

SCHOOL OF ELECTRICAL SCIENCES

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.Tech – ECE with specialization in EMBEDDED AND REAL TIME SYSTEMS

CURRICULUM AND SYLLABUS

(Applicable for Students admitted from Academic Year 2020-21)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHOOL OF ELECTRICAL SCIENCES

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

VISION AND MISSION

ΜΟΤΤΟ

To Make Every Man a Success and No Man a Failure.

VISION

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

MISSION

- > To create an ecosystem for learning and world class research.
- > To nurture a sense of creativity and innovation.
- > To instill highest ethical standards and values with a sense of professionalism.
- > To take up activities for the development of Society.
- To develop national and international collaboration and strategic partnership with industry and institutes of excellence.
- > To enable graduates to become future leaders and innovators.

VALUE STATEMENT

Integrity, Innovation, Internationalization.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING VISION AND MISSION

VISION

To be a premier academic centre for quality education to meet the industrial standards and research in diverse areas of Electronics and Communication Engineering with social commitment.

MISSION

- **M1.** To impart adequate engineering knowledge to transform students into highly professional engineers as well as good researchers.
- M2. To develop their interdisciplinary skills as per the need of the industry and society
- **M3.** To inculcate Entrepreneurship and lifelong learning skills among the students with ethics and social commitment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO 1:** Graduates will have strong scientific and Engineering foundation to equip themselves as problem solvers and researchers in real world scenario
- **PEO 2:** Graduates will possess necessary skills on cutting edge technologies to accomplish societal needs by working in multidisciplinary teams.
- **PEO 3:** Graduates will possess attitude for lifelong learning to adapt to technological challenges and emerge as good entrepreneur

PROGRAM OUTCOMES (PO)

PO1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO2:	Problem analysis: Identify, formulate, research literature, and analyze complex engineering
	problems reaching substantiated conclusions using first principles of mathematics, natural
	sciences, and engineering sciences.
PO3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
PO6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice.
PO7:	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO9:	Individual and team work: Function effectively as an individual, and as a member or leader
	in diverse teams, and in multidisciplinary settings.
PO10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
PO12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage
	in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO 1: Able to impart high quality education to the students to face and analyze the challenges in the field of image processing and communication.

PSO 2: Able to analyze, design and validate the systems using hardware and software tools pertaining to Image Processing.

	M.T	ECH- ECE SP	ECIALIZATION IN EMBEDDED AND REA		/IE SY	STEN	IS	
			SEMESTER - I					
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	тсн
			THEORY COURSES					
1			Advanced Mathematics	2	2	0	3	3
2	PC	ECB4701	Embedded Architecture	3	0	0	3	3
3	PC	ECB4702	Embedded System Networks	3	0	0	3	3
4			Department ELE I	3	0	0	3	3
5			Department ELE II	3	0	0	3	3
6			Research Methodology & IPR	2	0	0	2	2
			PRACTICAL COURSES					
7		ECB4791	Embedded Processors Laboratory	0	0	3	2	2
8		ECB4781	Mini project				2	2
			Total				21	
*Rese	arch Methodo	logy & IPR is a	i compulsory Course.					
			SEMESTER - II					
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	С	тсн
			THEORY COURSES		•			
1		ECB4703	Real Time Operating System	3	0	0	3	3
2		ECB4704	Fundamentals of Embedded Software	3	0	0	3	3
3		ECB4705	Machine Learning	3	0	0	3	3
4			Department ELE III	3	0	0	3	3
5			Open Elective	3	0	0	3	3
			PRACTICAL COURSES					
6		ECB4792	Real Time Operating System Laboratory	0	0	3	2	2
7		ECB4796	Seminar				2	2
			Total				19	
*One	course shall	be a MOOC.	(same course to all students)					

	M.1	ECH- ECE SP	ECIALIZATION IN EMBEDDED AND REA	L TIN	1E SY	STEN	IS	
			SEMESTER – III					
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	тсн
			THEORY COURSES	-				
1			Department ELE IV	3	0	0	3	3
			PRACTICAL COURSES					
2		ECB4897	Internship *				2	
3		ECB4898	Project Phase –I				8	
			Total				13	
*Inte	ernship to be	undergone d	uring vacation between 2 nd and 3rd ser	nest	ers			
			SEMESTER – IV					
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	тсн
			PRACTICAL COURSES					
1		ECB4899	Project Phase –II				12	12
			Total				12	

TOTAL CREDITS: (21+19+13+12) =65

DEPARTMENT ELECTIVE LIST

с	COURSE CODE	COURSE TITLE	L	т	Р	С	тсн
		DEPARTMENT ELECTIVE I					
1	ECB4721	Graph Theory and Applications	3	0	0	3	
2	ECB4722	Digital System Design and Testing	3	0	0	3	
3	ECB4723	Embedded System Design Using FPGA	3	0	0	3	
		DEPARTMENT ELECTIVE II		•			
1	ECB4724	Deep Learning	3	0	0	3	
2	ECB4725	Advanced Embedded Controllers	3	0	0	3	
3	ECB4726	Sensor-Concepts and Techniques	3	0	0	3	
		DEPARTMENT ELECTIVE III					
1	ECB4727	Embedded IoT	3	0	0	3	
2	ECB4728	Automotive Embedded Systems	3	0	0	3	
3	ECB4729	Smart Systems	3	0	0	3	
		DEPARTMENT ELECTIVE IV					
1	ECB4730	Robotics Technology and Intelligence	3	0	0	3	
2	ECB4731	Wireless Sensor Networks	3	0	0	3	
3	ECB4732	System on Chip	3	0	0	3	

SEMESTER I

COUF	RSE TITLE	EN	BEDDED ARCHITE	CTURE	CREDITS	3
COUF	RSE CODE	ECB4701	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA					ESE	
LEAR	NING LEVEL				ASSESSMENT MODEL	
MOD	ULE 1	-	PIC	MICROCONTRO	LER – AR	CHITECTURE
(9)						
			1 0	, .	ition- PIC bank swite	0,
•	-		-	-	paders-timer programm	ing timers 0
	· · · ·	timers 2 and	3-serial port progra	amming-interrup		
MOD (9)	ULE	2	-		PIC IN	ITERFACING
	, DAC and sens	or interfacir	ng-erasing and writ	ing to flash-read	ding and writing to dat	a EEPROM-
				-	apture mode programm	
progr	ramming- ECCP	programmin	g.			
MOD	ULE 3 – ARM A	RCHITECTU	RE			(9)
ARM	7TDMI program	mers model-	processor modes-p	rogram status re	gisters-vector table-ass	embler rules
and		-			perators-literals-loads	
				eme loading cons	tants and addresses into	
	ULE 4 – ARM P					(9)
		•		-	ary searches -LDM/STM	
-			-		eters: in registers, by re	
					erals-LPC2104-LPC 213	
					ructions- Thumb Data register data transfer i	
	nb implementat					
	ULE 5 – EMBED		ATIONS			(9)
				with timer Interru	upt calculator with keyp	
	• •	-			Read write SD cards-USI	
	ure display.		с , ,			
TEXT	BOOKS					
1	Muhammad A PIC18", Pearso			and Embedded S	ystems Using Assembly	and C for
2			,	ollers", Pearson	Education, Singapore - 1	.998.
3	Tim Wilmshur Applications"	· •		ns with PICMicro	controllers: Principles a	nd
4			nes, and Chris Wrig Iorgan Kaufmann Se	•	Developer's Guide: Des	
5	Stove Eurbor					igning and
5	Steve Furber,	ARM System	n-on-Chip Architectu	ure", Addison- W	esley Professional; II edi	

