PO-5 1 1 1 y systems | PO-6 | PO-7 (6) CO-1 BTL-3 (6) CO-2 BTL-3 (6) | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Acquisition
MODULE 2
Target trac
probability
MODULE 3 | PO-
3
3
3
:
, track | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ing, and pointing (Aunderstand poi | PO-3 PO-4 TP) design for military | pointing and traced concepts. and algorithm tectoracking systems. PO-5 1 1 1 y systems | PO-6 | PO-7 (6) CO-1 BTL-3 (6) CO-2 BTL-3 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Acquisition
MODULE 2
Target trac
probability
MODULE 3 | PO- 3 3 3 ; , track king a of est | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ing, and pointing (August 1) and related mathemation, detection of the second common co | PO-3 PO-4 TP) design for military | pointing and traced concepts. and algorithm tectoracking systems. PO-5 1 1 1 y systems | PO-6 | PO-7 (6) CO-1 BTL-3 (6) CO-2 BTL-3 (6) | | | CO, PO Mappe CO CO-1 CO-2 CO-3 MODULE 1 Acquisition MODULE 2 Target trace probability MODULE 3 Tracking alg | PO- 3 3 3 : , track : is sorithing: | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ming, and pointing (A mind related mathematimation, detection of minds, track filters, mu | PO-3 PO-4 TP) design for military | PO-5 1 1 y systems t, the Johnson cr | PO-6 | PO-7 (6) CO-1 BTL-3 (6) CO-2 BTL-3 (6) | | | CO, PO Mappe CO CO-1 CO-2 CO-3 MODULE 1 Acquisition MODULE 2 Target trace probability MODULE 3 Tracking alg | PO- 3 3 3 : , track : soorith | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ming, and pointing (A mind related mathematimation, detection of minds, track filters, mu | PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-5 PO-6 PO-1 PO-1 PO-1 PO-1 PO-1 PO-1 PO-1 PO-1 | PO-5 1 1 y systems t, the Johnson cr | PO-6 | PO-7 (6) CO-1 BTL-3 (6) CO-2 BTL-3 (6) CO-2 BTL- (7) | | | CO, PO Mappe CO CO-1 CO-2 CO-3 MODULE 1 Acquisition MODULE 2 Target trace probability MODULE 3 Tracking alg MODULE 4 Electronic Co | PO- 3 3 3 : , track : sounte | required in the introduction to 3. Understand commonly util 1 PO-2 2 2 2 2 ming, and pointing (A mind related mathematimation, detection of minds, track filters, mu | PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-3 PO-4 PO-6 PO-7 PO-8 PO-9 PO-9 PO-9 PO-9 PO-9 PO-9 PO-9 PO-9 | PO-5 1 1 y systems t, the Johnson cr | PO-6 | PO-7 (6) CO-1 BTL-3 (6) CO-2 BTL-3 (7) CO-3 BTL-3 | | | MODULE 6: | | (5) | | | | |-----------------|--|---------------|--|--|--| | Doppler and Ele | ctro-Optical methods of tracking. | CO-4
BTL-3 | | | | | REFERENCE BOOKS | | | | | | | 1. | "Acquisition, Tracking, Pointing, and Laser Systems Technologies XXI (Pro-cee 30 October 2007 by Steven L. Chodos (Editor), William E. Thompson (Editor) | , | | | | | 2. | "Acquisition, Tracking, and Pointing, January 2017 In book: Free Space Optical | | | | | | 3. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE TI | ITLE | | ITION, TRACKING | G & POST | | CREDITS | 3 | | |--|---|--|--|-------------------|--|--|---|--| | | | FLIGHT ANALY | - | | | | | | | Version | | DTA-3748 | COURSE CA | | DE
23 ACM,
06.02.2021 | L-T-P-S LEARNING LEVEL | 3-0-0-0
BTL-3 | | | ASSESSMENT | SCHEN | ΛE | | | | | | | | First Period
Assessme | | Second Period
Assessment | Assignm | nents/ | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | 15% | 109 | % | 5% | 5% | 50% | | | Course Objec | ctive | | • | | ng on the various
n & analysis of D | | ht trials, | | | | | 1. Unders | tand the interfac | ces used i | students will be
n data acquisitio | | ne | | | Course Outco | ome | 2. Unders
acquisi | nents to real-wor
tand the Sensors
tion software
ut Post flight and | s and tran | s.
