

B. TECH. MECHATRONICS

(Duration: 4 Years)

CURRICULUM and SYLLABUS

(Applicable for Students admitted from Academic Year 2018-19)

DEPARTMENT OF MECHATRONICS ENGINEERING SCHOOL OF MECHANICAL SCIENCES HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

HINDUSTAN INSTITUTE OF TECHNOLOGY & SCIENCE

Motto:

To Make Every Man a Success and No Man a Failure

Vision:

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

Mission:

- To create an ecosystem that promotes learning and world class research.
- To nurture creativity and innovation.
- To instill highest ethical standards and values.
- To pursue activities for the development of the Society.
- To develop national and international collaborations with institutes and industries of eminence.
- To enable graduates to become future leaders and innovators.

Value Statement:

Integrity, Innovation, Internationalization.

DEPARTMENT OF MECHATRONICS ENGINEERING

VISION

To be recognized internationally in providing Mechatronics education, nurturing professional engineers with outstanding competencies for innovation, research and entrepreneurial skills.

MISSION

The Mechatronics program continuously strives,

M1. To provide a conducive academic environment with state of art laboratory infrastructure

M2. To promote collaborative research and innovation with global institutions and industries

M3. To offer interdisciplinary curricula and learning practices to meet the dynamic global demands

M4. To impart technical, managerial and lifelong learning skills, embedded with ethical values and social relevance.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO'S):

- **PEO1.** Successful career and adaptability to industry: Graduates will have in-depth knowledge appropriate to the discipline of Mechanical Engineering which enables them to pursue higher studies and academic research.
- **PEO2.** Modern design tools and multi-disciplinary project execution: Graduates will attain professionalism and shall be industry adaptive through a degree structure that isrelevant to industry, and responsive to changes in technology and the needs of the society with noble attitude and social responsibility.
- **PEO3.** Contribution to mechanical field and lifelong learning: Graduates will posses multi and inter disciplinary knowledge and excel in innovation and teamwork with entrepreneurial capabilities

PROGRAM OUTCOMES [PO's]

- **PO1** : Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex Mechanical engineering problems.
- **PO 2** : Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

- **PO 3** : Design/development of solutions: Design solutions for complex Mechanical engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
 - **PO 4** : Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, 5analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
 - PO 5 : Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools that are relevant to Mechanical engineering, including prediction and modeling to complex engineering activities with an understanding of the limitations.
 - **PO 6** : The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Mechanical engineering practice.
 - **PO 7** : Environment and sustainability: Understand the impact of the Mechanical engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
 - **PO 8** : Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the Mechanical engineering practice.
 - **PO 9** : Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
 - **PO 10** : Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
 - **PO 11 :** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
 - **PO 12** : Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME (PSO's)

- **PSO1** : Design, develop and evaluate the elements of Mechatronics systems.
- **PSO2** : Interface and integrate Mechatronics systems to align with global industrial standards satisfying the societal needs

			B.TECH – MECHATRONICS							
(165 - CREDIT STRUCTURE)										
			SEMESTER - I							
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	S	тсн	
1	BS	MEA4101/ ELA4101	Engineering Graphics and Computer aided Design / Professional English and soft skills	1	1	2	3	1	4	
2	BS	MAA4101	Matrices and calculus	3	0	2	4	1	5	
3	BS	PHA4101/C YA4101	Engineering Physics / Engineering Materials	3	0	0	3	1	3	
4	PC	CSA4101/ GEA4102	Problem Solving Using C* / Sustainable Engineering Systems	2	0	2*/ 0	3/2	1	4/3	
5	PC	MHB4102/ MHB4101	Introduction to Digital Systems* Engineering and Design	2/3	0	2*/ 0	3	1	3	
6	BS	GEA4131	Engineering Immersion Lab	0	0	2	0.5	2	2	
7	BS	PHA4131/ CYA4131	Engineering Physics Lab / Materials Chemistry Lab	0	0	2	1	0	2	
			Total	11/ 12	1	12/ 10	17.5/ 16.5	7	23/ 22	
*Pro	ject based Le	arning							-	
			SEMESTER - II							
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	S	тсн	
1	BS	MAA4117	Analytical Mathematics	3	0	2	4	0	5	
2	BS	PHA4101/ CYA4101	Engineering Physics / Engineering Materials	3	0	0	3	1	3	
3	BS	ELA4101/ MEA4101	Professional English and soft skills /Engineering Graphics and Computer aided Design	1	1	2	3	1	4	
4	PC	GEA4102/ CSA4101	Sustainable Engineering Systems /Problem Solving Using C*	2	0	0/ 2*	2/3	1	3/4	
5	РС	MHB4101 /MHB4102	Engineering and Design /Introduction to Digital Systems*	2/3	0	0/ 2*	3	1	3	
6	РС	MEB4116	Engineering Mechanics	3	1	0	4	1	4	
7	PC	MHB4117	Basics of Mechatronics	2	0	2	3	1	3	
8	PC	MHB4141	Floor Shop Training	0	0	2	1	2	1	
8	BS	PHA4131/ CYA4131	Engineering Physics Lab / Materials Chemistry Lab	0	0	2	1	0	2	
		•	<i>II</i>							

		Τα	otal	16/ 17	2	16	24.5/ 25.5	10	30/ 31
			SEMESTER - III					-	
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	c	s	тсн
1	BS	MAA4201	Partial Differential Equations and Transforms	3	1	0	4	0	5
2	PC	MHB4201	Manufacturing Processes	3	0	0	3	0	3
3	РС	MHB4202	Mechanics of Machines	3	0	2	4	1	5
4	РС	MHB4203	Embedded Systems	3	0	2	4	1	5
5	DE		Department Elective – I	3	0	0	3	0	3
6	NE		Non Department Elective – I	2	0	0	2	0	2
7	РС	MHB4231	Computer Aided Design Lab	0	0	2	1	0	2
8	РС	MHB4232	Manufacturing Processes Lab	0	0	3	1	0	3
9	РС	MHB4233	Design Project-I	0	0	2	1	0	2
		•	Total	17	1	11	L 23	2	30

			SEMESTER - IV						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	S	тсн
1	РС	MHB4218	Electrical Machines and Drives	3	0	0	3	1	3
2	РС	GEA4216	Professional ethics and life skills	2	0	0	2	1	2
3	PC	MHB4219	Solid and Fluid Mechanics	3	0	0	3	2	3
4	PC	MHB4220	Statistics and Data Analytics	3	0	2	4	0	5
5	DE		Department Elective-II	3	0	0	3	0	3

6	NE		Non Department Elective–II	2	0	0	2	0	2
7	РС	MHB4242	Electrical Machines and Drives lab	0	0	2	1	0	2
8	РС	MHB4243	Solid and Fluid Mechanics Lab	0	0	3	2	0	3
9	РС	MHB4244	Design Project II	0	0	2	1	0	2
		1	īotal	16	0	9	21	4	25

			SEMESTER - V						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	s	тсн
1	PC	MHB4301	Metrology and Measurements	3	0	2	4	0	5
2	PC	MHB4304	Control Systems	2	1	2	4	2	5
3	PC	MHB4305	Hydraulics and Pneumatics	3	0	0	3	1	3
4	HS	GEA4304	Business Economics	3	0	0	3	1	3
5	DE		Department Elective-III	3	0	0	3	0	3
6	NE		Non Department Elective–III	2	0	0	2	0	2
7	РС	MHB4334	Hydraulics and Pneumatics Lab	0	0	2	1	0	2
8	РС	MHB4335	Virtual Instrumentation Lab	0	1	3	3	2	4
9	PC	MHB4336	Design Project III	0	0	2	1	0	2
			Total	16	2	11	24	6	29
			SEMESTER - VI						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	s	тсн
1	PC	MHB4321	Sensors and Motion Control	3	0	0	3	2	3
2	PC	MHB4322	Design of Mechatronics System	3	0	2	4	3	5
3	PC	MHB4323	CNC Technology	3	0	2	4	3	5
4	PC	MHB4324	Industrial Electronics	3	0	0	3	3	3

5	DE		Department Elective-IV	3	0	0	3	0	3
6	NE		Non Department Elective–IV	2	0	0	2	0	2
8	РС	MHB4345	Sensors and Motion Control Lab	0	0	3	2	0	3
9	РС	MHB4346	Design Project IV	0	0	2	1	0	2
10	РС	MHB4347	Comprehension	1	0	0	1	0	1
	•		Total	18	0	9	23	11	27
			SEMESTER - VII						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	с	s	тсн
1	РС	MHB4407	NDT and Condition Monitoring	3	0	0	3	2	3
2	РС	MHB4408	Robotics and Machine Vision	3	1	0	4	3	4
3	PC	MHB4409	Artificial Intelligence for Mechatronics	3	0	2	4	3	5
4	РС	MHB4410	Fundamentals of Signal Processing	3	0	2	4	0	5
5	DE		Department Elective - V	3	0	0	3	0	3
6	NE		Non Department Elective –V	2	0	0	2	0	2
7	PC	MHB4437	Robotics and Machine Vision Lab	0	0	2	1	0	2
8	PC	MHB4438	NDT and Condition Monitoring Lab	0	0	3	2	0	3
9	PC	MHB4439	Design Project V	0	0	2	1	0	2
			Total	17	1	11	24	8	29
								_	
			SEMESTER - VIII						
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Ρ	С	s	тсн
1	PC	MHB4448	Project	0	0	24	8	0	24
			Total	0	0	16	8	0	24
			Total				165		

	LIST OF DEPARTMENTAL ELECTIVES WITH GROUPING - SEMESTER WISE										
SEM	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	т	Р	с	s	тсн		
Electiv	re I						_				
3	DE	MHC4251	Basics of Robotics	3	0	0	3	1	3		
3	DE	MHC4252	Mechatronics System Applications30031					3			
3	DE	MHC4253	Mobile Robots	3	0	0	3	1	3		
Electiv	re II			_	_ <u></u>	I	I	_ !			
4	DE	MHC4266	Industrial Robots	3	0	0	3	1	3		
4	DE	MHC4267	Machining Technology	3	0	0	3	1	3		
4	DE	MHC4268	Applied Pneumatics For Industrial Automation	3	0	0	3	1	3		
4	DE	MHC4269	Product Development	3	0	0	3	1	3		
Electiv	re III										
5	DE	MHC4355	Building Automation	3	0	0	3	1	3		
5	DE	MHC4356	Electronic Devices And Circuits	3	0	0	3	1	3		
5	DE	MHC4357	Industrial Instrumentation	3	0	0	3	1	3		
Electiv	re IV							·			
6	DE	MHC4370	Analog Electronics	3	0	0	3	1	3		
6	DE	MHC4371	Operational Research	3	0	0	3	1	3		
6	DE	MHC4372	Robotic Operating System	3	0	0	3	1	3		
6	DE	MHC4373	Virtual Reality	3	0	0	3	1	3		
Electiv	ve V		·								
7	DE	MHC4459	Robotic Process Automation	3	0	0	3	1	3		

7	DE	MHC4460	Industrial Engineering	3	0	0	3	1	3
7	DE	MHC4461	Total Quality Management	3	0	0	3	1	3
7	DE	MHC4462	Finite Element Analysis	3	0	0	3	1	3

LIST OF NON DEPARTMENTAL ELECTIVES OFFERED BY MECHATRONICS WITH GROUPING - SEMESTER									
			WISE						
SEM	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	P	c	s	тсн
Elective	e I		•		_				
3	NE	MHD4281	Building of Mobile Robots	2	0	0	2	1	2
Elective	e II								
4	NE	MHD4292	Al in Robotics	2	0	0	2	1	2
4	NE	MHD4293	Robotics & IOT, Sensors for Autonomous Vehicles	2	0	0	2	1	2
Elective	e III				•				
5	NE	MHD4382	Machine Vision	2	0	0	2	1	2
Electiv	e IV								-
6	NE	MHD4392	Immersive Technologies	1	1	0	2	0	2
6	NE	MHD4393	Design Thinking and Product Development	2	0	0	2	1	2
6	NE	MHD4394	Industry 4.0	2	0	0	2	1	2
Electiv	e IV								
7	NE	MHD4481	Product Prototyping	2	0	0	2	1	2

SEMESTER VII

COUF TITL	RSE .E	NDT AND CONDITION MONITORING CREDITS												3					
COUI COD	RSE DE	N	IHB44	07	COI	JRSE (CATEG	ORY	P	C	L-T	-P-S	3-0	-0-2					
Versi	ion		1.0		Aŗ	oprova	al Deta	ails	24 th / 30.05	ACM, 5.201 3	LEAR LE ^V	NING /EL	BT	L-3					
ASSESS	MENT	SCHE	ME																
Firs	st		Secon	d		Sem	inar/		Sur	orise	Attor	adanc							
Period	lical	Pe	eriodio	al	Æ	Assign	ments	/	Tes	st /	Aller		E	SE					
Assess	ment	Ass	sessm	ent		Pro	ject		Qı	Jiz		5							
15%	6		15%			10	0%		5	%	5	%	50)%					
Cour Descrip	rse otion	This mon intro meth	course intended to introduce various non-destructive testing and condition itoring techniques practiced in industries. This course includes the oduction and selection of various NDT techniques and condition monitoring hods. This course also elaborates the interdisciplinary systems for neering testing applications																
Cour Objec	rse tive	The 1. T 2. T 3. T 4. T 5. T	specif o intro o recc o knov o emp o knov	ic obje oduce ognize w the oathise w the	ectives the cc the ha sensor e the ir capab	of the incept irdwar rs and interfac ilities	e Cour is of N re aspe signal cing co of vari	se ena DT and ects of condi oncept ous m	able the d condi f inspec itioning ts throu onitori	e stude tion m ction g ugh ND ng syst	ents to onitori T meth cems	ng ods							
Cour Outco	rse ome	Stud 1. C 2. A 3. D si 4. Ir	lents v ompre nd sel rrange vescrib tandar nterpre	vill be ehend ect the e the i e the rds, sp et the	able to variou e meth nstrun e mat ecifica result	o: us tec nod fo nentat erials itions. s using	hnique r vario ion fo and g diffe	es of ous de r Vibra metho rent a	condition fects flation M ods – nalysis	on mo aws Ionitor UT, LF metho	nitorin; ing. PT, MP ods	g and I	NDT me	thods					
Prereq	uisites	: Knov	wledge	e in se	nsors	and ha	ardwa	re											
CO, PO	AND	PSO N	1APPI	NG															
0	РО	РО	РО	РО	РО	РО	РО	РО	PO-	РО	PO-	PO-	PSO	PSO					
	-1	-2	-3	-4	-5	-6	-7	-8	9	-10	11	12	-1	-2					
CO-1	3	3	1	2	2	1	1	1	1	1	1	-	1	3					
CO-2	3	3	2	2	3	1	1	1	1	1	2	-	1 3						

CO-3	3	3	2	2	2	1	1	1	1	1	1	-	1	3
CO-4	3	3	2	2	2	1	1	1	1	1	1	-	1	3
		1: V	Veakly	relate	ed, 2: I	Mode	rately	relate	d and 3	3: Stro	ngly re	lated	<u>I</u>	
MODU	LE 1:	INTR	ODUC	TION					(9	9L)				
Outline	e: vibra	ation a	analys	is, per	forma	nce ar	nalysis	, temp	eratur	e moni	toring,	, Fault		
diagnos	sis Int	roduct	tion to	o vario	ous no	on-des	tructiv	/e me	thods-	Visua	l Inspe	ction,)_1
Optical	aids, /	Applic	ations	•									BT	/-1 _2
Sugges	ted Re	eading	; :											
Case St	udy o	n sele	ction o	of testi	ng me	thods								
MODU	LE	2:								VIBRA	TION	Ν	/ONITC	RING
(9L)														
Use of	fover	rall vi	bratio	n leve	el. Ass	essme	ent of	vibra	ation s	everity	. Freq	uency		
analysis	s, Mor	nitorin	g of be	earing	- Case	study	/						CC)-2
Sugges	ted re	ading											BT	L-2
Vibratio	on mo	nitorii	ng of r	nachir	ie tool	S								
	LE	3:		LIQU	UD	PENE	TRAN	Γ A	ND	MAGN	IETIC	PART	ICLETES	TING
(9L)	1				<u>(</u>					-	- 1- 1	1		
Physical principles, procedure for penetrant testing, water washable, post –											~~~			
Domor	abien	netho on	us, Pri	incipie		² 1, pro	cedur	e, Equ	upmen	it, App	lication	15	рт	1-5 1 2
Liquid	nonoti	on cont to	octina										DI	L-2
			sting						FDDV	,	CURR		TEG	STING
(9L)		ч.							2001		conn		I E.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Princip	les, In	strum	entati	on for	ECT,	Absolu	ute - d	liffere	ntial pr	obes, ⁻	Techniq	ues –		
High se	nsitivi	ty Tec	hnique	es, App	olicatio	ons							CC)-3
Sugges	ted Re	eading	5										BT	L-2
Fabrica	tion o	f simp	le EM	senso	rs									
MODU	LE		:	5:					ULTF	RASON	IC		TES	TING
(9L)														
Princip	le , Ul	trason	nic trar	nsduce	rs ,Ins	pectio	on Me	thods,	Ultras	onic Fla	aw dete	ection		
Equipm	ient , l	Modes	s of dis	splay A	A- scar	η <i>,</i> Β-S	can , C	- Scan	,Appli	cations	5		CC)-4
Sugges	ted Re	eading	5										BT	L-2
Study o	of Ultra	asonic	probe	es										
TEXT B	OOKS													
1	Bald	ev raj	, T Jey	yakum	ar, M.	Thava	asimut	thu. (2	2019). /	Practic	al Non	Destru	ctive Te	sting,
	Naro	sa Pul	blishin	g Hou	se.									
2	Ami	ya R. I	Mohai	nty .(2	015).	Condi	tion N	1onito	ring Pr	inciple	s and F	Practice	s, CRC	Press,
	USA													
REFERE	NCES													

