

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.Tech. ECE with specialization in Digital Image Processing

CURRICULUM AND SYLLABUS

(Applicable for Students admitted from Academic Year 2020-21)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHOOL OF ELECTRICAL SCIENCES CHENNAI-603103

HITS - VISION AND MISSION

Motto

To Make Every Man a Success and No Man a Failure.

Vision

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

Mission

- > To create an ecosystem for learning and world class research.
- > To nurture a sense of creativity and innovation.
- > To instill highest ethical standards and values with a sense of professionalism.
- > To take up activities for the development of Society.
- To develop national and international collaboration and strategic partnership with industry and institutes of excellence.
- > To enable graduates to become future leaders and innovators.

Value Statement

Integrity, Innovation, Internationalization.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING –VISION & MISSION

Vision

To be a premier academic centre for quality education to meet the industrial standards and research in diverse areas of Electronics and Communication Engineering with social commitment.

Mission

- M1 To impart adequate engineering knowledge to transform students into highly professional engineers as well as good researchers.
- M2 To develop their inter disciplinary skills as per the need of the industry and society.
- M3 To inculcate Entrepreneurship and lifelong learning skills among the students with ethics and social commitment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO I** Graduates will demonstrate their knowledge in science and Engineering as problem solvers and researchers.
- **PEO II** Graduates will exhibit skills in cutting edge technologies to solve societal needs in multidisciplinary areas.
- **PEO III** Graduates will develop an attitude towards life long learning and ethics to emerge as socially committed entrepreneurs.

PROGRAM OUTCOMES (PO)

- **PO 1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4: Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO 6:** Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7:** Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- **PO 9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO 1: Able to impart high quality education to the students to face and analyze the challenges in the field of image processing and communication.

PSO 2: Able to analyze, design and validate the systems using hardware and software tools pertaining to Image Processing.

M.Tech. ECE with specialization in Digital Image Processing

CURRICULUM

SEMESTER -1

SI.	Course	Course Title	т	т	D	С	тсн
No	Code	Course ritte	L	I	1	U	ICH
THEO	RY						
1		Applied Mathematics for Electronics Engineers	0	0	3	3	
2		Research Methodology and IPR 2 0 0		2	2		
3	ECA4701	Advanced Digital Image Processing	3	0	0	3	3
4	ECA4702	Pattern Recognition	3	0	0	3	3
5		Department Elective- I	3	0	0	3	3
6		Department Elective- II	3	0	0	3	3
PRAC	ГICAL						
7	ECA4791	Image Processing Lab -1 0 0 6		6	2	6	
8	ECA4796	Seminar 2 0 0				2	2
Total (Total Credits			0	6	21	25

SEMESTER II

Sl.	Course	Course Title	L	Т	Р	С	ТСН
INO	Code						
THEO	RY						
1	ECA4703	Multimedia Compression		0	0	3	3
		I D '					
2	2 ECA4704 Image Processing Applications 3		3	0	0	3	3
3	ECA4705	Medical Imaging Techniques	3	0	0	3	3
4		Department Elective- III	3	0	0	3	3
5		Open Elective	3	0	0	3	3
PRAC	ГICAL						
6	ECA4792	Image Processing Lab - 2	0	0	6	2	6
7	ECA4781	Mini project	2	0	0	2	2
Total Credits			17	0	6	19	23

SEMESTER III

Sl. No	Course Code	Course Title	L	Т	Р	С	ТСН
THEORY							
1		Department Elective- IV	3	0	0	3	3
PRACTICAL							
2	ECA4897	Internship *				2	
3	ECA4898	Project Phase –I	0	0	16	8	16
Total Credits			3	0	16	13	19

*Internship to be undergone during vacation between 2nd and 3rd semesters

SEMESTER IV

Sl. No	Course Code	Course Title	L	Т	Р	С	ТСН
PRAC	PRACTICAL						
1	ECA4899	Project Phase –II	0	0	24	12	24
Total Credits			0	0	24	12	24

LIST OF DEPARTMENT ELECTIVES

ELECTIVE I

Sl. No	Course Code	Course Title	L	Т	Р	С	ТСН
1	ECA4721	Wavelet Transform and its application	3	0	0	3	3
2	ECA4722	Python Programming	3	0	0	3	3
3	ECA4723	Introduction to Optimization Techniques	3	0	0	3	3
4	ECA4724	Natural Language Processing	3	0	0	3	3

ELECTIVE II

Sl. No	Course Code	Course Title		Т	Р	C	ТСН
1	ECB4705	Machine Learning	3	0	0	3	3
2	ECA4725	Video Processing	3	0	0	3	3
3	ECA4726	Advanced Digital Signal Processing	3	0	0	3	3
4	ECA4727	Computer Vision	3	0	0	3	3

ELECTIVE III

Sl. No	Course Code	Course Title	L	Т	Р	С	ТСН
1	ECA4728	Brain Computer Interface	3	0	0	3	3
2	ECA4729	Cryptography	3	0	0	3	3
3	ECA4730	Visualization Techniques	3	0	0	3	3
4	ECA4731	Deep Learning	3	0	0	3	3

ELECTIVE IV

Sl. No	Course Code	Course Title		Т	Р	С	тсн
1	ECA4732	Bio Signal Processing	3	0	0	3	3
2	ECA4733	Advanced Computer Graphics and Animations		0	0	3	3
3	ECA4734	Internet of Things : Foundations and Practices	3		0	3	3
4	ECA4735	Retinal Image Analysis	3 0		0	3	3

SEMESTER I

СС	OURSE TITLE	RESEARC	H METH	ODOLOGY & IPR	CREDITS	2
Course Code		Course Category		L-T-P-S	2-0-0-0	<u>.</u>
	CIA			ESE		
LEA	RNING LEVEL			ASSESSMENT MODEL		
		COUI	RSE OUI	COMES		РО
1. Understand research problem formulation.						
2.	2. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.					
3.	 Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. 					
4.	Understand that I investment in R & economic growth	PR protection provides a c D, which leads to creati and social benefits.	an incenti on of new	ve to inventors for further resear and better products, and in turn	rch work and brings about,	
5.	Analyze research	related information and t	o follow r	esearch ethics		
Prere	quisites:					
MOD	ULE 1 – Research	Problem Formulation			(9)	
Meani Errors solutio	ing of research prob in selecting a research pro ons for research pro	olem, Sources of research arch problem, Scope and blem, data collection, an	i problem, objectives alysis, inte	Criteria Characteristics of a good s of research problem. Approach erpretation, Necessary instrument	d research proble es of investigations	em, on of
MOD	MODULE 2 –Research Proposal and Ethics (9)					
Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.						
a revie	ULE 3 - Data Ana	lysis and interpretation	l		(9)	

Classification of Data, Methods of Data Collection, Sampling, Sampling techniques procedure and methods, Ethical considerations in research Data analysis, Statistical techniques and choosing an appropriate statistical technique, Hypothesis, Hypothesis testing, Data processing software (e.g. SPSS etc.), statistical inference, Interpretation of results.

MODULE 4 - Nature of Intellectual Property

DEEEDENCE DOOKS

Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

MODULE 5 – Patent Rights and New Developments in IPR

Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

KEFI	LKENCE BOOKS
1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering
	students',
2	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
4	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
5	Mayall, "Industrial Design", McGraw Hill, 1992.
6	Niebel, "Product Design", McGraw Hill, 1974.
7	Asimov, "Introduction to Design", Prentice Hall, 1962.
8	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
9	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008
10	C.R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques , New Age
11	International Publishers, Third Edition, Ranjith Kumar, Research Methodology: A Step by step Guide for
	Beginners, 2 nd Edition, SAGE, 2005
12	Business Research Methods – Donald Cooper & Pamela Schindler, TMGH, 9th edition
13	Creswell, John W. Research design: Qualitative, quantitative, and mixed methods, approaches. Sage
	publications, 2013.

(9)

(9)

COURSE TITLEADVANCED DIGITAL IMAGE PROCESSING				E PROCESSING	CRE	DITS	3	
Cou	rse Code	ECA4701	Course Category	PC	L-T-P-S		3-0-0-0	0
	CIA				ESE			
LEA	RNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE O	UTCOM	ES		P	0
1.	Explain t	he essentials	of digital ima	ige process	ing.		1,2	2,3
2	2 Describe various segmentation techniques for image analysis. 1,2,3						2,3	
3.	Outline t	he various fea	ture extraction	on techniqu	es for image analysi	.s.	1,2	2,3
4	Discuss t	he concepts o	f image regis	stration and	l fusion.		1,2	2,3
5.	Illustrate	3D image vis	sualization.				1,2	2,3
Prer	equisites:							
MOI	DULE 1 – 1	REVIEW O	F DIGITAL	IMAGE F	ROCESSING			
Steps band	s in digital effect. Ima	image proces age enhancem	sing-Elemen ent in spatial	ts of visua and freque	l perception- brightn ency domain, Histog	ess ada ram eq	aptation ualizati	i, Mach on
MOI	DULE 2 –	SEGMENT	ATION					
Edge Activ Wave	detection ve contour elet based \$, Thresholdin models, Te Segmentation	ng, Region xture feature - Application	growing, based se	Fuzzy clustering, V gmentation, Graph e segmentation.	Vatersł based	ned alg segme	orithm, ntation,
MOI	DULE 3-	FEATURE	EXTRACTI	ON				
First extra Boun featu	and seco ction -detendary deso res, Runler	nd order ed cting image c criptors, Mo ngth features,	ge detection urvature, sha ments, Text Fractal mode	operators pe features ure descr el based fea	s, Phase congruency , Hough transform, s iptors- Autocorrela atures, Gabor filter, v	y, Loc shape s ation, vavelet	calized keleton Co-occ feature	feature ization, urrence es.
MOI	DULE 4-	REGISTRA	TION AND	IMAGE H	JUSION			
Regis corre match Resau fusio	Registration - Preprocessing, Feature selection - points, lines, regions and templates Feature correspondence - Point pattern matching, Line matching, Region matching, Template matching.Transformation functions - Similarity transformation and Affine Transformation. Resampling – NearestNeighbour and Cubic Splines. Image Fusion - Overview of image fusion pixel fusion wavelet based fusion - region based fusion							
MOI	DULE 5 – .	3D IMAGE	VISUALIZA	TION				
Source Volu surfa	Sources of 3D Data sets, Slicing the Data set, Arbitrary section planes, The use of color, Volumetric display, Stereo Viewing, Ray tracing, Reflection, Surfaces, Multiple connected surfaces, Image processing in 3D, Measurements on 3D images.							
	EXT BOO	KS Care 1 D	taband D. W.	- 1- D' ''	1 I	D	. D 1	- 41
1.	1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing', Pearson, Education, Inc., Second Edition, 2004.							ation,

2.	Mark Nixon, Alberto Aguado, "Feature Extraction and Image Processing", Academic Press 2008
	REFERENCE BOOKS
1.	Ardeshir Goshtasby, "2D and 3D Image registration for Medical, Remote Sensing and Industrial Applications", John Wiley and Sons, 2005.
2.	John C.Russ, "The Image Processing Handbook", CRC Press, 2007.
3.	Anil K. Jain, Fundamentals of Digital Image Processing', Pearson Education, Inc., 2002.
4.	Rick S.Blum, Zheng Liu, "Multisensor image fusion and its Applications", Taylor&Francis,2006.
Е –В	OOKS
1.	John C. Russ, F. Brent Neal-The Image Processing Handbook, Seventh Edition, The Kindle edition (2016), CRC Press, Taylor & Francis Group.
MOC	DC
1.	https://nptel.ac.in/courses/117/105/117105079/
2.	https://nptel.ac.in/courses/117/105/117105135/