Isducers, Data ac | equisition hardv | ware and data | | | CO, PO Mapp | oing | 2. Unders
acquisi
3. Carry o | tand the Sensors
tion software
ut Post flight and | s and tran | isducers, Data ac | | | | | CO, PO Mapp | oing
PO- | 2. Unders acquisi 3. Carry o | tand the Sensors tion software ut Post flight and | s and tran | PO-5 | PO-6 | PO-7 | | | CO, PO Mapp
CO
CO-1 | ping PO- | 2. Unders acquisi 3. Carry o | tand the Sensors tion software ut Post flight and PO-3 - | s and tranalysis. | PO-5 | PO-6
- | PO-7
- | | | CO, PO Mapp | oing
PO- | 2. Unders acquisi 3. Carry o | tand the Sensors tion software ut Post flight and | s and tran | PO-5 | PO-6 | PO-7
- | | | CO, PO Mapp
CO
CO-1
CO-2 | PO- | 2. Unders acquisi 3. Carry o PO-2 2 2 | tand the Sensors tion software ut Post flight and PO-3 - | s and tranalysis. | PO-5 1 | PO-6
- | PO-7
- | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1 | PO-: 3 3 3 3 :: | 2. Unders acquisi 3. Carry o PO-2 2 2 2 2 | tand the Sensors tion software ut Post flight and PO-3 - 1 | PO-4 | PO-5 1 | PO-6 2 | PO-7 2 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1 | PO-3 3 3 3 : | 2. Unders acquisi 3. Carry o PO-2 2 2 2 2 | tand the Sensors tion software ut Post flight and PO-3 - 1 | PO-4 | PO-5 1 2 | PO-6 2 | PO-7 2 (4 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Importance | PO-3 3 3 3 : | 2. Unders acquisi 3. Carry of 2 2 2 2 ght Trials in Missurement, Introduction | PO-3 - 1 - sile Developmen | PO-4 | PO-5 1 2 | PO-6 2 ements. | PO-7 2 (4 CO-1 BTL-3 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Importance | PO-3 3 3 3 : e of Fli f Measument. | 2. Unders acquisi 3. Carry of 2 2 2 2 ght Trials in Missurement, Introduction | PO-3 - 1 - sile Developmen | PO-4 | PO-5 1 2 es, Safety Require | PO-6 2 ements. | PO-7 2 (4 CO-1 BTL-3 | |
| CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Importance
MODULE 2
Methods of
of an instru | PO-3 3 3 3 : e of Fli : f Measument. : | 2. Unders acquisi 3. Carry of 2 2 2 2 2 ght Trials in Missurement, Introduced | PO-3 - sile Developmen | PO-4 | PO-5 1 2 es, Safety Require | PO-6 2 ements. | PO-7 2 (4 CO-1 BTL-3 (6 CO-2 BTL-3 | | | CO, PO Mapp
CO
CO-1
CO-2
CO-3
MODULE 1
Importance
MODULE 2
Methods of
of an instru
MODULE 3 | ping PO- 3 3 3 3 : e of Fli : : : : : : : : : : : : : : : : : : : | 2. Unders acquisi 3. Carry of 2 2 2 2 2 ght Trials in Missurement, Introduced | PO-3 - sile Developmen | PO-4 | PO-5 1 2 es, Safety Require | PO-6 2 ements. | PO-7 2 (4 CO-1 BTL-3 (6 CO-2 BTL-3 | | | CO, PO Mapp CO CO-1 CO-2 CO-3 MODULE 1 Importance MODULE 2 Methods of an instru MODULE 3 Static and I their respo | ping PO- 3 3 3 3 : e of Fli : : :Dynamnse. | 2. Unders acquisi 3. Carry of 2 2 2 2 2 ght Trials in Missurement, Introduction of the control o | PO-3 - sile Developmen | PO-4 | PO-5 1 2 es, Safety Require | PO-6 2 ements. | PO-7 2 (4 CO-1 BTL-3 (6 CO-2 BTL-3 (6) | | | CO, PO Mapp CO CO-1 CO-2 CO-3 MODULE 1 Importance MODULE 2 Methods or of an instru MODULE 3 Static and I their respo MODULE 4 Calibration | ping PO- 3 3 3 3 : e of Fli : : :Dynam nse. : of Ins | 2. Unders acquisi 3. Carry of 2 2 2 2 2 ght Trials in Missurement, Introduction of the control o | PO-3 - sile Developmen | PO-4 | PO-5 1 2 es, Safety Require | PO-6 2 ements. | PO-7 2 (4 CO-1 BTL-3 (6 CO-2 BTL-3 (6) CO-2 BTL- (5) | | | CO, PO Mappe CO CO-1 CO-2 CO-3 MODULE 1 Importance MODULE 2 Methods or of an instru MODULE 3 Static and E their respo MODULE 4 Calibration | ping PO- 3 3 3 : e of Fli : f Measument. : Dynamnse. : | 2. Unders acquisi 3. Carry of 2 2 2 2 2 ght Trials in Missurement, Introduction Characteristic truments. | PO-3 - 1 - sile Development | PO-4 | PO-5 1 2 es, Safety Require | PO-6 2 ements. onal elements ents and | PO-7 2 (4 CO-1 BTL-3 (6 CO-2 BTL-3 (6) CO-2 CO-2 CO-3 | | | MODULE 6: | | (7) | |-----------------|--|----------------| | Methods for po | st flight data analysis. | CO-4
BTL-3 | | REFERENCE BOOKS | 5 | | | 1. | "Advances in Missile Guidance, Control, and Estimation: 47 (Automation Engineering)", by editors S.N. Balakrishnan, A. Tsourdos, B.A. White. | and Control | | 2. | "CalibrationHandbookofMeasuringInstruments1stEdition",byAlessandrol Publisher International Society of Automation. | Brunelli. | | 3. | "Calibration Book", by Janne Kivilaakso, Antero Pitkäkoski Jori Valli, Mike J
Nobuo Inamoto Arja Aukia Masaki Saito. Publisher: VaisalaOyj. | ohnson, | | 4. | "Sensors and Transducers", by Patranabis D. Publisher : Prentice Hall India Le Limited. | arning Private | | 5. | "Sensors and Transducers Paperback", by Ian Sinclair. Publisher: Elsevier. | | | 6. | Literature / books suggested by respective course Lecturers. | | | COURSE TITL | AIR INDEPENDENT PROPULSION AND BATTERIES CREDITS | | | | 3 | | | | | | |-----------------------------|---|-----------|-------------------------|--|--------|------------|-------------------|------------|---------------|---------------| | COURSE COD | DE | DT | A-3749 | COURSE CATEG | ORY | ı | DE | L-T-P-S | S | 3-0-0-0 | | Version | | | 1.0 | Approval Det | ails | | ACM,
2.2021 | | EARNING BTL-3 | | | ASSESSMENT S | CHEN | 1E | | | | | | | | | | First Periodic
Assessmen | | _ | l Periodical
essment | Seminar/
Assignment
Project | | _ | se Test /
Juiz | Attenda | nce | ESE | | 15% | | | 15% | 10% | | ţ | 5% | 5% | | 50% | | Course Objectiv | ve | | | ded to provide
cles, power req | | _ | | - | • | • | | Course Outcom | ne | 1. | Understand | on of this cours
the requireme