3	Krautkramer. J. (1996). Ultrasonic Testing of Materials, 2nd Edition, Springer Verlag
	Publication, New York, 1996.
4	Peter J. Shull. (2003). Non Destructive Evaluation: Theory, Techniques and Application,
	Marcel
Web R	esource
1	https://www.nde-ed.org/index_flash.html

COURSE TITLE	ROBOTICS AND MACHINE VISION SYSTEMS CREDITS 4								
COURSE CODE	MHB4408 COURSE PC L-T-P-S 3-1 CATEGORY								
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	LEARNING LEVEL BTL- 4				
ASSESSMENT	SCHEME								
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendanc e	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	Robotics is an intermechanical engine Robotics deals with well as computer as processing. Robots physically bound the of performing chall The goal of this concepts of indust introduces the fun- be used along with concepts and alg autonomously in or emphasis is put or vision system and introduce several path planning, var with application of	rdisciplinary branch of ering, electronics engi h the design, construc- systems for their contra- systems for their contra- s are rapidly evolving o their work-cells, to in enging tasks in our dai program is to introd rial robots and their a damentals of vision sy ith the robots. There gorithms required to complex environments in robot locomotion and motion planning. The types of industrial ro ious image processing vision system in robot	rengineering neering, comp ction, operation rol, sensory fe from factor ncreasingly co ily environment luce the hard applications. S stems and im efore, this co bother this co bother the second contegrating to d kinematics, e lectures and bother and the grand machine s.	and science th puter science, a pn, and use of eedback, and in y workhorses, omplex machin nt. dware and pro- Secondly, this of age processing urse provides nobile robots vision systems environment p d exercises of t ir modelling, l e vision techni	at includes and others. f robots, as information which are tes capable ogramming course also g that could the basic that act . The main perception, this course kinematics, ques along				

		Tł	ne spe	cific ob	ojective	es of t	he Cou	urse er	nable t	he stu	dents t	0		
		1.	Lear	n the c	oncept	ts of r	obot k	inema	tics.					
Course		2.	Lear	n the p	principl	es of	robot	drives	and co	ontrols	5.			
Objecti	vo	3.	Lear	n the s	ensors	used	in rob	ots.						
Objecti	ve	4.	Lear	n metł	nods of	deve	loping	soluti	ons fo	r Robo	t config	guratio	ns.	
		5. Learn the concepts of various machine vision and image processing										essing		
			tech	niques										
		U	pon co	mplet	ion of t	this co	ourse,	the stu	udents	will b	e able t	to		
		1.	Class	ify an	d disc	uss di	fferen	t robo	otic sys	stems,	their	actuato	ors, drive	es and
			cont	rols.										
Course		2.	Infer	, Inter	pret an	d Dev	elop K	linema	itic sol	utions	for rot	oots.		
Outcon	ne	3.	Class	ify, il	lustrat	e, an	d app	oreciat	e diff	erent	grippi	ng me	chanism	s and
			sens	ors for	roboti	CS.								
		4.	Discu	uss the	e role o	f mac	hine v	ision t	echniq	lues in	roboti	cs.		
		5.	Com	prehei	nd and	discu	ss vari	ous im	nage p	rocess	ing tec	hniques	s in robo	tics
Prereq	uisite	es: NIL												
СО, РО	AND) PSO	MAPP	ING								-		
	Ρ	PO	PO	PO	PO-	P	PO	PO	PO	PO	PO-	PO-	PSO-	PSO
СО	0	-2	-3	-4	5	0-	-7	-8	-9	-10	11	12	1	-2
	-1		_		_	6		_	_	_				
CO-1	3	3	3	3	1	0	0	2	2	0	0	2	2	2
CO-2	3	3	3	3	1	0	0	2	2	0	0	2	2	3
CO-3	3	3	3	3	0	0	0	2	2	0	0	2	2	3
CO-4	3	3	3	3	0	0	0	2	2	0	0	2	2	2
CO-5	3	3	3	3	0	0	0	2	2	0	0	2	2	2
		1:	Weak	y relat	ted, 2:	Mode	erately	relate	ed and	3: Str	ongly r	elated		
			N	10DUI	.E 1: IN	ITROD	υστια	ON					(9L + 3	T =12)
Introdu	ictio	n to i	robotio	cs - B	asic St	tructu	re– C	lassific	ation	of rol	oot an	d Robo	tic	
system	s –la	ws of	roboti	cs – r	obot n	notion	ıs – wo	orkspa	ce, pr	ecisior	n of mo	vemen	t —	
Drives a	and A	Actuat	ors.											- 0-1
Sugges	ted F	Readir	igs:										R	TL-3
•	Conf	igurat	ions of	SCAR	A, PUN	/IA 36	0 <i>,</i> STAI	NFORE) arm					
•	Vario	ous M	echan	ical, El	lectric,	Hydr	aulic a	and Pr	neuma	itic Ac	tuators	used	for	
	Robo	otic Ap	plicati	ons.										
							MO	DULE 2	2: KINE	EMATI	CS OF F	ROBOTS	6 (15L+5	5T=20)

Introduction, Matrix Representation, Robot Transformations - Homogeneous	
transformation, - Forward and Inverse Kinematics - Inverse Kinematics - D H	
Representation, Degeneracy, dexterity, Basics of Trajectory planning.	
Suggested Readings:	CO 3
• Derive kinematic solutions of 2,3,4 and 6 DOF robotic and wrist	
configurations using Denavit – Hartenberg Matrix.	BIL-4
• Derive FK and IK solution for the 4 D.O.F GANTRY Robot considering the	
ACME Lead Screw transmission directly coupled with electric motor in X,Y, Z	
axis.	
MODULE 3: END EFFECTORS	k SENSORS
	9L+3T=12)
Robot End Effectors: Types of end effectors – Mechanical grippers – Types of	
Gripper mechanisms – Gripper's force analysis – Other types of Grippers – Vacuum	
cups - Magnetic Grippers - Adhesive Grippers - Robot end effector interface -	
Sensors for Robotics – Design of Two and Three finger mechanical Grippers – Soft	CO 3
Grippers.	
Suggested Readings:	DIL-3
 Various Actuators used for design of robotic configurations. 	
 Study of Grasping Modes, Forces, and Stability 	
 Ultrasonic, Opto mechanical and Smart Tactile Sensors for gripper design. 	
MODULE 4: MACHINE VISION AND IMAGEPF	ROCESSING
	(8L)
Introduction – Image processing Vs image analysis, image Acquisition, digital	
Images – Sampling and Quantization – Image definition, levels of Computation.	
Data reduction – Windowing, digital conversion. Operation on images:	
Segmentation – Thresholding, Connectivity, Noise Reduction, Edge detection,	
Segmentation, Region growing and Region Splitting -Mondic - Diadic - Spatial -	CO 1
Morphology – Binary Morphology and grey morphology operations. Boundary	CU-4
detection – Hit and miss transform – Shape changing: Cropping – resizing –	DIL-3
pyramids – warping.	
Suggested Readings:	
 Various Image processing techniques used for object identification and 	
detection.	
MODULE 5: MULTIPL	E IMAGES
	(8L)

Obje	ct recognition by features, Depth measurement, specialized lighting								
techr	niques. Segmentation using motion – Tracking. Region Features: Classification –								
Repr	presentation – Description - Line Features – Point features - Feature								
corre	spondence – Geometry of multiple views – Stereo vision – Structure and								
moti	on, interfacing with industrial robots, Real time Image processing.	DIL-3							
Sugg	ested Readings:								
	Principles of Stereo Vision and its application in industrial robotics system.								
TEXT	BOOKS								
1	Saeed B. Niku. (2019). Introduction to Robotics: Analysis, Systems, Application	ns, Wiley.,							
1.	3rd edition, pp. 1 to 324								
	Mikell P. Groover, Mitchel Weiss, Roger N Nagel, Nicholas G Odrey, Ash	ish Dutta.							
2.	2. (2017). Industrial Robotics: Technology, Programming, and Applications, McGraw-H								
	Companies.,2 nd edition, 12 th Reprint, pp. 1 to 183.								
REFE	RENCE BOOKS								
1	Davies, E.R. (2012). Machine Vision: Theory, Algorithms, Practicalities, Acade	mic Press,							
1.	London. pp. 1 to 487								
n	Peter Corke. (2017). Robotics, Vision and Control: Fundamental Algorithms in	n MATLAB,							
Ζ.	Springer, 2 nd edition, pp. 1 to 683.								
2	K.S. Fu, R.C. Gonzalez, C.S.G Lee. (2017). Robotics, Control, Sensing, N	/ision and							
٦.	Intelligence, McGraw-Hill Education, pp. 1 to 571.								
E BO	OKS								
1.	https://robotacademy.net.au/lesson/principles-of-stereo-vision/								
MOC									
1.	https://www.coursera.org/specializations/modernrobotics								
2.	https://nptel.ac.in/courses/107/106/107106090/								

COURSE TITLE	ARTIFICIAL INTELLIGENCE FOR MECHATRONICS CREDITS 4									
COURSE CODE	MHB4409	COURSE CATEGORY	РС	L-T-P-S	3-0-2-3					
Version	1.0	Approval Details 24 th AC 30.05.20		LEARNING LEVEL	BTL-4					
ASSESSMENT S	СНЕМЕ		-							
First Periodical Assessment	Second Periodical Assessment	Practical Asso	ESE	Ξ						
15%	15%	20% 50%								

		A	rtificial	intel	ligenc	e (Al)	is a	field	that s	tudies	how	to m	imic the	human
		int	telliger	nce on	a cor	npute	r. The	goal o	f this c	ourse	is to u	nderst	and how	to make
Co	ourse	a mechatronics system to learn, plan, and solve problems au									autono	omously (using Al.	
Desc	ription	In	In this course, we will study the most fundamental knowledge for understandin									standing		
		AI	AI. We will introduce some basic search algorithms for problem solvin										solving,	
		kn	owled	ge rep	resen	tation	and re	easonii	ng, neu	ral net	tworks	s, and s	schedulin	g.
		Tł	ne spe	cific ol	ojectiv	es of t	he Co	urse ei	nable tl	ne stu	dents	to:		
		1.	Prov	ide th	e mos	st fund	damen	tal kn	owledg	e to t	he stu	dents	so that t	hey can
Co	ourse		unde	erstand	d what	Al is.								
Obj	ective	2.	Enab	le the	e stud	lent to	o app	ly Al	technic	ques i	n app	licatio	ns which	involve
			perce	eption	, reaso	oning a	and lea	arning						
		3.	Prov	ide a b	asic e	xposit	ion to	the go	als and	meth	ods of	variou	us Al tech	niques
		U	pon co	mplet	ion of	this co	ourse,	the stu	udents	will be	e able ⁻	to		
		1.	Anal	yse the	e builc	ling bl	ock of	Artific	ial Inte	lligenc	e			
6		2.	Iden	tify a	nd ap	ply p	roper	decisi	ion-ma	king t	echnic	ques d	of Al in	specific
<u></u>	burse		appli	cation	IS									
Out	come	3.	Iden	tify an	d appl	y diffe	erent S	earchi	ng algo	rithms	s of Al	in spe	cific appli	cations
		4.	Desi	gn Nei	ural ne	twork	s for s	pecific	applica	ations				
		5.	Appl	y SLAN	Л for a	utoma	atic na	vigatic	on and	path p	lannin	g in ro	botics	
Prere	quisite	s: MH	B4220	– Stat	istics	and Da	ata An	alytics	5					
СО, Р	O AND	PSO N	ΛΑΡΡΙ	NG										
0	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	PSO	PSO
CO	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-1	-2
CO-	3	3	-	3	-	1	1	-	2	1	-	2	-	3
1														
CO-	3	3	3	2	3	-	-	-	2	1	-	2	2	3
2														
CO-	3	3	3	2	3	-	-	-	2	1	-	2	2	3
3														
CO-	3	3	3	2	3	-	-	-	2	1	2	2	2	3
4														
CO-	3	3	3	2	3	-	-	-	2	1	-	2	2	3
5														
		1:	Weak	ly rela	ted, 2	: Mod	eratel	y relat	ed and	3: Str	ongly	related	d	
MOD	ULE 1:I	NTRO	DUCTI	ON									(91	.+6P)

Artificial Intelligence in Engineering – Strong and Weak AI – Intelligence in Machines –	
perception – cognition – execution – applications	
Practical component:	CO-1
Case study on Intelligent system in Engineering	BTL-2
Suggested Readings:	
How Artificial Intelligence is transforming the world	
MODULE 2: SEARCH	(9L+6P)
Artificial Intelligence in engineering – Applications – Tree search: Depth first, Breadth	
first, A* - Gradient Descent - Probabilistic Search	
Practical component:	
Apply searching algorithm for engineering applications	CO 2 2
1. Informed search	DTL 4
2. Uninformed search	DIL-4
3. Probabilistic search	
Suggested Readings:	
How search engines use AI to power results	
MODULE 3: KNOWLEDGE AND REASONING	(9L+6P)
Adversarial search – Optimal and imperfect decisions – Alpha, Beta pruning – Logical	
agents	
Practical component:	CO-2, 3
1. Apply reasoning algorithm for decision making	BTL-4
Suggested Readings:	
Representation of the world in Tesla	
MODULE 4: NEURAL NETWORKS	(9L+6P)
Artificial neural unit – Pattern classification – feed forward network – learning –	
feedback network – multi layer perceptron	
Practical component:	
Design Neural network for	
1. Pattern classification	CO-4
2. Prediction	BTL-3
3. Classification	
Suggested Readings:	
Deep Learning and Neural Networks	
MODULE 5: SCHEDULING	(9L+6P)
Introduction – representation in scheduling – graphs and networks – shortest paths –	
critical path analysis – critical path activity scheduling	
Practical component:	CO-5
1. Develop an intelligent robotic system using MATLAB	BTL-3
Suggested Readings:	
Path planning algorithms in robots	

TEXT B	OOKS
1	Stuart Russel and Peter Norvig. (2003). Artificial Intelligence: A Modern Approach,
1.	Pearson Education, 2 nd Edition.
REFER	ENCE BOOKS
1	George F.Luger. (2002). Artificial Intelligence – Structures and Strategies for Complex
1.	Problem Solving, Pearson Education, 4 th Edition.
2	David Allan Bradley, Derek Seward, David Dawson, Stuart Burge. (2000). Mechatronics
Ζ.	and the Design of Intelligent Machines and Systems, CRC Press
E BOO	KS
1.	http://ciml.info/dl/v0_8/ciml-v0_8-all.pdf
моос	
1	https://www.my-mooc.com/en/mooc/destination-ai-introduction-to-artificial-intelligence
1.	/
2.	https://www.coursera.org/learn/introduction-to-ai

COURSE TITLE	FUNDAMENTALS OF SIGNAL PROCESSING CREDITS							
COURSE CODE	MHB4410	COURSE CATEGORY	L-T-P-S	3-0-2-0				
Version	1.0	Approval Details	LEARNING LEVEL	BTL-4				
ASSESSMENT SO	SSESSMENT SCHEME							
First	Second							
Periodical	Periodical	Practical Assessment ESE						
Assessment	Assessment							
15%	15%	20%		50	%			
	Signal processing	focuses on analyzing	, modifying, ar	nd synthesizi	ng signals			
Course	such as sound, ima	such as sound, images, and scientific measurements to improve transmission,						
Description	storage efficiency	and subjective quali	ty and to also	emphasize	or detect			
	components of inte	rest in a measured sig	nal					