COURSE TITLE			PATTERN RECOGNITION CREDIT				DITS	3
Cou	rse Code	ECA4702	Course Category	PC	L-T-P-S	3-0-0-0		
	CIA				ESE			
LEA	RNING				ASSESSMENT			
LI	EVEL				MODEL			
			COURSE O	UTCOM	ES		P	0
1.	Different	iate between	supervised ar	nd unsuper	vised classifiers		1,2	2,3
2	Outline the	he concept an	d importance	of cluster	ing in pattern recogn	ition	1,2	2,3
3.	Extract fe	eature set and	select the fea	atures from	n given data set.		1,2	2,3
4	To interp recognition	ret the role o	f Hidden Ma	rko model	and SVM in pattern		1,2	2,3
5.	Apply fu	zzy logic and	genetic algor	rithms for	classification probler	ns	1,2	2,3
Prere	equisites:							
MOL	DULE 1 – 2	PATTERN (CLASSIFIE	R			(9)	
Over	view of Pa	ttern recognit	tion – Discrii	minant fun	ctions - Supervised	learning	g –Para	ametric
estim	ation – M	aximum Like	elihood Estin	nation – B	ayesian parameter E	Estimatio	on– Pr	oblems
with	Bayes app	roach-Patter	n classificatio	on by dista	nce functions -Mini	mum di	stance	pattern
classi	fier							
MOL	DULE 2 –	CLUSTERI	NG			((9)	
Clust	ering for	unsupervised	l learning a	nd classif	ication-Clustering c	concept	– C	Means
algori	ithm – Hie	rarchical clus	tering – Grap	oh theoreti	c approach to pattern	Cluster	ring –V	/alidity
of Clu	usters							
MOL	MODULE 3 – CLASSIFICATION ALGORITHMS (9)							
Template matching - probabilistic approach- K-nearnest neighbour (KNN), Parzen window classifier and branch-and bound methods (BnB)- Gaussian mixture models-Optimum-Path Forest- Fuzzy logic – Fuzzy Pattern Classifiers – Pattern Classification using Genetic Algorithms								
MOL	DULE 4-	HIDDEN M	ARKOV MO	ODELS A	ND SUPPORT VEO	CTOR N	MACH	IINE
State	Machines	– Hidden M	Markov Mod	lels – Tra	ining – Classification	on – Su	upport	vector
Mach	Machine – Feature Selection							
MOL	MODULE 5 – CASE STUDIES (9)							
Stock	Market	Forecasting-	Audience a	research-	Text Generation,	Fext A	nalysis	, Text
Trans	Translation, Chatbots - Natural Language Processing - Optical Character Recognition- Image							
Patter	Pattern Recognition- Visual Search, Face Recognition- Voice Recognition- AI Assistants,							
Speed	ch-To-Text	t, Automatic S	Subtitling- Se	entiment A	nalysis			
TE	TEXT BOOKS							

1.	Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural						
	Approaches", John Wiley & Sons Inc., New York, 1992						
2.	R.O.Duda, P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley, 2001						
	REFERENCE BOOKS						
1.	M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition", Springer 2011.						
2.	Andrew Webb, "Stastical Pattern Recognition", Arnold publishers, London, 1999						
3.	S.Theodoridis and K.Koutroumbas, "Pattern Recognition", 4th Ed., Academic Press.						
	2009						
E- B(DOKS						
1.	Christopher M. Bishop,'Pattern Recognition and Machine Learning',Springer						
	publisher,2006.						
2.	Y.Ansai,'Pattern Recognition and Machine Learning', Elsevier publisher, 2012.						
MOC	DC						
1.	https://nptel.ac.in/courses/117108048						
2.	https://nptel.ac.in/courses/117/106/117106100						

COURSE TITLE		IMAGE PROCESSING LAB -I CREI					EDITS	2	
Cour	se Code	ECA4791	Course Category		L-T-P-S		0-0-3-0		
(CIA				ESE				
LEA	RNING				ASSESSMENT				
LF	EVEL				MODEL				
		COURSE OUTCOMES PO						0	
1.	Analyze edge dete	techniques su	ch as image	denoising	, image segmentation	n and	1,2	,3,5	
2	Apply sp	atial and frequ	lency domain	n filters on	an image.		1,2	,3,5	
3.	Analyze	the effects of	image transfo	orms.			1,2	2,3	
Prerec	quisites:								
			LIST OF	EXPERI	MENTS				
1.	Point-to-	point transf	ormation- 7	Thresholdin	ng an image and t	he eva	aluation	of its	
	histogram	l .							
2.	Histogra	m Equalizat	ion.			_	_		
3.	Geometr	ric transfor	mations- I	mage rot	ation, scaling, and	l tran	slation.	Two-	
	dimensio	nal Fourier t	ransform I.	с н				1	
4.	lwo-aim	ensional Fo	form (DET)	storm. Ha	armonic content of	an in	lage usi	ing the	
5	Linoar fi	toring using	iorin (DFT) i convolutio	anu mask	ing with DF1.				
5. 6.	Ideal fil	ters in the	frequency	v domai	n- Effects of filter	ring l	ow and	d high	
	frequenci	ies in an imag	ze.	,			0 0	8	
7.	Non-Line	ear filtering	using conv	olutional	masks- Effects of a	a medi	an filter	r on an	
	image co	rrupted with	impulsive n	oise.					
8.	Morphol	ogical opera	tions I. Ero	sion and o	lilation				
9.	Entropy	as a compre	ession meas	sure- Enti	ropy as a compress	ion m	easuren	nent to	
10	the DPCM	1 compressio	n measure.						
TEXT	' BOOKS	ection- Eage	detectors a	na their o	peration in noisy in	lages.			
1	Rafael C	Gonzalez R	ichard Eugen	e Woods	Steven L. Eddins, Di	oital I	mage		
1.	Processir	ng Using MA	FLAB, Pears	on Educati	ion India, 2004.	Situr I	muge		
REFE	RENCE B	BOOKS	,		,				
1	Jayarama Educatio	an S, Veeraku n, 2009.	nar T, Esakk	irajan S, D	igital Image Processi	ing", M	lc Graw	Hill	
2	Anil K Jai	in, Fundamen	tals of Digita	l Image Pr	ocessing", Prentice H	Iall, 19	989.		
3	Chris Sol Approacl	oman, Toby B h with examp	reckon, Fund les in Matlab	damentals ", Wiley-B	of Digital Image Pro lackwell, 2010	cessin	g: A Pra	ctical	
E BOO	OKS	•							
1	https://www.concepts/	ww.intechope /digital-image	n.com/books -processing- [,]	/applicatic with-matla	ons-from-engineering	-with-	matlab-		

COURSE TITLE			SEMINAR C					2
Course Code		ECA4796	Course Category		L-T-P-S	2-0-0-2		2
(CIA				ESE			
LEA	RNING				ASSESSMENT			
LF	EVEL	MODEL						
	COURSE OUTCOMES						P	0
1.	Survey the particular	Survey the literature on new research areas and compile findings on a particular topic						
2	Organize and adeq professio	Organize and illustrate technical documentation with scientific rigor and adequate literal standards on the chosen topic strictly abiding by professional ethics while reporting results and stating claims						
3.	Demonstrate communication skills in conveying the technical documentation via oral presentations using modern presentation tools							
	 The objective of the seminar is to impart training to the students in collecting materials on a specific topic in the broad domain of Engineering/Science from books, journals and other sources, compressing and organizing them in a logical sequence, and presenting the matter effectively both orally and as a technical report. The topic chosen by the student shall be approved by the Faculty-in-Charge of the seminar 							

• The seminar evaluation committee shall evaluate the presentation of students.

• A seminar report duly certified by the Faculty-in-Charge of the seminar in the prescribed form shall be submitted to the department after the approval from the committee

DEPARTMENT ELECTIVE – I

COURSE		WAVE	LET TRAN				
TITLE			APPLIC	CREDITS	3		
Cou	rse Code	ECA4721	Course Category	PE	L-T-P-S	3-()-0-3
	CIA			1	ESE		
LEA	RNING				ASSESSMENT		
L	EVEL				MODEL		
			COURSE O	UTCON	IES		PO
1.	To under	stand the fund	amentals con	ncepts of	wavelet transforms		1,2,3
2.	To learn	system design	using Wave	lets			1,2,3,9
3.	To learn	the different w	vavelet famil	lies & the	eir applications.		1,2,3
Prere	equisites: S	Signal and Sys	tems, Digita	l Signal I	Processing		
MOI	DULE 1 –I	ntroduction t	o Wavelets				(9)
Filter drawl its ch	rs, Sub ban backs, Con aracteristic	d coding, Limi atinuous Wave es, Orthogonal	itations of Fe let transform and Orthone	ourier tra , Time fr ormal fur	nsform, Short time requency representa actions and function	Fourier transi tion, Wavele	Form and its
MOI	DULE 2 - N	MULTIRESO	LUTION C	CONCEP	T AND DISCRET	TE WAVELE	T
TRA	NSFORM	[(9)
Multi and it Analy filter	resolution ts propertie ysis and Sy bank Mul	formulation of es, Multiresolu onthesis, 1D an tichannel filter	f wavelet system tion analysis d 2D Discre	stems- sig s, Haar sc ete wavel cimated	gnal spaces, scaling caling and wavelet f et transform, Wavel wavelet transform	function, wa function, Filte let Packets, T	velet function r banks- ree structured
MOI	DULE $3-$	WAVELET S	SYSTEM D	ESIGN			(9)
Refin Daub	ement rela echies orth	tion for orthog ogonal wavele	onal wavele et system coo	et system: efficients	s, Restrictions on fi , Design of Coiflet	lter coefficier and Symlet w	ts, Design of vavelets.
MOI	DULE 4-	WAVELET	FAMILIES				(9)
Continuous Wavelets- Properties of Mexican hat wavelet, Morlet, Gaussian and Meyer wavelets. Orthogonal wavelets- Properties of Haar wavelets, Daubechies wavelets, Symlets, Coiflets and Discrete Meyer wavelets. Properties of Biorthogonal wavelets, Applications of wavelet families. MODULE 5 – WAVELET APPLICATIONS (9)							
Denoising of Signals and Images, Image enhancement, Edge detection, Image Fusion, Image compression, Wavelet based feature extraction, Analysis of phonocardiogram signals, Analysis of EEG signals, Speech enhancement for hearing aids							
TEX	T BOOKS						
1.	C.Sidney transform	Burrus, Rame	esh Gopinath 1, 1998.	& Haito	Guo, Introduction	to wavelets a	nd wavelet
3.	Metin Ak Press, Oc	tay, 'Time frect tober 1997.	luency and v	vavelets	in biomedical signa	l processing,'	Wiley-IEEE
KEF	ERENCE	ROOKS					

1.	M.Vetterli and J. Kovacevic,'Wavelets and sub band coding, Prentice Hall, 1995.				
2.	P.P.Vaidyanathan, 'Multi rate systems and filter banks', Prentice Hall, 1993				
3.	Raguveer m Rao & Ajith S. Bopardikar, 'Wavelet transforms – Introduction to theory and applications, Addison Wesley, 1998.				
4.	S.Mallet,'A Wavelet tour of Signal Processing', Academic Press, 1998.				
E BO	E BOOKS				
1	D.sundararajan,'Discrete Wavelet Transform: A Signal Processing Approach 1st				
2.	Edition', Kindle Edition.				
	Lokenath Debnath,' Wavelet Transforms and Their Applications,' Birkhäuser Basel				
	publisher,2002				
MOC	MOOC				
1	https://nptel.ac.in/courses/108101093/				
2	https://nptel.ac.in/courses/117101123/				

COURSE TITLE		РУ	THON PROGRAMMING CREDITS			3		
Cou	rse Code	ECA4722	Course Category		L-T-P-S	3-0-0-0		
	CIA				ESE			
LEA	RNING				ASSESSMENT			
	EVEL				MODEL			
			COURSE	OUTCO	DMES		PO	
1.	To know	the basics of a	algorithmic p	problem s	olving			
2.	To execu	te simple Pyth	on programs	5.				
3.	To devel	op Python prog	grams with c	condition	als and loops.			
4	To devel	op algorithmic	solutions to	simple c	computational probl	lems		
5	To repres	sent compound	l data using I	Python li	sts, tuples, dictiona	ries		
6	To imple	ment input/ou	tput with fil	es in Pyt	hon			
MOI	DULE 1 -	ALGORITH	MIC PROF	BLEM S	OLVING		(9)	
in a Han	list, insert oi.	t a card in a li	ist of sorted	cards, g	uess an integer nur	mber in a rang	ge, Towers of	
MOI	MODULE 2 -DATA, EXPRESSIONS, STATEMENTS (9)							
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.								
MOI	DULE 3-0	CONTROL F	LOW, FUN	CTION	8		(9)	
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search								
MOI	MODULE 4 - LISTS, TUPLES, DICTIONARIES (9)							
List para	s: list oper imeters; T	rations, list sli uples: tuple a	ices, list me assignment,	thods, lis tuple as	st loop, mutability, return value; Dic	, aliasing, clor ctionaries: ope	ning lists, list erations and	

methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

MODULE 5 – FILES, MODULES, PACKAGES

(9)

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

TEXT BOOKS	
------------	--

1.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2 nd edition,
	Updated for Python 3, Shroff/O'Reilly Publishers, 2016
	(http://greenteapress.com/wp/think- python/)

2. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.