analysis Energy | nts of | air inde | pendent | propulsio | • | | | CO, PO Mappin | ng | | | | | | | _ | | | | со | PO-1 | L | PO-2 | PO-3 | PO-4 | | PO-5 | PO-6 | 5 | PO-7 | | CO-1
CO-2 | 3 | | 2 | 3 | - | | 2 | 2 | | 2 | | MODULE 1: | 3 | | | 3 | - | | | | | (6) | | | to H | vbrid Ele | ctric Vehicle | s: Impact of m | odern | drive-ti | rains on e | nergy | | CO-1 | | supplies; | | , | | | | | | | | BTL-3 | | MODULE 2: | | | | | | | | | | (7) | | - | | | - | ction, various h | nybrid | drive-tı | rain topo | logies, po | wer | CO-2 | | flow control, | fuel | efficienc | cy analysis; | | | | | | | BTL-3 | | MODULE 3: | | | | | | | | | | (7) | | | | | | electric drive-t
efficiency analy | | pologie | es, power | flow cont | trol | CO-2
BTL- | | MODULE 4: | | | | | | | | | • | (6) | | Configuration | n and | d control | of DC Moto | onents used in
r drives, Induct
nce Motor drive | ion M | otor dri | ives, Pern | nanent | | CO-3
BTL-3 | | MODULE 5: | | | | | | | | | • | (6) | | Energy Stora
Vehicles. | ge: lı | ntroduct | ion to Energ | y Storage Requ | iireme | nts in H | lybrid and | d Electric | | CO-3
BTL-3 | | MODULE 6: | | | | | | | | | | (6) | | analysis, Sup | er Ca
its ar | apacitor | based energ | nnalysis, Fuel C
y storage and i
of different en | ts ana | lysis, Fly | wheel ba | | gy | CO-4
BTL-3 | | 1. | "Hybrid Electric Vehicles: Principles and Applications with Practical Perspec-tives", by Chris Mi, M. Abul Masrur. Publisher: Wiley. | |----|--| | 2. | "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theo-ry, and Design, Second Edition (Power Electronics and Applications Series)", by Mehrdad Ehsani, YiminGao, Ali Emadi, Publisher: Standards media. | | 3. | Literature / books suggested by respective course Lecturers. | | | COURSE TITLE ADVANCED DIGITAL MODULATION TECHNOLOGIES & STANDARDS CREDITS | | | | | | 3 | | | |---|---|---|---|--|----------------------------------|---|--------------------------------------|-------------------------------|-------------| | COURSE CO | ODE | DTA-3 | 750 | COURSE CATEGO | ORY | DE | L-T-P-S | 3-0-0-0 | | | Version | 1 | 1.0 | | Approval Deta | ils | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | | ASSESSMENT | SCHEM | E | | | | | | | | | First Period
Assessme | | Second Per
Assessn | | Seminar/
Assignments
Project | / | Surprise Test /
Quiz | Attendance | ESE | | | 15% | | 15% | 6 | 10% | | 5% | 5% | 50% | | | Course Object | | theories ar
the design
communica
Upon
1. Und
2. Und
sou | nd practice principles ation link. completion derstand to the codine of | course is to proses of a digital cost of transmitter on of this course the design digit the transmitter g-pulse code matcher the requirement | and re e, the s al com , receive | nication system
eceiver so as to
students will be
munication sys
ver communica
tion, delta mod | e able to
tems.