		1.	Be al	ole to	descri	be sigr	nals ma	athem	atically	and u	nderst	and ho	w to pe	erform	
			oper	ations	on the	e depe	ndent	as well	l as ind	ependo	ent var	iables.		iciuuc	
		2.	Be fa	miliar	with c	ommo	only use	ed sign	als suc	h as th	e unit	step, r	amp, in	npulse	
			funct	ion, si	nusoic	lal sigr	, nals an	d com	plex ex	oonent	ials.	1,	1 /		
		3.	Be a	ble to	classif	y signa	als as o	continu	uous-tir	ne vs.	discre	te-time	e, perio	dic vs.	
Co	urse		non-	period	ic, en	ergy s	signal	vs. po	ower s	ignal,	odd v	vs. eve	en, con	jugate	
Obje	ective		symr	netric	vs anti	i-symr	netric								
		4.	Be a	ble to	com	oute t	he Foi	urier s	eries d	or Fou	rier tra	ansforr	n of a	set of	
			well-	vell-defined signals from first principles. Further, be able to use the											
			prop	erties	of the	Fourie	er tran	sform	to com	ipute t	he Foi	urier tr	ansforn	n (and	
			its in	verse)	for a b	proade	r class	of sigr	nals.						
		5.	Be al	ole to f	amilia	rize th	e appli	ication	of Fou	rier tra	nsforr	nation	S		
			Upor	n comp	letion	of this	s cours	e, the	studen	ts will	be abl	e to			
		1.	Outli	ne the	e basic	prope	rties o	of signa	il & sys	tems a	nd the	variou	is meth	ods of	
Co	urse		class	ificatio	n .	c	(c:								
Outo	come	2.	Apply	y Fouri	ier trai	nstorm	i for Si	gnals	fa at F a						
		3.	Appr	y and a	anaiyse ' tranci	e the ti form 8	ecnniq . DTFT	ues in	last FO	uner u nortio	ansior	m			
		4.	Illust	rato th	o digit	tal sign		anu ui	and it	s hardı	, Naro a	rchitor	turo		
Drorog	uicitoc	•	mase							Shara	Nuic u				
CO, P	U ANI) PSO	MAP	PING											
со	PO-	РО	РО	РО	РО	РО	РО	РО	PO-	РО	РО	РО	PSO	PSO	
	1	-2	-3	-4	-5	-6	-7	-8	9	-10	-11	-12	-1	-2	
CO-1	3	3	-	-	-	-	-	2	2	-	-	2	2	1	
CO-2	3	3	3	3	3	-	-	2	2	-	-	2	2	1	
CO-3	3	3	-	-	-	-	-	2	2	-	-	2	2	1	
CO-4	3	3	-	-	-	-	-	2	2	-	-	2	2	1	
CO-5	3	3	-	-	-	-	-	2	2	-	-	2	2	1	
1: Wea	kly rel	ated, 2	2: Mod	leratel	y rela	ted an	d 3: St	rongly	related	1					
MODU	MODULE 1: SIGNALS AND SYSTEMS (9L+6P)														

Introduction to continuous, Discrete and Digital signals, Classification of continuous and Discrete Time signal – Periodic, Even and Odd, Energy and Power, Deterministic and Random, Complex exponential signlas, Elementary signals – UNIT step, Ramp, Impulse, Classification of systems: Linear, Time invariant, Causal, Stable, Invertible systems, BIBO Stability criterion. Practical component: Programs using mathematical computing tool for mathematical operations on CT, DT signals Suggested Readings: LTI Systems MODULE 2: DISCRETE FOURIER SERIES	CO-1 BTL-4
DES Representation of Periodic Sequence properties of Discrete Fourier Series	
Discrete Fourier Transforms: Properties of DFT. Linear Convolution of Sequences using	
DFT.	
Practical component:	CO-2
Matlab program on linear convolution	BTL-4
Suggested Readings:	
Circular Convolution	
MODULE 3: FAST FOURIER TRANSFORMS (9L+6)	P)
Fast Fourier Transforms (FFT) – Radi Decimation-in-Time and	
Decimation-in-Frequency FFT Algorithms, InverseFFT, and FFT with General Radix-N.	
Practical component:	CO-3
 Implementing FFT algorithm in Matlab 	BTL-4
Suggested Readings:	
Application of FFT	
MODULE 4: DISCRETE TIME SIGNALS AND Z TRANSFORM (9L+6P)	
DTFT – Properties of DTFT. Definition of Z transforms, Properties, Inverse Z transform.	
Practical component:	CO-4
• 2 transform to find zero pole and gain of transfer function	BTL-4
Suggested Readings:	
MODULE 5: DIGITAL SIGNAL PROCESSOR (91+6P)	
Introduction to Digital Signal Processing, DSP processor, architecture of DSP	
Consistion Unit Programmability and Program Execution Eastures for External	
Interfacing	CO-5
Practical component:	BTL-4
Study of external interfacing with DSP processor	
Suggested Readings:	
Architecture & Implementation	

TEXTBO	OKS
1	John G. Proakis, Dimitris G. Manolakis. (2007). Digital Signal Processing, Principles,
1.	Algorithms, and Applications, Pearson Education / PHI.
REFEREN	ICE BOOKS
1	Li Tan. (2018). Digital Signal Processing — Fundamentals and Applications —, Elsevier – Academic Press.
2	Robert Schilling, Sandra L. Harris. (2013). Fundamentals of Digital Signal Processing using MATLAB, Cengage.
E BOOKS	
1.	http://www.fourierandwavelets.org/FSP_v1.1_2014.pdf
MOOC	
1	https://www.mooc-list.com /dsp

COURSE TITLE	ROBOTICS AI	ND MACHINE VISION	SYSTEMS	CREDITS	1				
COURSE CODE	MHB4437	L-T-P-S	0-0-2-0						
Version	1.0	Annewal Dataila	24 th ACM,	LEARNIN					
version	1.0	G LEVEL	DIL-4						
ASSESSMENT SCHEME									
	Continuous Internal Assessment ESE								
80% 20%									
The goal of this Laboratory course is to introduce the Modelling and Simulation of basic concepts of industrial robots and their applications in MATLAB. This course provides the basic concepts and algorithms required to develop robots									

path planning in simulation as well as in real time.

Course

Description

that act autonomously in complex environments in MATLAB through Robotics

Systems Toolbox and MOTOSIM. The main emphasis is put on robot locomotion

and kinematics, and motion planning in simulation as well as in real time using MOTOMAN industrial robot. Little emphasis is given on understanding the basics of image acquisition and processing using MATLAB. The exercises of this course introduce several types of industrial robots and their modelling, kinematics and

		Tł	ne spec	cific ob	jective	es of th	ne Cou	rse en	able th	e stud	ents to):		
		1.	Learı	n the c	oncep	ts of ro	obot ki	nemat	ics.					
Course	`	2.	Learı	n the p	rincip	les of r	obot c	lrives a	and con	trols.				
Ohiect	ivo	3.	Learı	n meth	ods of	f devel	oping	kinem	atic sol	utions	for Ro	bot cor	nfigurat	ions.
Object	IVE	4.	4. Learn methods of path planning for industrial robots.											
		5.	Learı	n the	conce	epts c	of var	ious r	nachine	e visio	on and	d imag	ge pro	cessing
			techniques.											
		U	pon co	mpleti	ion of	this co	urse, t	he stu	dents v	vill be	able to)		
		1.	1. Recall the basics of Robots and elements of Industrial Robotic System.											
		2.	Desi	gn and	devel	ор а К	inema	tic sol	ution o	f Indu	strial r	obots a	and ana	lyze its
Course	2		perfo	ormano	ce in R	obotic	s Syste	em Too	olbox, N	MATLA	B as w	ell as i	n real ti	ime for
Outcor	- ne		MOT	OMAN	l Robo	t.								
		3.	Appl	y metł	nods o	f path	plann	ing an	d trajec	tory t	racking	g for in	dustrial	robots
			and analyse its performance in Robotics System Toolbox, MATLAB.											
		4.	Learı	Learn the concepts of basic image processing techniques for robotic										
			appli	cation	s by pe	erform	ing op	eratio	ns on d	igital ir	mages			
Prerec	luisite	s: NIL												
СО, РС) AND	PSO N	/IAPPII	NG										
6	РО	РО	РО	РО	РО	РО	РО	РО	PO-	РО	РО	РО	PSO	PSO-
co	-1	-2	-3	-4	-5	-6	-7	-8	9	-10	-11	-12	-1	2
CO-1	3	3	3	3	1	0	0	2	2	0	0	2	2	2
CO-2	3	3	3	3	1	0	0	2	2	0	0	2	2	3
CO-3	3	3	3	3	0	0	0	2	2	0	0	2	2	3
CO-4	3	3	3 3 3 0 0 0 2 2 0 0 2 2 2											
1: Wea	1: Weakly related, 2: Moderately related and 3: Strongly related													
MODU	MODULE 1 – ROBOTICS (18 P)													

1.	Build a robot using Robotics Systems Toolbox MATLAB	
2.	Forward Kinematics of Move Master RM 501 Robot	
3.	Forward Kinematics of PUMA 560 Robot	
4.	Inverse Kinematics of PUMA 560 Robot	
5.	Modelling and Simulation of a 2 D.O.F Jointed arm Robot using MATLAB –	
	Forward Kinematics	
6.	Modelling and Simulation of a 3 D.O.F Jointed arm Robot using MATLAB -	
	Forward Kinematics	CO 1
7.	Modelling and Simulation of a 2 D.O.F Jointed arm Robot using MATLAB –	CO-1,
	Inverse Kinematics	
8.	Modelling and Simulation of a 3 D.O.F Jointed arm Robot using MATLAB –	BTI-4
	Inverse Kinematics	
9.	2-D Path Tracing of a Manipulator with Inverse Kinematics	
Sugge	sted Readings:	
•	Forward and Inverse Kinematics of 2, 3, 4 and 5 DOF articulated robotic arm	
	using Geometric and Analytical Method (D-H Method)	
•	Study of 4 D.O.F Gantry Robot in Motion Control Laboratory, Centre for	
	Automation and Robotics, HITS.	
•	Study of 6 DOF Yaskawa robot and derive the kinematic solution.	
MOD	ULE 2: INTERFACING	(8 P)
		1
Real t	ime experiments:	
Real t 10	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot	CO-2.
Real t 10 11	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot	CO-2, CO-3 and
Real t 10 11 12	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot . PICK and PLACE Operation using 4 Axis GANTRY ROBOT	CO-2, CO-3 and CO-4
Real t 10 11 12 Sugge	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot . PICK and PLACE Operation using 4 Axis GANTRY ROBOT sted Readings:	CO-2, CO-3 and CO-4 BTL-4
Real t 10 11 12 Sugge	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot . PICK and PLACE Operation using 4 Axis GANTRY ROBOT isted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT	CO-2, CO-3 and CO-4 BTL-4
Real t 10 11 12 Sugge	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot . PICK and PLACE Operation using 4 Axis GANTRY ROBOT isted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB	CO-2, CO-3 and CO-4 BTL-4
Real t 10 11 12 Sugge • • •	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT Sted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB JLE 3: VISION	CO-2, CO-3 and CO-4 BTL-4 (4 P)
Real t 10 11 12 Sugge • • MODI 13	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT Sted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION Acquiring and Basic operations on Images using MATLAB.	CO-2, CO-3 and CO-4 BTL-4 (4 P)
Real t 10 11 12 Sugge • • • • • • • • • • • • • • • • • •	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT Ested Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION Acquiring and Basic operations on Images using MATLAB. Ested Readings:	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • • • • • • • • • • • • • • • • •	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT Seted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION Acquiring and Basic operations on Images using MATLAB. Seted Readings: Basic Operations on Images using MATLAB	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • MODI 13 Sugge	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT Seted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION Acquiring and Basic operations on Images using MATLAB. Seted Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY)	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • • • • • • • • • • • • • • • • •	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION Acquiring and Basic operations on Images using MATLAB. Ested Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • • • • • • • • • • • • • • • • •	ime experiments: 5. Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot 5. Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot 5. PICK and PLACE Operation using 4 Axis GANTRY ROBOT 5. Sted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION 5. Acquiring and Basic operations on Images using MATLAB. 5. Sted Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition Basic Image Processing Operations	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • MODI 13 Sugge • 1. 2. 3.	ime experiments: b. Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot c. Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot c. PICK and PLACE Operation using 4 Axis GANTRY ROBOT ested Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION c. Acquiring and Basic operations on Images using MATLAB. ested Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition Basic Image Processing Operations Segmentation and Feature extraction	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • • • • • • • • • • • • • • • • •	ime experiments: b. Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot c. Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot c. PICK and PLACE Operation using 4 Axis GANTRY ROBOT ested Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION c. Acquiring and Basic operations on Images using MATLAB. ested Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition Basic Image Processing Operations Segmentation and Feature extraction Object detection and Counting	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • • • • • • • • • • • • • • • • • •	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot . PICK and PLACE Operation using 4 Axis GANTRY ROBOT ested Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION . Acquiring and Basic operations on Images using MATLAB. ested Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition Basic Image Processing Operations Segmentation and Feature extraction Object detection and Counting Monocular Visual Odometry	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • MODI 13 Sugge • 1. 2. 3. 4. 5. 6.	ime experiments: . Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot . Machining operation using 4 Axis GANTRY ROBOT ested Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION . Acquiring and Basic operations on Images using MATLAB. ested Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition Basic Image Processing Operations Segmentation and Feature extraction Object detection and Counting Monocular Visual Odometry Scene Change Detection	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4
Real t 10 11 12 Sugge • MODI 13 Sugge • 1. 2. 3. 4. 5. 6. 7.	ime experiments: Sorting operation using MOTOSIM EG-VRC and Motoman MH Series Robot Machining operation using MOTOSIM EG-VRC and Motoman MH Series Robot PICK and PLACE Operation using 4 Axis GANTRY ROBOT Seted Readings: MOVIAXIS CONTROLLER and 4 Axis GANTRY ROBOT ROBOT VISION USING MATLAB ULE 3: VISION Acquiring and Basic operations on Images using MATLAB. Seted Readings: Basic Operations on Images using MATLAB MATLAB ASSIGNMENT (SELF STUDY) Image Acquisition Basic Image Processing Operations Segmentation and Feature extraction Object detection and Counting Monocular Visual Odometry Scene Change Detection Motion Detection	CO-2, CO-3 and CO-4 BTL-4 (4 P) CO - 4 BTL - 4

VIRTUAL LABS

- 1. http://vlabs.iitkgp.ernet.in/mr/exp2/index.html
- 2. http://cse19-iiith.vlabs.ac.in/index.html

COUR	SE TIT	LE	Ν	IDT AN	ND CO	C		5	2						
CO CO	URSE ODE		МН	B4438		CA	COURS	E RY		РС		L-T-P-S	s (-0-3-0	
Ve	rsion		-	L.O		Appr	oval D	etails	24 ¹ 30.0	th ACM 05.201	, I 8	learni G leve	N L	BTL-3	
ASSES	SMEN	T SCHI	ME						-						
			Conti	nuous	Interr	al Ass	essme	nt				ESE			
80%													20%		
Co Desc	ourse riptior	T aı ch ac cc	This course provides the attendee an introduction to vibration measurement and vibration measurement analysis, LPT, NDT concepts, FEMM, vibration characteristic values, time domain and spectrum analysis. The attendee will additionally familiarize oneself on guidelines, how to decide on mechanical condition of the rotating mechanical element. Practical exercises during the training complement to the theory of vibration measurement analysis												
Courte	The specific objectives of the Course enable the students to: 1. Impart basic knowledge and importance on Vibration Based Condition Monitoring in Engineering Fields encount the students														
Object	e tive	2	. Crea and . Knov	te the Applica v the u	aware ation a isage c	eness o rea of LPT a	on Vibr and FE	ation	Based (s per re	Conditi quirem	on Mo nents	onitorii	ng in Re	esearch	
Course Outco	3. Know the usage of LPT and FEMIM as per requirements 3. Know the usage of LPT and FEMIM as per requirements Upon completion of this course, the students will be able to 1. Comprehend the Condition Monitoring Techniques and its interdisciplinary approach 2. Arrange the instrumentation for NDT and Condition Monitoring 3. Comprehend the standards and calibrate the instruments and Test the various defects flaws and monitor the different parameters												iplinary est the		
Prerec	quisite	s: Nil													
СО, РС) AND	PSO N	ΛΑΡΡΙΓ	١G											
со	PO -1	РО- 2	PO -3	РО -4	PO -5	РО -6	РО -7	PO -8	РО- 9	PO -10	PO -11	PO -12	PSO -1	PSO- 2	
CO-1	3	3	2	3	2	2	2	2	3	2	2	1	3	3	
CO-2	3	3	2	3	2	2	2	2	3	2	1	2	3	3	

CO-3	3	3	3	3	2	2	2	2	3	3	2	1	3	3
CO-4	3	3	3	3	2	2	2	2	3	3	1	2	3	3
1: Wea	akly re	lated,	2: Mo	derate	ly rela	ted an	nd 3: St	rongly	/ relate	d				
MODULE 1: NON DESTRUCTIVE TESTING (30P)														
Practice in Ultrasonic Testing, Eddy Current and MPT for the detection of defects in										in C	0-1-5			
various	s appli	cations	s like w	velding	, casti	ng etc.	•							BTL-3
MODULE 2: VIBRATION MONITORING (15P)														
Experi	ments	in co	nditio	n mon	itoring	g appli	cation	s like	shaft n	nisaligı	nment	, beari	ng	
failure	, loose	ness et	tc.											
1.	Cond	ition N	lonitor	ring an	d Prog	nostic	s Using	g Vibra	ition Sig	gnals				
2.	Tune	PID Co	ntrolle	er in Re	al Tim	e Usin	g Opei	n-Loop	ρ PID Αι	ito tun	er Blo	ck	C	0-1-5
3.	Fault	Diagno	osis of	Centri	fugal P	umps	using I	Residu	al Analy	ysis			1	BTL-3
4.	Estim	ate Mo	odel Pa	aramet	ers an	d Initia	al State	es (GU	l)					
5. Fault Detection Using Data Based Models														
6. Wind Turbine High-Speed Bearing Prognosis														
VLab Link														
	1	htt	p://vla	abs.iitk	gp.ac.	in/mss	p/exp	6/inde	x.html#	ŧ				

COURSE TITLE	D	DESIGN PROJECT V CREDIT										
COURSE CODE	MHB4439	COURSE CATEGORY	PC	L-T-P-S	0-0-2-0							
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BTL-6							
ASSESSMENT SCHEME												
First Review	Second Review	eport & Viva /oce	ESE									
20%	30%	20%	3	30%								
Course	This course provides the student significant design experience and builds on the knowledge and skills acquired in earlier course work. This course provides an exposure to teamwork to emulate a typical professional design environment. Simulations are to be used both in the execution of the design methodology and the management of the design project.											