	SE TITLE	EMBE	DDED SYSTEM NE	TWORKS	CREDITS	3
COUR	RSE CODE	ECB4702	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA					ESE	
LEAR	NING LEVEL				ASSESSMENT MODEL	
MOD (9)	ULE	1	-	THI	E CAN	BUS
		•			ssing and Management ocessing – Framing.	– Definition
MOD	ULE 2	-	TI	HE CAN	I PHYSICAL	LAYER
(9)						
Applic	-	nd Developm			gered Protocols - CAN A of Communication Proto	
MOD	ULE			3	-	USB
(9)						
Introd	nuction – ivn			T	·	T
	ronous Transfe				k Transfer – Interrupt - Introduction to USB D	
Isochi	ronous Transfe				•	
Isochr Tools. MOD	ronous Transfe ULE duction – Confi	r – Introduct identiality – N	ion to the Enumer	ration Process – – Message Authe	• Introduction to USB D	SECURITY
Isochr Tools. MOD	ronous Transfe ULE duction – Confi entication - Key	r – Introduct identiality – N management	ion to the Enumer 4 Aessage Integrity -	ration Process – – Message Authe	• Introduction to USB D NETWORK (9)	SECURITY
Isochr Tools. MOD Introc Authe MOD	ronous Transfe ULE duction – Confi entication - Key ULE 5	identiality – M management	4 Message Integrity - t – Internet Security TCP/IP	ration Process – – Message Authe y – Firewalls. FOR	• Introduction to USB D NETWORK (9) entication - Digital Signa EMBEDDED	SECURITY SECURITY oture - Entry SYSTEMS
Isochi Tools MOD Introc Authe MOD (9)	ULE duction – Confi entication - Key ULE 5 duction – Embe	dentiality – M management edded SMTP (4 Message Integrity - t – Internet Security TCP/IP	Message Auther y – Firewalls. FOR SMTP Server –	• Introduction to USB D • NETWORK (9) • ntication - Digital Signa	SECURITY SECURITY oture - Entry SYSTEMS
Isochr Tools MOD Introc Authe (9) Introc Vendi	ULE duction – Confi entication - Key ULE 5 duction – Embe	dentiality – M management edded SMTP (4 Aessage Integrity - t – Internet Security TCP/IP	Message Auther y – Firewalls. FOR SMTP Server –	• Introduction to USB D NETWORK (9) entication - Digital Signa EMBEDDED	SECURITY SECURITY oture - Entry SYSTEMS
Isochr Tools. MOD Introc Authe (9) Introc Vendi	ronous Transfe ULE duction – Confi entication - Key ULE 5 duction – Embe ing Machine – I BOOKS	edded SMTP (4 Aessage Integrity - t – Internet Security TCP/IP	ration Process – – Message Auther y – Firewalls. FOR SMTP Server – ay.	NETWORK (9) entication - Digital Signa EMBEDDED Case Studies: IP Securit	SECURITY SECURITY oture - Entry SYSTEMS
Isochr Tools MOD Introc (9) Introc Vendi TEXT	ronous Transfe ULE duction – Confi entication - Key ULE 5 duction – Embe ing Machine – I BOOKS Dominique Pa	edded SMTP (nternet Radio	4 Message Integrity - t – Internet Security TCP/IP Client – Embedded	ration Process – Message Auther y – Firewalls. FOR SMTP Server – ay. Embedded Syst	• Introduction to USB D NETWORK (9) entication - Digital Signa EMBEDDED Case Studies: IP Securit ems , Wiley, 2007	SECURITY SECURITY oture - Entry SYSTEMS
Isochr Tools MOD Introc (9) Introc Vendi TEXT	ronous Transfe ULE duction – Confi entication - Key ULE 5 duction – Embe ing Machine – I BOOKS Dominique Pa John Hyde, –	edded SMTP (nternet Radio uret, —Multipl USB Design by	4 Message Integrity - t – Internet Security TCP/IP Client – Embedded – Ethernet Gatewa	ration Process – Message Auther y – Firewalls. FOR SMTP Server – ay. Embedded Syst niversity Press, 2	• Introduction to USB D NETWORK (9) entication - Digital Signa EMBEDDED Case Studies: IP Securit ems , Wiley, 2007	SECURITY SECURITY oture - Entry SYSTEMS
Isochr Tools MOD Introc (9) Introc Vendi TEXT 1 2	ronous Transfe ULE duction – Confi entication - Key ULE 5 duction – Embe ing Machine – I BOOKS Dominique Pa John Hyde, – Jan, Axelson, -	edded SMTP (nternet Radic uret, —Multip USB Design by —USB Comple rouzan and Fir	4 Message Integrity - t – Internet Security TCP/IP Client – Embedded o – Ethernet Gatewa lexed Networks for y Example , Intel U ete , Lake View Res	ration Process – Message Auther y – Firewalls. FOR SMTP Server – ay. Embedded Syst niversity Press, 2 search, 2005	• Introduction to USB D NETWORK (9) entication - Digital Signa EMBEDDED Case Studies: IP Securit ems , Wiley, 2007	evelopment SECURITY eture - Entry SYSTEMS ty Camera –

Tim Jones, —TCP/IP Application Layer Protocols for Embedded Systems , Charles River Media,	1
2002	1

60115				0050170	2
		RESEARCH METHODOLO		CREDITS	2
	RSE CODE	COURSE CATEGORY	PC	L-T-P-S	2-0-0-0
CIA				ESE	
LEARI	NING LEVEL			ASSESSMENT MODEL	
MOD	ULE 1 – RESEAF	CH PROBLEM FORMULATION			(9)
Mean	ning of research	problem, Sources of research pr	oblem, Criteria	Characteristics of a good	research
probl	lem, Errors in se	lecting a research problem, Scop	e and objective	s of research problem. A	pproaches
of inv	vestigation of sc	lutions for research problem, da	ta collection, an	alysis, interpretation, Ne	ecessary
instru	umentations				
MOD	ULE 2 –RESEAR	CH PROPOSAL AND ETHICS			(9)
Effect	tive literature s	udies approaches, analysis Plagi	arism, Research	ethics, Effective technica	al writing,
how t	to write report,	Paper Developing a Research Pro	oposal, Format d	of research proposal, a p	resentation
and a	issessment by a	a review committee.			
MOD	ULE 3 - DATA A	NALYSIS AND INTERPRETATION			(9)
Class	sification of Da	ta, Methods of Data Collection	n, Sampling, Sa	mpling techniques pro	cedure and
meth	ods, Ethical co	onsiderations in research Data	analysis, Statis	tical techniques and c	hoosing an
appro	opriate statistic	al technique, Hypothesis, Hypot	thesis testing, D	ata processing software	e (e.g. SPSS
etc.),	statistical infer	ence, Interpretation of results.			
MOD	DULE 4 - NATU	RE OF INTELLECTUAL PROPERTY			(9)
Paten	nts, Designs, Tra	ade and Copyright. Process of Pa	atenting and De	velopment: technologic	al research,
innov	vation, patentin	g, development. International S	Scenario: Intern	ational cooperation on	Intellectual
Prope	erty. Procedure	for grants of patents, Patenting u	under PCT.		
MOD	OLL 3 - PAILN	RIGHTS AND NEW DEVELOPME	ENTS IN IPR		(9)
-		FRIGHTS AND NEW DEVELOPME ghts. Licensing and transfer of		atent information and	
Scope	e of Patent Ri		f technology. P		databases.
Scope Geogr	e of Patent Ri raphical Indicat	ghts. Licensing and transfer of	f technology. F system. New de	velopments in IPR; IPR o	databases.
Scope Geogr Syster	e of Patent Ri raphical Indicat	ghts. Licensing and transfer of ions. Administration of Patent S	f technology. F system. New de	velopments in IPR; IPR o	databases.
Scope Geogr Syster	e of Patent Ri raphical Indicat ms, Computer S BOOKS	ghts. Licensing and transfer of ions. Administration of Patent S	f technology. F ystem. New de dge Case Studies	velopments in IPR; IPR o s, IPR and IITs.	databases. of Biological

2	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
4	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
5	Mayall , "Industrial Design", McGraw Hill, 1992.
6	Niebel , "Product Design", McGraw Hill, 1974.
7	Asimov, "Introduction to Design", Prentice Hall, 1962.
8	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological
0	Age", 2016.
9	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008
10	C.R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques , New Age
11	International publishers, Third Edition. Ranjit Kumar, Research Methodology: A Step-by-Step
11	Guide for Beginners, 2nd Edition, SAGE, 2005
12	Business Research Methods – Donald Cooper & Pamela Schindler, TMGH, 9th edition
	Creswell, John W. Research design: Qualitative, quantitative, and mixed methods, approaches.
13	Sage publications, 2013.
	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
14	engineering students',

COURSE TITLE	EMBEDD	DED PROCESSORS LA	BORATORY	CREDITS	2
COURSE CODE	ECB4791	COURSE CATEGORY	РС	L-T-P-S	0-0-3-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
		LIST OF EXP	PERIMENTS		
1. Design with A	ARM and ARM	A CORTEX Processo	•		
2. I/O Programr	ning, ADC/D	AC, Timers and Inter	rupts.		
3. Calculator wi	th keypad an	d LCD			
4. Voltmeter wi	th LCD displa	ıy			
5. Serial commu	unication				
6. SPI Interfacin	g with SD ca	rd			
7. USB based pr	essure displa	у			
8. CAN based D	ata acquisitio	on system			
9. PWM based i	motor Contro	bl			
10. Case Study of	f internet				

COURSE TITLE		MINI PROJECT		CREDITS	2
COURSE CODE	ECB4781	COURSE CATEGORY	PC	L-T-P-S	0-0-2-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
		PARTIC	ULARS		
		y the various compor e the following comp	•	used, manufacturing proc ssing Techniques.	cess