tions system m | nill deal with able | 1 | | CO, PO Mapp | | | | | | | | | | | СО | PO-1 | |)-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | | | CO-1 | 3 | 2 | | | - | 1 | - | - | | | CO-2 | 3 | 2 | | | = | 1 | - | - | | | CO-3 MODULE 1 | . 3 | 2 | | - | - | 2 | - | | <i>16</i> \ | | | | ommunicat | ion sustan | n
transmittars | and roc | noiver commun | ications | CO-1 | (6) | | system mo | _ | ommunicat | lion syster | n, transmitter a | ina rec | ceiver commun | ications | BTL-3 | | | MODULE 2 | | | | | | | | | | | | | | | | | | | 5123 | (6) | | | | | | | | | | CO-2 | (6) | | Voice source | ce codii | ng– pulse co | ode modu | ılation, delta m | odulati | ion, vocoders. | | | (6) | | Voice source MODULE 3 | | ng– pulse co | ode modu | ılation, delta m | odulati | ion, vocoders. | | CO-2 | (6) | | MODULE 3 Digital mod shift, Quad | :
dulatior
rature | n – Amplitu | de-shift, F | requency-shift, ure phase-shift | , Phase | e-shift, differen | • | CO-2 | | | MODULE 3 Digital mod shift, Quad | :
dulatior
rature
e ampli | n – Amplitu
phase-shift, | de-shift, F | requency-shift, | , Phase | e-shift, differen | • | CO-2
BTL-3 | | | MODULE 3 Digital mod shift, Quad Quadrature MODULE 4 | :
dulatior
rature
e ampli
: | n – Amplitu
phase-shift,
tude modul | de-shift, F
, Quadrat
lation | requency-shift, | , Phase
, and N | e-shift, differen
Minimum-shift l | keying, | CO-2
BTL-3 | (8) | | MODULE 3 Digital mod shift, Quadrature MODULE 4 Communication | :
dulatior
rature
e ampli
:
ations o | n – Amplitu
phase-shift,
tude modul | de-shift, F
, Quadrat
lation | requency-shift
ure phase-shift | , Phase
, and N | e-shift, differen
Minimum-shift l | keying, | CO-2
BTL-3
CO-2
BTL- | (8) | | MODULE 3 Digital mod shift, Quadrature MODULE 4 Communication Murphy MODULE 5 | : dulation rature e ampli : ations o | n – Amplituo
phase-shift
tude modul
channel – N | de-shift, F
, Quadrat
lation
//ultipath | requency-shift
ure phase-shift
effects, fading a | , Phase
, and M
and div | e-shift, differen
Minimum-shift l
versity, models | of Egli and | CO-2
BTL-3
CO-2
BTL- | (8) | | MODULE 3 Digital mod shift, Quadrature MODULE 4 Communication Murphy MODULE 5 | idulation rature amplicitions of the super | n – Amplitu
phase-shift,
tude modul
channel – M | de-shift, F
, Quadrat
lation
//ultipath o | requency-shift
ure phase-shift | , Phase
, and M
and div | e-shift, differen
Minimum-shift l
versity, models | of Egli and | CO-2
BTL-3
CO-2
BTL- | (8) | | Introduction modulation | to cellular communication – CDMA, OFDM, MIMO, Introduction to digital standards. | CO-4
BTL-3 | |-------------------------|--|--------------------| | REFERENCE BC | OOKS | | | 1. | "Communication Systems", by, Haykin, S. Publisher: John Wiley & Sons. | | | 2. | "Modern Digital and Analog Communication Systems", by, Lathi, B.P. and D
Publisher: Oxford University Press. | ing, Z. | | 3. | "Signal Processing for Wireless Communication Systems", by H. Vincent Tong Publisher: Springers | Poor, Lang | | 4. | "Digital Communication: Fundamentals and Applications", by Sklar, B., a Dorling Kindersley. | nd Ray, P.K. | | 5. | "Communication Systems: An Introduction to Signals and Noise in Electr
Communication", by Carlson, A.B., Crilly, P.B. and Rutledge, J.C Publisher | | | 6. | "Detection, Estimation and Modulation Theory Part I", by Van Trees, H.L Wiley Inter science. | . Pub-lisher : | | 7. | "Information Theory, Coding and Cryptography", by Bose, R. Tata McGra | w-Hill. | | 8. | "Digital Communication", by Barry, J.R., Lee, E.A. and Messerschmitt, D.G. | G.Kluwer. | | 9. | "Principles of Digital Transmission: Wireless Applications", by Benedetto E. Publisher: Springer | , S. and Biglieri, | | 10. | Literature / books suggested by respective course Lecturers. | | | COURSE CODE DTA-3751 COURSE CATEGORY DE L-T-P-S 3-0-0-0 | COURSE TITLE | |--|-----------------| | ASSESSMENT SCHEME First Periodical Assessment Second Periodical Assessment 15% 15% 10% Surprise Test / Quiz Attendance ESE The course is intended to provide the understanding of flight dynamics, trajectory design analysis, flight performance analysis and practical implications of trajectory planning. Upon completion of this course, the students will be able to 1. Understand the flight trajectories design requirements. 