	The specific objectives of the Course enable the students to:
	1. To develop skills in doing literature survey, technical presentation and report
Course	preparation.
Objective	2. To enable project identification and execution of preliminary works on
	3. To enable students to work as team
	4. To enable students to work on development of hardware
	Upon completion of this course, the students will be able to
Course	1. To identify a problem, do survey, develop methodology and do the simulations
Outcome	and use them for major project
	2. Prepare technical drawing, technical report and technical presentation
Prerequisites:	

Prerequisites:

CO, PO AND PSO MAPPING														
~	PO-	РО	PO-	РО	РО	РО	PSO							
CO	1	-2	-3	-4	-5	-6	-7	-8	9	-10	-11	-12	-1	P30-2
CO-	3	ת	2	2	R	2	2	ת	r	R	n	מ	R	3
1	0	5	1	1)	1	1	9	9	6)	9)	9
CO-	2	2	2	2	2	2	2	2	0	2	2	2	2	2
2	3	5	2	2	ה	2	2	כ	ר	5	5	ר	ר	5

1: Weakly related, 2: Moderately related and 3: Strongly related

	NOTE
	The students in convenient groups of not more than 4 members have to identify a
1	product for design and fabrication. Every project work shall have a guide who is the
	member of the faculty of the institution.
2	To develop a mechatronic system with emphasis on electrical drives (Actuator) for
2	different applications/Systems.
	The students are required to design and fabricate the chosen system and
3	demonstrate its working apart from submitting the project report. The report should
	contain assembly drawing, parts drawings, process charts relating to fabrication.

SEMESTER VIII

COURSE TITLE		PROJECT		CREDITS	8						
COURSE CODE	MHB4448	COURSE CATEGORY	PC	L-T-P-S	0-0-24-0						
Version	1.0	24 th ACM, 30.05.2018	LEARNIN G LEVEL	BTL-6							
ASSESSMENT SCHEME											
First Review	Second Review	and Viva	ESE								

20	0%		3	0%					30%					20%
Co Descr	urse ription	TI th ar Si ar	nis cou e knov n expos mulation nd the p	irse pi wledge sure to ons ar manag	rovide e and o team e to gemer	es the skills a skills a work t be used at of the	studer Icquire o emu d both e desig	it sign d in e late a in tho n proj	ificant (arlier c typical e execu ect.	desigr ourse profes ition (work. work. ssional	rience This co design design	and bui ourse pro environ methoo	lds on ovides iment. dology
Co Obje	urse ective	TI 1. 2.	ne spec Desig inves Prep mana	cific ob gn an stigatic are t ageme	ojectiv d fak ons cechni ent ski	ves of tl pricate cal di lls	he Cou a me rawing	echatro , tec	able th onics s hnical	e stuc ystem repo	lents to / co rt an	o: induct d acc	experin quire p	nental project
Co Oute	urse come	U 1. 2.	 Upon completion of this course, the students will be able to 1. Design and fabricate a mechatronic system /Conduct experimental investigations 2. Modelling and simulation study of engineering systems/problem. 											
Prerequisites:														
CO, PO AND PSO MAPPING														
со	PO -1	PO -2	PO -3	PO -4	PO -5	PO -6	PO -7	PO -8	РО- 9	P 0 -1 0	PO- 11	PO -12	PSO- 1	PSO -2
CO-1	3	3	3	2	3	2	2	3	3	3	3	3	2	3
CO-2	3	3	3	2	3	2	2	3	3	3	3	3	2	3
1: Wea	akly rel	ated,	2: Moo	derate	ly rela	ated an	d 3: St	rongly	, relate	d	1			
NOTE														
1	L	The a p pro inst	The students in convenient groups of not more than 4 members have to identify a product/process for design and fabrication or experimental study. Every project work shall have a guide who is the member of the faculty of the institution											
2	2	Stu foll me	Students will be exposed to lecture modules on Project and Thesis work followed by assignment of individual projects involving designing a mechatronics system for a real time problem with societal impact.											
3	3	The der sho mo	echatronics system for a real time problem with societal impact. The students are required to design and fabricate/ conduct experiments and emonstrate its working apart from submitting the project report. The report hould contain assembly drawing, parts drawings, process charts, programming, odelling and simulation, analysis relating to the project.											

DEPARTMENTAL ELECTIVES – SEMESTER III

COURSE TITLE	BA	SICS OF ROBOTICS	CREDITS	3						
COURSE CODE	MHC4251	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1					
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BTL - 3					
ASSESSMENT S	СНЕМЕ									
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE					
15%	15%	10%	5%	5%	50%					
Course Description	Robotics is an interdisciplinary branch of engineering and science that deals with the design, construction, operation, and use of robots, as well as computer systems for their control, sensory feedback, and information processing. The goal of this course is to introduce the basic concepts of industrial robots and their applications. This course provides the basic concepts, key elements and algorithms required to develop robots that act autonomously in complex environments. The main emphasis is on introducing various configuration of robots, its key elements such as sensors, actuators, and programming etc. Moderate emphasis is given on developing forward kinematic solution for robots used for various industrial applications. The lectures and exercises of this course introduce several types of industrial robots and their modelling, basics of									
Course Objective	 The specific objectives of the Course enable the students to understand: 1. The different robotic configurations, classification of end effectors, sensing and actuation. 2. The robotic drive systems and mechanical transmission methods. 3. Underlying principle and applications of various grippers and its design. 4. The Kinematics and dynamics of Robot. 5. Safety considerations of the robot and Applications of robot for material 									
Course Outcome Prerequisites: N	Upon completion of 1. Recall and id 2. Illustrate and in the design 3. Classify varion 4. Recall, Infer, 5. Discuss the implementant Stil	f this course, the stud lentify the parts of rob d discuss the various n of robots. Dus end effectors and Interpret and Develop e various applicat tion of robots.	ents will be ab bots, its configu drives and po appraise the do Kinematic sol ions of rob	le to urations, D.O.F o wer transmissio esign of gripper utions for robo ots, justificati	of Robots. on system s. ts. on, and					

CO, PO AND PSO MAPPING														
со	Р О -1	PO -2	РО -3	РО -4	РО -5	PO -6	РО -7	PO -8	РО- 9	P O -1 0	PO -11	PO -12	PSO- 1	PSO- 2
CO-1	3	3	3	3	1	2	2	1	1	1	1	2	2	2
CO-2	3	3	3	3	2	2	2	1	1	1	1	2	2	2
CO-3	3	3	3	3	2	2	2	1	1	1	1	2	2	2
CO-4	3	3	3	3	2	2	2	1	1	1	1	2	2	2
CO-5	3	3	3	3	1	2	2	1	1	1	1	2	2	2
		1:	Weak	ly relat	ted, 2:	Mode	rately	related	d and 3	: Stro	ngly re	lated		
MODU	LE 1: I	NTRO	DUCTI	ON TO	ROBC	TICS		(9L)						
An overview of Robotics — classification by coordinate system and control systems-Components of the Industrial Robotics: Degrees of freedom — End effectors: Mechanical gripper — Magnetic —Vacuum cup and other types of grippers —General consideration on gripper selection and design, Robot actuator and sensors. Suggested Readings: Model different configurations of robots using various joints and study its workspace, work volume and D.O.F.							CO-1 BTL-3 YSTEMS							
(9L)									-		_		Ī	
Robot drive mechanisms, hydraulic – electric – servomotor- stepper motor – pneumatic drives, Mechanical transmission method - Gear transmission, Belt drives, cables, Roller chains, Link – Rod systems – Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws.								or – rives, rsion, aring	CO-2 BTL - 4					
MODU	LE		3		:		R	овот			END		EFF	ECTORS
(7L)														
 Classification of End effectors – Tools as end effectors. Drive system for grippers-Mechanical Adhesive-Vacuum-Magnetic - Grippers, Hooks scoops. Gripper force analysis and gripper design. Active and passive grippers. Suggested Readings: Study of Grasping Modes, Forces, and Stability 								pers- force	CO - 3 BTL - 3					
	Ultras	sonic,	Optom	iechan	ical an	d Sma	rt Tact	ile Sen	isors to	r grip	per de	sign.		
MODULE 4 : ROBOT KINEMATICS AND DYN (11L)									VAIVIICS					

Positio	ons, Orientations and frames, Mappings: Changing descriptions from frame to						
frame	, Operators: Translations, Rotations and Transformations – Transformation						
Arithm	netic – Forward and inverse Kinematics of Six Degree of Freedom Robot Arm	CO 4					
Sugge	sted Readings:	CU-4 BTI 2					
•	Derive forward and Inverse kinematic solutions of 2 and 3 DOF robotic arm.	DIL-3					
•	Derive FK and IK solution for the 4 D.O.F GANTRY Robot						
•	Study of six axis YASKAWA robot.						
MOD	JLE 5: APPLICATIONS OF	ROBOTS					
(9L)							
Indust	rial Applications of Robots for material transfer, machine loading / unloading,						
weldir	ng, assembly and spray-painting operation. RGV, AGV, Implementation of Robots	CO-5					
in Indu	ustries – Various Steps; Safety Considerations for Robot Operations	BTL-3					
Sugge	sted Readings:						
IEXIE	TEXTBOOKS						
1.	Deb S. R. and Deb S. (2017). Robotics Technology and Flexible Automation, 2 ⁻⁴	edition,					
<u>ר</u>	Mikell D. Croover Mitchel Weiss, Beger N. Nagel, Nicholas C. Odrov, Ashish Dutt	- (2017)					
۷.	Industrial Robotics: Technology Programming and Applications 2nd editi	a. (2017). on 12th					
	Reprint McGraw-Hill Companies	011, 12(11					
REFER	ENCE BOOKS						
1.	Saeed B. Niku. (2019). Introduction to Robotics: Analysis. Systems. Applicat	ions. 3rd					
	edition., Wiley.,	,					
2.	K.S. Fu, R.C. Gonzalez, C.S.G Lee. (2017). Robotics, Control, Sensing, Vi	sion and					
	Intelligence, McGraw-Hill Education.						
E BOO	KS						
1.	http://wiki.ros.org/Events/ICRA2010Tutorial						
MOO	C C						
1.	https://www.coursera.org/specializations/modernrobotics						
2.	https://nptel.ac.in/courses/107/106/107106090/						

COURSE TITLE	MECHATRO	CREDITS	3		
COURSE CODE	MHB4252	DE	L-T-P-S	3-0-0-1	
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BTL-4
ASSESSMENT S	СНЕМЕ				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE

1!	5%		15% 10% 5% 5% 50%											
Co Descr	urse ription	In as inc m	In the Mechatronics system application students will be trained to develop, assemble, maintain and optimize products, systems, machines, installations or ndustrial processes integrating different functions and making use of different mechanical, electronic or automation tools.											
Course Objecti	 The specific objectives of the Course enable the students to understand: The specific objectives of Mechatronics system, representation into block diagram The concept of transfer function, reduction and analysis The principles of sensors, its characteristics, interfacing with DAQ microcontroller Objective The concept of PLC system and its ladder programming, and significance of PLC systems in industrial application The system modeling and analysis in time domain and frequency domain. The control actions such as Proportional, derivative and integral and study its significance in industrial applications 									iagram DAQ ince of ain. I study				
Course Outcon Prereq	ne uisites	 Upon completion of this course, the students will be able to 1. Recall the modern mechatronics components. 2. Comprehend the principles and alternatives for mechatronics systems design 3. Apply the elements of mechatronics systems for various applications. 4. Analyze the system for the given mechatronics problem. 5. Evaluate the various applications of mechatronics systems, justification, and implementation of mechatronics system. 									ystems ns. cation,			
CO, PO	AND	PSO M	IAPPIN	IG										
CO CO-1	PO -1 3	PO -2 3	PO -3 3	PO -4 3	PO -5 3	PO -6 3	PO -7 3	PO -8 3	PO- 9 3	PO -10 3	PO- 11 2	PO- 12 2	PSO- 1 3	PSO -2 2
CO-2	3	3	3	3	3	2	2	3	3	2	3	3	3	2
CO-3	3	3	3	3	3	3	3	3	2	2	3	3	3	2
CO-4	3	3	3	3	3	3	3	3	3	3	3	3	3	2
CO-5	3	3	3	3	3	3	3	3	3	3	3	3	3	2
1: Wea	kly rel	ated,	2: Mo	derate	ly rela	nted ar	nd 3: S	trongl	y relate	ed				
MODULE 1: INTRODUCTION (9L)														