			SEMES			
COUF	RSE TITLE	REA	AL TIME OPERATING	SYSTEM	CREDITS	3
COUF	RSE CODE	ECB4703	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA					ESE	
LEAR	NING LEVEL				ASSESSMENT MODEL	
MOD (9)	ULE	1	-	REAL	TIME	SYSTEMS
meas		ime system	s- Task assignment		e system- Task classes- F g algorithms - Mode cha	
MOD (9)	ULE 2	-	μ	C/OS-	II RTOS	CONCEPTS
Exclu		sk communi	ication-Interrupts -		ng -Priorities - Schedule C/OS- II Kernel structure	
MOD	ULE	3	– u C	/OS- I	RTOS	FUNCTIONS
			F	,		
(9)						
Task I Mana	agement –Mess	sage manag	gement - Semaphore	management -	Mutual exclusion semap Porting μC/OS- II – Com	
Task I Mana	agement –Mess v of Various RTC	sage manag	gement - Semaphore gement - Memory m	management -	Mutual exclusion semap	
Task I Mana Study MOD	agement –Mess v of Various RTC ULE	sage manag OS like QNX-	gement - Semaphore gement - Memory n VX Works-PSOS. 4	management - nanagement - F	Mutual exclusion semap Porting μC/OS- II – Com EMBEDDED (9)	parison and
Task I Mana Study MOD - Feat - Use	agement –Mess v of Various RTC ULE tures - Embedd	sage manag OS like QNX- led Linux Dis File System	gement - Semaphore gement - Memory n VX Works-PSOS. 4 stributions - Archited a - Linux Start-Up Se	management - nanagement - F – cture of Embedo	Mutual exclusion semap Porting μC/OS- II – Com EMBEDDED	parison and LINUX Architecture
Task I Mana Study MOD - Feat - Use	agement –Mess v of Various RTC ULE tures - Embedd er Space -Root tional RTOS App	sage manag OS like QNX- led Linux Dis File System	gement - Semaphore gement - Memory n VX Works-PSOS. 4 stributions - Archited a - Linux Start-Up Se	management - nanagement - F – cture of Embedo	Mutual exclusion semap Porting μC/OS- II – Com EMBEDDED (9) ded Linux - Linux Kernel	parison and LINUX Architecture
Task I Mana Study MOD - Feat - Use Tradit MOD (9) Linux Buildi Boarc	agement –Mess v of Various RTC ULE tures - Embedd er Space -Root tional RTOS App ULE and Real-Time ing the Kernel- d support packa	sage manag OS like QNX- led Linux Dis File System plications to 5 - Real-Time Integrated I	gement - Semaphore gement - Memory n VX Works-PSOS. 4 stributions - Archited a - Linux Start-Up Se Linux. – Programming in Linu	management - hanagement - F - cture of Embede equence - GNU	Mutual exclusion semap Porting μC/OS- II – Com EMBEDDED (9) ded Linux - Linux Kernel A Cross Platform Tool cha	Architecture ain - Porting LINUX LINUX Debugging -
Task I Mana Study MOD - Feat - Use Tradit MOD (9) Linux Buildi Boarc TEXT	agement –Mess of Various RTC ULE tures - Embedd er Space -Root tional RTOS App ULE and Real-Time ing the Kernel- d support packa BOOKS	sage manag DS like QNX- led Linux Dis File System plications to 5 - Real-Time Integrated I ages - Introd	gement - Semaphore gement - Memory m VX Works-PSOS. 4 stributions - Archited a - Linux Start-Up Sec Linux. Programming in Linu Development Enviror uction to C linux.	management - nanagement - F – cture of Embedo equence - GNU ux - Hard Real-T	Mutual exclusion semap Porting μC/OS- II – Com EMBEDDED (9) ded Linux - Linux Kernel A Cross Platform Tool cha REAL-TIME ime Linux - Building and D Debuggers - Embedded D	Architecture ain - Porting LINUX LINUX Debugging -
Task I Mana Study MOD - Feat - Use Tradit MOD (9) Linux Buildi Boarc	agement –Mess v of Various RTC ULE tures - Embedd er Space -Root tional RTOS App ULE and Real-Time ing the Kernel- d support packa BOOKS Krishna C.M., Philip A.Lapla	sage manag DS like QNX- led Linux Dis File System plications to 5 - Real-Time Integrated I ages - Introd Kang G. Shin nte, "Real Ti	gement - Semaphore gement - Memory m VX Works-PSOS. 4 stributions - Archited a - Linux Start-Up Sec Linux. – Programming in Linu Development Enviror uction to C linux.	management - nanagement - F - cture of Embedo equence - GNU ux - Hard Real-T ment - Kernel F s", Tata McGrav	Mutual exclusion semap Porting μC/OS- II – Com EMBEDDED (9) ded Linux - Linux Kernel A Cross Platform Tool cha REAL-TIME ime Linux - Building and D Debuggers - Embedded D	parison and LINUX Architecture ain - Porting LINUX Debugging - rivers -
Task I Mana Study MOD - Feat - Use Tradit MOD (9) Linux Buildi Boarc TEXT 1	agement –Mess v of Various RTC ULE tures - Embedd er Space -Root tional RTOS App ULE and Real-Time ing the Kernel- d support packa BOOKS Krishna C.M., Philip A.Lapla IEEE Press, IEE	sage manag DS like QNX- led Linux Dis File System plications to 5 - Real-Time Integrated I ages - Introd Kang G. Shin nte, "Real Ti E Compute	gement - Semaphore gement - Memory m VX Works-PSOS. 4 stributions - Archited a - Linux Start-Up Sec Linux. Programming in Linu Development Enviror uction to C linux. n, "Real Time System me Systems Design a	management - nanagement - F - cture of Embedo equence - GNU ux - Hard Real-T ment - Kernel f s", Tata McGrav	Mutual exclusion semap Porting µC/OS- II – Com EMBEDDED (9) ded Linux - Linux Kernel A Cross Platform Tool cha REAL-TIME ime Linux - Building and I Debuggers - Embedded D w-Hill Edition, 2010. Engineers Handbook", II	parison and LINUX Architecture ain - Porting LINUX Debugging - rivers -

E	Christopher Hallinan, "Embedded Linux Primer, A Practical, Real-World Approach", II Edition
5	Pearson Education, Inc., 2011.

COUR	RSE TITLE	FUNDAME	NTALS OF EMBEDD	ED SOFTWARE	CREDITS	3
COUR	RSE CODE	ECB4704	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA					ESE	
LEAR	NING LEVEL				ASSESSMENT MODEL	
MOD	ULE 1 – EMBEI	DDED SYSTEM	/IS			(9)
Defin	nition and exam	nples of Embe	edded Systems, Eml	bedded Systems	versus General Compu	ting Systems
				•	ts of a typical Embedd	•
		_		Design - Embed	ded System Design Appr	
-	ULE 2 – MIXIN					(9)
-	-	-			vical Use of Addressin	
	•	-			ssing – Retrieving Paran	neters – pass
•	•		I/O Programming: I			
MOD	ULE	3	– PROGF	RAM DES	SIGN AND	ANALYSIS
(9)						
Mode Linkin	ng Process– B	asic Compila	ation Techniques	 Cross Platfo 	I/Data Flow Graphs – A orm Development - A	
Mode Linkin Optim MOD	ng Process– B nization of Exec ULE 4	asic Compila cution Time, E – OE	ation Techniques Energy, Power and F BJECT-ORIENTED	– Cross Platfo Program Size – D ANALYSIS,	orm Development - A Debugging Techniques DESIGN AND (9)	Modelling
Mode Linkin Optim MOD	ng Process– B nization of Exec ULE 4 D Concepts –	asic Compila cution Time, E – OE Developmen	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar	 Cross Platfo Program Size – D ANALYSIS, naging software 	Development - A Debugging Techniques DESIGN AND (9) development - UML	Modelling
Mode Linkin Optim MOD	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts	asic Compila cution Time, E – OE Developmen – Dealing wit	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re	 Cross Platfo Program Size – D ANALYSIS, naging software 	orm Development - A Debugging Techniques DESIGN AND (9)	MODELLING
Mode Linkin Optim MOD OOAE Mode design	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – n activities – ov	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design.	 Cross Platfo Program Size – D ANALYSIS, naging software quirement elicit 	Development - A Debugging Techniques DESIGN AND (9) development - UML ration – Analysis activit	MODELLING overview – ies – System
Mode Linkin Optim MOD OOAE Mode design	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – n activities – ov	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re	 Cross Platfo Program Size – D ANALYSIS, naging software quirement elicit 	Development - A Debugging Techniques DESIGN AND (9) development - UML ration – Analysis activit	Modelling
Mode Linkin Optim MOD OOAL Mode design MOD (9)	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts n activities – ov ULE 5	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – FU	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS	– Cross Platfo Program Size – D ANALYSIS, naging software quirement elicit OF MI	Development - A Debugging Techniques DESIGN AND (9) development - UML ration – Analysis activit	MODELLING overview – ies – System GRAMMING
Mode Linkin Optim MOD OOAL Mode design MOD (9) Overv	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – n activities – ov ULE 5	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – Fl ming with Pytl	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS	 Cross Platfo Program Size – D ANALYSIS, naging software quirement elicit OF MIG es and Operators 	A pevelopment - A pebugging Techniques DESIGN AND (9) Development - UML ation – Analysis activit CROPYTHON PRO , Python Statements and	MODELLING overview – ies – System GRAMMING
Mode Linkin Optim MOD OOAE Mode design MOD (9) Overv Functi	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – n activities – ov ULE 5	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – Fl ming with Pytl	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS	 Cross Platfo Program Size – D ANALYSIS, naging software quirement elicit OF MIG es and Operators 	Development - A Debugging Techniques DESIGN AND (9) development - UML ation – Analysis activit CROPYTHON PRO	MODELLING overview – ies – System GRAMMING
Mode Linkin Optim MOD OOAE Mode design MOD (9) Overv Functi	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – n activities – ov ULE 5 iew of Program ions, Strings, Obj BOOKS	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – Fl ming with Pytl ect oriented p –Computer	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS hon, Native Datatype rogramming with Pyt as Components – F	 Cross Platfo Program Size – D ANALYSIS, naging software quirement elicit OF Mile es and Operators hon, Modules and 	Development - A Debugging Techniques DESIGN AND (9) development - UML ation – Analysis activit CROPYTHON PRO	MODELLING overview – ies – System GRAMMING Conditionals,
Mode Linkin Optim MOD OOAL Mode design MOD (9) Overv Functi TEXT	ng Process– B nization of Exec ULE 4 C Concepts – eling concepts – eling concepts – n activities – ov ULE 5 iew of Program ions, Strings, Obj BOOKS Wayne Wolf, Harcourt India	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – FU ming with Pytl ect oriented p – Computer a Pyt. Ltd., 20 – Fundament	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS hon, Native Datatype rogramming with Pyt as Components – F 01.	 Cross Platfor Program Size – D ANALYSIS, naging software quirement elicit OF Mile es and Operators hon, Modules and Principles of Em 	A pevelopment - A Pebugging Techniques DESIGN AND (9) A development - UML ation – Analysis activit CROPYTHON PRO , Python Statements and d Packages	Analysis and MODELLING overview – ies – System GRAMMING Conditionals, tem Design ,
Mode Linkin Optim MOD OOAE Mode design MOD (9) Overv Functi TEXT 1	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – eling concepts – n activities – ov ULE 5 iew of Program ions, Strings, Obj BOOKS Wayne Wolf, Harcourt India Daniel Lewis, Inc, USA, 2002	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – Fundament 2.	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS hon, Native Datatype rogramming with Pyt as Components – F 01.	 Cross Platfor Program Size – D ANALYSIS, naging software quirement elicit OF Mile es and Operators hon, Modules and Principles of Em oftware where 0 	prim Development - A bebugging Techniques DESIGN AND (9) development - UML ation – Analysis activit CROPYTHON PRO , Python Statements and d Packages bedded Computing Syst C and Assembly Meet ,	Analysis and MODELLING overview – ies – System GRAMMING Conditionals, tem Design ,
Mode Linkin Optim MOD OOAE Mode design MOD (9) Overv Functi TEXT 1 2	ng Process– B nization of Exec ULE 4 D Concepts – eling concepts – eling concepts – n activities – ov ULE 5 iew of Program ions, Strings, Obj BOOKS Wayne Wolf, Harcourt India Daniel Lewis, Inc, USA, 2002 William von H	asic Compila cution Time, E – OE Developmen – Dealing wit verview of Ob – Fu ming with Pytl ect oriented p – Computer a Pvt. Ltd., 20 – Fundament 2. lagen, —The I	ation Techniques Energy, Power and F BJECT-ORIENTED t activities – Mar th complexity – Re ject design. UNDAMENTALS hon, Native Datatype rogramming with Pyt as Components – F 01. tals of Embedded S	 Cross Platfor Program Size – D ANALYSIS, naging software quirement elicit OF Mile es and Operators hon, Modules and Principles of Em oftware where O GCC , Apress, US 	prm Development - A bebugging Techniques DESIGN AND (9) development - UML ation – Analysis activit CROPYTHON PRO , Python Statements and d Packages bedded Computing Syst C and Assembly Meet , 5A, 2006.	Analysis and MODELLING overview – ies – System GRAMMING Conditionals, tem Design ,