2. Evaluate and predict the flight performance for different trajectories. 3. Understand the practical implications while trajectory design. 4. Carry out MATLAB based simulation for trajectory modelling. | COURSE CODE | | First Periodical Assessment Second Periodical Assignments/Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5% 5% 50% The course is intended to provide the understanding of flight dynamics, trajectory design analysis, flight performance analysis and practical implications of trajectory planning. Upon completion of this course, the students will be able to 1. Understand the flight trajectories design requirements. 2. Evaluate and predict the flight performance for different trajectories. 3. Understand the practical implications while trajectory design. 4. Carry out MATLAB based simulation for trajectory modelling. | Version | | Assessment Assessment Assignments/ Project Surprise Test / Quiz Attendance ESE 15% 15% 10% 5% 5% 50% The course is intended to provide the understanding of flight dynamics, trajectory design analysis, flight performance analysis and practical implications of trajectory planning. Upon completion of this course, the students will be able to 1. Understand the flight trajectories design requirements. 2. Evaluate and predict the flight performance for different trajectories. 3. Understand the practical implications while trajectory design. 4. Carry out MATLAB based simulation for trajectory modelling. | SESSMENT SCHEM | | Course Objective The course is intended to provide the understanding of flight dynamics, trajectory design analysis, flight performance analysis and practical implications of trajectory planning. Upon completion of this course, the students will be able to 1. Understand the flight trajectories design requirements. 2. Evaluate and predict the flight performance for different trajectories. 3. Understand the practical implications while trajectory design. 4. Carry out MATLAB based simulation for trajectory modelling. | | | Course Objective design analysis, flight performance analysis and practical implications of trajectory planning. Upon completion of this course, the students will be able to 1. Understand the flight trajectories design requirements. 2. Evaluate and predict the flight performance for different trajectories. 3. Understand the practical implications while trajectory design. 4. Carry out MATLAB based simulation for trajectory modelling. | 15% | | 1. Understand the flight trajectories design requirements. 2. Evaluate and predict the flight performance for different trajectories. 3. Understand the practical implications while trajectory design. 4. Carry out MATLAB based simulation for trajectory modelling. CO, PO Mapping | urse Objective | | | urse Outcome | | CO PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 | , PO Mapping | | | PO-1 | | CO-1 3 2 2 | | | CO-2 3 2 2 2 2 2 2 | | | CO-3 3 2 | | | CO-4 3 2 2 2 2 2 2 2 2 | | | MODULE 1: (6 | ODULE 1: | | Flight Dynamics, Flight envelope limitations. Aerodynamic sizing-equations of motion. | | | Accuracy of simplified equations of motion, orbital mechanics. BTL-3 | | | MODULE 2: (7 | | | Role of rocket propulsion in orbital trajectories and maneuvers, Maximizing missile | • | | flight