	duction to	basics	mechatronics	components	- Sensors,	Actuators,	
Micro	o-controllers,	PLC's.					CO-1
Sugg	ested readin	g:					BTL-2
Read	on how AI c	an be impr	roved for our fut	ure upcoming C	handrayaan-3		
MOD	ULE	2:	BIOMIN	/ICRY	USING	MECH	ATRONICS
(9L)							
Biomi	micry – Intr	oduction,	Concept, Advant	ages. Bio-Inspir	ed Robots – N	1echanisms,	
Contr	ols, Actuatic	ons. Case S	itudies - Wall-Cli	mbing Caterpill	ar Robot, Hexa	pedal robot	<u> </u>
inspir	ed by cockro	ach locom	notion.				BTL2
Sugg	ested readin	g:					DIC-2
Read	on the topic	of heat-se	eking missiles u	sed in our India	n Air force		
MOD	ULE		3:	MEDIC	AL	APP	LICATIONS
(9L)							
Intro	duction to m	echatronic	cs for medical ap	plications, Impo	ortance of Med	hatronics in	
Medi	cal Applicat	ions, App	lications of Me	echatronics in	Medicine -	Robotics in	
Medi	cine, Smart I	nstrument	ts and Probes. Ca	ase Studies - Ha	ndheld Snake-	Like Robots,	60-3
3D Pr	inted Skull.						BTI-3
Sugg	ested readin	g:					DIL-3
Rea	ad on the di	fference m	echatronics app	lication used in	Chandrayaan-2	2 vs Chang'e	
5-T	1						
MOD	OULE 4	: SAI	FETY, SECU	IRITY ANI	D DEFEN	CE APP	LICATIONS
MOD (9L)	OULE 4	: SAI	FETY, SECU	IRITY ANI	D DEFEN	CE APP	LICATIONS
MOD (9L) Indus	oule 4	systems, S	FETY, SECU mart security sy	IRITY ANI stems, Mechatr	D DEFEN	CE APP	LICATIONS
MOD (9L) Indus Intelli	oule 4 strial safety sigence in se	systems, S curity syst	mart security sy ems. Case Studi	stems, Mechatres: Cobots (Col	D DEFEN onics in defen laborative Rok	CE APP ce, Artificial pots), Smart	
MOD (9L) Indus Intelli Doors	oule 4 strial safety sigence in se s, Heat-seeki	systems, S curity syst	mart security sy ems. Case Studi	IRITY ANI stems, Mechatr es: Cobots (Col	D DEFEN onics in defen laborative Rok	CE APP ce, Artificial oots), Smart	CO-4
MOD (9L) Indus Intelli Doors Sugg	Strial safety sigence in se s, Heat-seeki ested readin	systems, S curity syst ng missiles g:	mart security sy ems. Case Studi	stems, Mechatr es: Cobots (Col	D DEFEN	CE APP ce, Artificial oots), Smart	CO-4 BTL-3
MOD (9L) Indus Intelli Doors Sugg Read	Strial safety s igence in se s, Heat-seeki ested readin on the hexa	systems, S curity syst ng missiles g: hedral rob	FETY, SECU mart security sy ems. Case Studi s. ot which has bee	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co	D DEFEN onics in defen laborative Rok	CE APP ce, Artificial bots), Smart	CO-4 BTL-3
MOD (9L) Indus Intelli Doors Sugg Read	oule 4 strial safety s igence in se s, Heat-seeki ested readin on the hexa oule 5: MAN	systems, S curity syst ng missiles g: hedral rob UFACTURI	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATIOI	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS	D DEFEN onics in defen laborative Rok	CE APP ce, Artificial oots), Smart	CO-4 BTL-3 (9L)
MOD (9L) Indus Intelli Doors Sugg Read MOD	Strial safety sigence in se s, Heat-seeki ested readin on the hexa OULE 5: MAN duction to	systems, S curity syst ng missiles g: hedral rob UFACTURI manufac	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATIOI turing systems	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting,	D DEFEN onics in defen laborative Rok ockroach CNC machi	CE APP ce, Artificial oots), Smart nes, Rapid	CO-4 BTL-3 (9L)
MOD (9L) Indus Intelli Doors Sugg Read MOD Intro Proto	Strial safety strial safety strial safety striated in setting on the hexa on the hexa on the hexa oule 5: MAN duction to styping, Industion strict of the st	systems, S curity syst ng missiles g: hedral rob UFACTURI manufac strial Robo	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATION turing systems ts. Case Studies	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting, – Laser cutting,	D DEFEN onics in defen laborative Rok ockroach CNC machi Quality inspec	CE APP ce, Artificial oots), Smart nes, Rapid ting robots.	CO-4 BTL-3 (9L) CO-5
MOD (9L) Indus Intelli Doors Sugg Read MOD Intro Proto Sugg	oule 4 strial safety s igence in se s, Heat-seeki ested readin on the hexa oule 5: MAN duction to styping, Indus ested readin	systems, S curity syst ng missiles g: hedral rob UFACTURI manufac strial Robo g:	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATION turing systems ts. Case Studies	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting, – Laser cutting,	D DEFEN onics in defen laborative Rok ockroach CNC machi Quality inspec	CE APP ce, Artificial oots), Smart nes, Rapid ting robots.	LICATIONS CO-4 BTL-3 (9L) CO-5 BTL-4
MOD (9L) Indus Intelli Doors Sugg Read MOD Intro Proto Sugg Read	OULE 4 strial safety sigence in se igence in se igence in se sested readin on the hexa 0 OULE 5: MAN 1 duction to to ityping, Indus 1 on EMG and 1	systems, S curity syst ng missiles g: hedral rob UFACTURI manufac strial Robo g: I EEG is rec	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATION turing systems ts. Case Studies	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting, – Laser cutting, ents for health	D DEFEN onics in defen laborative Rok ockroach CNC machi Quality inspec	CE APP	CO-4 BTL-3 (9L) CO-5 BTL-4
MOD (9L) Indus Intelli Doors Sugg Read MOD Intro Proto Sugg Read TEXT	Strial safety strial safety strial safety strial safety striated in setting on the hexa on the hexa on the hexa on the hexa ould be sted reading on EMG and BOOKS	systems, S curity syst ng missiles g: hedral rob UFACTURI manufac strial Robo g: I EEG is rec	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATION turing systems ts. Case Studies corded from pati	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting, – Laser cutting, ents for health	D DEFEN onics in defen laborative Rok ockroach CNC machi Quality inspec diagnosis	CE APP	CO-4 BTL-3 (9L) CO-5 BTL-4
MOD (9L) Indus Intelli Doors Sugg Read MOD Intro Proto Sugg Read TEXT 1.	Strial safety stigence in se igence in se s, Heat-seeki ested readin on the hexa OULE 5: MAN duction to otyping, Indus ested readin on EMG and BOOKS W Bolton. (systems, S curity syst ng missiles g: hedral rob UFACTURI manufac strial Robo g: I EEG is rec (2011). <i>Me</i>	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATION turing systems ts. Case Studies corded from pati	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting, – Laser cutting, ents for health son Education,	D DEFEN onics in defen laborative Rok ockroach CNC machi Quality inspec diagnosis Fourth Edition	CE APP	CO-4 BTL-3 (9L) CO-5 BTL-4
MOD (9L) Indus Intelli Doors Sugg Read MOD Intro Proto Sugg Read TEXT 1. REFE	A strial safety sigence in se igence in se s, Heat-seeki ested readin on the hexa OULE 5: MAN duction to otyping, Indus ested readin on EMG and BOOKS W Bolton. (RENCE BOOK	systems, S curity syst ng missiles g: hedral rob UFACTURI manufac strial Robo g: I EEG is rec (2011). <i>Me</i>	FETY, SECU mart security sy ems. Case Studi s. ot which has bee NG APPLICATION turing systems ts. Case Studies corded from pati	IRITY ANI stems, Mechatr es: Cobots (Col en inspired by co NS , Retrofitting, – Laser cutting, ents for health son Education,	D DEFEN onics in defen laborative Rok ockroach CNC machi Quality inspec diagnosis Fourth Edition	CE APP	CO-4 BTL-3 (9L) CO-5 BTL-4

2	David G. Alciatore& Michael B Histand. (2003). Introduction to Mechatronics and										
2	Measurement systems, Tata McGraw Hill.										
E BOC	DKS										
1.	http://www.springer.com/in/book/9783642175305										
MOC	DC										
1	www.mooc-list.com/course/me209x-thermodynamics-edx										
2	www.class-central.com/tag/thermodynamics										

COURSE TITLE	MOBILE ROBOTS CREDITS 3									
COURSE CODE	MHC4253	COURSE CATEGORY	L-T-P-S	3-0-0-1						
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	BTL-4 (ANALYZE)					
ASSESSMEN	T SCHEME									
First Periodical Assessmen t	Second Periodical Assessment	l Seminar/ Surprise al Assignments/ Project Test / Qu		Attendanc e	ESE					
15%	15%	10%	5%	5%	50%					
Course Description	Mobile Robot is the target in an viz healthcare, in robot requires a of sensors. A bas variety of applic Python and C la Autonomous nav mapping and loc find the optimal mobile robots fo and suitable cont	an autonomous navigat environment. The auton dustry, and environment basic skill like the robot ic knowledge on sensor of cations. Fundamental pl inguage and to design t rigation of mobile robots calisation of robots by va l path for reaching the r various applications by crollers for the effective in	ing device that omous robots tal monitoring mechanisms, of characteristics rogramming l the sensors in s with the he arious algorith target locations selecting sen mplementatio	at can maneux are applied in the applicat electronic circl and selection knowledge of therface to the therface to the therface to the therface to the therface and the therface and the therface and the therface and the therface and the thertace and the	ver and reach n many fields ion of mobile uits and array of sensor for robots with e controllers. ased sensors, obstacles and d developing on techniques ere.					

	The course will enable the students to understand the:								
	1. Term of mobile robots and appreciate its use in industries								
Course	2. Working principle of the knowledge on sensors and actuators for robot								
Objective	applications								
• .,	3. Apply vision based navigation in mobile robots								
	4. Various system integration for mobile robots								
	5. Learn the applications of mobile robots								
	Upon completion of this course, the students will be able to								
	1. Recall the fundamentals of mobile robots								
Course	2. Apply knowledge on sensors and actuators for robot applications								
Outcome	3. Apply vision-based navigation in mobile robots								
	4. Perform system integration for mobile robots								
	5. Build Mobile Robots for specific applications								

Prerequisites: Nil

CO, I	PO AND	PSO N	/IAPPII	NG						_				
0		РО	РО	РО	РО	РО	РО	РО	PO-	PO-	PO-	PO-	PSO	PSO
ιυ	PO-1	-2	-3	-4	-5	-6	-7	-8	9	10	11	12	-1	-2
СО	3	3	3	2	2	-	-	-	-	-	1	1	2	3
-1														
СО	3	3	3	3	2	2	2	1	1	1	1	2	2	3
-2														
СО	3	3	3	3	2	2	2	1	1	1	1	2	2	3
-3														
СО	3	3	3	3	2	2	2	1	1	1	1	2	2	3
-4														
СО	3	3	3	3	2	2	2	1	1	1	1	2	2	3
-5														

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1 – INTRODUCTION

(9L)

Introduction to mobile Robots – Laws of Robots – Robot Anatomy – Basic	
Mechanics of Robots – Basic Electronics for Robots, Companion Robots – Robots	
for Agriculture Applications – Space Robots – Defense Robots.	CO-1
Suggested reading:	BTL-1,2
Study of mechanical and electrical quantities in robot application	
Case study of mobile robots in various domains	
MODULE 2 – SENSORS AND ACTUATORS	
(9L)	