COUF	RSE TITLE	MACHINE LEARNING CREDITS 3						
COUF	RSE CODE	ECB4705	COURSE CATEGORY		L-T-P-S 3-0-0-0			
CIA					ESE			
LEAR	NING				ASSESSMENT			
LEVE	L			MODEL				
			COURSE OUTCOMES				РО	
1.	To under	stand the cor	cepts of Machine Learnir	Ig				
2		stand supervi	sed learning and apply ne	eural networks in				
3.	To explai	n the concept	s and algorithms of unsu	pervised learning				
4		the theoretic I Models.	al and practical aspects o	f Probabilistic				
5	To explai	n the concept	s and algorithms of adva	nced learning				
Prere	quisites:							
MOD	ULE 1 – IN	TRODUCTION					(9)	
Mach	ine Learni	ng algorithms	Machine Learning –Machi , turning data into Probal ty Distributions –Decision	pilities, and Statist			-	
MOD	ULE 2 – S	UPERVISED LE	ARNING				(9)	
		-	-Linear Models for Class stic Discriminative Mode					
			rods, Bagging, Boosting, N				•	
			propagation -Support Ve		iviuiti-i	ayer rercep	non, reeu-	
MOD	ULE 3 – U	NSUPERVISE	DLEARNING				(9)	
	-	-	gorithm-Mixtures of Gaus		-			
		alysis, Factor	Analysis, Principal Compo	onents Analysis, Ir	ndeper	ident Comp	onents	
Analy	vsis.							

MOD	ULE 4 – PROBABILISTIC GRAPHICAL MODELS (9)						
Grapl	hical Models – Undirected Graphical Models – Markov Random Fields – Directed Graphical Models						
-Baye	-Bayesian Networks - Conditional Independence properties - MarkovRandom Fields-Hidden Markov						
Mode	els –Conditional Random Fields(CRFs).						
MOD	ULE 5 – ADVANCED LEARNING (9)						
Samp	ling-Basic Sampling methods, Monte Carlo, Gibbs Sampling –Computational Learning Theory –						
Mista	ke Bound Analysis –Reinforcement learning –Markov Decision processes, Deterministic and						
Non-	deterministic Rewards and Actions, Temporal Difference Learning Exploration.						
TE	XT BOOKS						
1.	Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007.						
2.	Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Chapman and Hall, CRC						
	Press, Second Edition, 2014.						
	REFERENCE BOOKS						
1	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.						
2	EthemAlpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014.						
3	Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.						
E BOO	OKS Contraction of the second s						
1	https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html						
2	https://drive.google.com/file/d/1tYo_xIAi8jPqKiaHSPQX9pHaJ8tf8MTd/view						
MOO	C						
1	https://www.coursera.org/learn/machine-learning						
2	http://www.cs.cmu.edu/~tom/10701_sp11/						

COURSE TITLE	REAL TIME OPERATING SYSTEM LABORATORY			CREDITS	2
COURSE CODE	ECB4792	792 COURSE PC CATEGORY		L-T-P-S	0-0-2-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
		LIST OF EXF	PERIMENTS		
1. Pro	gramming w	ith RTOS using ARM	architecture		
2. Tas	k Scheduling	Algorithm			
3. Mu	ltitasking Pri	orities			
4. Inte	er Task Comr	nunication			
5. RT	Linux based	programs.			
6. Pro	tocol Develo	pment			
7. Em	bedded Prog	ramming with Inter	rupts		

DEPARTMENT ELECTIVE – I

COURSE TITLE	GRAPH THEORY AND APPLICATIONS			CREDITS	3
COURSE CODE	ECB4721	COURSE CATEGORY	PC	L-T-P-S	3-0-0-0
		CATEGORY			
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
MODULE	1	-		INT	RODUCTION
(9)					
Simple Graph – Finit	e and infinite	e Graphs – Incidenc	e and Degree –I	solated and Pendent Ve	rtices – Sub-
Graphs – Isomorph	ism – Path	s and Connections	 Connected 	Graphs, Disconnected	Graphs and
Components – The S	Shortest Path	n Problem – Trees –	Spanning Tree	Algorithms – Cut Edges	and Bonds –
Cut Vertices – Cayley	/'s Formula –	- The Connector Pro	blem.		
MODULE 2 –	CUT-SE	TS, PLANAR A	AND DUAL	GRAPHS AND CC	NNECTIVITY

(9)										
Cut-se	ets – Pr	operties ·	– Connecti	vity – B	locks – Constr	uction	of Reliable	e Comr	nunication	Networks – Euler
Trees	Trees and Hamiltonian Cycles – Planar and Dual graphs – Kuratowski's Graphs – Directed Graphs – Euler									
Digra	phs – T	he Chines	se Postmar	n Proble	em – The Trave	eling Sa	alesman Pr	oblem.		
MOD	ULE	3 –	MATRIX	REPRE	ESENTATION	OF	GRAPHS	AND	GRAPH	ENUMERATION
(9)										
Opera	ations c	on Graphs	s – Inciden	ce Mati	rix – Circuit M	atrix –	Fundame	ntal Cir	cuit Matrix	– Cut-set Matrix
– Pat	h Matr	ix – Adja	cency Mat	rix – Ty	pes of Enum	eration	ı – Countii	ng Labe	eled and L	Inlabeled Trees –
Polya	's Coun	ting Theo	orem – Gra	phs Enu	umeration wit	h Polya	a's Theorer	n		
MOD	ULE		4	-	MATCHING	,	COLOUR	ING	AND	COVERING
									(9))
Matc	hing – (Covering	in Bipartit	e Graph	ns – Perfect N	latchin	g – The Pe	ersonal	Assignme	nt Problem – The
Optin	nal Assi	gnment F	roblem – I	Edge Co	louring – Edge	e Chroi	matic Num	ber – V	'izing's The	eorem – The Time
Tablir	ng Prob	olem – I	ndepende	nt Sets	and Cliques	— Ар	plications	 Vert 	ex Colour	ring – Chromatic
Polyn	omials	– Five Co	lour Theor	em – Ap	oplications					
MOD	ULE		5	-	GRA	PH	Т	HEORY	,	APPLICATIONS
(9)										
Netw	ork Flo	ws – Tra	nsport Ne	tworks	– Max-Flow I	Vin-Cu	it Theorem	n – Act	ivity Netw	orks – Graphs in
Game	e Theor	y								
TEXT	BOOKS									
1		-	—Graph T	heory w	ith Applicatio	ns to E	Engineering	g and C	omputer S	Science , Prentice
	Hall, 2	.007.								
2	Jonath	han Gross	s and Jay Ye	ellen, —	-Graph Theory	and It	s Annlicati	onsll, C	hapman a	nd Hall, 2005.
3	Reinh							11/		