REFI	ERENCE BOOKS
1.	Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in
	Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016
2.	Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private Ltd.,, 2015
3.	John V Guttag, "Introduction to Computation and Programming Using Python", Revised
	and expanded Edition, MIT Press, 2013

COURSE		INTRODUCTION TO OPTIMIZATION					CREDITS		
IIILE			TECI Commo	HNIQUES					
Cou	rse Code	ECA4723	Course Category		L-T-P-S		3-0-0-0		
	CIA				ESE				
LEA	RNING				ASSESSMENT				
L	EVEL				MODEL				
			COURSE O	UTCOM	ES		Р	0	
1.	Able to f	ormulate engi	neering prob	lems as ma	athematical optimiza	tion	1,2,3	,4,5,6	
2	Skilled to problem	apply the co to the enginee	ncept of linea ering problem	ar and non	inear programming		1,2,3	,4,5,6	
3.	Compete engineeri	nt to apply the ng problem	e concept of	integer pro	gramming problem t	to the	1,2,3,4	,5,6,11	
4.	Proficien transport	t to recognize ation problem	the solution for optimal	for assign solution	ment problem and		1,2,3,4	,5,6,11	
5.	5.Apply bio-inspired techniques in image processing1,2,3,4,5,11						4,5,11		
Prer	equisites:						1		
MOI	MODULE 1 – INTRODUCTION TO OPTIMIZATION (9)								
Intro	duction to	operations res	earch – objec	ctive – sco	pe of OR – Limitatio	ons of	OR –		
Intro	duction and	d formulation	of linear pro	gramming	 Solving LPP using 	g Grap	hical me	thod.	
MOI	DULE 2 – 1	LINEAR PR	OGRAMM	MING PR	OBLEM		(9)		
Solvi prima	ing LPP us al to dual.	ing simplex n	nethod – Big-	M method	– Two phase metho	d - co	nversion	l of	
MOI	DULE 3-	INTEGER I	PROGRAM	MING			(9)		
Integ and E	er program Bound metl	ming – Cuttin 10d	ng plane metl	nod – Gom	ory's Mixed integer	metho	od – Brai	nch	
MOI	DULE 4-	ASSIGNME	NT AND TI	RANSPOR	RTATION PROBLI	EM	(9)		
Hung	garian Meth	nod – Maximi	zation and ur	nbalanced a	assignment problem	– Basi	c feasib	le	
solut	ion of trans	sportation pro	blem – Modi	method -	Degeneracy – Unbal	anced	Transpo	ortation	
problem.									
MOI	DULE 5 –	BIOINSPIR	ED COMPU	TING			(9)		
Gene	tic Algorit	hms and Diffe	erential Evolu	ition, Swai	rm Optimization and	Firefl	y Algori	thm,	
	Cuckoo Search Algorithm for Image Processing Applications.								
1	Chandras	ekaran Δ "Λ	Text book o	f Operation	n Research" Dhanan	n Puhl	ications		
1.	Chennai,	<u>2017</u>	1 CAT 000K 0					,	
2.	V. Sunda	resan, K. S. C	Ganapathy Su	bramanian	, K. Ganesan, "Reso	urce N	lanagen	ient	

	Techniques", A. R. Publications, 2004					
3.	S. D. Sharma, "Operation Research", Kedarnath Ramnath & Co, 2002					
	REFERENCE BOOKS					
1	Hamdy A. Taha, "Operations Research: An Introduction (9th Edition)", Prentice Hall, 2010					
2	D S Hira & Prem Kumar Gupta, "Introduction to Operations Research", S. Chand Publishing, 2012					
3	Jan Erik Solem, "Programming Computer Vision with Python: Tools and algorithms for analyzing images", O'Reilly Media, 2012.					
E BO	OKS					
1.	http://nptel.ac.in/courses/112106134/1					
2.	https://onlinecourses.nptel.ac.in/noc17_mg10/preview					
MOC	MOOC					
1.	https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L1slides.pdf					

COURSE TITLE		NATURAL LANGUAGE PROCESSING				CREDITS	3
Cou	rse Code	ECA4724	Course Category		L-T-P-S	3-0	-0-0
(CIA				ESE		
LEA	RNING				ASSESSMENT		
LEVEL MODEL							
			COURSE	OUTCO	OMES		РО
1.	To identi	fy the differen	t linguistic c	omponer	nts of given sentenc	es.	
2	Design a	morphologica	l analyser fo	or a langu	lage of your choice	e using finite	
Ζ.	state auto	mata concepts	.				
2	Impleme	nt the Earley a	lgorithm for	a langua	nge of your choice b	by providing	
5.	suitable g	grammar and v	vords.				
4.	Use a ma	chine learning	g algorithm f	or word	sense disambiguation	on.	
5.	Build a t	agger to semar	ntically tag v	vords usi	ng WordNet.		
MOI	DULE 1 – 1	MORPHOLC	GY AND P	PART-O	F SPEECH PROC	ESSING	(9)
Morp Corre Speed Tagg MOI Phone Speed synth Speed Discr	Introduction –Regular Expressions and Automata-Non-Deterministic FSAs.Tranducers –English Morphology –Finite-State Morphological Parsing -Porter Stemmer –Tokenization-Detection and Correction of Spelling Errors. N-grams –Perplexity -Smoothing -Interpolation -Backoff Part-of- Speech Tagging –English Word Classes -Tagsets -Rule-Based -HMM -Transformation-Based Tagging -Evaluation and ErrorAnalysis. Hidden Markov and Maximum Entropy Mode MODULE 2 - SPEECH PROCESSING (9) Phonetics –Articulatory Phonetics -Phonological Categories -Acoustic Phonetics and Signals - Speech Synthesis –Text Normalization –Phonetic and Acoustic Analysis -Diphone Waveform synthesis –Evaluation-Automatic Speech Recognition –Architecture -Hidden Markov Model to Speech -MECC vectors -Acoustic Likelihood Computation -Evaluation Triphones –						
MOI	DULE 3 –	SYNTAX AN	ALYSIS	1011.			(9)
Form Treeb Parsin Parsin	Formal Grammars of English –Constituency -Context-Free Grammars –Grammar Rules – Treebanks -Finite-State and Context-Free Grammars -Dependency Grammars. Syntactic Parsing – Parsing as Search -Ambiguity -Dynamic Programming Parsing Methods –CKY-Earley and Chart Parsing-Partial Parsing-Evaluation.						
MOI	DULE $4-$	SEMANTIC A	AND PRAG	MATI C	INTERPRETAT	ION	(9)
Representation of Meaning –Desirable Properties -Computational Semantics -Word Senses - Relations Between Senses –WorldNet -Event Participants-Proposition Bank -Frame Net – Metaphor. Computational Lexical Semantics –Word Sense Disambiguation-Supervised Word Sense Disambiguation -Dictionary and Thesaurus Methods-Word Similarity -Minimally Supervised WSD -Hyponymy and Other Word Relations -Semantic Role Labeling -Unsupervised Sense Disambiguation. Computational Discourse -Discourse Segmentation MODULE 5 –APPLICATIONS (9)							
Temp	oral and E	vent Processir	ig -Template	e-Filling	-Biomedical Inform	ation Extraction	on. Question

Answering and Summarization -Information Retrieval -Factoid Question Answering -Summarization -Single and Multi-Document Summarization -Focused Summarization -Evaluation. Dialog and Conversational Agents –Properties of Human Conversations -Basic Dialogue Systems -VoiceXML -Information-State and Dialogue Acts -Markov Decision Process Architecture.

rnom	
TEX	ГBOOKS
1.	NitinIndurkhya, Fred J. Damerau, "Handbook of Natural Language Processing",
	(Chapman& Hall/CRC Machine Learning & Pattern Recognition), Second Edition, 2010.
2.	Alexander Clark, Chris Fox, ShalomLappin, "The Handbook of Computational Linguistics
	and Natural Language Processing", Wiley-Blackwell, 2012
3	Jurafsky and Martin, "Speech and Language Processing", Pearson Prentice Hall, Second
	Edition, 2008
REFI	ERENCE BOOKS
1.	Christopher D. Manning and HinrichSchütze, "Foundations of Statistical Natural Language
	Processing", MIT Press, 1999.
2.	Stevan Bird, "Natural Language Processing with Python", Shroff, 2009.
3.	ames Allen, "NaturalLanguage Understanding", Addison Wesley, Second Edition, 2007.

ELECTIVE – II

CC T	DURSE TITLE		MACHIN	E LEARN	IING	CRI	EDITS	3
Cou	rse Code	ECB4705	Course Category		L-T-P-S	3-0-0-0		
	CIA				ESE			
LEA	ARNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE O	DUTCOM	ES	•	P	0
1.	To under	stand the con	cepts of Mac	hine Learn	ing			
2	To under various a	stand supervi pplications	sed learning	and apply	neural networks in			
3.	To expla	in the concept	ts and algorit	hms of uns	supervised learning			
4	To apply Models.	the theoretica	al and practic	al aspects	of Probabilistic Grap	hical		
5	To expla	in the concept	ts and algorit	hms of adv	anced learning			
Prer	equisites:							
MO	DULE 1 –	INTRODUC	TION					(9)
Macl testir Macl	hine Learn 1g Machin hine Learni	ing–Types of e Learning a ng-Probabilit	f Machine L algorithms, t y theory –Pro	earning – turning da obability D	Machine Learning ₁ ta into Probabilitie istributions –Decisio	process s, and on The	s-prelim l Statist ory.	inaries, ics for
MO	DULE 2 –	SUPERVISI	ED LEARNI	ING				(9)
Linea Prob Lear Netw Vect	ar Models abilistic C ning –Baye vorks, Mult or Machine	for Regressi Generative M esian Learning ti-layer Perce es.	on –Linear Iodels, Prob g, Naïve Bay ptron, Feed-1	Models for abilistic I yes –Ensen forward No	or Classification-Dis Discriminative Mod nble Methods, Bagg etwork, Error Back	crimir lels – ing, B propag	nant Fur Decision oosting, gation -S	nctions, n Tree Neural Support
MO	DULE 3-	UNSUPERV	ISED & AD	VANCEI) LEARNING		(9)	
. Clu Redu Indej Samj learn Actio	. Clustering-K-means –EM Algorithm-Mixtures of Gaussians –Dimensionality Reduction,Linear Discriminant Analysis, Factor Analysis, Principal Components Analysis, Independent Components Analysis. Sampling-Basic Sampling methods, Monte Carlo, Gibbs Sampling –Computational Learning Theory –Mistake Bound Analysis –Reinforcement learning –Markov Decision processes, Deterministic and Non-deterministic Rewards and Actions, Temporal Difference Learning Exploration.							
MOI (9)	DULE 4–	PROBABIL	ISTIC GRA	PHICAL	MODELS			
Grap Grap Mark	hical Mode hical Mode covRandon	els –Undirecte els –Bayesian n Fields-Hidd	ed Graphical Networks – en Markov M	Models – Models – Models – Models – Models – Co	Aarkov Random Fiel I Independence prop nditional Random Fi	ds –Di erties - ields(C	Trected CRFs).	