performance. Benefits of flight trajectory shaping. BTL-3 | • | | MODULE 3: (7 | JUULE 3: | | Flight performance prediction of boost, climb, cruise, coast, steady descent, ballistic, maneuvering, divert, and homing flight. CO-2 BTL- | • | | MODULE 4: (5 | ODULE 4: | | Practical implementation of integrated trajectory planning, Agility in maneuvering trajectories. CO-3 BTL-3 | • | | MODULE 5: (5 | ODULE 5: | | Multiplier theory and its use in solving practical problems covered from a real-time | | | computational viewpoint, No-fly zones and engineering requirements, formulation as a mathematical mixture of state and decision-variable constraints. | mputational vie | | MODULE 6: | | (6) | | | | |---------------------------------------|--|---------------|--|--|--| | Extensive MATLAB-based mini-projects. | | CO-4
BTL-3 | | | | | REFERENCE BOOKS | | | | | | | 1. | "Flight Dynamics", by Robert F. Stengel. Publisher : Princeton University Press. | | | | | | 2. | Literature / books suggested by respective course Lecturers. | | | | | | COURSE TIT | LE SENSO | SENSOR TECHNOLOGY | | | | CREDITS | 3 | |---|----------|---
-------------------------------------|------------|------------------------|-------------------|---------------| | COURSE CODE D | | ГА-3752 | COURSE CATEGORY DE | | DE | L-T-P-S | 3-0-0-0 | | Version | | 1.0 | Approval Details | | 23 ACM,
06.02.2021 | LEARNING
LEVEL | BTL-3 | | ASSESSMENT S | SCHEME | | | • | | | | | First Periodi
Assessmer | | nd Periodical
sessment | Seminar/
Assignments/
Project | Sı | urprise Test /
Quiz | Attendance | ESE | | 15% | | 15% | 10% | | 5% | 5% | 50% | | The main objective of the course is to provide learning on the basic physical princi and characteristic features in sensor technology, design, function and applications different sensors. | | | | | | • | | | Course Outcor | | Upon completion of this course, the students will be able to Understand the basic principles of sensor systems required for satellites and tactical aircraft. Understand the atmospheric propagation and its impact on the performance of sensors Troubleshoot, repair/replace a faulty sensor in optimize process efficiency. | | | | | | | CO, PO Mappi | ng | | | | | | | | СО | PO-1 | PO-2 | PO-3 PO | D-4 | PO-5 | PO-6 | PO-7 | | CO-1 | 3 | 2 | | | - | - | - | | CO-2 | 3 | 2 | | | - | - | 2 | | CO-3 | 3 | 2 | - - | | 2 | 2 | 2 | | MODULE 1: | | | | | | | (6) | | Physical principles underlying the sensor systems needed for satellites and tactical aircraft, as well as limitations imposed by the atmosphere and operating environment on these systems and their communication links. | | | | | | | CO-1
BTL-3 | | MODULE 2: | | | | | | | (5) | | Phased array and pulsed compressed radars, imaging synthetic aperture and inverse synthetic aperture radars. | | | | | | | CO-2
BTL-3 | | MODULE 3: | | | | | | | (5) | | Atmospheric propagation of signal. Noise resources and thermal radiation. | | | | | | | CO-2
BTL- | | MODULE 4: (8) | | | | | | | | | Principles of semiconductor devices. Optical and infrared imaging detector systems. | | | | | | | CO-3
BTL-3 | | MODULE 5: (6) | | | | | | | | | Detector resolution limitations and bandwidth requirements, Relationship between signals and noise. | | | | | | | CO-3
BTL-3 | | 3.0 | | | | | | | - | | MODULE 6: | | | | | |---------------------------------|--|--|--|--| | The characterist and tracking). | CO-4
BTL-3 | | | | | REFERENCE BOOKS | 3 | | | | | 1. | "Handbook of Modern Sensors", by Jacob Fraden. Publisher : Springer. | | | | | 2. | "Micro sensors, Principles and Applications", by J. W. Gardner. Publisher : Wiley. | | | | | 3. | "Semiconductor Sensors", by S. M. Sze. Publisher : Wiley. | | | | | 4. | Literature / books suggested by respective course Lecturers. | | | |