COURSE TITLE	DIGITAL	SYSTEM DESIGN AI	CREDITS		3	
COURSE CODE	ECB4722	ECB4722 COURSE PC L-T-P-S				
CIA				ESE		
LEARNING LEVEL				ASSESSMEN	T MODEL	
MODULE 1	-	SYS	TEM D	ESIGN	USING	PLDS
(9)						
Basic concepts – Pro	Basic concepts – Programming technologies - Programmable Logic Element (PLE) - Programmable Array					
Logic (PLA) - Programmable Array Logic (PAL) – Programmable Logic Architectures – 16L8 – 16R4 –						
22V10 Design of c	ombinationa	l and sequential cire	cuits using PLDs	– Complex PL	Ds (CPLDs)	–Xilinx cool

tool.	er architecture -	Design of stat	e machines using	Algorithmic State I	Machines (ASM)	chart as a design
MOD (9)	ULE 2	-	FIELD	PROGRAMMA	BLE GAT	E ARRAYS
	out Blocks (IOB)		-	ray (LCA) — Config n Points (PIP) - Xilir	-	· · ·
MOD (9)	ULE	3	-	INTRODUCTIC	N TC	VHDL
types assigr Seque	; - Operators – nment – Condit ential statemer	Entities and A ional signal as its – Transpor	rchitectures – Co ssignment - Selec	escription Languag omponents and Co ted signal assignn elays – Delta dela es and Librar	nfigurations – (nent – Concurre	Concurrent signal ent statements –
MOD	ULE		4	-	FAULT (9)	MODELING
Path	sensitization me estability: Scan p	ethod, Boolean bath Testing, Bo	difference metho	es, Fault Detection od. Fault Detection c, Built in Self Test. -		-
Fault Static	c, Dynamic and		•	of fault - tolerand		
-	ant software.	int software -	=	lerance in memoi nming - Recovery b		ault - tolerance :
tolera	ant software. BOOKS		N-version program	nming - Recovery I	olock - Reliability	ault - tolerance : / models for fault
tolera	ant software. BOOKS		N-version program		olock - Reliability	ault - tolerance : / models for fault
tolera TEXT	ant software. BOOKS Palmer, J.E., P 1996 Nelson, V.P., N	erlman, D.E., "I Nagale, H.T., Ca	N-version program	nming - Recovery b gital Systems",Tata win, J.D., "Digital L	olock - Reliability McGraw Hill, N	ault - tolerance : / models for fault ew Delhi, Reprint
tolera TEXT	ant software. BOOKS Palmer, J.E., P 1996 Nelson, V.P., N PrenticeHall Ir	erlman, D.E., "I Nagale, H.T., Ca Iternational, In	N-version program ntroduction to Dig arroll, B.D., and Inc., New Jersey, 19	nming - Recovery b gital Systems",Tata win, J.D., "Digital L	olock - Reliability McGraw Hill, N ogic Circuit Ana	ault - tolerance : / models for fault ew Delhi, Reprint
tolera TEXT 1 2	Ant software. BOOKS Palmer, J.E., P 1996 Nelson, V.P., N PrenticeHall Ir Bhaskar J., — J	erlman, D.E., "I Jagale, H.T., Ca Iternational, In A VHDL Primer oth and Lizy	N-version program ntroduction to Di arroll, B.D., and In c., New Jersey, 19 , Prentice Hall of	nming - Recovery b gital Systems",Tata win, J.D., "Digital L 95.	olock - Reliability McGraw Hill, N ogic Circuit Ana 2.	ault - tolerance : models for fault ew Delhi, Reprint lysis and Design",
tolera TEXT 1 2 3	Ant software. BOOKS Palmer, J.E., Paragenetics 1996 Nelson, V.P., Na PrenticeHall In Bhaskar J., — A Charles H Re Learning,2013 Michael L Bus	erlman, D.E., "I Jagale, H.T., Ca Iternational, In A VHDL Primer oth and Lizy	N-version program ntroduction to Dig arroll, B.D., and Inc., New Jersey, 19 , Prentice Hall of Kurian John — D Agrawal, —Ess	nming - Recovery b gital Systems",Tata win, J.D., "Digital L 95. India learinng,201	olock - Reliability McGraw Hill, N ogic Circuit Ana 2. Design Using	ault - tolerance : models for fault ew Delhi, Reprint lysis and Design", VHDL, Cengage

COOP	RSE TITLE	EMBEDDE	D SYSTEM DESIGN U	SING FPGA	CREDITS	3	
COUF	RSE CODE	ECB4723	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0	
CIA					ESE		
LEAR	NING LEVEL				ASSESSMENT MODEL		
MOD	ULE 1 – FPGA	ARCHITECTU	JRE AND OVERVIEW			(9)	
Embedded system design flow - Robot Control System - Digital Design Platforms - Microprocessor-based Design - Single-chip Computer/ Microcontroller-based Design - Application Specific Standard Products (ASSPs) - Design Using FPGA - robotic rover application – FPGA Devices - FPGA and CPLD - Architecture of a SPARTAN-3ETM FPGA - Floor Plan and Routing - Timing Model for a FPGA - FPGA Power Usage MODULE 2 – EMBEDDED SYSTEM DESIGN (9)							
FPGA Micro Contr	-based Embedo ocontroller - Ro	led Process bot Axis Po	or - Design Re-use L sition Control - FPGA	A-based Signal Ir	is Interface - Creating a Iterfacing and Condition e Using FPGA- FPGA I	ing - Motor	
MOD	ULE 3 – VERILO		UCTS			(9)	
Assign select MOD	nment Stateme ts - Functions - ULE 4 – VERILO	nt - Operato Gate level m DG MODELI	ors – Conditional Exp nodeling. NG COMBINATIONA	L CIRCUITS	ral style - Data types - ment types - Vector oper or - Parity Generators- A	rations – Bit (9)	
	gate - UART mo						
Mode Synch	elling Latches an Pronous and Asy	nd Flip flops	NG SEQUENTIAL CIR Sequential logic - - Shift Register- Test	Memory - Regist	ers-Counters-Modeling on.	(9) FSM design-	
	BOOKS						
TEXT							
ТЕХТ 1	Rahul Dubey, Springer-Verla		•	em Design Using	; Field Programmable Ga	te Arrays"	
	Springer-Verla	ag London Li	mited, 2009		; Field Programmable Ga on Education, Asia, III Ec	-	
1	Springer-Verla John F. Waker	ag London Li Iy, Digital D	mited, 2009 esign Principles and	Practices", Pears		lition, 2003.	
1 2	Springer-Verla John F. Waker Blaine Readle 2011.	ag London Li Iy, Digital D r, "Verilog b	mited, 2009 esign Principles and y Example: A Concise	Practices", Pears	on Education, Asia, III Ec	lition, 2003. Press,	