MODULE 5 - MACHINE LEARNING IN IMAGE PROCESSING

Image content Analysis- Feature mapping using the scale-invariant feature transform (SIFT) algorithm- Image classification using Convolutional Neural Networks (CNNs)-Image registration using the random sample consensus (RANSAC) algorithm-Morphological processing

TF	EXT BOOKS
1.	Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007.
2.	Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Chapman
	andHall, CRC Press, Second Edition, 2014.
	REFERENCE BOOKS
1	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
2	EthemAlpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014.
3	Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.
E BO	OOKS
1	https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
2	https://drive.google.com/file/d/1tYo_xIAi8jPqKiaHSPQX9pHaJ8tf8MTd/view
MOC	DC
1	https://www.coursera.org/learn/machine-learning
2	http://www.cs.cmu.edu/~tom/10701_sp11/

Course Code ECA4725 Course Category L-T-P-S 3-0-0-0 CIA ESE ESE LEARNING LEVEL ASSESSMENT MODEL PO 1. Recall the basics of Video representations and their characteristics. PO 2 Outline the Motion estimation techniques and Compare them PO 3. Explain the functions of various Video coding schemes PO 4 Examine the characteristics of Error control mechanisms of Video communication Freequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding System Application of motion estimator in video coding techniques- Video application and transform coding, Knowledge based coding, Semantic coding and layered coding System Application for motion estimator in video coding techniques- Region basel coding, Stowledge based	COURSE TITLE			VIDEO PROCESSING				CREDITS 3	
CIA ESE LEARNING LEVEL ASSESSMENT MODEL Image: COURSE OUTCOMES PO 1. Recall the basics of Video representations and their characteristics. 2 Quiline the Motion estimation techniques and Compare them 3 3. Explain the functions of various Video coding schemes 4 4 Examine the characteristics of Error control mechanisms of Video communication 5 5 Explain the streaming video concepts over the internet 7 Prerequisites: 7 7 MODULE 1 - INTRODUCTION TO VIDEO PROCESSING 7 Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. 7 MODULE 2 - MOTION DETECTION AND ESTIMATION 7 8 General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation 9 MODULE 3 - VIDEO CODING TECHNIQUES 8 8 Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding, Semantic coding and layered coding System Application of motion estimator in video coding, Soverise doring, Knopvelege based coding,	Cour	rse Code	ECA4725	Course Category		L-T-P-S		3-0-0-0	
LEARNING LEVEL ASSESSMENT MODEL I Recall the basics of Video representations and their characteristics. PO 1 Recall the basics of Video representations and their characteristics. PO 2 Outline the Motion estimation techniques and Compare them Image: Compare them Image: Compare them 3. Explain the functions of various Video coding schemes Image: Compare them Image: Compare them 4 Examine the characteristics of Error control mechanisms of Video communication Image: Compare them Image: Compare them 5 Explain the streaming video concepts over the internet Image: Compare them Image: Compare them Prerequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm-Mesh based motion estimation- Direct motion Estimation MODULE 3 - VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based c	(CIA				ESE			
LEVEL MODEL COURSE OUTCOMES PO 1. Recall the basics of Video representations and their characteristics. 2 2 Outline the Motion estimation techniques and Compare them 3. 3. Explain the functions of various Video coding schemes 4 4 Examine the characteristics of Error control mechanisms of Video communication 5 5 Explain the streaming video concepts over the internet 7 MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION 6 General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding techniques- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4	LEA	RNING				ASSESSMENT			
COURSE OUTCOMES PO 1. Recall the basics of Video representations and their characteristics. 2 2 Outline the Motion estimation techniques and Compare them 3 3. Explain the functions of various Video coding schemes 4 4 Examine the characteristics of Error control mechanisms of Video communication 5 5 Explain the streaming video concepts over the internet 7 Prerequisites: 7 7 MODULE 1 - INTRODUCTION TO VIDEO PROCESSING 7 Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. 7 MODULE 2 - MOTION DETECTION AND ESTIMATION 7 8 General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation 7 MODULE 3 - VIDEO CODING TECHNIQUES 7 8 8 Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding Overview of approaches- Video applicat	LI	EVEL		COUDCE		MODEL		D	0
1. Recall the basics of Video representations and their characteristics. 2 Outline the Motion estimation techniques and Compare them 3. Explain the functions of various Video coding schemes 4 Examine the characteristics of Error control mechanisms of Video communication 5 Explain the streaming video concepts over the internet Prerequisites: MODULE 1 - INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 - MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation. MODULE 3 - VIDEO CODING TECHNQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 - STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS co	1	D 11.1	1	COURSE O	DUTCOM	ES		P	0
2 Outline the Motion estimation techniques and Compare them 3. Explain the functions of various Video coding schemes 4 Examine the characteristics of Error control mechanisms of Video communication 5 Explain the streaming video concepts over the internet Prerequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for etrorowner Modie	1.	Recall the	e basics of Vi	deo represen	tations and	their characteristics.	•		
3. Explain the functions of various Video coding schemes 4 Examine the characteristics of Error control mechanisms of Video communication 5 Explain the streaming video concepts over the internet Prerequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression - Application layer QoS control for etroror work of continuor media Discribution corrigers and control for etroror media Discribution exeresion - Structure Control	2	Outline t	he Motion est	imation techi	niques and	Compare them			
4 Examine the characteristics of Error control mechanisms of Video communication 5 Explain the streaming video concepts over the internet Prerequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation-Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding techniques- Wave form based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for retroemer modio Distribution compices Streaming and parter of the control for compares of the provide streaming control for the provide of the provide of the provide of the provide of the prestreaming systems - Video compression - Application l	3.	Explain t	he functions of	of various Vi	deo coding	schemes			
5 Explain the streaming video concepts over the internet Prerequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for draming video Control point point point point point point of point of point of video streaming systems- Video compression- Application layer QoS control for draming video Control point point point pointe point pointer porescion - Application layer QoS control for dram	4	Examine communi	the character	istics of Erro	r control m	echanisms of Video			
 Prerequisites: MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation-Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding techniques- Wave form based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for etraming video. Control Distribution envices. Streaming envices. Madia 	5	Explain t	he streaming	video concep	ots over the	internet			
 MODULE 1 – INTRODUCTION TO VIDEO PROCESSING Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for etraming uideo. Continuous modio Distribution compression- Application layer QoS control for etraming uideo. 	Prere	equisites:						1	
 Principles of colour video processing, Video display, Composite versus component video, Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding, Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for attraming uideo. Continuous media Distribution carriage. Streaming agreement Madia 	MOD	DULE 1 – 1	INTRODUC	TION TO V	IDEO PR	OCESSING			
 Progressive and interlaced scan, Sampling and Interpolation of video signals. MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for atraoming wideo. Continuous media Distribution corriger. Structure Madia 	Princ	iples of co	lour video pro	cessing, Vid	eo display	, Composite versus c	ompo	nent vide	eo,
 MODULE 2 – MOTION DETECTION AND ESTIMATION General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for atraaming video. Continuous media Distribution carving. Streaming carvars. Madia 	Progr	ressive and	interlaced sc	an, Sampling	and Interp	olation of video sign	als.		
General methodologies- Pixel based motion estimation-Block matching algorithm- Mesh based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion EstimationMODULE 3 – VIDEO CODING TECHNIQUESBasic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for otraaming uideo. Control media Distribution corviage. Streaming corvers. Madia	MOD	DULE 2 – 2	MOTION D	ETECTION	AND EST	TIMATION			
 based motion estimation- Global motion estimation- Region based motion estimation- Multi - resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for atraaming video. Continuous media Distribution corplication Streaming corporation. 	Gener	ral method	lologies- Pixe	l based motio	on estimati	on-Block matching a	lgoritl	nm- Mes	sh
 resolution motion estimation- Direct motion Estimation MODULE 3 – VIDEO CODING TECHNIQUES Basic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for atraaming video. Continuous media Distribution corviage. Streaming convers. Madia 	based	motion es	stimation- Glo	bal motion e	stimation-	Region based motion	n estin	nation- N	Multi -
MODULE 3 - VIDEO CODING TECHNIQUESBasic Video coding techniques- Wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 - ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4MODULE 5 - STREAMING VIDEO OVER THE INTERNETOverview of video streaming systems- Video compression- Application layer QoS control for atroaming wideo. Continuous medio Distribution cervices. Streaming compares. Madia	resolu	tion motio	on estimation-	Direct motio	on Estimati	ion			
 Basic Video coding techniques- wave form based coding, Block-based transform coding, Predictive coding, temporal prediction and transform coding Content based Video coding techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for atraoming video. Continuous media Distribution cervices. Streaming cervices. Madia 	MOL	Video of		DING IEUF	INIQUES	d'une Die de beseud (u			
 Treative coung, temporal prediction and transform coung content based video coung techniques- Region based video coding, Object based coding, Knowledge based coding, Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for atraoming video. Continuous media Distribution cervices. Streaming cervers. Media 	Basic Predi	video coo	ang temporal r	es- wave for	m based co	aing, Block-based tr	ansio	m coain leo codir	ig, ng
Semantic coding and layered coding system Application of motion estimator in video coding MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONS Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for etraeming video. Continuous media Distribution corvined. Streaming corvers. Media	techn	iaues- Reg	vion based vid	eo coding. O	biect based	d coding. Knowledge	e based	l coding	18
MODULE 4 – ERROR CONTROL IN VIDEO COMMUNICATIONSOverview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4MODULE 5 – STREAMING VIDEO OVER THE INTERNETOverview of video streaming systems- Video compression- Application layer QoS control for streaming video. Continuous media Distribution cervices. Streaming cervers. Media	Sema	ntic coding	g and layered	coding system	m Applicat	tion of motion estimation	ator in	video c	oding
Overview of approaches- Video applications and communication networks- Transport level error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for streaming video. Continuous media Distribution convisor. Streaming convers. Madia	MOL	OULE 4-	ERROR CO	NTROL IN	VIDEO C	COMMUNICATION	NS		
error control- Error resilient encoding- Encoder-decoder interactive error control- Error resilience Tools in H.263 and MPEG-4 MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for streaming video. Continuous media Distribution cervices. Streaming cervers. Media	Overv	view of app	proaches- Vid	leo applicatio	ons and cor	nmunication network	ks- Tra	ansport l	evel
MODULE 5 – STREAMING VIDEO OVER THE INTERNET Overview of video streaming systems- Video compression- Application layer QoS control for streaming video Continuous media Distribution convises Streaming conversion Madia	error	control- E	rror resilient e	encoding- En	coder-deco	oder interactive error	contro	ol- Error	
Overview of video streaming systems- Video compression- Application layer QoS control for streaming video. Continuous media Distribution convised. Streaming convers. Madia	resilie	ence Tools	In H.263 and	MPEG-4	VED TH				
Overview of video streaming systems- video compression- Application layer QoS control for				G VIDEU U		LINIEKINEI			mol for
sucanning video- Continuous media Distribution services- Streaming servers- Media	strear	view of vic	eo streaming - Continuous	systems- Via media Distri	bution serv	ession- Application la vices- Streaming serv	ayer Q vers- N	los cont ledia	rol Ior

synchronizationProtocols for streaming video

REFERENCE BOOKS

1	Yao Wang, Jorn Ostermann, Ya-Qin Zhang, Video Processing and			
	Communications', Prentice Hall, 2002 2. 3. 45.			
2	Alan C.Bovik, _The Essential Guide to Video Processing', Elsevier Science, edition 2,			
	2009			
3	A. Murat Tekalp, _Digital Video Processing', Prentice Hall, edition 1, 1996			
4	Jens R. Ohm. Multimedia Communication Technology: Representation, Transmission			
	and Identification of Multimedia Signals ,Springer, 2004			
5	M.E.Al-Mualla, C. N. Canagarajah and D. R.Bull, -Video Coding for Mobile			
MOC	MOOC			
1	https://nptel.ac.in/courses/117/104/117104020/			

COURSE TITLE		ADVANC	ED DIGITA	L SIGNA	L PROCESSING	CREDITS		3
Cour	rse Code	ECA4726	Course Category	DE	L-T-P-S	3-0-0-0		
	CIA			I	ESE			
LEA LI	ARNING EVEL		BTL-3		ASSESSMENT MODEL			
	COURSE OUTCOMES					Р	0	
	On comp	letion of this	course the stu	idents will	be able to			
1.	Analyze time rand	various math lom signals	ematical des	criptions a	and modeling of dis	crete	1,2	,3,4
2.	Analyse	different estin	nation technic	ques for bo	oth linear and spectru	ım	1,2	,3,4
3.	Design a DSP syst	Design adaptive filters for a given application and to design multi- rate 1,2,3,4,9,10 DSP systems						
4.	Familiari technique	ze with estim es	ation, predict	ion and fil	tering concepts and		1,2	,3,4
5.	Explain t	he various typ	pes of process	sors and pi	ogramming concepts	8.	1,2,3	3,4,6
Pre r	equisites:2	Z transform, b	oasic DSP pro	ocessor, FI	R filter, IIR filter		I	
MOL	DULE 1 –	DISCRETE F	RANDOM SI	GNAL PR	OCESSING			
Wide Autoo filteri distri White	Wide sense stationary process – Ergodic process – Mean – Variance - Auto-correlation and Autocorrelation matrix - Properties - Weiner Khitchine relation - Power spectral density – filtering random process, Spectral Factorization Theorem–Simulation of uniformly distributed/Gaussian distributed white noise – Simulation of Sine wave mixed with Additive White Gaussian Noise							
MODULE 2 – SPECTRUM AND LINEAR ESTIMATION								
Non-j estim using squar	Non-parametric methods correlation method, co-variance estimator, performance analysis of estimators, consistent estimators, AR,MA, ARMA signal modeling parameter estimation using Yule-walker method. Maximum likelihood criterion efficiency of estimator, least mean squared error criterion, recursive estimators, and linear predications.							
MOL	DULE 3-	ADAPTIVE	FILTERS					

Applications of Adaptive Filters, Adaptive Direct Form FIR Filters: The LMS Algorithm, Adaptive Lattice Ladder Filters, Recursive Least Squares, Lattice and Ladder Algorithms.