Electric Actuators - DC Motors - Servo motor, stepper motor - Linear Actuators - CO-2 Suggested reading: BTL-1,2 Study of calibration of sensors Study of calibration of sensors Study of electrical drives and controllers CO-3 MDDULE 3 - VISION AND NAVIGATION (PL) CO-3 Image Acquisition - Obstacle Detection and Avoidance - Localization - Path Planning Methods - Monte Carlo Methods. CO-3 Suggested reading: Study of optimization algorithm for navigation Study of optimization algorithm. CO-3 MODUL * 4 PROGRAMMING AND Nobot Programming using Python - Basic Embedded C Programming for Robots - Data Acquisition - Interfacing Sensors and Actuators with Robot Controller - Program for Interfacing Sensors and Actuators with Robot Controller - Program for Interfacing programming of sensors and actuators CO-4 Study of python programming of sensors and actuators Study of python programming for interfacing CO-5 MOULE 5 - SULDING OF MOBILE ROBOTS (PL) CO-5 BTL-3,4 Study of mobile robots in mobile robots - Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: Study of mobile robots for variable applications E CO-5 1 Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. <t< th=""><th>Sens</th><th>ors for mobile robots – Sensor Characteristics – Classification of Sensors –</th><th></th></t<>	Sens	ors for mobile robots – Sensor Characteristics – Classification of Sensors –							
Encoders - Motor Drives. CO-2 Suggested reading: BTL-1,2 Study of calibration of sensors BTL-1,2 Study of calibration of sensors Study of calibration of sensors MOULLE 3 - VISION AND NAVIGATION (9L) CO-3 Image Acquisition - Obstacle Detection and Avoidance - Localization - Path Planning Methods - Monte Carlo Methods. CO-3 Study of optimization algorithm for navigation Study of optimization algorithm. INTERFACING (9L) MODULE 4 PROGRAMMING NO Robot Programming using Python - Basic Embedded C Programming for Robots - Data Acquisition - Interfacing Sensors and Actuators with Robot Controller - Program for Interfacing. CO-4 Study of python programming of sensors and actuators BTI-3,4 Study of interfacing programming of sensors and actuators Study of python programming or interfacing. Study of python programming for interfacing CO-5 Building of various types of mobile robots - Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Study of sensing methods in mobile robots Study of sensing methods in mobile robots Study of any develop a mobile robot for a specific application 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition.	Elect	ric Actuators – DC Motors – Servo motor, stepper motor – Linear Actuators –							
Suggested reading: BTI-1,2 Study of calibration of sensors GIIbration of sensors Study of calibration of sensors GIIbration of sensors Study of calibration of sensors GIIbration of sensors MOULLE 3 - VISION AND NAVIGATION GII Image Acquisition – Obstacle Detection and Avoidance – Localization – Path CO-3 Planning Methods – Monte Carlo Methods. CO-3 Suggested reading: Study of optimization algorithm for navigation BTI-2,3 Study of optimization algorithm. MODULE 4 – PROGRAMMING AND NOTEGRAMMING (9L) NTERFACING (9L) Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Study of python programming of interfacing BTI-3,4 BTI-3,4 Study of python programming for interfacing CO-4 BTI-3,4 Study of python programming for interfacing BTI-3,4 BTI-3,4 Study of python programming for interfacing CO-5 BTI-3,4 Study of python programming for interfacing CO-5 BTI-3,4 Study of python programming for interfacing CO-5 BTI-3,4 Study of sensing methods in mobile robots – Use of various Sen	Enco	ders – Motor Drives.	CO-2						
Study of calibration of sensors Study of electrical drives and controllers Interpret to the sensor of the sense of the sensor of the sensor of the sensor of the se	Suggested reading:								
Study of electrical drives and controllers MODULE 3 - VISION AND NAVIGATION (91) Image Acquisition - Obstacle Detection and Avoidance - Localization - Path Planning Methods - Monte Carlo Methods. CO-3 BTI-2,3 Study of optimization algorithm for navigation BTI-2,3 Study of localization algorithm. MODULE 4 - PROGRAMMING AND INTERFACING (9L) MODULE 4 - PROGRAMMING AND INTERFACING (9L) AND INTERFACING (9L) Robot Programming using Python - Basic Embedded C Programming for Robots - Data Acquisition - Interfacing Sensors and Actuators with Robot Controller - Program for Interfacing. CO-4 Suggested reading: CO-4 Study of interfacing programming of sensors and actuators with Robot Controller - Program for Interfacing for interfacing CO-4 Study of python programming for interfacing BTI-3,4 Study of python programming for interfacing BTI-3,4 MODULE 5 - BUILDING OF MOBILE ROBOTS (9L) Study of sensing methods in mobile robots - Use of various Sensing methods, Navigation and Vision-Demostration and Exercises Study of sensing methods in mobile robots - Use of various Sensing methods, Study of sensing methods in mobile robots for variable applications CO-5 BTI-3,4 ILIB / MINI PROJECT / FIELD WORK Introduction, Springer, second edition. Introduction, Springer, second edition. 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical Introduction, WcGraw-Hill, 2nd	Study of calibration of sensors								
MODULE 3 - VISION AND NAVIGATION (9L) Image Acquisition - Obstacle Detection and Avoidance - Localization - Path Planning Methods - Monte Carlo Methods. CO-3 Suggested reading: CO-3 BTL-2,3 Study of optimization algorithm for navigation Study of localization algorithm. BTL-2,3 CO-3 BTL-2,3 MODULE 4 - PROGRAMMING AND INTERFACING (9L) Robot Programming using Python - Basic Embedded C Programming for Robots - Data Acquisition - Interfacing Sensors and Actuators with Robot Controller - Program for Interfacing. CO-4 BTL-3,4 Study of interfacing programming of sensors and actuators BTL-3,4 Study of python programming for interfacing BTL-3,4 MODULE 5 - BUILDING OF MOBILE ROBOTS (9L) CO-5 BTL-3,4 Building of various types of mobile robots - Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises Suggested reading: Study of sensing methods in mobile robots Study of onbile robots for variable applications CO-5 BTL-3,4 LBA / MINI PROJECT / FIELD WORK I. Lesign and develop a mobile robots or a specific application Cr-5 BTL-3,4 1. Design and develop a mobile robots or a specific application Urrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2	Stud	y of electrical drives and controllers							
(9L) Image Acquisition – Obstacle Detection and Avoidance – Localization – Path Planning Methods – Monte Carlo Methods. CO-3 BTL-2,3 Suggested reading: Study of optimization algorithm for navigation BTL-2,3 MODULE 4 – PROGRAMMING AND INTERFACING (9L) Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing programming of sensors and actuators CO-4 Study of interfacing programming of sensors and actuators BTL-3,4 Study of anterfacing programming for interfacing BTL-3,4 MODULE 5 – BUILDING OF MOBILE ROBOTS (9L) CO-4 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 BTL-3,4 Study of sensing methods in mobile robots Study of mobile robots for variable applications CO-5 BTL-3,4 LAB / MINI PROJECT / FIELD WORK I Urrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. Springer, second edition. 1. Design and develop a mobile robot for a specific application I I 1. Urrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition.	MO	DULE 3 – VISION AND NAVIGATION							
Image Acquisition – Obstacle Detection and Avoidance – Localization – Path Planing Methods – Monte Carlo Methods. CO-3 BTI-2,3 Suggested reading: Study of optimization algorithm for navigation Study of optimization algorithm. BTI-2,3 Study of localization algorithm. 4 – PROGRAMMING AND INTERFACING (9). INTERFACING CO-4 Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Suggested reading: BTI-3,4 BTI-3,4 Study of interfacing programming of sensors and actuators with Robot Controller – Program for Interfacing for interfacing CO-4 Study of interfacing programming for interfacing BTI-3,4 BTI-3,4 Study of interfacing programming for interfacing BTI-3,4 BTI-3,4 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises Suggested reading: Study of sensing methods in mobile robots Study of sensing methods in mobile robots or a specific application Study of sensing methods in mobile robots or a specific application Study of sensing methods in mobile robots or a specific application Study of sensing methods in mobile robots or a specific application Study of sensing methods in mobile robots for a specific application Study of sensing Ambel ProbleCT / FIELD WOR	(9L)								
Planning Methods – Monte Carlo Methods. CO-3 Suggested reading: Study of optimization algorithm for navigation Study of localization algorithm. MODULE MODULE 4 – PROGRAMMING AND INTERFACING (9L) NOTERFACING Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Suggested reading: Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing programming of sensors and actuators Embedded C Programming for Robots – Study of python programming for interfacing MODULE 5 – BUILDING OF MOBILE ROBOTS (9L) Embedded C Programs methods, Navigation and Vision-Demonstration and Exercises Suggested reading: CO-5 Study of sensing methods in mobile robots – Use of various Sensing methods, Navigation and Velop a mobile robots for variable applications Embedded C Programs methods LLB / MINI PROJECT / FIELD WORK 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition	Imag	e Acquisition – Obstacle Detection and Avoidance – Localization – Path							
GUC-3 BTL-2,3 Study of optimization algorithm for navigation Study of localization algorithm. BTL-2,3 MODULE 4 – PROGRAMMING AND INTERFACING (9L) Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Suggested reading: Suggested reading: Study of interfacing programming of sensors and actuators Study of python programming for interfacing BTL-3,4 Study of interfacing programming of sensors and actuators Study of python programming for interfacing CO-4 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises Study of sensing methods in mobile robots CO-5 Suggested reading: Study of sensing methods in mobile robots CO-5 Study of sensing methods in mobile robots for variable applications LAB / MINI PROJECT / FIELD WORK 1. Senser Senser Reading: Study of sensing methods in mobile robots for a specific application CO-5 Senser Senser Reading: Study of sensing methods in mobile robots for a specific application CO-5 Senser Senser Sensing methods, Robotics Technology and Flexible Automation, McGraw-Hill, 2nd edition. </td <td>Planr</td> <td>ning Methods – Monte Carlo Methods.</td> <td>CO 3</td>	Planr	ning Methods – Monte Carlo Methods.	CO 3						
Study of optimization algorithm for navigation BTL-2,3 Study of localization algorithm. MODULE 4 - PROGRAMMING AND INTERFACING (9L) - PROGRAMMING OF AND AND INTERFACING (9L) - - PROGRAMMING OF AND AND INTERFACING (9L) - - PROGRAMMING OF AND AND INTERFACING Study of interfacing. - CO-4 BTL-3,4 Study of interfacing programming of sensors and actuators with Robot Controller - PROGRAMMING OF ANDILE SCO-4 BTL-3,4 Study of python programming for interfacing CO-4 Study of python programming for interfacing MODULE 5 - BUILDING OF MOBILE ROBOTS BTL-3,4 Study of python programming for interfacing CO-5 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 BTL-3,4 Study of sensing methods in mobile robots Study of sensing methods in mobile robots Study of sensing methods in mobile robots CO-5 Study of mobile robots for variable applications - - CO-5 Study of sensing methods in mobile robots or a specific application - - CO-5 Study of sensi	Sugg	ested reading:							
Study of localization algorithm. MODULE 4 - PROGRAMMING AND INTERFACING MODULE 4 - PROGRAMMING AND INTERFACING (9L) - Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing, Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Suggested reading: BTL-3,4 Study of interfacing programming of sensors and actuators BTL-3,4 Study of python programming for interfacing BTL-3,4 MODULE 5 – BUILDING OF MOBILE ROBOTS CO-5 G9L) - Sensing methods in mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: - BTL-3,4 Study of sensing methods in mobile robots BTL-3,4 Study of sensing methods in mobile robots BTL-3,4 Study of sensing methods in mobile robots for variable applications BTL-3,4 L Versith Nenzeet / FIELD WORE - 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. - 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. - <	Stud	y of optimization algorithm for navigation	BIL-2,3						
MODULE 4 - PROGRAMMING AND INTERFACING (9L) Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Suggested reading: BTL-3,4 Study of interfacing programming of sensors and actuators BTL-3,4 Study of python programming for interfacing BTL-3,4 MODULE 5 – BUILDING OF MOBILE ROBOTS CO-5 Suggested reading: CO-5 Suggested reading: CO-5 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: CO-5 Study of mobile robots for variable applications ELA LAB / MINI PROJECT / FIELD WORK Interfacing introduction, Springer, second edition. 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition. 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS Interfacing interfacing interfacing interfacing interfacing interfacing interfacing interfa	Stud	y of localization algorithm.							
(9L) Robot Programming using Python – Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing. CO-4 Suggested reading: Study of interfacing programming of sensors and actuators Study of python programming for interfacing BTL-3,4 MODULE 5 – BUILDING OF MOBILE ROBOTS (9L) CO-5 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Study of sensing methods in mobile robots Study of sensing methods in mobile robots CO-5 Study of sensing methods in mobile robots Building of various types of mobile robots CO-5 Study of sensing methods in mobile robots Study of sensing methods, mobile robots for variable applications CO-5 LAB / MINI PROJECT / FIELD WORK Image: Sensor Se	MOE	DULE 4 – PROGRAMMING AND I	NTERFACING						
Robot Programming using Python – Basic Embedded C Programming for Robots – CO-4 Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – CO-4 Program for Interfacing. BTL-3,4 Study of interfacing programming of sensors and actuators Study of python programming for interfacing MODULE 5 – BUILDING OF MOBILE ROBOTS (9L) Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Study of mobile robots for variable applications CO-5 Study of mobile robots for variable applications BTL-3,4 LAB / MINI PROJECT / FIELD WORK CO-5 1. Design and develop a mobile robots of a specific application Study of interdaction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies. REFUENCE BOOKS Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	(9L)								
Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – CO-4 Program for Interfacing. CO-4 Study of interfacing programming of sensors and actuators BTL-3,4 Study of python programming for interfacing CO-5 (9L) Sugested reading: CO-5 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Study of sensing methods in mobile robots Study of sensing methods in mobile robots CO-5 Study of mobile robots for variable applications ENT-3,4 BTL-3,4 Study of sensing methods in mobile robots Study of sensing methods in mobile robots CO-5 Study of mobile robots for variable applications ENT-3,4 BTL-3,4 1. Design and develop a mobile robots Study of sensing methods in mobile robots Study of sensing methods in mobile robots for a specific application 1. Design and develop a mobile robot for a specific application Study of endite robots, Springer, second edition. 1. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition Study of and Applications, McGraw-Hill Companies. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd edition. S	Robo	ot Programming using Python – Basic Embedded C Programming for Robots –							
Program for Interfacing. CO-4 Suggested reading: BTL-3,4 Study of interfacing programming of sensors and actuators Study Study of python programming for interfacing Description (Construction) Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: CO-5 Study of sensing methods in mobile robots Study of sensing methods in mobile robots Study of sensing methods in mobile robots Study of mobile robots for variable applications LAB / MINI PROJECT / FIELD WORK Study of mobile robots for variable application 1. Design and develop a mobile robots for a specific application 1. Str. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, NCGraw-Hill, 2nd Edition 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, MCGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFEVECE BOOKS Sugestore Senser Sugesto	Data	Acquisition – Interfacing Sensors and Actuators with Robot Controller –							
Suggested reading: BTL-3,4 Study of interfacing programming of sensors and actuators Study of interfacing programming of sensors and actuators Study of python programming for interfacing Image: Study of python programming for interfacing Buildir of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: CO-5 Study of sensing methods in mobile robots BTL-3,4 Study of sensing methods in mobile robots BTL-3,4 Study of mobile robots for variable applications CO-5 BTL-3,4 BTL-3,4 Study of sensing methods in mobile robots Study of sensing methods in mobile robots Study of mobile robots for variable applications Employed to the sensor of mobile robots for a specific application 1. Design and develop a mobile robot for a specific application Study of entities (2003). Mobile Robots - A practical introduction, Spriver, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, rearmming, and Applications, McGraw-Hill Companies. Rettertet BOOKS Imployed to for Senge Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher. </td <td>Prog</td> <td>ram for Interfacing.</td> <td>CO-4</td>	Prog	ram for Interfacing.	CO-4						
Study of interfacing programming of sensors and actuators Study of python programming for interfacing MODULE 5 – BUILDING OF MOBILE ROBOTS (9L) Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: Building of sensing methods in mobile robots CO-5 Study of mobile robots for variable applications Building of mobile robots for variable applications Building of mobile robots for variable applications LAB / MINI PROJECT / FIELD WORK Interfacing introduction, Springer, second edition. Study of interfacing introduction, Springer, second edition. 1. Design and develop a mobile robots Technology and Flexible Automation, McGraw-Hill, 2nd edition. Study of interfacing introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd edition. Study of programming, and Applications, McGraw-Hill Companies REFENCE BOOKS Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	Suggested reading:								
Study of python programming for interfacing MODULE 5 – BUILDING OF MOBILE ROBOTS (9L Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Sugested reading: CO-5 SUL of sensing methods in mobile robots Study of sensing methods in mobile robots Study of mobile robots for variable applications LAB / MINI PROJECT / FIELD WORK 1. Design and develop a mobile robot for a specific application TEXTEDOKS 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	Stud	y of interfacing programming of sensors and actuators							
MODULE 5 – BUILDING OF MOBILE ROBOTS (9L) CO-5 Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: Study of sensing methods in mobile robots CO-5 Study of mobile robots for variable applications BTL-3,4 LAB / MINI PROJECT / FIELD WORK 1. Design and develop a mobile robot for a specific application TEXT BOOKS Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	Stud	y of python programming for interfacing							
(9L) Building of various types of mobile robots – Use of various Sensing methods, Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: Study of sensing methods in mobile robots BTL-3,4 Study of mobile robots for variable applications ETL-3,4 LAB / MINI PROJECT / FIELD WORK ETL-3,4 1. Design and develop a mobile robot for a specific application ETL-3,4 TEXT BOOKS Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFENCE BOOKS Image: Sensor Fusion and Application Automation, McGraw-Hill Companies 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	MOE	DULE 5 – BUILDING OF MOBILE ROBOTS							
Building of various types of mobile robots – Use of various Sensing methods, Naviget and Vision-Demonstration and Exercises CO-5 BTL-3,4 Suggeted reading: Study of sensing methods in mobile robots Study of mobile robots for variable applications BTL-3,4 Study of mobile robots for variable applications BTL-3,4 I. Design and develop a mobile robot for a specific application Image: Co-5 BTL-3,4 1. Design and develop a mobile robot for a specific application Image: Co-5 BTL-3,4 1. Design and develop a mobile robot for a specific application Image: Co-5 BTL-3,4 1. Design and develop a mobile robot for a specific application Image: Co-5 BTL-3,4 1. Design and develop a mobile robot for a specific application Image: Co-5 BTL-3,4 1. Design and develop a mobile robot for a specific application Image: Co-5 BTL-3,4 1. Design and develop a mobile robot for a specific application, for a specific application, for a specific application, Spring method, for a specific application, Spring method, for a specific application, Spring method, for a specific application, for a specific application, Spring method, for a specific application, for a specific ap	(9L)								
Navigation and Vision-Demonstration and Exercises CO-5 Suggested reading: BTL-3,4 Study of sensing methods in mobile robots BTL-3,4 Study of mobile robots for variable applications BTL-3,4 LAB / MINI PROJECT / FIELD WORK LAB / MINI PROJECT / FIELD WORK 1. Design and develop a mobile robot for a specific application Text Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2"	Builc	ling of various types of mobile robots – Use of various Sensing methods,							
Suggested reading: BTL-3,4 Study of sensing methods in mobile robots BTL-3,4 Study of mobile robots for variable applications BTL-3,4 LAB / MINI PROJECT / FIELD WORK 1. Design and develop a mobile robot for a specific application Text Text BOOKS 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFE-ENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	Navia	ation and Vision-Demonstration and Exercises	CO-5						
Study of sensing methods in mobile robots DTE-5,4 Study of mobile robots for variable applications Image: Constraint of the sense o	Sugg	ested reading:	BTI -3 4						
Study of mobile robots for variable applications LAB / MINI PROJECT / FIELD WORK 1. Design and develop a mobile robot for a specific application TEXT BOOKS 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	Stud	y of sensing methods in mobile robots	512 3,4						
LAB / MINI PROJECT / FIELD WORK 1. Design and develop a mobile robot for a specific application TEXTENDOKS 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	Stud	y of mobile robots for variable applications							
1. Design and develop a mobile robot for a specific application TEXE BOOKS 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	LAB	/ MINI PROJECT / FIELD WORK							
TEXT BOOKS 1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	1. C	Design and develop a mobile robot for a specific application							
1. Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Springer, second edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	TEXT	BOOKS							
1. edition. 2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.		Ulrich Nehmzow. (2003). Mobile Robots - A practical introduction, Sprin	nger, second						
2. S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McGraw-Hill, 2nd Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	1.	edition.							
 2. Edition 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher. 		S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, McG	raw-Hill, 2nd						
 3. Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, Programming, and Applications, McGraw-Hill Companies REFERENCE BOOKS Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher. 	2.	Edition							
 and Applications, McGraw-Hill Companies REFERENCE BOOKS Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher. 		Mikell P. Groover, Roger N. Nagel (2012). Industrial Robotics: Technology, P.	rogramming,						
REFERENCE BOOKS 1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor Fusion and Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.	3.	and Applications, McGraw-Hill Companies.							
1. Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). <i>Multiple Sensor Fusion and</i> <i>Motion Control of Snake Robot Based on Soft-Computing</i> , INTECH Open Access Publisher.	REFE	RENCE BOOKS							
1. Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Access Publisher.		Woo-Kyung Choi, Hong-Tae Jeon, Seong-Joo Kim. (2007). Multiple Sensor	r Fusion and						
	1.	Motion Control of Snake Robot Based on Soft-Computing, INTECH Open Acces	s Publisher.						
2.	S.R. DEB, S. DEB. (2011). Robotics Technology and Flexible Automation, Mc-GrawHill, 2nd								
------	---	--	--	--	--	--	--	--	--
۷.	Edition.								
3.	Katsuhiko Ogata. (2011). Modern Control Engineering, Pearson Education.								
E BO	OKS								
1.	http://home.deib.polimi.it/gini/robot/docs/siegwart.pdf								
2.	https://mitpress.mit.edu/books/introduction-autonomous-mobile-robots								
мос									
1.	https://www.coursera.org/learn/mobile-robot								
2.	https://www.open2study.com/courses/mobile-robotics								

DEPARTMENTAL ELECTIVES – SEMESTER IV

COURSE TITLE	I	NDUSTRIAL ROBOTS		CREDITS	3				
COURSE CODE	MHC4266	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1				
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	BTL-3				
ASSESSMENT SCHEME									
First Periodical Assessmen t	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendanc e	ESE				
15%	15%	10%	5%	50%					
Course Descriptio n	The course is air domain related to will learn, in th understanding a they will acquire and program indu In the second me applications of mechatronic syste At first, the theo system is analyz	med at providing concep o mechatronics, robotics, e first module, fundam nd modelling mechatror fundamental knowledge ustrial robots. odule the course discuss the electrical drives te ems. ory of electrical motors (ed considering all of it can be adopted. Emph	ts and skills in electrical ma nental concep nic systems a e and compet es the theore echnology ap actuators) is i s component asis is given	n the industria chines and dri its and metho nd industrial cences on how tical basis and plied to auto ntroduced. Th s and the va to practical	I automation ves. Students odologies for robots; then, v to simulate I the practical omation and een, the drive rious control applications,				

especially considering the advantages achievable with the latest technologies.