DEPARTMENT ELECTIVE II

	TITLE		DEEP L	EARNING		CRE	DITS
Cour	se Code	ECB4724	Course Category		L-T-P-S		3-0-0-0
(CIA				ESE		
	RNING				ASSESSME	NT	
	EVEL		COURSE O	UTCOM	MODEL		РО
1.	Tounder	stand the basi			of Neural Netwo	rks	
2		rvey of Deep	1	1		IKS	
3.	To solve				formances using	5	
4.	To under	stand and imp	olement Deep	Learning	Architectures		
5.	To apply	Deep Learni	ng in various	application	ons		
rere	quisites:						
AOD	ULE 1 – F	BASICS OF 1	NEURAL NI	ETWORK	KS		9
	-	f Neurons –P	creeption ring	Somme I			
Vetwo		INTRODUC	ΤΙΟΝ ΤΟ Β				
AOD	ULE 2 – 1	INTRODUC		EEP LEA	RNING		9
AOD Feed F Gradie	ULE 2 – E Forward N ent proble	leural Networ m –Mitigation	ks –Gradient n –RelU Heu	EEP LEA	RNING -Back Propagati	on A	9 gorithm –Vanishing Minima –Heuristics
AOD Feed I Gradie or Fa	ULE 2 – Forward Nent proble ster Train	leural Networ m –Mitigation	ks –Gradient n –RelU Heu Accelerated (EEP LEA Descent – ristics for J Gradient D	RNING Back Propagati Avoiding Bad L bescent –Regula	on A	9 gorithm –Vanishing Minima –Heuristics
Feed H Fradic or Fast MOD	ULE 2 – Forward N ent proble ster Train ULE 3 – Architectu Transfer I	leural Networ m –Mitigation ing –Nestors CONVOLU tres –Convolu Learning	ks –Gradient n –RelU Heu Accelerated (TIONAL NH ntion –Poolin	EEP LEA Descent – ristics for A Gradient D EURAL N g Layers –	RNING Back Propagati Avoiding Bad L bescent –Regula ETWORKS	on A local rizatio	9 gorithm –Vanishing Minima –Heuristics
AIOD Feed H Gradie or Fai AIOD CNN A sing (AIOD GTM,	ULE 2 – Forward N ent proble ster Train ULE 3 – Architectu Transfer I ULE 4 – GRU, End	leural Networ m –Mitigation ing –Nestors CONVOLU tres –Convolu Learning MORE DEE	ks –Gradient n –RelU Heu Accelerated (TIONAL NE Ition –Poolin PLEARNIE F LEARNIE	EEP LEA Descent – ristics for A Gradient D EURAL N g Layers – NG ARCH res –Autoe	ARNING Back Propagati Avoiding Bad L escent –Regula ETWORKS Transfer Learni HITECTURES ncoders –Standa	on A ocal rization ng –l	9 Igorithm –Vanishing Minima –Heuristics on –Dropout.
AIOD Feed H Gradie or Fast AIOD CNN A sing f AIOD GTM, Contra DBM	ULE 2 – Forward N ent proble ster Traini ULE 3 – Architectu Transfer I ULE 4 – GRU, End active-Var	leural Networ m –Mitigation ing –Nestors CONVOLU tres –Convolu Learning MORE DEE	ks –Gradient n –RelU Heu Accelerated (TIONAL NE ition –Poolin P LEARNIE r Architectur encoders –Ac	EEP LEA Descent – ristics for J Gradient D EURAL N g Layers – NG ARCH res –Autoe dversarial	RNING Back Propagati Avoiding Bad L bescent –Regular ETWORKS Transfer Learni HTECTURES ncoders –Standa Generative Netw	on A ocal rization ng –l	9 Igorithm –Vanishing Minima –Heuristics on –Dropout. mage Classification parse –Denoising –
AIOD Feed H Fradic or Fai AIOD CNN Sising AIOD CNN Contra DBM	ULE 2 – Forward N ent proble ster Traini ULE 3 – Architectu Transfer I ULE 4 – GRU, End active-Van	leural Networ m –Mitigation ing –Nestors CONVOLU tres –Convolu Learning MORE DEE coder/Decode riational Auto	ks –Gradient n –RelU Heu Accelerated (TIONAL NE ntion –Poolin P LEARNII er Architectur encoders –Ac	EEP LEA Descent – ristics for J Gradient D EURAL N g Layers – NG ARCH res –Autoe dversarial	RNING Back Propagati Avoiding Bad L Descent –Regular ETWORKS Transfer Learni HITECTURES ncoders –Standa Generative Netw	on A ocal rization ng –I ard-S works	9 Igorithm –Vanishing Minima –Heuristics on –Dropout. mage Classification
AIOD Geed H Gradie or Fai AIOD CNN A STM, Contra DBM AIOD mage vith C	ULE 2 – Forward N ent proble ster Traini ULE 3 – Architectu Transfer I ULE 4 – GRU, End active-Van ULE 5 – A Segmenta Generative	leural Networ m –Mitigation ing –Nestors CONVOLU tres –Convolu Learning MORE DEE coder/Decode tiational Auto APPLICATI ation –Object Adversarial	ks –Gradient n –RelU Heu Accelerated (TIONAL NE ntion –Poolin P LEARNII er Architectur encoders –Ac ONS OF DE Detection –A	EEP LEA Descent – ristics for J Gradient D EURAL N g Layers – NG ARCH res –Autoe dversarial EEP LEAH Automatic	RNING Back Propagati Avoiding Bad L Descent –Regular ETWORKS Transfer Learni HITECTURES ncoders –Standa Generative Netw RNING Image Captioni xt with LSTM N	on A ocal rization ng –I ard-S works ng –I	9 Igorithm –Vanishing Minima –Heuristics on –Dropout. mage Classification parse –Denoising – –Autoencoder and mage generation Is –Attention Model
AIOD Feed H Fradic or Fast AIOD CNN A Ising AIOD TM, Contra DBM AIOD mage vith C or Co	ULE 2 – Forward N ent proble ster Traini ULE 3 – Architectu Transfer I ULE 4 – GRU, End active-Var ULE 5 – J Segmenta Generative omputer V	leural Networ m –Mitigation ing –Nestors CONVOLU ures –Convolu Learning MORE DEE coder/Decode tiational Auto APPLICATI ation –Object Adversarial 1 ision –Case S	ks –Gradient n –RelU Heu: Accelerated (TIONAL NF Ition –Poolin P LEARNIE er Architectur encoders –Ac ONS OF DE Detection –A Networks –V tudy: Named	EEP LEA Descent – ristics for J Gradient D EURAL N g Layers – NG ARCH res –Autoe dversarial EEP LEAH Automatic Tideo to Te l Entity Re	RNING Back Propagati Avoiding Bad L bescent –Regular ETWORKS Transfer Learni HITECTURES ncoders –Standa Generative Netw RNING Image Captioni	on A ocal rization ng –I ard-S works ng –I vlode nion I	9 Igorithm –Vanishing Minima –Heuristics on –Dropout. mage Classification parse –Denoising – Autoencoder and mage generation Is –Attention Model Mining using

Netw	orks –Sentence Classification using Convolutional Neural Networks –Dialogue
Gene	ration with LSTMs.
ТЕ	CXT BOOKS
1.	Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017
2.	Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual
	Computing", CRC Press, 2018.
3.	Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress,
	2018.
	REFERENCE BOOKS
1	Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.
2	.Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and
	Artificial Intelligence", Apress, 2017
3	Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.
E BO	OKS
1.	http://www.deeplearningbook.org/
2.	http://neuralnetworksanddeeplearning.com/index.html
MOC	DC .
1	https://www.udacity.com/course/deep-learning-nanodegree

COURSE TITLE	ADVAN	ICED EMBEDDED CO	NTROLLERS	CREDITS	3
COURSE CODE	ECB4725	COURSE CATEGORY	PC	L-T-P-S	3-0-0-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
MODULE 1 – OVERV	IEW OF MIX	ED SIGNAL PROCESS	SOR		(9)
Introduction to 16-b	it Mixed Sig	nal Controller- Impo	rtant aspects of	Mixed Signal Controller	's Hardware
– CPU – Functional	Block Diagr	am - Memory Mapp	oing – Clock Sys	tem - Addressing Mode	es - Register
Mode – Indexed M	ode – Intro	duction to functions	6 – Interrupts -	Low Power Modes - D	evelopment
Environment - Progr	amming and	l Debugging			
MODULE 2	-	PERIPERALS	OF MI)	(ED SIGNAL	PROCESSOR
(9)					
Parallel ports - Dig	ital Inputs/	Outputs – Timers	- Watchdog T	imer- Capture/Compare	e module –
Generation of Perior	dic Signal –	Generation of PWM	Signal - Operati	on of the ADC Peripher	al (ADC10) -
Internal Temperatur	e Sensor – S	erial Communication	Protocols		
MODULE	3 –	ARCHITECTURE	OF A	ARM CORTEX	– M4
(9)					
ARM Cortex-M4 Pro	cessor Core	overview - Program	mers Model - N	lemory Model - Excepti	on and Fault
Handling - Power N	Nanagemen	t - Instruction Set S	Summary - CMS	SIS Functions - Hardwa	are-Software

	nronization - Interrupt Synchronization - Multithreading - Register Map - System Timer - Nested pred Interrupt Controller - Floating Point Unit (FPU)-Optional Memory Protection Unit.
MOD	
Corte	ex-M4 Peripherals - Parallel I/O Ports - Timer Interfacing - Pulse Width Modulation - Frequency
	surement - Binary Actuators - Integral Control of a DC Motor – DAC - ADC -Serial Communication
Proto	
MOD	ULE 5 – PROCESSOR AND CONTROLLER
Desig	n And Development Of Embedded Systems Using Msp430 Processor And Arm Cortex Controllers.
TEXT	BOOKS
1	Steven F.Barret, Daniel J Pack, —Microcontroller Programming and Interfacing: Texas Instruments
	MSP430 , Morgan & Claypool Publishers, ISBN: 9781608457137
2	John H. Davies, —MSP430 Microcontroller Basics , First Edition, Newnes Publication , ISBN: 978-
2	93-80501-85-7, 2010.
3	C.P.Ravikumar. —MSP430 Microcontroller in Embedded System Project , First Edition, Elite
	Publishing House Private Ltd, Dec , ISBN:978-81-88901-46-3, 2011
4	J. W. Valvano, —Embedded Systems: Introduction to ARM Cortex -M Microcontrollers , Fourth
	edition, Volume 1, ISBN: 978-1477508992, 2013
5	J. W. Valvano, —Embedded Systems: Real-Time Interfacing ARM Cortex –Microcontrollers ,
	Fourth edition, Volume 2, ISBN: 978-1477508992, 2014
6	Cortex-M4 Devices, Generic User Guide By ARM.

COURSE TITLE	SENSO	R-CONCEPTS AND TI	ECHNIQUES	CREDITS	3
COURSE CODE	ECB4726	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
MODULE 1 (9)	L	-	SENSORS	/ TR/	ANSDUCERS
Principles – Classifi	cation –	Parameters – Cha	racteristics – E	invironmental Paramet	ers (EP) –
CharacterizationInc	ductive Sen	sors: Sensitivity and	Linearity of the	Sensor – Types-Capacitiv	ve Sensors:-
Electrostatic Transdu	cer– Force/	Stress Sensors Using	Quartz Resonat	ors – Ultrasonic Sensors	
MODULE 2 – THERM	AL AND M	AGNETIC SENSORS			(9)
Introduction – Gas th	nermometr	ic Sensors – Therma	I Expansion Type	e Thermometric Sensors	s – Acoustic
Temperature Sensor	r – Dielec	tric Constant and	Refractive Inde	ex thermosensors – H	lelium Low
Temperature Thermo	meter – Nu	uclear Thermometer	– Magnetic Ther	mometer – Resistance C	Change
Sensors and the Prin	ciples Behi	nd – Magneto-resist	ive Sensors – An	isotropic Magneto resis	tive Sensing
– Semiconductor Ma	gnetoresist	tors– Hall Effect and	l Sensors – Indu	ctance and Eddy Curre	nt Sensors–
Angular/Rotary Mov	ement Tra	insducers – Synchro	os – Synchrores	solvers - Eddy Current	: Sensors –
Electromagnetic Flow	vmeter – Sv	vitching Magnetic Se	nsors SQUID Sen	sors	