MODULE 4 – DSP CHIPS

Introduction to fixed point and floating point processors, ADSP21xx and TMS320Cxx-Architecture, Memory, Addressing Modes, Interrupts, Applications. Comparison of ADSP21xx and TMS320Cxx series.

MODULE 5 – MULTIRATE DIGITAL SIGNAL PROCESSING

Mathematical description of change of sampling rate - Interpolation and Decimation - Continuous time model - Direct digital domain approach - Decimation by integer factor - Interpolation by an integer factor - Single and multistage realization - Poly phase realization - Applications to sub band coding - Wavelet transform and filter bank implementation of wavelet expansion of signals.

TEXT BOOKS Dag Stranneby, William Walker, "Digital Signal Processors and applications", lsevier, 1. 2003. Robert Oshana, "DSP Software Development Techniques for embedded real time 2. applications", Elsevier, 2006. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley 3 and Sons Inc., New York, 2006 **REFERENCE BOOKS** Emmanuel C.Ifeachor Barrie W.Jervis, 'Digital Signal Processing', Pearson Education 1 Asia 2. Proakis, Manolakis, 'Digital Signal Processing principles, algorithms, and applications', Prentice Hall India. 3. S.K.Mitra, 'Digital Signal Processing', Tata-Mcgraw Hill. ADSP 2181 manuals 4. Keshab K. Parhi, 'VLSI DSP Systems; Design & implementation,, Wiley Interscience

Publishers.
5. John G. Proakis, Charles M. Rader, Fuyun Ling, Chrysostomos L. Nikias, Marc Moonen, Ian k Proudler, 'Algorithms for statistical signal processing', Pearson

	Education Asia.						
E BO	OKS						
1	DimitrisManolakis, VinayIngle, Stephen Kogon, 'Statistical and Adaptive Signal						
	Processing', Springer publication.						
2	Widrow, 'Adaptive signal processing', Pearson Education India, 1985						
MOO	OC .						
1	https://nptel.ac.in/courses/117101001/						

COURSE TITLE		COMPUTER VISION CR					DITS	3
Cou	rse Code	ECA4727	Course Category		L-T-P-S	3-0-0-0		D
	CIA				ESE			
LEA	RNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE O	UTCOM	ES		Р	0
1.	Explain v	various recogn	nition method	lologies.			1,2	,5,6
2	Describe	the binary ma	achine vision	technique	5.		1,2	,5,6
				1				<u> </u>
3.	Apply ma	athematical co	oncepts for an	ea extracti	on.		1,2	,5,6
4.	Elaborate matching	e the techniqu	es to recogniz	ze various	objects and image		1,2	,5,6
5.	Describe	the framewor	ks for match	ing and kn	owledge representati	on.	1,2	,5,6
Prere	equisites:							
MOI	DULE 1 – 2	RECOGNIT	ION METH	ODOLOG	Ϋ́Υ			
Recog	nition Metl	hodology: Con	ditioning, Labe	eling, Group	ing, Extracting, and Ma	atching	g. Edge	
detec	tion, Gradie	ent based oper	ators, Morpho	logical ope	rators, Spatial operato	rs for e	edge dete	ection.
Thinn	ing, Region	growing, regio	n shrinking, La	abeling of c	onnected components			
MOL	$\frac{\text{OULE } 2 - 1}{1 + 1 + 1}$	BINARY MA	ACHINE VI	SION				
Binary	/ Machine V	/ision: Inresho	Iding, Segmen	itation, Con	nected component lab	ion bag	Hierarch	al
segni	entation, sp		s, spiit & merg	e, Rule Das	eu segmentation, wot		seu	
MOL	DULE 3-	BINARY AI	REA EXTRA	ACTION A	AND REGION ANA	LYSI	IS	
Area I	Extraction: (Concepts. Data	structures. Ed	dge, Line Lir	iking, Line detector - H	lough t	ransform	n, Line
fitting	, Curve fitti	ng (Least squa	re fitting). Reg	ion Analysi	s: Region properties, E	xternal	l points, s	Spatial
mome	ents, Mixed	spatial gray le	vel moments,	Boundary a	nalysis: Signature prop	perties,	, Shape	
numb	ers. Edges -	– Canny, LOG, I	DOG.					
MODULE 4 – OBJECT MODEL RECOGNITION AND MATCHING								
Facet	Model Reco	ognition: Label	ing lines, Unde	erstanding l	ine drawings, Classifica	ation o	f shapes	by
labeli	ng of edges	, Recognition c	of shapes, cons	sisting label	ing problem, Back trac	king, P	erspectiv	/e
Projec	ctive geome	etry, Inverse pe	rspective Proj	ection, Pho	togrammetry. From 2	J to 3D	, Image	_
	iing: intens t Models ar	ny matching of	וט signals, IVIa D representat	ion Global	ים image, Hierarchical ו איג Local features	image i	matching	; -
MO		CENEDAL I		DKS ANT		ASED	VICIO	N
Gone		OPICENAL I	hing: Dictores		nnroach Ordarad str		matchin	
class	natching N	Indels databas	e organization	General F	rame Works' Distance	relati	natenin onal anni	g, view roach
Order	ed .Structu	ral matching, V	iew class mat	ching, Mod	els database organizat	ion. Kn	owledge	Based

Vision	Vision: Knowledge representation, Control-strategies, Information Integration. Histogram based					
Image	Image Processing.					
TE	TEXT BOOKS					
1.	David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach", Prentice Hall, 2011.					
2.	Wesley E. Snyder and Hairong Qui, "Fundamentals of Computer Vision", Cambridge University Press, 2017.					
	REFERENCE BOOKS					
1	Rajalingappaa Shanmugamani, "Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using TensorFlow and Keras", Packt Publishing Limited, 2017					
2	Alexander Hornberg, "Handbook of Machine and Computer Vision: The Guide for Developers and Users", Wiley Publications, 2017.					
3	Gustavo Olague, "Evolutionary Computer Vision: The First Footprints (Natural Computing Series)", Springer, Amazon Asia-Pacific Holdings Private Limited, 2016					
E BO	OKS					
1.	http://freecomputerbooks.com/Computer-Vision-Xiong-Zhihui.html					
MOC	DC					
1.	https://in.udacity.com/course/introduction-to-computer-visionud810					
2.	https://onlinecourses.nptel.ac.in/noc18_ee08					
3.	https://www.edx.org/course/computer-vision-and-image-analysis					

SEMESTER – II

COURSE TITLE		MULTIMEDIA COMPRESSION TECHNIQUES					EDITS	3
Cou	rse Code	ECA4703	Course Category	РС	L-T-P-S		3-0-0-0	
	CIA				ESE			
LEA	RNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE C	DUTCOM	ES		P	Ό
1.	Design a	n application	with error-co	ontrol.			1,2	2,9
2	Use com	pression and o	lecompressio	on techniqu	es.		1,2	2,3
3.	Apply the Concentr	e concepts of ate different I	multimedia c P technology	communica /	tion.		1,2	2,3
Prer	Study rel		nedia networ	King				
MOI	DULE 1 –	MULTIME	DIA COMPO	NENTS				
Intro sound	duction – N d, images,	Aultimedia sk graphics, anin	ills – Multim nation, video	nedia comp , hardware	onents and their char.	racteri	stics – T	`ext,
MOI	DULE 2 –	AUDIO ANI	D VIDEO C	OMPRES	SION			
Audi codin MPE	o compressing-code exe G 1, 2, and	sion–DPCM-A cited LPC-per I 4.	Adaptive PCI petual coding	M –adaptiv g Video co	e predictive coding- mpression –principle	linear es-H.2	Predictiv 61-H.26	ve i3-
MOI	DULE 3-	TEXT AND	IMAGE CO	OMPRESS	ION			
Comp comp dynar	pression pr pression-en mic coding	inciples-source tropy encoding arithmetic of	ce encoders a g –source en coding –Lem	nd destina coding -te pel Ziv-We	tion encoders-lossles xt compression – stat elsh Compression-im	s and tic Hu age co	lossy ffman co ompressi	oding ion.
MOI	DULE 4 –	VOIP TECH	INOLOGY	•	•			
Basics of IP transport, VoIP challenges, H.323/ SIP –Network Architecture, Protocols, Call establishment and release, VoIP and SS7, Quality of Service- CODEC Methods- VOIP applicability.								
MOI	DULE $5-2$	MULTIMEE	DIA NETWO	ORKING				
Multi service effort RSV	Multimedia networking -Applications-streamed stored and audio-making the best Effort service-protocols for real time interactive Applications-distributing multimedia-beyond best effort service-secluding and policing Mechanisms-integrated services-differentiated Services- RSVP.							

 TEXT BOOKS

 1.
 Fred Halshall,'Multimedia Communication-Applications,Networks, Protocols and

 1.

	Standards', Pearson Education, 2007.
2.	Tay Vaughan, 'Multimedia: Making it Work', 7th Edition, TMH 2008 98.
3.	Kurose and W. Ross, 'Computer Networking a Top down Approach', Pearson
	Education 2005.
	REFERENCE BOOKS
1	Marcus Goncalves,'Voice over IP Networks', McGraw Hill, 1999.
2	KR. Rao,Z S Bojkovic, D A Milovanovic, 'Multimedia Communication Systems:
	Techniques, Standards, and Networks', Pearson Education, 2007.
3	R. Steimnetz, K. Nahrstedt, 'Multimedia Computing, Communications and
	Applications', Pearson Education, Ranjan Parekh, 'Principles of Multimedia', TMH
	2007.
4	Khalid Sayood : Introduction to Data Compression, Morgan Kauffman Harcourt India,
	2nd Edition, 2000.
E BO	OKS
	http://freevideolectures.com/Course/2320/Digital-Voice-and-Picture-
	Communication/31
	Khalid sayood,'introduction to data compression', Elsevier publishers, third edition
MOC	DC
1	https://nptel.ac.in/downloads/117105083/#
2	https://nptel.ac.in/syllabus/117105083/

COURSE TITLE		IMAG	IMAGE PROCESSING APPLICATIONS CREDITS			CREDITS	3
Cou	rse Code	ECA4704	Course Category	РС	L-T-P-S	3-0-0-	0
	CIA				ESE		
LEA	RNING				ASSESSMENT		
L	EVEL				MODEL		
			COURSE O	UTCOM	ES	P	0
1.	Utilize th	e concepts of	image proce	ssing in bi	ometric applications	1,2	2,3
2	Make use application	e of image and ons	alysis concep	tions to va	arious medical image	2 1,2	2,3
3.	Apply an remote se	d examine the ensing applica	e concepts of ttions.	image pro	cessing to satellite a	nd 1,:	2,3
4	Identify a domains	and analyze th of industry	e application	is of image	processing in variou	18 1,	2,3
5.	Illustrate	the application	ons of video p	processing	with examples	1,2	2,3
Prere	equisites:					·	
MOI	DULE 1 –	REMOTE SI	ENSING & I	MONITO	RING APPLICATI	ONS	
Intro Selec	duction- 1 tion-Face	Biometric Pa Identification	attern Recog -Signature V	gnition- F erification	Face Recognition - -Preprocessing of Sig	-Feature Extr gnature Pattern	raction- ns
MOI	DULE 2 –	MEDICAL	IMAGE API	PLICATI	ONS		
Lung X-Ra Imag	Disease I y Image A e Analysis	dentification- nalysis- Clas	Heart Disease sification of	e Identific Dental Ca	ation- Bone Disease ries- Mammogram In	Identification nage Analysis	-Dental S-Pelvic
MOI	DULE 3-	SATELLIT	E AND REM	IOTE SEN	NSING APPLICAT	IONS	
Introduction-Satellite sensors and imageries- Features of Multispectral Images- Spectral reflectance of various earth objects-Water Regions-Vegetation Regions-Soil- Man- made/Artificial Objects-Scene Classification Strategies-Neural Network-Based Classifier Using Error Backpropagation- Counterpropagation network							
MOI	DULE 4-	INDUSTRIA	AL APPLIC	ATIONS			
Food	Food Industry-Automotive Industry-Textile Industry-Agriculture Industry-Robotics						
MOI	MODULE 5 – VIDEO PROCESSING APPLICATIONS						
Pixel of ob	Pixel-based model- Shadow Detection-Surveillance system- Region-based model- Principles						
TI	EXT BOO	KS					