		·		<u> </u>		5 . 1			• .•					
		The	specifi	c obje	ctives	of the	Cours	e enat	ole the	studen	ts to:			
-		1. K	ecogn	ize the	basics	s of ro	bots.							
Cour	se	2. 0	2. Calculate kinematics of industrial robots.											
Obje	ctive	3. IC	3. Identify actuators and sensors used in industrial robots											
		4. C	Create industrial robot programming											
		5. D	Discuss about various applications in industries											
		ι	Upon completion of this course, the students will be able to											
		1. C	ompre	hend	the ba	sics of	robot	s.						
Cour	se	2. D	erive t	he kin	emati	cs of r	obots.							
Outc	ome	3. Io	dentify	actua	tors ar	nd sen	sors u	sed in	industr	rial rob	ots.			
		4. A	pply ir	ndustri	ial rob	ot pro	gramm	ning.						
		5. D	escrib	e appl	icatior	ns of ir	ndustri	al rob	ots					
Prere	equisite	s: Nil												
CO, F	PO AND	PSO N	/IAPPII	NG										
6		PO	PO	PO	PO	РО	РО	РО	PO-	PO-	PO-	PO-	PSO	PSO
ιυ	PO-1	-2	-3	-4	-5	-6	-7	-8	9	10	11	12	-1	-2
СО	3	3	2	2	1	_	_	-	-	1	-	1	2	2
-1														
CO -2	3	3	2	2	1	-	-	-	1	1	-	-	2	2
CO -3	3	3	2	2	2	-	-	-	1	1	-	-	2	2
CO -4	3	3	2	2	2	-	-	-	1	1	-	-	3	3
CO E	2	2	3	2	2	-	-	-	-	-	-	_	3	3
- 5	oakly ro	 ated	2. Mo	dorato	ly rela	L	d 3 · St	rongly	rolato	d		L		<u> </u>
MOL							<u> </u>	TONETY		u			9	
Histo	ry of R	ohots		ot An	atom	/ - Ro	bot C	onfigu	rations	- Wo	rk Volu	ime –		-
Robo	t Safaty	00013	NOL		atomy			onngu	lations	**0		inic		<u>۱_1</u>
Suga		oadina											BT	/-1 _3
Histo	esteu N	bots	53.											L-3
MOL		JUUIS					2.							
9L	JOLE						Ζ.						KINEIV	AIICS
Robc	ot Transf	format	ions –	Rotat	ion Ma	atrix –	Forwa	ard an	d Inver	se Kine	ematics	– DH		
Representation								cc)-2					
Sugg	ested R	eading	gs:										BT	L-3

Study of forward and inverse geometrics

MO	DULE	3:	DRIVES,	ACTUATORS	SENSORS	AND	END	EFFECTORS
9L								
Func	tions of	Drive S	ystems – AC	C, DC Motors – Pi	neumatic and I	Hydraulic A	Actuators	
– Sel	ection o	f Senso	rs – Classific	ation of Sensors	– Data Acquis	ition – Me	chanical,	CO-3
Vacu	um and	Adhesiv	e Grippers.					BTI-2
Sugg	ested Re	eadings	:					DIC-2
Bala	ncing of	Simple	mechanisms	;				
MO	DULE	4:	ROI	BOT LAN	GUAGES	AND	PRC	GRAMMING
9L								
Robo	ot Langu	uages –	 Classificati 	on of Language	es –VAL II- M	lotosim, C	omputer	
Cont	rol and I	Robot So	oftware.					CO-4
Sugg	ested Re	eadings	:					BTL-2
Robo	ot langua	ages						
MO	DULE			5:			AP	PLICATIONS
9L								
Robo	ot Applic	ations -	- Welding, P	alletizing, Debur	ring, Assembly	- Hands or	n training	
in m	aterial	handlin	g and proc	essing applicati	ons, recent ti	rends in i	ndustrial	CO-5
robo	ts- Build	ing of gr	rippers – Exe	ercises				BTL-3
Sugg	ested Re	eadings	:					
Stud	y of Rob	ots app	lications in i	ndustries				
TEXT	BOOKS							
1.	Mikell	P. Groo	over, Roger I	N. Nagel. (2012)	Industrial Rol	botics: Tec	hnology, P	rogramming,
	and Ap	plicatio	ns, McGraw	-Hill Companies.				
2	Rao. F	P.N. (20	03). Manufo	acturing Technol	ogy - Metal	Cutting ar	nd Machin	<i>e Tools,</i> Tata
	McGra	w-Hill.						
REFE	RENCE B	OOKS						
1.	S.R. D Edition	EB, S. D , 2011.	EB. (2011).	Robotics Technol	ogy and Flexib	ole Automo	ation, Mc-0	GrawHill, 2nd
2.	Roy. PHI/Pe	A.Lindbe arson E	erg. (2006) ducation.	. Process and	Materials of	f Manufa	cture, Fou	urth Edition,
3.	Edquis Wiley-l	t. (198 Blackwe	38). Flexible	e Automation:	The Global	Diffusion	of New	Technology,
E BOO	OKS							
1.	http://	'onlineli	brary.wiley.o	.com/book/10.10	02/978047017	2506		
мос	C							
1.	https:/	//www.c	coursera.org	/specializations/	robotics			

COURSE		CREDITS	3	
TITLE	MACHINING TECHNOLOGY	CREDITS	5	

COUI COE	RSE DE	N	IHC42	67	со	JRSE (CATEG	ORY	C	DE	L-T-	-P-S	3-0-	-0-1
Versi	on		1.0		Aŗ	oprova	al Deta	ails	23 A 06.02	ACM, 2.202 1	LEAR LEV	NING VEL	BT	L-4
ASSESS	ASSESSMENT SCHEME													
Firs Perioc Assessi	t lical nent	Pe Ass	SecondSeminar/SurpriseAttendancPeriodicalAssignments/Test / QuizeAssessmentProjectESE								SE			
159	6		15%			10	0%		5	%	5	%	50)%
Couı Descrip	se otion	Macl shap the mate	Machining is a process in which a material (often metal) is cut to a desired final shape and size by a controlled material-removal process. Machining is a part of the manufacture of many metal products, but it can also be used on other materials such as wood, plastic, ceramic, and composite material.											
Cour Objec	se tive	The 1. 2. 3. 4. 5.	 The specific objectives of the Course enable the students to Comprehend the metal cutting theories and concepts Present various turning machining methods Familiarize different finishing operations. Describe non-traditional methods and show their superiority of process. Describe the Laser and Plasma arc machining. 											
Cour Outco	se me	Upo 1. Co 2. Se 3. Do 4. Co it: 5. Do	n com ompre elect ti escribe ompre s chara escribe	pletio hend he ma e turn hend acteris e the d	n of the fu chinin ing an the di stics.	nis cou ndame g metl d finis ifferen ion of	urse, ti ental c hods. hing o it type Laser	he stu concep perati is of n beam	dents of m ots of m ons. on-trac & plas	will be netal cu ditional ma arc	able to itting. I machi machi): ining, c ning.	operatio	n and
Prereq	uisites	s: NIL												
CO, P	O AN	D PSC) MA	PPINO	G									
со	PO -1	PO -2	PO -3	PO -4	PO -5	РО -6	PO -7	PO -8	РО- 9	PO- 10	PO- 11	PO- 12	PSO -1	PSO -2
CO-1	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-2	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-3	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-4	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-5	3	2	3	2	1	1	1	1	2	1	-	1	3	2
		1: V	Veakly	relate	ed, 2:	Mode	rately	relate	d and	3: Stro	ngly re	lated		

MODU	LE 1: THEORY OF METAL CUTTING	9L
Mecha	nics of chip formation, single point cutting tool, forces in machining, Types	
of chip	cutting tools – nomenclature, orthogonal metal cutting, thermal aspects,	
cutting	tool materials, tool wear, tool life, surface finish, cutting fluids and	CO-1
Machin	ability.	BTL-4
Sugges	ted Readings	
Advand	es in Theory Of Metal Cutting	
MODU	LE 2:TURNING MACHINES	9L
Centre	lathe, constructional features, specification, operations – taper turning	
method	is, thread cutting methods, special attachments, machining time and	
power	estimation. Capstan and turret latnes- tool layout – automatic latnes:	CO-2
seini-au	atomatic – single spinule . Swiss type, automatic screw type – muti	BTL-2
Sugges	ted Readings:	
Advanc	tes in Turning Machines	
MODU	IF 3: ABRASIVE PROCESS AND BROACHING	91
Abrasis	a processes: grinding wheel - specifications and selection types of	52
grindin	a processe cylindrical grinding surface grinding centraless grinding and	
intorna	g process- cymunical grinning, surface grinning, centreless grinning and	
menia	r grinding- Typical applications – concepts of surface integrity, broaching	CO-3
machin	es: broach construction – push, puil, surface and continuous broaching	BTL-2
machin	es	
Sugges		
Best pr	actices for Abrasive Process and Broaching	
MODU	LE 4 :NON-TRADITIONAL MACHINING	9L
Introdu	iction, need, Abrasive Jet Machining , Parametric Analysis, Process	
capabil	ties, Ultrasonic Machining –Mechanics of cutting, models, Parametric	
Analysi	s. Water Jet Machining –principle, equipment ,process characteristics ,	CO-4
perforn	nance, EDM – principles, equipment, generators, analysis of R-C circuits,	BTI 2
MRR,S	furface finish, WEDM.	DIL-3
Sugges	ted Readings:	
Evoluti	on of Non-Traditional Machining	
MODU	LE 5: LASER BEAM & PLASMA ARC MACHINING	9L
Laser B	eam Machining – Principle of working, equipment, Material removal rate,	
Process	parameters, performance characterization, Applications. Plasma Arc	
Machin	ing – Principle of working, equipment, Material removal rate, Process	CO-5
parame	ters, performance characterization, Applications	BTL-4
Sugges	ted Readings:	
Next-ge	eneration LASER BEAM & PLASMA ARC Techniques.	
TEXT BO	DOKS	
	HA Taba (2003) Operations Research - An Introduction Prent	tice Hall of
1.	India /Pearson Education	

2.	J.K. Sharma(2006). Operations Research, Macmillan							
REFERE	REFERENCE BOOKS							
1.	F S Hiller and G J Leiberman (2000), Introduction to Operations Research							
2.	Gupta Prem Kumar and Hira D S (2010). Operations Research							
моос	MOOC							
1	https://onlinecourses.nptel.ac.in/noc17_mg10/preview							

COURSE TITLE	APPLIED PN	EUMATICS FOR INDUST AUTOMATION	TRIAL	CREDITS	3						
COURSE CODE	MHC4268	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1						
Version	1.0	Approval Details	24 th ACM, 30.05.20 18	LEARNIN G LEVEL	BTL-3						
ASSESSMEN	ASSESSMENT SCHEME										
First Periodical Assessme nt	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendan ce	ESE						
15%	15%	10%	5%	5%	50%						
Course Descriptio n	This course covers how work, force and energy are applied to principles of pneumatics. It shows operating principles of reciprocating, positive displacement, rotary and dynamic air compressors. It covers primary and secondary treatment which includes valves, logic devices, cylinders and air motors. A centrally located and electrically powered compressor, power cylinders, air motors and other pneumatic devices. A pneumatic system controlled through manual or automatic solenoid values is selected when it										
Course Objective	 The course should enable the student to, 1. Learn the concepts of governing equations of fluid power 2. Learn the operation of simple circuits 3. Learn development of the electro pneumatic circuits 4. Learn the fundamentals of PLC and its elements 5. Learn about the low cost automation and troubleshoots 										

Upon completion of this course, the students will be able to

1. Infer the fundamental theoretical concepts of governing fluid power

Course Outcome

- 2. Interpret the operation of basic circuits for directional, speed, pressure, and force and flow control.
- 3. Develop the electro pneumatic circuits for controlling multi cylinders
- 4. Comprehend the fundamentals of PLC and other elements
- 5. Appraise low cost automation and troubleshoots.

Prerequis	ites: I	NIL												
CO, PO AN	ND PS	ΟΜΑ	PPINC	6										
со	Р О- 1	P O- 2	Р О- З	Р О- 4	Р О- 5	Р О- 6	Р О- 7	P O- 8	PO -9	PO -10	PO -11	PO -12	PS O-1	PS O-2
CO-1	3	3	-	-	2	-	-	-	-	-	-	2	2	0
CO-2	3	3	-	-	2	-	-	-	-	-	-	2	2	0
CO-3	3	3	-	-	2	-	-	-	-	-	-	2	2	0
CO-4	3	3	-	-	-	-	-	-	-	-	-	2	2	0
CO-5	3	3	-	-	-	-	-	-	-	-	-	2	2	0
1: Weakly	relat	ed, 2:	Mode	erately	y relat	ed an	d 3: S	trongl	y relate	ed				
MODULE	MODULE 1: INTRODUCTION (91)													
Merits of Fluid power & its utility for increasing productivity through Low Cost Automation, Transmission of Fluid Power through various types of Cylinders, Symbolic representation of Pneumatic elements, Compressors and Air supply and conditioning system including airline installations,Distribution System - ring rails systems Suggested Readings: Basic components of Pneumatic power systems and component descriptions							CO-1 BTL-	L 1, 2						
MODULE	2: BAS	SIC PN	IEUM/	ATIC C	IRCUI	FS (9L	_)							
Pneumatic control elements (control valves & remote control system), Basic pneumatic circuits for controlling single & double acting cylinder, Basic pneumatic circuits, advanced pneumatic circuits forcontrolling multi cylinders- Simulation -Autosim Suggested Readings:							CO-2 BTL- 1,2,3	2						

Development of automatic pneumatic cylinder reciprocating system

MODULE	3: ADVANCED PNEUMATIC CIRCUITS (9L)						
Advanced pneumatic circuits for controlling multicylinders, Electro pneumatics with relay logic,Pneumatics system with PID controls, Simulation -Autosim Suggested Readings: Design of Pneumatic Logic circuits by Cascade method							
MODULE	4: PROGRAMMABLE LOGIC CONTROLLERS (9L)						
Programm Componer and jump control us Suggested PLC applic	able logic controllers, introduction, architecture hardware. hts basics of PLC programming –Programming timers counters-master controls-data manipulations and instructions, Programmable sequential ing pneumatic modular elements Readings: ations in Fluid power control	CO-4 BTL-1,2,3					
MODULE	5: LOW COST AUTOMATION (9L)						
Low cost and fault f Suggeste Fault find	Low cost Automation using pneumatics, FMS – Assembly, disassembly, inspection and fault diagnosis, Maintenance of pneumatics systemsCO-5 BTL-1,2, 3Suggested Readings: Fault finding using Troublesbooting sharts3						
TEXTBOO	DKS						
1.	Anthony Esposito, Fluid Power with application, Prentice Hall, 2013						
REFEREN	CE BOOKS						
1.	MajumdarS.R.,OilHydraulics,Tata McGraw-Hill, New Delhi 2009						
2.	Anderson, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2	003					
3.	A text book of Basic Pneumatics, SMC Pneumatics, 2012						
4.	A text book of Electro Pneumatics, SMC Pneumatics, 2012						
5.	Harry StevartD.B,Practical guide to fluid power, Taraoealasons and Broadey,1976	d Port Ltd.					
6.	Michael J, Prinches and Ashby J. G, Power Hydraulics, Prentice Hall, 1989						
E BOOKS							
1.	https://www.powermotiontech.com/learning-resources/ebooks						
MOOC							
1.	https://www.mooc-list.com/course/hydraulics&pneumatics						
2.	https://nptel.ac.in/courses/112/105/112105046/						

COURSE TITLE	PROI	DUCT DEVELOPMENT		CREDITS	3			
COURSE CODE	MHC4269	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1			
Version	1.0	1.0 Approval Details		LEARNIN G LEVEL	BTL- 4			
ASSESSMEN								
First Periodical Assessme nt	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendan ce	ESE			
15%	15%	10%	5%	5%	50%			
Course Descriptio n	This course immerses students in the new product development process with the objective of learning modern key tools, techniques and methods. This course will help them to gain thorough understanding in the entire new product development process from consumer need identification, product ideation, concept development, concept evaluation, product design to marketing of any product. Since every industry develop new products in order to be successful in the business market this course is important for the students to be familiar and use latest technology tools for designing any product and efficiently handle whole project management cycle							
Course Objective	 The course should Learn terms in th Learn how to int Learn and apply assignments. Use the new p product or service Participate in gro importance of t success. 	enable the student to, ne new product develop egrate the customer an the concepts and tools roduct development p ce and an introductory l oup work sessions and teamwork and collabor	oment proces d end-consur a necessary th process by co aunch plan. teams to beo ration that is	s. ner into this p rough case ex onceiving you come acquain s critical to r	process. xamples and ur own new ited with the new product			
Course Outcome	 Upon completion of Describe the nat Discuss the mark user needs, and Competent with development. Demonstrate the context of innov Work collaboration to effectively converted on and 	of this course, the stude sure and techniques of r ket opportunities, deve assess the competitive h a set of tools and e best level of practice ation and new product ively on a team to succ mmunicate the results format	ents will be al new product of lop an under landscape d methods in each prol development essfully comp of projects an	ble to development standing of co for product olem situatio olete a design nd other assig	process ustomer and design and n within the project and gnments in a			

Prerequi	Prerequisites: NIL													
CO, PO A	AND PS	50 MA	PPINO	3										
со	Р О- 1	Р О- 2	Р О- З	Р О- 4	Р О- 5	Р О- 6	Р О- 7	P O- 8	PO -9	PO -10	PO -11	PO -12	PS 0-1	PS O-2
CO-1	3	3	1	1	-	2	-	-	-	1	-	-	1	2
CO-2	3	3	2	1	-	2	1	-	-	1	-	2	1	2
CO-3	3	3	2	2	3	2	-	-	-	1	-	2	1	2
CO-4	3	3	3	3	3	2	1	-	-	1	-	2	1	2
CO-5	3	3	3	3	1	2	0	2	2	1	2	2	1	2
1: Weakly related, 2: Moderately related and 3: Strongly related														
MODULE 1: INTRODUCTION (9L)														
 -relevance of product development – Need for developing new products -relevance of product lifecycle issues in design-Generic New Product Development Process- Intellectual property rights (IPR)-Patents - Patent search - Patent laws - International code for patents. Suggested Readings: Intellectual property rights(IPR), patent laws MODULE 2: CONSUMERS AND OPPORTUNITIES (9L) Identifying customer needs –voice of customer –customer populations- hierarchy of human needs-need gathering methods – affinity diagrams – needs importance-establishing engineering characteristics-competitive benchmarking- quality 											CO-1 BTL- CO-2 BTL-	L 2 2 2 3		
		lings:	Custo	mer no	eed ga	therin	ng me	thods				(01)		
Idea gene screening Selecting technique Suggeste	eratior ideas Prod es. d Reac	for luct	ection new Conce	of id productor	eas an cts - conce velopr	nd pu Princi ept c	rpose pal, P develo	of pro oint F pmen aluatio	oject - Forward t- Co on tech	Selecti d Deve ncept miques	on crit eloping evalu	eria - and ation	CO-3 BTL-	3 3
MODULI	E 4: NE	W PR	ODUC	T DEV	ELOPI	MENT	PROC	ESS –				(9	L)	
Design process- Different stages in design and their significance - Design detailing- Material selection, Design visualization- Solid modeling; Detailed 2D drawings; Tolerance; Use of standard items in design; Research needs in design- Designing and branding a product. Selecting a brand name, packaging Suggested Readings: Designing and branding a product										CO-4 BTL-	1 4			
MODULE 5: STRATEGIC M/											ARKET	ING		