MOD	ULE 3 – RADIATION AN	D ELECTRO ANALYTICA	L SENSORS		(9)				
Intro	Introduction – Basic Characteristics – Types of Photosensistors/Photo detectors– Xray and Nuclear								
Radia	Radiation Sensors- Fiber Optic Sensors, the Electrochemical Cell - The Cell Potential - Standard								
Hydro	Hydrogen Electrode (SHE) - Liquid Junction and Other Potentials - Polarization - Concentration								
Polar	ization– Reference Elect	rodes - Sensor Electroc	les – Electro d	ceramics in Gas Media.					
MOD	ULE	4	-	SMART	SENSORS				
				(9)					
Intro	duction – Primary Sens	ors – Excitation – Am	plification –	Filters - Converters -	Compensation-				
Inform	mation Coding/Processi	ng - Data Communica	ition – Stanc	lards for Smart Sensor	Interface- The				
Autor	mation.								
MOD	ULE	5	-	-	ACTUATORS				
(9)									
Pneu	matic and Hydraulic Ac	tuation Systems- Actu	ation system	s – Pneumatic and hyd	raulic systems -				
Directional Control valves – Presure control valves – Cylinders - Servo and proportional control valves –									
Direc	tional Control valves – F	resure control valves -	– Cylinders –	Servo and proportional	control valves –				
	tional Control Valves – F ess control valves – Rota		– Cylinders -	Servo and proportional	control valves –				
Proce			– Cylinders -	Servo and proportional	control valves –				
Proce	ss control valves – Rota	ry actuators.			control valves –				
Proce TEXT	ess control valves – Rota BOOKS	ry actuators. rs and Transducers" –P	'HI Learning P		control valves –				

DEPARTMENT ELECTIVE III

COURSE TITLE		EMBEDDED IOT		CREDITS	3
COURSE CODE	ECB4727	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	
MODULE 1 (9)	-	FUNDAMENTAL	S AND	APPLICATIONS	OF IoT
	ts of IoT, He	alth Care — Machine		 Recent Trends in the 2M) - Smart Transporta 	

(9) Functional Requirements - Components of IoT: Sensors – Actuators – Embedded Computation	
Functional Requirements - Components of IoT: Sensors - Actuators - Embedded Computation	
runetional Requirements components of 101. Sensors Actuators Embedded computation	Units –
Communication Interfaces – Software Development	
MODULE 3 – COMMUNICATION PRI	NCIPLES
(9)	
RFID – ZigBEE – Bluetooth – Internet Communication- IP Addresses - MAC Addresses - TCP and	d UDP –
IEEE 802 Family of Protocols – Cellular-Introduction to EtherCAT.	
MODULE 4 – COMMUNICATION INTERFACE IN	ΙοΤ
(9)	
IEEE 802.11 Wireless Networks Attacks: Basic Types, WEP Key Recovery Attacks, Keystream R	-
Attacks against WEP – RFID Security – Security Issues in ZigBEE: Eavesdropping Attacks, End	cryption
Attacks – Bluetooth Security: Threats to Bluetooth Devices and Networks.	
	NCEPTS
(9)	
Confidentiality, privacy, integrity, authentication, non-repudiation, availability, access control, de	
depth, least privilege, how these concepts apply in the cloud, what these concepts mean an	
importance in PAAS, IAAS and SAAS. e.g. User authentication in the cloud; Cryptographic S	=
Symmetric cryptography, stream ciphers, block ciphers, modes of operation, public-key crypto hashing, digital signatures, public-key infrastructures, key management, X.509 certificates, Opens	
TEXT BOOKS	JJL.
Adrian McEwen and Hakim Cassimally, —Designing the Internet of Things , John Wiley a	nd Sons
1 Ltd, UK, 2014.	
Olivier Hersent, David Boswarthick and Omar Elloumi, —The Internet of Things: Key Appl	ications
and Protocols , John Wiley and Sons Ltd., UK 2012.	
Dieter Uckelmann, Mark Harrison, Florian Michahelles, —Architecting the Internet of	Things∥,
Springer, New York, 2011.	
Johnny Cache, Joshua Wright and Vincent Liu, —Hacking Exposed Wireless: Wireless	Security
Secrets and Solutions , Tata McGraw Hill, New Delhi, 2010	
Himanshu Dwivedi, Chris Clark and David Thiel, —Mobile Application Security , Tata McG	raw Hill,
Nw Delhi, 2010.	
 Vijay Madisetti, Arshdeep Bahga, —Internet of Things (A Hands-on Approach), Universities 2015. 	Press,
Tim Mather, Subra Kumaraswamy, ShahedLatif, "Cloud Security and Privacy: An Enterprise	
 Perspective on Risks and Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765], 2009 	

COURSE TITLE	AUTOMOTIVE EMBEDDED SYSTEMS			CREDITS	3
COURSE CODE	ECB4728	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA				ESE	
LEARNING LEVEL				ASSESSMENT MODEL	

(9)	ULE		1		-			INT	RODUCTION	
requi	rements -	- Comp	onents of		· Drive by wire bile Electronic	•				
MOD		2		POWER	TRAIN,	BODY	AND	CHASSIS	DOMAIN	
(9)	011	-		. on En		5051	/			
– Ligl Vehic	Power Train Domain: Gasoline engine management -Body Electronics: Vehicle power supply controllers – Lighting technology– Adaptive lighting system – Automatic wiper system – Door control modules - Vehicle to vehicle communication - Chassis Domain: Antilock Braking System (ABS) – Electronic Stability Program (ESP)									
MOD (9)				3	-	AUTO	MOTIVE	11	NFOTRONICS	
					er Assistant Sy · Adaptive Crui	•	•	media system	ıs- Intelligent	
								-		
MOD	ULE		4	-	SAFETY	AND	SE	CURITY (9)	SYSTEMS	
Active Distri	e and Pa	BD) - La	safety- A ane Depar		SAFETY m – Seat beling System - Ani	t tightening	system	(9) - Electronic	Brake Force	
Active Distri	e and Pa bution (E ote Keyles	BD) - La	safety- A ane Depar		m – Seat bel	t tightening	system nologies –	(9) - Electronic ·Electronic Im	Brake Force	
Active Distri Remo	e and Pa bution (E ote Keyles	BD) - La	safety- A ane Depar		m – Seat bel	t tightening ti-theft techi	system nologies –	(9) - Electronic ·Electronic Im	Brake Force nmobilizers –	
Active Distri Remo MOD (9) Cross	e and Pa bution (E ote Keyles ULE -system	BD) - La ss entry functio	safety- A ane Depar 5 ns - Bus	systems: F	m – Seat bel	t tightening ti-theft tech AUTOMO classificatio	system nologies – DTIVE n and ap	(9) - Electronic Im Electronic Im pplications –	Brake Force nmobilizers – NETWORKING	
Active Distri Remo MOD (9) Cross netwo	e and Pa bution (E ote Keyles ULE -system	BD) - La ss entry functio	safety- A ane Depar 5 ns - Bus	systems: F	m – Seat beli ng System - An – Requirements,	t tightening ti-theft tech AUTOMO classificatio	system nologies – DTIVE n and ap	(9) - Electronic Im Electronic Im pplications –	Brake Force nmobilizers – NETWORKING	
Active Distri Remo MOD (9) Cross netwo	e and Pa bution (E ote Keyles ULE -system orks- CAN BOOKS	BD) - La ss entry functio N – LIN - Navet a	safety- A ane Depar 5 ns - Bus - MOST – and Franc	systems: F Diagnostic Ir	m – Seat beli ng System - An – Requirements,	t tightening ti-theft tech AUTOMO classificatio mples of ne	system nologies – DTIVE n and ap tworked v	(9) - Electronic Im Electronic Im poplications – rehicles.	Brake Force nmobilizers – NETWORKING coupling of	
Active Distri Remc MOD (9) Cross netwo TEXT	e and Pa bution (E ote Keyles ULE -system orks- CAN BOOKS Nicolas Press, U	BD) - La ss entry functio N – LIN - Navet a ISA, 200	safety- A ane Depar 5 ns - Bus - MOST - and Franc 08.	systems: F Diagnostic Ir oise Simono	m – Seat beli ng System - An – Requirements, nterfaces – exa	t tightening ti-theft tech AUTOMO classificatio mples of ne motive Embe	system nologies – DTIVE n and ap tworked v edded Sys	(9) - Electronic Im Electronic Im polications – rehicles. tems Handbo	Brake Force nmobilizers – NETWORKING coupling of pok , CRC	
Active Distri Remo (9) Cross netwo TEXT	e and Pa bution (E ote Keyles ULE -system orks- CAN BOOKS Nicolas Press, U Robert I LjuboVla	BD) - La ss entry functio N – LIN - Navet a JSA, 200 Bosch, <i>J</i> acic, <i>M</i>	safety- A ane Depar 5 ns - Bus - MOST – and Franc 08. Automotir lichel Par	systems: F Diagnostic Ir oise Simono ve Electrics / ent &Furnic	m – Seat beling System - Ani Requirements, Interfaces – exa	t tightening ti-theft tech AUTOMO classificatio mples of ne motive Embe ectronics , W -Intelligent	system nologies – DTIVE n and ap tworked v edded Sys /iley (5TH	(9) - Electronic Im Electronic Im pplications – rehicles. tems Handbo Edition),2010	Brake Force nmobilizers – NETWORKING coupling of pok , CRC	
Active Distri Remo (9) Cross netwo TEXT 1 2	e and Pa bution (E ote Keyles ULE system orks- CAN BOOKS Nicolas Press, U Robert I LjuboVla Applicat	BD) - La ss entry functio N – LIN - Navet a ISA, 200 Bosch, A acic, M tions, B	safety- A ane Depar 5 ns - Bus - MOST – and Franc 08. Automoti lichel Par utterwort	systems: F Diagnostic In oise Simono ve Electrics / ent &Furnic ch-Heinemar	m – Seat beling System - Ani ng System - Ani – Requirements, nterfaces – exa t-Lion, —Auton Automotive Ele o Harshima, –	t tightening ti-theft tech AUTOMO classificatio mples of ne motive Embe ectronics , W -Intelligent 5, 2001.	system nologies – DTIVE n and ap tworked v edded Sys /iley (5TH Vehicle T	(9) - Electronic Im Electronic Im pplications – rehicles. tems Handbo Edition),2010	Brake Force nmobilizers – NETWORKING coupling of pok , CRC	