1.	Tinku Acharya and Ajoy K. Ray-Image Processing Principles and Applications, A John
	Wiley & Sons, Mc., Publication 2005.
2.	Gonzalez & Woods — Digital Image Processing, 3rd ed., Pearson educaon, 2008
3.	Ardeshir Goshtasby, "2D and 3D Image registration for Medical, Remote Sensing and
	Industrial Applications", John Wiley and Sons, 2005.
	REFERENCE BOOKS
1.	S. Sridhar - Digital Image Processing, 2nd ed., Oxford University Press, 2016.
2.	Chanda Dutta Magundar – Digital Image Processing and Analysis, Prentice Hall of
	India, 2000.
E BO	OOKS
1.	I.Pitas-Digital Image Processing Algorithms and Applications, John Wiley & Sons,
	Mc., Publication 2000.
2.	John R.Jensen-Introductory Digital Image Processing –A Remote Sensing Prespective,
	(Pearson Series in Geographic Information Science) 4th Edition, Kindle Edition.
MOC	DC
1.	https://swayam.gov.in/nd1_noc19_ee55/preview
2.	https://nptel.ac.in/courses/117/105/117105079/

COURSE TITLE		MEDICAL IMAGING TECHNIQUES			CRE	EDITS	3	
Cou	rse Code	ECA4705	Course Category		L-T-P-S	3-0-0-0		
	CIA				ESE			
LEA	RNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE C	DUTCOM	ES		P	0
1.	Summari medical l	ze the Produc maging techn	tion of X-ray	ys and its a	pplications to differe	nt	1,2,4	,8,11
2	Use diffe	rent types of	Radio diagno	ostic techni	ques		1,2,4	,8,11
3.	Apply the sections	e special imag of the body	ging techniqu	les used for	visualizing the cros	8	1,2,4	,8,11
4.	Analyze technique	the imaging o es	f soft tissues	using ultra	asound and MRI		1,2,4	,8,11
Prere	equisites:							
MOL	DULE 1 – 1	PRINCIPLE	S OF RADI	OGRAPH	IC EQUIPMENT			
X-Ray tubes	tubes, coo , angiograp	ing systems, re hic setup, man	emoval of scat nmography, di	ters, Fluoro gital radiolo	scopy- construction of ogy, DSA.	f image	e Intensif	ier
MOL	DULE 2 –	COMPUTEI) TOMOGR	RAPHY				
Need	for section	al images, Prine	ciples of section	onal scannir	ng, CT detectors, Meth	ods of	reconstru	uction,
Iterati	ive, Back pr	ojection, convo	olution and Ba	ack-Projectio	on. Artifacts, Principle	of 3D i	maging	
Alpha	Pota and (Camma radiati	on Padiation	dotoctors	Padio isotonis imaging	oquipr	nonte Pr	adio
nuclid	les for imag	ing, Gamma ra	iy camera, sca	nners, Posit	ron Emission tomogra	phy, SI	PECT,PET	CT.
MOL	OULE 4-	ULTRASON	NIC SYSTE	MS				-
Wave pulsed and th	propagatic d excitation neory of ima	n and interact , Transducers a age generation	ion in Biologic and imaging sy	al tissues, A ystems, Sca	coustic radiation fields	s, conti ng Mod	inuous ar les, Princ	nd iples
MOL	DULE 5 – 1	MAGNETIC	RESONAN	ICE IMAC	GING			
NMR, image	NMR, Principles of MRI, Relaxation processes and their measurements, Pulse sequencing and MR image acquisition, MRI Instrumentation, Functional MRI.							
TF	TEXT BOOKS							
1.	Peggy, W	, Roger D.Ferir	narch, MRI fo	r Technolog	ists, Mc Graw Hill, New	v York,	1995.	
2.	Steve We 2012.	bb, The Physics	s of Medical Ir	naging, Tay	or & Francis group, CR	C Pres	s, 2nd ed	lition,
3.	Kurose a Educatio	nd W. Ross, ' n 2005.	Computer N	etworking	a Top down Approac	ch', Pe	arson	

	REFERENCE BOOKS					
1	D.N.Chesney and M.O.Chesney Radio graphic imaging, CBS Publications, New Delhi, 1987.					
2	Donald W.McRobbice, Elizabeth A.Moore, Martin J.Grave and Martin R.Prince MRI from picture to proton ,Cambridge University press, New York 2006.					
3	Jerry L.Prince and JnathanM.Links, Medical Imaging Signals and Systems- Pearson Education Inc. 2006.					
E BO	OKS					
1.	https://www.springer.com/gp/book/9783319965192					
2.	https://noeniar.ga/file-ready/medical-imaging-systems					
MOC	MOOC					
1.	https://nptel.ac.in/courses/108/105/108105091/					

CC T	DURSE ITLE	IN	IAGE PRO	CESSING	LAB - II	CRE	EDITS	2	
Cou	rse Code	ECA4792	Course Category		L-T-P-S				
	CIA				ESE				
LEA	RNING				ASSESSMENT				
L	EVEL				MODEL				
			COURSE (DUTCOM	ES		Р	0	
1.	Analyze edge dete	techniques su	ch as image	denoising,	image segmentation	n and	1,2	,3,5	
2	Apply sp	atial and freq	lency domai	n filters on	an image.		1,2	,3,5	
3.	Analyze	the effects of	image transf	orms.			1,2	2,3	
Prere	equisites:								
	_		LIST O	F EXPERI	MENTS				
 Gray level slicing with and without background. Image sharpen an image using 2-D laplacian high pass filter in spatial domain. Smooth an image using low pass filter in frequency domain. Sharpen an image using high pass filter in frequency domain Image Segmentation Program for illustrating color image processing Wavelet based Image Processing Object Recognition and Neural Network Simulation. Apply 2 D DFT, DCT and DWT transform for an image and compare the results Feature extraction and classification for medical image Implement an Image Classifier using CNN in TensorFlow/Keras. 									
TEX	T BOOKS	5							
1.	Rafael C. Processir	. Gonzalez, R	ichard Euger FLAB, Pears	ne Woods, son Educati	Steven L. Eddins, Di on India, 2004.	gital I	mage		
REF	ERENCE	BOOKS							
1	1 Jayaraman S, Veerakumar T, Esakkirajan S, Digital Image Processing", Mc Graw Hill Education, 2009.								
2	2 Chris Soloman, Toby Breckon, Fundamentals of Digital Image Processing: A Practical Approach with examples in Matlab", Wiley-Blackwell, 2010							ctical	
E BC	OOKS								
1	https://ww concepts/	ww.intechope /digital-image	n.com/books -processing-	s/application with-matla	ns-from-engineering b	-with-	matlab-		

COURSE TITLE			CREDITS	2			
Course Code		ECA4781	Course Category		L-T-P-S		
	CIA				ESE		
LEA	RNING				ASSESSMENT		
L	EVEL				MODEL		
		C	OURSE OU	FCOMES		PO	
1.	To deve learning	elop an aptit	ude for rese	earch and	independent		
2	To dem knowled	cquired					
3.	3. To use new tools and techniques for the design and development.						

DEPARTMENT ELECTIVE –III

COURSE TITLE		BRAI	BRAIN COMPUTER INTERFACE			CREDITS	3
Cou	rse Code	ECA4728	Course Category		L-T-P-S	3-0	-0-3
	CIA				ESE		
LEA	RNING				ASSESSMENT		
	EVEL				MODEL		
			COURSE	OUTCO	OMES		PO
1.	To acqu application	ire the brain	signal in	the form	nat required for	the specific	
2.	To prepro	ocessing the si	gnal for sign	al enhan	cement		
3.	To extrac	t the dominan	t and require	d feature	es		
4.	Classify	and derive the	control sign	als for B	CI applications		
5.	To apply	the BCI know	ledge for me	edical app	plications		
MOI	DULE 1 – 1	INTRODUCT	TION TO B	CI			(9)
Funda and P	amentals o artially inv	f BCI –Structu vasive BCI-Bra	re of BCI sy ain signal ac	/stem –C quisition	lassification of BCI , Signal Preprocessi	: Invasive, No ng, Artifacts r	n-invasive emoval
MOI	DULE 2 – 2	ELECTROPI	IYSIOLOG	GICALS	OURCES		(9)
Senso fields Relat Poten	primotor ac produced ed Potentia tial -Activ	tivity –Neuror by the brain-si als –Slow Cort ity of Neural (nal activity i ignals reflectical Potentia Cells -Multip	n motor o ting brain ils -P300 ble Neuro	cortex and related an n metabolic activity Event related poten n mechanismsUN	reas-Electric a -Mu rhythm, N ttial -Visual E	nd magnetic Movement voked
MOI	DULE 3 -	FEATURE E	XTRACTI	ON MET	THODS		(9)
Time. Temp	Space Me blate match	thods –Fourien iing, Kalman f	Transform, ilter, PCA, I	Wavelet Laplacian	s, AR, MA,ARMA filter –Linear and I	models, Band Non-LinearFea	pass filtering, atures
MOI	DULE 4 -	FEATURE T	RANSLAT	ION ME	ETHODS		(9)
Linea Learr Netw	r Discrim ing Vecto orks	inantAnalysis r Quantization	–Nearest r –Gaussian	neighbou Mixture	rs, Support Vector Modeling –Hidden	r Machines - Markov Mod	Regression – eling –Neural
MOI	DULE 5 – .	APPLICATIO	ONS OF BC	ľ			(9)
Study of BCI Competition III –Dataset I, II,III, IV and V, Functional restoration using Neuroprosthesis -Functional Electrical Stimulation, Visual Feedback and control -External device controllers, Case study: Brain actuated control of mobile Robot. Ethical issues in BCI research TEXT BOOKS							
1.	JonaanW practice,	olpaw, Elizabo Edition 1, Oxf	ethWinterW ford Universit	olpaw, B ity Press,	rainComputerInterf USA, January 2012	aces: Principle 2	es and
2.	Andrew '	Webb, Statistic	cal Pattern R	ecognitio	on,Wiley Internation	nal, Second Ec	lition, 2002.

REF	ERENCES
1.	Jose del R.Millan et al, Non-invasive brain actuated control of a mobile robot by human
	EEG, IEEE Transactions on biomedical Engineering, Vol 51, No.6, 2004 June
2.	S.Coyle, T.Ward et al, On the suitability of near infra-red systems for next generation
	Brain Computer interfaces, Physiological Measurement, 25, 2004
3.	BernhardGraimann,BrendanAllison, GertPfurtscheller, Brain-Computer Interfaces:
	Revolutionizing Human-Computer Interaction", Springer, 2010

COURSE TITLE			CRYPT	OGRAPH	IY	CRE	DITS	3
Cou	rse Code	ECA4729	Course Category		L-T-P-S		3-0-0-0	0
	CIA				ESE			
LEA	RNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE O	UTCOM	ES		Р	0
1.	Recogniz cryptogra	e and explain phy	aspects of m	umber theo	ory which are relevan	it to	1,2	,3,6
2.	Explain v	arious cipher	models				1,2	2,3
3.	Compare encryptic	different second	urity notions	for private	- and public-key		1,2	2,3
4.	Combine	number theory	ry and crypto	graphy			1,2	2,3
5.	Describe and digitation	the principles al signature	s of public ke	y cryptosy	stems, hash function	S	1,2	2,3
Prer	equisites:							
MOI	DULE 1 – 2	Number The	ory and Fini	ite Fields				
Num Modu Finite	ber Theory llar arithmet fields of th	and Finite Figure 6 and Finite Figure 6 and Finite Figure 6 and Figure	elds: Divisibil ngs and Fields	ity and the o , Finite field	divisibility algorithm, l ds of the form GF(p), F	Euclide Polynor	ean algor nial arith	ithm, metic,
MOI	DULE 2 –	Classical En	cryption Tee	chniques				
Class Trans	sical Encry sposition te	y ption Techn echniques, Ste	iques: Symn eganography	netric cipho	er model, Substitutio	n techi	niques,	
SYM (DES	IMETRIC	CIPHERS: '	Traditional B	lock Ciphe	er structure, Data End	cryptic	on Stand	ard
MOI	DULE 3-	SYMMETR	IC CIPHER	S				
SYM	IMETRIC	CIPHERS: "	The AES Cip	her				
Pseudo-Random-Sequence Generators and Stream Ciphers : Linear Congruential Generators, Linear Feedback Shift Registers, Design and analysis of stream ciphers, Stream ciphers using LESPs								
MOI	MODULE 4 – More number theory							
More number theory: Prime Numbers, Fermat's and Euler's theorem, Primality testing, Chinese Remainder theorem, discrete logarithm.								
Prin Exch	Principles of Public-Key Cryptosystems: The RSA algorithm, Diffie - Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve Cryptography							