COUR	RSE TITLE		SMART SYSTEMS	S	CREDITS	3			
COUR	RSE CODE	ECB4729	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0			
CIA					ESE				
LEAR	EARNING LEVEL ASSESSMENT MODEL								
MOD	ULE 1 – INTRO	DUCTION TO	D SENSOR DEVICES			(9)			
Piezo	resistive pressu	ure sensor- l	Piezoresistive Accel	erometer - Cap	acitive Sensing- Acceler	ometer and			
Micro	phone - Resor	nant Sensor	and Vibratory Gyr	oscope - Low-P	ower, Low Voltage Sen	sors- Micro			
Electr	o Mechanical S	ystems Anal	ysis and Design of N	1EMS Devices- N	ano Sensors.				
			OR INFORMATION			(9)			
		-		-	g- Digital conversion- M	CU Control-			
			niques and System C		Sensor Integration.				
			UES AND STANDAR			(9)			
					etworks, Adaptive Cont	rol. Control			
<u> </u>	<u> </u>		P Control and IEEE 1						
			FOR SMART SENSC			(9)			
			-	ry- Automotive	Protocols- Industrial Net	works-			
	e Automation- N					(0)			
					OF SMART SENSORS	(9)			
				ing for Monolith	ic Sensors- Reliability Im	plications-			
	ng Smart Sensor BOOKS	IS- HVAC Sen	sor chip.						
1	r	"Understand	ing Smart Sensors".	Artech House, S	econd Edition, 2011Bost	on.			
2					s", Elsevier Publications,				
		•			tro Mechanical Systems				
3			on, Artech House Pi						
4					/", Wiley-Interscience; 1s	st edition,			
4	2002,UK								
5	John A. Pelesk	o and David	H. Bernstein, " Mod	leling MEMS and	NEMS", CRC Press, 200	2,UK			
6	Rai-choudhur	y, "MEMS an	d MOEMS Technolo	gy and Applicati	ons",PHI, 2010.				
7	Ananthasures	h, "Micro an	d Smart Systems" W	/iley Publishers,2	2013.				

DEPARTMENT ELECTIVE - IV

COUR	RSE TITLE	ROBOTICS	TECHNOLOGY AND	INTELLIGENCE	CREDITS	3					
COUR	RSE CODE	ECB4730	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0					
CIA					ESE						
LEAR	NING LEVEL				ASSESSMENT MODEL						
MOD	ULE 1 – INTRO	DUCTION TO	ROBOTICS		·	(9)					
Robot	tics - basic co	mponents -	classification - spe	cifications, Rob	otic sensors- proximity	and range					
reduc		ation, featur	e extraction and c		nage processing and ana on. Robotic drives and						
MOD	ULE 2 – ROBOT	CONTROL				(9)					
	ontrol - PD gra				linear feedback systems le structure control and						
MOD	ULE 3 – ROBO	r end effec	TORS AND TRAJECT	ORY PLANNING		(9)					
contir kinem MOD Artific end a	nuous path m natic equation u ULE 4 – ROBO cial Intelligence analysis -proble	otion, interp using homoge I INTELLIGEN - technique m solving - I	polated motion, an eneous transformat ICE AND TASK PLAN s - state space - sea	id straight line ion and robot dy INING arch problem rea k planning - bas	nalysis - pick and place motion manipulator k mamics. duction - predicate logic ic problems in task plar	inematics - (9) means and					
MOD	ULE 5 – INDUS	FRIAL ROBO	FICS			(9)					
- worl analys	k cell control - i	nterlocks – e		recovery - work	hine interference - work cell controller - robot cy	-					
1		ing, "Fundan	nentals of Robotics:	Analysis and Co	ntrol", Prentice Hall of In	dia, New					
2	Deb. S. R, "Ro	botics Techn	ology and Flexible N	lachine Design",	Tata McGraw Hill, 2010	Deb. S. R, "Robotics Technology and Flexible Machine Design", Tata McGraw Hill, 2010.					
	Mikell P Gro										
3	Technology, P	rogramming	and Applications ",	McGraw Hill, Int		ics					
3	Technology, P Richard D Klaf	rogramming ter Thomas /	and Applications ",	McGraw Hill, Int Michael Negin, "	-	ics					

COUF	RSE TITLE	WIR	ELESS SENSOR NET	WORKS	CREDITS	3
COUF	RSE CODE	ECB4731	COURSE CATEGORY	PC	L-T-P-S	3-0-0-0
CIA					ESE	
LEAR	NING LEVEL				ASSESSMENT MODEL	
MOD	ULE 1 – BASIC	CONCEPTS o	f WSN			(9)
Intro	duction to Wire	less Sensor I	Networks (WSNs) ar	nd Their Applica	tions – Constraints and C	Challenges –
Single	e-node Archite	cture – Harc	ware components-	Energy consur	mption of sensor nodes	- Operating
syste	ms and execution	on environm	ents- Network archi	tecture.		
MOD	ULE 2 – WIRELE	SS TRANSM	ISSION TECHNOLOG	BY BROADBAND	NETWORKS	(9)
Wirel	less Channels	and Comm	unication Fundam	entals – Physi	cal layer and transce	iver design
consi	derations in W	'SNs - Energ	y usage profile- Ch	oice of modula	tion scheme - Dynamic	modulation
	-				Control (MAC) Protocols	-
cycle	protocols and v	wake-up con	cepts—Contention-	based protocols	- Scheduled- based prot	ocols – IEEE
	5.4 MAC proto					
MOD	ULE 3 – ROUTI	NG AND DAT	TA GATHERING PRO	TOCOLS		(9)
Challe	enges and desig	gn Issues in V	Vireless Sensor Netv	works –Routing	strategies - Flooding and	gossiping –
Hiera	rchical Routing	: Low energy	Adaptive Clusterin	g Hierarchy (LE	ACH) – Power efficient (Gathering in
Senso	or Information	Systems (PE	GASIS)– Data cent	ric Routing: Se	nsor Protocols for Info	rmation Via
Nego	tiation (SPIN) -	Directed Diff	usion – Energy awa	re routing – Geo	graphical routing.	
MOD	ULE 4 – NETW	ORK MANAG	EMENT FOR WSNS			(9)
	-	•			n Issues – Issues Related	
	-	-	-		and Name Managemer	
-			ocalization and position	tioning: Propert	ies - Possible approaches	- Proximity-
	eration and Tria					
	ULE 5 – EMBED					(9)
•	•			•	erating System Design Is	sues -
	• •	ng Systems –	TinyOS – Mate – M	agnetOS –MAN	TIS.	
TEXT	BOOKS					
1		•	noli and Taieb Znati, ‖, Wiley, 2007	—Wireless Sen	sor Networks – Technolc	οgγ,
2	Edgar Callawa	y, —Wireless	s Sensor Networks:	Architectures ar	nd Protocols∥, CRC Press,	2004.
3	Holger Karl an Wiley, 2005.	d Anderson	Willis, —Protocols a	nd Architecture	s for Wireless Sensor Net	tworks ,

COURSE TI	TLE		SYSTEM ON CHI	P	CREDITS	3
COURSE CO	DDE	ECB4732	COURSE CATEGORY	РС	L-T-P-S	3-0-0-0
CIA					ESE	
LEARNING	LEVEL				ASSESSMENT MODEL	
MODULE (9)		1	-		INT	RODUCTION
•			of ASIC Technology nd components.	– System on ch	p concepts and method	dology – SoC
MODULE (9)	2	-	DESIGN N	IETHODOLOGIC	FOR LOGIC	CORES
-		•	s – Design process fo d SoC design example		Soft and firm cores – De	esigning with
MODULE (9)	3	– DESIGI	N METHODOLOG	FOR MEN	NORY AND ANALC	OG CORES
			on modes – Specific – High speed I/O	ation of analog	circuits – A to D convei	rter – D to A
MODULE			4	-	DESIGN (9)	VALIDATION
Core level coverificati		on – Test b	enches- SoC desigr	n validation – (Cosimulation – Hardwa	are/software
MODULE		5	-		SOC	TESTING
(9)						
re-use – Te	esting of	microproces	sor cores – Built in s	self-test method	scan – Test methodolog – Testing of embedde	
Verification		ologics inti	roduction to system v	vernog.		
TEXT BOOK	(S		· · · · ·		h House, London, 2000.	
TEXT BOOH1Roch2Laur	(S nit Rajsum ng-Terng V	nan, —Syste Wang, Charle	m-on-a-chip: Design	and Test , Artec A Toubq, —Syste	h House, London, 2000. m on Chip Test Archited	ctures:
TEXT BOOK1Rock2LaurNanoNano3Wge	(S hit Rajsun ng-Terng [\] ometer D	nan, —Syste Wang, Charl esign for Te	m-on-a-chip: Design es E Stroud and Nur / stability , Morgan Ka	and Test∥, Artec A Toubq, —Syste ufmann, 2008.		