MODULE 5 – One-Way Hash Functions						
One-Way Hash Functions: Background, Snefru, N-Hash, MD4, MD5, Secure Hash Algorithm						
[SHA], One way hash functions using symmetric block algorithms, Using public key algorithms,						
Choosing a one-way hash functions, Message Authentication Codes. Digital Signature Algorithm,						
Discrete Logarithm Signature Scheme						
TEXT BOOKS						
1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson						
Education, March 2013.						
2. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 20)07					
REFERENCE BOOKS						
1 Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and						
Protocols", Wiley Publications, 2003.						
2 Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley						
Dreamtech India Pvt Ltd, 2003.						
3 Douglas R Simson "Cryptography – Theory and practice", First Edition, CRC Press	5,					
1995						
E BOOKS						
1 <u>http://www.freebookcentre.net/Security/Free-Cryptography-Books-Download.html</u>						
2 <u>https://crypto.stanford.edu/~dabo/cryptobook/draft_0_2.pdf</u>						
MOOC						
1 <u>https://nptel.ac.in/courses/106/105/106105162/</u>						
2 <u>https://nptel.ac.in/courses/106/107/106107155/</u>						

COURSE TITLE		VIS	VISUALIZATION TECHNIQUES			CREDITS	3
Cou	rse Code	ECA4730	Course Category	DE	L-T-P-S	3-0-0-	0
	CIA				ESE		
LEA	RNING				ASSESSMENT		
Ll	EVEL				MODEL		
			COURSE O	UTCOM	ES	P	Ό
1.	To under	stand the fund	damentals of	data visual	ization		
2	To acquir	re knowledge	about the iss	sues in data	a representation		
3	To visual	ize the compl	lex engineerii	ng design.			
4	To design	n real time int	eractive info	rmation vis	sualization system.		
5	To apply	the visualizat	tion technique	es in practi	cal applications		
Prere	equisites:N	NIL					
MOL	DULE 1 – 1	INTRODUC	TION		9		
MOI Huma Optim Atten Encoo	Duction – v s –Data rep DULE 2- D an Factors nal Display tion that P ding of Re	ATA REPR -Foundation -Overview ops Out –Typ lation –Relati	tages –Comp Limitation: D ESENTATIO for a Science about Lightno bes of Data –I on and Conno	Display Spa Display Spa ON of Data V ess, Bright Data Comp ection –Al	isualization –Environ ness, Contrast, Const ilexity –The Encodin ternative Canvass.	nment-Optics ancy, Color – g of Values –	ink.
MOL	OULE 3- D	ATA PRES	ENTATION		9		
Huma Inform Space	an Vision - mation Spa Perceptio DULE 4- I	-Space Limita ace –Figure C n and Data in NTERACTI	ation –Time I aption in Vis Space –Imag ON AND DE	Limitations ual Interfac ges, Narrat SIGN	–Design –Exploration ce –Visual Objects and ive and Gestures for 9	on of Comple nd Data Objec Explanation.	× sts —
Norm	an's Actic	n Cycle –Inte	eracting with	Visualizati	on –Interaction for I	nformation	
Visua Visua user p	Visualization –Interaction for Navigation –Interaction with Models –Interacting with Visualization –Interactive 3D Illustrations with Images and Text –Personal View –Attitude – user perspective –Convergence –Sketching –Evaluation.						
MODULE 5- CURRENT TRENDS9							
Design –Virtual Reality: Interactive Medical Application –Tactile Maps for visually challenged People –Animation Design for Simulation –Integrating Spatial and Nonspatial Data –Innovating the Interaction –Small Interactive Calendars –Selecting One from Many– Web Browsing Through a Key Hole –Communication Analysis –Archival Galaxies. TEXT BOOKS							
1.	Robert Sp Education	pence, "Inform n, 2014.	mation Visua	lization:A1	n Introduction", Thire	d Edition, Pea	rson

2.	Colin Ware, "Information Visualization Perception for Design", ThirdEdition, Morgan
	Kaufmann, 2012.
3	Robert Spence, "Information Visualization Design for Interaction", Second Edition,
	Pearson Education, 2006
	REFERENCE BOOKS
1	Benjamin B. Bederson, Ben shneiderman, "The Craft of Information Visualization",
	Morgan Kaufmann, 2003.
2	Thomas Strothotte, "Computational Visualization: Graphics, Abstraction and
	Interactivity", Springer, 1998.
3	Matthew O.Ward, George Grinstein, Daniel Keim, "Interactive Data Visualization:
	Foundation, Techniques and Applications", Second Edition, A.K.Peters/CRC
	Press,2015.
4	JoergOsarek, "Virtual Reality Analytics", Gordon's Arcade, 2016.

COURSE TITLE			DEEP LEARNING					
Cou	rse Code	ECA4731	Course Category		L-T-P-S	3-0-0-0	D	
	CIA				ESE			
LEA	ARNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE C	DUTCOM	ES	Р	0	
1.	To under	stand the basi	ic ideas and p	orinciples o	f Neural Networks			
2	To do su	rvey of Deep	Learning Dev	velopment	Frameworks			
3.	To solve Tensorflo	problems in i ow and Keras	mage classifi	ication per	formances using			
4.	To under	stand and imp	plement Deep	Learning	Architectures			
5.	To apply	Deep Learni	ing in various	s applicatio	ns			
Prer	equisites:					·		
MOI	DULE 1 –I	BASICS OF	NEURAL N	ETWORK	S	9		
Basic Netw	c concept o vorks	f Neurons –P	erceptron Alg	gorithm –F	eed Forward and Ba	ck Propagatior	1	
MOI	DULE 2 – 1	INTRODUC	TION TO D	EEP LEA	RNING	9		
Feed Grad for F	Forward N ient proble aster Train	Veural Networ m –Mitigation ing –Nestors	rks –Gradient n –RelU Heu Accelerated (t Descent – ristics for A Gradient D	Back Propagation A Avoiding Bad Local escent –Regularizati	lgorithm –Van Minima –Heu on –Dropout.	ishing ristics	
MOI	DULE 3-	CONVOLU	TIONAL NI	EURAL N	ETWORKS	9		
CNN Architectures –Convolution –Pooling Layers –Transfer Learning –Image Classification using Transfer Learning								
MODULE 4 - MORE DEEP LEARNING ARCHITECTURES9								
STM, GRU, Encoder/Decoder Architectures –Autoencoders –Standard-Sparse –Denoising – Contractive-Variational Autoencoders –Adversarial Generative Networks –Autoencoder and DBM								
MOI	MODULE 5 – APPLICATIONS OF DEEP LEARNING 9							
Imag with	e Segment Generative	ation –Object Adversarial	Detection –A Networks –V	Automatic ideo to Te	Image Captioning –I xt with LSTM Mode	mage generati ls –Attention I	on Models	

for Computer Vision –Case Study: Named Entity Recognition –Opinion Mining using Recurrent Neural Networks –Parsing and Sentiment Analysis using Recursive Neural Networks –Sentence Classification using Convolutional Neural Networks –Dialogue Generation with LSTMs.

ТБ	YT BOOKS
IE	
1.	Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017
2.	Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual
	Computing", CRC Press, 2018.
3.	Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress,
	2018.
	REFERENCE BOOKS
1	Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.
2	.Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and
	Artificial Intelligence", Apress, 2017
3	Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.
E BO	OKS
1.	http://www.deeplearningbook.org/
2.	http://neuralnetworksanddeeplearning.com/index.html
MOC	OC
1	https://www.udacity.com/course/deep-learning-nanodegree

DEPARTMENT ELCTIVE –IV

COURSE TITLE		BIOSIGNAL PROCESSING				CREDITS	3	
Cou	rse Code	ECA4732	Course Category		L-T-P-S	3-0	-0-3	
	CIA				ESE			
LEA	RNING				ASSESSMENT			
L	EVEL				MODEL			
			COURSE	OUTCO	OMES		РО	
1.	To analyz	ze the differen	t types of sig	nals &sy	vstems			
2.	To analyz	ze signals in ti	me series do	main & e	estimate the spectru	m		
2	To demo	nstrate the sig	nificance of	wavelet	detection applied in	bio signal		
5.	processir	ng.						
4	To perfor	rm classification	on of bio sig	nals.				
5	To extrac	ct the features	using multiv	ariate co	mponent analysis			
	1							
MOI	OULE 1 –S	SIGNAL, SYS	TEMANDS	SPECTR	UM		(9)	
Chara	acteristics of	of some dynan	nic biomedic	al signal	s, Noises-random, s	structured and	physiological	
noise	s. Filters-I	IR and FIR filt	ers. Spectru	m –powe	er spectral density fu	unction, cross-	spectral	
densi	ty and coh	erence function	n, cepstrum	and hom	omorphic filtering.	Estimation of	mean of	
finite	time signa	uls.						
MOL	• • • • • • • •		$\frac{5 \text{ ANAL I 5}}{1 \cdot \cdot \cdot}$	$\frac{15 \text{ AND}}{11}$		MATION	(9)	
fived	segmentat	ion adaptive s	rediction mo	dels, pro	tion in EEG PCG	on, non-station	ary process,	
based	ECG sim	ulator Spectra	lestimation	–Blackm	an Tukey method	neriodogram a	and model	
based	estimation	n. Application	in Heart rate	variabil	ity, PCG signals,	periodogramia		
MOI	DULE 3	ADAPTIVE I	FILTERING	G ANDW	AVELETDETEC	CTION	(9)	
Filter	ing –LMS	adaptive filter	, adaptive no	oise canc	eling in ECG, impr	oved adaptive	filtering in	
FECO	G, EEG and	d other applica	tions in Bio	signals,	Wavelet detection in	n ECG–structu	ural features,	
match	hed filterin	g, adaptive wa	velet detecti	on, detec	ction of overlapping	g wavelets.		
MOI	DULE 4-	BIOSIGNAL	CLASSIFI	CATION	AND RECOGN	ITION	(9)	
Signa	l classifica	ation and recog	gnition – Stat	istical sig	gnal classification, l	linear discrimi	nant function,	
direct	feature s	selection and	ordering, B	ack proj	pagation neural ne	twork based	classification.	
Appli	Application in Normal versus Ectopic ECG beats and other Biomedical applications							
Time	frequency	rapresentation		m Time	scale representation	n scalogram	wavalat	
	sis –Data r	representation tech	i, spectrogra	data con	-scale representation	n, scalogram, v	wavelet Feature	
extra	ction-Wave	elet packets. M	Iultivariate c	omponei	nt analysis-PCA. IC	CA.	i cuture	
TEX	T BOOKS)						

1.	RangarajM.Rangayyan,BiomedicalSignalAnalysis-A casestudyapproach,					
	Wiley,2ndEdition, 2009.					
2.	Willis J.Tompkins, Biomedical Digital Signal Processing, Prentice Hall of India, New					
	Delhi, 2006.					
REF	REFERENCE BOOKS					
1.	Emmanuel C. Ifeachor, Barrie W.Jervis, Digital Signal processing-A Practical					
	Approach, Pearson education Ltd., 2ndEdition, 2002					
2.	Raghuveer M. Rao and Ajith S.Bopardikar, Wavelets transform –Introduction to theory					
	and its applications, Pearson Education, India2000.					
3.	Arnon Cohen, Bio-Medical Signal Processing Vol I and Vol II, CRC Press Inc., Boca Rato,					
	Florida1999.					

COURSE TITLE		ADVANCED COMPUTER GRAPHICS AND					EDITS	3	
		ANIMATIONS							
Cou	rse Code	ECA4733	Course Category		L-T-P-S		3-0-0-0	0	
	CIA				ESE				
LEA	RNING				ASSESSMENT				
L	EVEL				MODEL				
			COURSE O	DUTCOM	ES		P	0	
1.	To under	stand the basi	cs of graphic	s					
2	To perfor	rm transforms	on geometry	y processin	g				
3.	To under	stand fractals	and explain	its applicat	ions				
4.	To expla	in graphics al	gorithm						
5.	To develo	op programs f	for advanced	animation	and to become profi	cient			
Prer	equisites:	es programmi							
MOI		FUNDAMEN	NTALS				9		
Basic	cs -Scope a	nd Applicatio	ons –Graphics	s Standards	–Display Systems –	Image	e Format	tion –	
Grap	hics Syster	ns $-2D$ and 3.	D Coordinate	- Systems Object P	-Vectors – Matrices a	and Ba	SIC		
MOI	$\frac{1}{1} \frac{1}{1} \frac{1}$	FRANSFOR	MATIONS	-Object K	epresentation –Anti-	Anasn	<u>9</u>		
							-		
2D a	nd 3D Ge	ometric Trans	sformations:	Translatio	n, Rotation, Scaling	, Affir	ne–Hiera	urchical	
Mode	elling & ographic V	viewing –Tl	he Camera	Transform	ation –Perspective	–Ort	hograph	ic and	
MOI	DULE 3 –	COMPUTE	R GRAPHI	CS STANI	DARDS		9		
Grap	hical Kern	el System (G	KS), GKS-3	D, Progra	mmer's Hierarchical	Intera	active G	raphics	
Syste	em (PRIGS	5), Computer	Graphics Int	erface (CC	GI), and the Comput	er Gra	aphics M	/letafile	
MOI	$\frac{1}{1}$	ADVANCE	D GRAPHIC	CS			9		
Hidd	en Surface	Removal–Pa	rametric Cur	ves and Su	rfaces–Global Illum	inatio	n –Ray (Casting	
-Moi	nte Carlo A	Algorithm –7	Texture Synth	nesis –Bur	np Mapping –Envir	onmer	ntal Mar	pping –	
Advanced Lighting and Shading –Shadows –Volumetric Rendering.									
MODULE 5 – ANIMATION 9									
Over	view of Ar	imation Tech	niques –Key	framing, C	Computer Animation	-Mot	ion Capt	ture	
and E	and Editing–Forward/Inverse Kinematics–3D Computer Animation for Applications Such								
asGa	mes and V	irtual Enviror	iments – Char	acter Anin	nation Techniques Su	ich as	Synthes	izing	
Scen	BOUY MOV	ements – Faci	ai Expression	is and SKII	i wovements – Denav	VIOIS II		cu	
~ • • • • • •									

TE	CXT BOOKS
1.	Donald D. Hearn, M. Pauline Baker, Warren Carithers, "Computer Graphics with Open
	GL", Fourth Edition, Prentice Hall, 2011.
2.	Foley van Dam, Feiner Hughes, "Computer Graphics Principles and Practice", Third
	Edition, Addison Wesley, 2014.
3.	Alan Watt, Mark Watt, "Advanced Animation and Rendering Techniques: Theory and
	Practice", Addison Wesley, 1992.
	REFERENCE BOOKS
1	Rick Parent, "Computer Animation – Algorithms and Techniques", Third Edition,
	Morgan Kaufman, 2012.
2	Edward Angel, Dave Shreiner, "Interactive Computer Graphics: A Top-Down
	Approach with OpenGL", Sixth Edition, Addison Wesley, 2012
	https://commons.erau.edu/cgi/viewcontent.cgi?article=2243&context=space-congress-
	proceedings

COURSE		INTERN					
TITLE			AND PRACTICES				
Cou	rse Code	ECA4734	Course Category		L-T-P-S	3-0-0-1	1
	CIA				ESE		
LEA	RNING				ASSESSMENT		
L	EVEL				MODEL		
		CC	OURSE OUT	COMES		PO	
1.	Understa	nd the IoT en	abling techno	ologies		1,2	
2.	Design Io	oT devices wi	th specificati	ons		1,2,3,4	,9
3.	Discuss t	he challenges	s in designing	IoT proj	ects,	9,10	1
4.	Analyze performa	the various nce.	network man	nagement	t models and their	1,2,4	F
5.	Know ho	w the IoT is a	application or	riented		1,2,3,10,1	1,12
Prer	equisites:						
MOI	DULE 1 –	INTRODUC	CTION AND	ENABL	ING TECHNOLO	OGIES (9))
Intro	duction to	the internet o	f things. IoT	Architect	ure: History of IoT	, M2M – Mac	hine to
Mach	nine, Web	of Things,	IoTprotocols	: the A	Architecture, Lay	ering concept	ts, IoT
Com	munication	Pattern, Io	oT protocol	Architec	ture, The 6LoWF	AN, IoT Er	nabling
Tech	nologies,	Wireless Se	nsor Networ	rks, Clo	ud Computing, B	ig Data An	alytics,
Com	munication	Protocols, E	mbedded Sys	tems, Io7	levels		
MOI	DULE 2 –	IoT and M2	Μ			(9)	
Intro Defin IoT Dom Leve	duction to ned Networ Design Me ain Model I Specifica	M2M, Differ tking, Networ thodology, F Specification tion, Function	ence between rk Function V Purpose and r I, Information In View Speci	ioT and virtualizat requirement Model S fication,	M2M, SDN and NI ion, IoT Platform I ent specification, Pro- Specification, Service Operational View S	PV for loT, So Design Method rocess Specification Specification,	lology, cation, on, IoT Device
MOI	DULE 3-	IoT & IMA(GE PROCES	SING		(9)	
IoT proce proce Servi	IoT & image processing in smart agriculture –IoT based home security through image processing algorithms-Application of multisensory image fusion of IoT in image processing- IoT-Based Image Recognition System for Smart Home-Delivered Meal Services						
MO	DULE 4 - 1	IOT PHYSIC	CAL DEVIC	<u>ES, END</u>	POINTS AND PR	OJECTS (9	り
What is an IOT Device, Exemplary Device, Board, Linux on Raspberry Pi, Interfaces and programming IOT Devices. Creating the sensor project -Preparing Raspberry Pi , Clayster libraries, Interfacing the hardware, Internal representation of sensor values, Persisting data, External representation of sensor values, Exporting sensor data, Creating a controller - Representing sensor values, Parsing sensor data, Calculating control statesMODULE 5 - OPENCV& RASPBERRY PI(9)							
Intro	duction to	Open CV&	Raspherry P	i – Appl	ication of Open C	V& Rasnherry	v Pi in
imag	e processi	ng- Deep	learning obje	ect detec	tion with OpenCV	- Raspberry	Pi for

comp	computer vision						
TE	EXT BOOKS						
1.	ArshdeepBahga, Vijay Madisetti, "Internet Of Things-A Hands on Approach",						
	Universities Press, 2014.						
REFI	ERENCE BOOKS						
1.	Adrian McEwen& Hakim Cassimally, "Designing the Internet of Things", Wiley						
	Publishers, 2013						
2.	Byron Henderson and Francis DaCosta "Rethinking the Internet of Things: A						
	Scalable Approach to Connecting Everything" APress; 1st edition, 2014.						
3.	Peter wahar "Learning Internet of Things" Packt publishing limited, 2015. (Unit						
	IV)						
4.	Phillippa Biggs "Harnessing the Internet of Things for Global Development"						
	CISCO article						

COURSE TITLE	F	RETINAL IN	IAGE AN	ALYSIS	CREDITS	3	
Course Cod	e ECA4735	Course Category		L-T-P-S	3-0-0-0	0	
CIA				ESE			
LEARNING	J	BTL-5		ASSESSMENT			
LEVEL		DIL-5		MODEL			
MODULE 1	– INTRODUC	CTION TO R	ETINA		(9)		
Introduction	, History of R	etina, Struct	ure, inver	ted versus non-inv	erted retina, I	Retinal	
layers, Deve	lopment, Bloo	od supply, Fu	inctions of	f Retina, Clinical si	gnificance.		
MODULE 2	- INTRODU	CTION TO I	DIGITAL	IMAGE CAPTURI	E (9)		
General, Pri Image Proce	nciple of Digi ssing, Image H	tal Image Ca Enhancemen	apture, Pro t, Image F	ocessing and Analy Restoration, Fundus	vsis, Image Ca Photography	apture,	
MODULE 3	B – DIABETIC	RETINOPA	THY AN	D PUBLIC HEALT	[•] H (9)		
Introduction	, Definition	and descri	iption, R	etinal Structure	and its Fur	nction,	
Dethogonosi	n of Diabetic	Keunopainy, Sorooning	, Systemic	Associations of D	labelic Kelind	opatny,	
Famogenesi	s, memous or	Screening.					
MODULE 4	– DISEASES	IN THE RE	TINAL IN	IAGE ANALYSIS	(9)	1	
Retinal Fund Retinal Vaso	lus Imaging, F cular Occlusion	Retinal Fund ns, Blood Ve	us Imagin essel Extra	g, Age-Related Ma action	cular Degene	ration,	
MODULE 5	- QUEUING	RETINAL B	LOOD VI	ESSEL SEGMENT	ATION ((9)	
Introduction	, Enhancemen	t of retinal b	lood vess	els using matched	filters, Comp	utation	
of Gradient	Co-occurrent	ce features,	Pixel cla	assification using	automated e	ntropy	
thresholding							
TEXT BOOKS							
1. Herbe	rt.F. Jelinek, N	Aichael J CR	REE, Auto	mated Image Detec	ction of Retina	al	
2. Richa	rd S Snell, Mi	S Snell, Michael A lemp, Clinical Anatomy of Eve. Willey Blackwell					
3. A.K.]	Khurana, Anat	urana, Anatomy and Physiology of Eye, Kindle Edition.					

COURSE TITLE		INTERNSHIP				CRE	EDITS	2	
Course Code		ECA4897	Course Category		L-T-P-S		0-0-0-2		
(CIA				ESE				
LEA	RNING				ASSESSMENT				
LF	EVEL				MODEL				
			OUTCOMES PO						
1.	To get ex	posure to ind	ustry environ	ment					
2	To do mi	ni project							
3.	To apply theoretical knowledge to solve real time problems in induatry								
	• The objective of the internship is to allow the students to go to industry and study the industry environment								
	• The students can spend the vacation period effectively in industry								
	• It	provided and helps to do the	opportunity to	b get place	a in the industry				

COURSE TITLE		PROJECT PHASE -1 CREDITS					2		
Cour	se Code	ECA4898	Course Category		L-T-P-S	0-0-16-	·8		
(CIA				ESE				
LEA	RNING				ASSESSMENT				
LF	EVEL				MODEL				
			OU	JTCOME	S		PO		
1.	To devel	op an aptitud	e for research	n and indep	pendent learning				
2	To demo	nstrate the ab	ility to carry	out literatu	ire survey and select	unresolved			
	problems	in the domai	n of the selec	ted projec	t topic	nd			
3	developn	experiise to u	se new tools	and techni	ques for the design a	na			
4	To acqui	re the knowle	dge and awar	eness to ca	arry out cost-effectiv	e and			
4	environm	nent friendly o	lesigns						
5	To devel	op the ability	to write good	l technical	report, to make oral	presentation			
	of the wo	ork, and to pul	olish the worl	k in repute	d conferences/journa	lls.			
	 The project in the third and fourth semesters offer the opportunity to apply and extend knowledge acquired in the first year of the M. Tech. program. The major project can be analytical work, simulation, hardware design or a combination of these in the emerging areas of Image processing, Signal Processing and Communication Engineering under the supervision of a faculty from the ECE Department. The specific project topic undertaken will reflect the common interests and expertise of the student(s) and supervisor. Students will be required to1) perform a literature search to review current knowledge and developments in the chosen technical area; 2) undertake detailed technical work in the chosen area using one or more of the following:•Analytical models•Computer simulations•Hardware implementation. The emphasis of major project shall be on facilitating student learning in technical, project work will be carried out individually. The M. Tech. project evaluation committee of the department shall evaluate the project work during the third semester in two phases. The first evaluation shall be conducted in the middle of the semester. This should be 								

SEMESTER -IV

COURSE TITLE		PROJECT PHASE -11				CREDITS	2
Course Code		ECA4899	Course		L-T-P-S	0-0-24-12	
			Category			-	
CIA		ESE					
LEARNING		ASSESSMENT					
LEVEL		MODEL					
	OUTCOMES						PO
1.	To develop an aptitude for research and independent learning						
2	To demonstrate the ability to carry out literature survey and select unresolved						
	problems in the domain of the selected project topic						
3	To apply theoretical knowledge to solve real time problems in the community						
4	To acquire the knowledge and awareness to carry out cost-effective and						
	environment friendly designs						
5	To develop the ability to write good technical report, to make oral presentation						
	of the work, and to publish the work in reputed conferences/journals.						
	Students should complete the work planned in the third semester, attaining all the						
	objectives, and should prepare the project report of the complete work done in the two						
	semesters. They are expected to communicate their innovative ideas and results is						
	reputed conferences and/or journals. The M. Tech. project evaluation committee department shall evaluate the project work during the fourth semester						e or the
	department shan evaluate the project work during the fourth semester.						