Sales For Success- Examples innovatic innovatic PROJECT Suggeste	recasting and Financial Analysis- Marketing Plan-Secrets of New Product Strategic Launch Planning -Implementation of the Strategic Plan-Cases of New Innovative Product Forecasting Before Launching- Open on; User innovation; Crowd sourcing; Free innovation-Continuous on and creating a culture of innovation Creative design - Model Preparation - Testing - cost evaluation ed Readings: Sales forecasting and financial analysis	CO-5 BTL-3
TEXTBO	OKS	
1.	Anita Goyal, Karl T Ulrich, Steven D Eppinger. (2009). <i>Product Development</i> , 4th Edition, Tata McGraw-Hill Education, ISBN-10-007-146	Design and 579-9
REFEREN	ICE BOOKS	
1.	Isaacson, Walter. (2014). The Innovators: How a Group of Hackers, G Geeks Created the Digital Revolution, Simon and Schuster, New York, NY.	eniuses, and
2.	Gladwell, Malcolm. (2000). The Tipping Point: How Little Things Can Difference, Little, Brown, and Co.: New York, NY.	Make a Big
3.	Norman, Donald A. (2004). Emotional Design: Why We Love (or Hat Things, Basic Books: New York, NY.	te) Everyday
4.	Christensen, Clayton M. (1997). The Innovator's Dilemma, Harper Collin NY.	s: New York,
5.	Urban, Glen L. and John R. Hauser. (1993). <i>Design and Marketing of Ne</i> Revised Edition, Prentice-Hall, Inc.: Englewood Cliffs, NJ.	ew Products,
6.	Moore, Geoffrey. (1991). Crossing the Chasm, Harper Collins Publishers,	, New York.
E BOOKS		
1.	https://www.designbetter.co/principles-of-product-design	
MOOC		
1.	https://www.coursera.org/learn/new-product-development	
2.	https://www.edx.org/course/new-product-development	

DEPARTMENTAL ELECTIVES – SEMESTER V

COURSE TITLE	BUI	LDING AUTOMATION		CREDITS	3
COURSE CODE	MHC4355	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BTL-4
ASSESSMENT S	СНЕМЕ	-			
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE

:	15%		1	5%			10%			5%		5%		50%	
Ca Desc	ourse criptio	Bu au sy he sy de Se n nc Th th co in su sy	automated control and monitoring within a building. A building automation system (BAS) is an intelligent system of both hardware and software connecting heating, venting and air conditioning system (HVAC), lighting, security, and other systems to communicate on a single platform. The automation system is used to deliver the crucial information on the operational performance of a building. Security of the building and safety of personal are becoming important aspects now a day and in near future, it will be in a great demand. The objectives of building automation were to enhance the safety and comfort of the occupants, efficient operation of building systems, reduction in energy consumption and operating costs, and improved life cycle of utilities. Complex infrastructure requires a variety of building automation and control Systems. This subject will help the students to understand the various aspects of different systems seen in well structured building.												
Cours Objec	se ctive	TI 1. 2. 3. 4.	 The course should enable the student to, Study the current values, technology, terminology and practices used in building automation system Analyze and choose the suitable hardware and software for HVAC system and various applications Appraise the concept of energy management system and techniques adopted Evaluate different safety standards and features of integrated systems 												
Cours Outco	se ome	1. 2. 3. 4.	Upor Selec syste Ident simp Desig Desc	t and ms in r ify the le appl gn and ribe th	evalu evalu moder impo ication install e proc	of thi ate the ortance ns ation i redure	s cour ne diffe dings. e and metho for int	se, the erent d techni ds of sa egrate	studer transdu ques o afety se d and s	nts will acers, f ener ensors secure	l be ak actuat gy cor for sin smart	o le to ors, A nservat nple ap buildir	C, refri ions in oplicationg tech	igeration BAS for on niques	
Prere	quisite	es: Nil													
CO, P	O AND) PSO N	MAPPII	NG											
со	PO -1	РО- 2	PO -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО- 9	PO -10	PO -11	PO -12	PSO- 1	PSO-2	
CO- 1	2	1	1 1 2 1 2 2 1 2 3 3										2		
CO- 2	2	2	2 1 1 - 2 2 2 2 1 2 3 3 2										2		
CO- 3	3	2	3	1	1	1	1	1	1	1	2	3	3	2	

CO- 4	2	1	1	2	1	2	2	1	1	1	2	3	3	3
1: We	eakly r	elated,	2: Mo	derate	ly rela	ited ar	nd 3: S	trongly	, relate	d				
MOD	ULE 1:	INTRO	DUCT	ON				(9L)						
Introd	Introduction to Building Automation System, Features, Characteristics, Drawbacks of													
Building Automation system. Various Systems of Building Automation – Building Management System, Energy Management System, Socurity System, Safety System														
Management System, Energy Management System, Security System, Safety System, Video Management System.														
Video Management System. Practical component:														CO-1
Practical component: Building parameter control using basic consors and actuators														BTL-2
Building parameter control using basic sensors and actuators														
Suggested Readings:														
MOD		BUILD	ING M	ANAG	EMEN	т syst	EM(9L	.)						
Quali	tative	study-	Introd	uction.	HVAC	. Sens	ors & ⁻	., Transd	ucers –	Temp	erature	e. Pres	sure.	
Level,	Flow,	RH. N	1eanin	g of A	nalog	& Dig	ital Sig	gnals, '	Valves	and A	ctuato	rs, Val	ve &	
Actua	itor Se	lection	, Vario	us Cor	ntrolle	rs, Job	IO Su	mmary	/ Calcul	ation,	Contro	, oller Si	izing,	
Al to	DI Co	nversio	n, Cab	le Sele	ction,	Earthi	ng – N	Ieanin	g, Impo	ortance	e, Pane	el Eart	hing,	~~ ~
EMI 8	k Tackl	ing EM	I. Logic	Exam	oles, C	L Prog	rammi	ng.						
Pract	ical co	mpone	ent:											BIL-3
Heati	ng, Ve	ntilatio	n and a	Air-cor	dition	ing (H	VAC)							
Sugge	ested I	Reading	gs:											
Build	ing aut	tomatio	on com	munic	ation	standa	rds							
MOD	ULE 3:	ENERG	SY MA	NAGEN	ΙΕΝΤ	SYSTE	M(9L)							
Conce	ept, E	nergy l	Meters	, Туре	s, Me	ter Ne	etwork	ing, N	Ionitor	ing En	ergy F	Parame	eters,	
Analy	sis of	Power	Quality	/ – Inst	antan	eous F	ower,	Active	Power	, React	ive Po	wer, P	ower	
Facto	r, Volt	age, C	urrent	. Effec	t of I	Power	Quali	ty on	Energy	/ Cons	sumpti	on, Er	nergy	
Repoi	rts, Ene	ergy Co	nserva	tion, Ir	nport	ance o	f Ener	gy Savi	ng.					CO-3
Pract	ical co	mpone	ent:											BTL-3
Illumi	inatior	n (lighti	ng) cor	ntrol										
Sugg	ested I	Reading	gs:											
Conce	ept of	Green	buildin	g (LEEI	D)									
MOD	ULE 4:	SAFET	Y SYST	EMS										(9L)

Detector Placement, Detectors Required For Various Applications. Fire Extinguishing Principles, Fire Extinguishers & Its Classification. Fire Alarm System – Controllers, Components, Features, Concept of Fire Loop & Fire Devices, 2-Wire & 4-Wire Loops, Working Principle, System Description, Pre-alarm, Alarm, Trouble, Fault, Differences, Cable Selection, Installation Guidelines Best Installation Practices, Logic Example. NFPA and IS2189 Stds, System Programming Practical component: Fire detector & alarm system Suggested Readings: Design aspects and components of PA system MODULE 5: INTEGRATED SYSTEMS (9L)								
MODULE 5: II	NTEGRATED SYSTEMS (9L)							
Introduction, System, Safet Systems, Chal Practical com Access contro Suggested Re Intelligent Bu	Integration of Building Management System, Energy Management y System, Security Systems & Video Management, Benefits of Integrated lenges, Future Prospects of Integrated Systems. ponent: ol eadings: ilding	CO-5 BTL-3						
TEXT BOOKS								
1	You Lin Xu & Jia He. (2017). Smart Civil Structures, CRC Press.							
2	Nancy G. Leveson. (2011). Engineering a Safer World: Systems Thinking A Safety (Engineering Systems), 1 st Edition, The MIT Press.	Applied to						
REFERENCE B	OOKS							
1	Geoff Levermore. (2000). Building Energy Management Systems: An Appl Heating, Natural Ventilation, Lighting and Occupant Satisfaction, 2 nd Routledge.	ication to ¹ Edition,						
2	Haralick, R.M. and Shapiro, L.G. (1990). <i>Computer and Robot Vision (Volu II),</i> Addison Wesley, Reading Massachusetts.	mes I and						
3	Reinhold A. Carlson, Robert A. Di Giandomenico. (1991) Understanding Automation Systems: Direct Digital Control, Energy Management, Lip Security Access Control, Lighting, Building, 1 st edition, R.S. Means Company	g Building fe Safety, v Ltd.						
моос								
1	https://www.ed2go.com/courses/construction-and-trades/trades/ctp/hv olsbuilding-automation-systems	acr-contr						

COURSE			2
TITLE	ELECTRONIC DEVICES & CIRCOTTS	CREDITS	2

COUI COE	RSE DE	N	IHC43	56	COL	JRSE (CATEG	ORY	C	DE	L-T-	P-S	3-0-	-0-1		
Versi	on		1.0		Aŗ	oprova	al Deta	ails	24 th / 30.0	ACM, 5.201 B	LEAR LEV	NING /EL	BT	L-3		
ASSESS	MENT	SCHE	ME						-							
Firs	st		Secon	d		Sem	inar/		Suri	orise	Atter	ndanc				
Perioc	lical	Pe	eriodio	cal	A	Assign	ments	/	Test /	Quiz		e	E	SE		
Assessi	ment	As	sessm	ent		Pro	ject									
159	%		15% 10% 5% 5% 50%													
		Electronic Devices and Circuits deals with the design and applications of														
Coui	rse	electronic devices and circuits such as passive components, diodes, triodes and														
Descrip	otion	transistors, rectification and power supplies, amplifying circuits, electronic														
		instruments, and oscillators.														
		The course should enable the student to,														
		1. 1	1. learn about the semiconductor devices													
Cour	se	2. C	2. comprehend the concept of different diodes													
Objec	tive	3. к	locian		icept (JI BJI,	FEI									
		4. C	locign	diada	tranc	istor a	nnlica	tions								
		J. U	5. design diode, transistor applications													
		с 1 г	Upon completion of this course, the students will be able to													
		1. L 2 F	xnlain	and	Analy	vse ti	he dit	ferent	t type	s of c	lindes	onera	ntion ar	nd its		
		2. 0	haract	teristio	CS .	yse ti	ic un	leren	t type.	5 01 0	noucs,	opere				
Coui	se	3. E	Descrit	be the	e ope	eratior	n of	BJT a	nd FE	T. its	biasing	and	input-c	utput		
Outco	me	C	haract	teristic	cs of di	ifferer	nt conf	igurat	ions	,		,	1			
		4. C	Differe	ntiate	the di	ifferen	nt type	e of ne	gative	feedba	ick amp	olifiers	and osc	illator		
		c	ircuits	with [·]	their d	lesign	equat	ions.	0		•					
		5. C	Design	diode	appli	cation	circui	ts, an	nplifier	circuit	s and o	scillato	ors emp	loying		
		E	BJT, FE	T devi	ces.											
Prereq	uisites	5:														
CO, PO	AND	PSO N	1APPI	NG												
	РО	РО	РО	PO	РО	РО	PO	РО	PO-	PO-	PO-	PO-	PSO	PSO		
CO	-1	-2	-3	-4	-5	-6	-7	-8	9	10	11	12	-1	-2		
CO-1	3	3	-	-	-	-	-	2	2	-	-	2	2	2		
CO-2	3	3	3	3	3	-	-	2	2	-	-	2	2	2		
CO-3	3	3	-	-	-	-	-	2	2	-	-	2	2	2		
CO-4	3	3	-	-	-	-	-	2	2	-	-	2	2	2		

CO-5	3	3	-	-	-	-	-	2	2	-	-	2	2	2
1: Wea	kly rel	ated, i	2: Mo	derate	ly rela	ted ar	nd 3: S	trongl	y relate	ed		1		
MODU	LE 1: 9	SEMIC	ONDU	CTOR	S & DI	ODES						(6L+6P)	
Semiconductors PN j unction diode-Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt- Ampere Characteristics, Temperature dependence of VI characteristic, Breakdown Mechanisms in Semiconductor Diodes, Zener Diode. Suggested Readings: Semiconductor MODULE 2: RECTIFIERS AND FILTERS (6L+6P) P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Usermania components in a Bestifier Circuit, Inductor Filters, Capacitor Filters, In											trinsic n, P-N rature luctor	CO-1 BTL-2		
P-N jun Harmoi Section Sugges Compa	ction a nic con Filter: ted Re rison o	as a Re mpone s, π- S eading of Filte	ectifier ents ir fection (s: ers	r, Half n a Re n Filter	wave ctifier s, , Vo	Rectifi Circui Itage I	er, Ful t, Indu Regula	l wave uctor f tion u	e Rectif Filters, sing Ze	ier, Brid Capaci ⁱ ner Did	dge Rec tor Filte ode.	ctifier, ers, L-	CC BT)-2 L-2
MODU	LE		3:			BIPOL	.AR		JU	ΝΟΤΙΟΙ	N		TRANS	STOR
Principl transist amplific respons Sugges BJT Hyl	e of or – (er- Cl se of a ted Re orid M	transi CE,CB, assific in amp eading lodel	stor a CC Co ation olifier. s:	oction onfigu of a	– Cu ration mplifi	t off, s – Cc ers–	Activo ompari Distor	e and ison -ī tion i	satura Fransist	ation r or as a	egions a switc – freq	of a h and uency	CC BT)-3 L-3
MODU	LE		4	l:		FI	ELD		E	FFECT			TRANS	ISTOR
Junctio Pinch-o (Constr Enhanc Sugges JFET Sn	n Fiel off Vc uction ement ted Re nall Sig	d Effe oltage n, prin t and I cading gnal N	ct Trai - Vo nciple Deplet ;s: 1odel	nsistor olt-Am of c ion m	r (Con opere operat odes	structi chara ion, s	ion, pi acteris symbo	rincipl tics, l), M	e of or FET A OSFET	peration Implifie Chara	n, syml ers M(cteristi	bol) – OSFET cs in	CC BT)-4 L-2
MODU	LE	<u> </u>	5:		OSCIL	LATO	RS		&	Μ	IULTI		VIBRA	TORS
(6L+6P) Classifi phase	cation shift	of os – Ha	cillato artely	rs – B and	arkha colpit	usen (ts osc	criterio cillator	on ope s –	eration Multivi	and a brators	nalysis 5 — as	of RC table,	C)-5
monost Sugges Schmit	table a ted Re t Trigg	and bis eading er	stabler ;s:	nultiv	ibrato	rs							BT	L-2

TEXT B	DOKS
1	Boylestad&Nashelsky, (2001), Electronic Devices & Circuit Theory, Eighth edition,
1.	Prentice Hall Of India (P) Ltd.
REFERE	NCE BOOKS
1	Millman and Halkias, (2015), Electronic devices and Circuits, Tata McGraw Hill International, Edition.
2	Thomas L. Floyd, (2010), Electron Devices, Charles & Messil Publications.
моос	
1	https://www.mooc-list.com/course/electronic-materials-and-devices-edx
2	https://www.mooc-list.com/course/04832430x-electronic-circuits-edx

COURSE TITLE	INDUS	TRIAL INSTRUMENTATIC	N	CREDITS	3						
COURSE CODE		COURSE CATEGORY	DE	L-T-P-S	3-0-0-1						
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	BTL5						
ASSESSMEN	T SCHEME										
First Periodical Assessmen t	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendanc e	ESE						
15%	15%	10% 5%		5%	50%						
Course Description	Industrial Instructime application. for software and different method are dealt with. The effective manage Distributed control the day to	mentation delivers the The knowledge of prog Id hardware requireme Is of programming the P The exposure to SCADA t ement of resources avai rol system plays a vital r o day operations of the p	automation t rammable log nts for a su LC and instruc cools gives a c lable in plant ole in industr lant.	ools required gic controller b ccessful depl ctions used to utting-edge d or networke y scenario to	for the Real basics, design oyment. The program PLC eployment of d zones. The monitor and						
Course Objective	control the day to day operations of the plant.The course will enable the students to understand:1. The basics Industrial instrumentation systems2. The fundamental operation of PLC and DCS3. The real time interface of sensor and actuators in various applications										

	Upon completion of this course, the students will be able to													
Co	urse	1.	Со	mpreh	end ar	nd gair	n know	ledge	about	industr	ial con	trollers		
Out	come	2.	De	scribe	PLC ar	nd DCS	5							
		3.	De	sign aı	utomat	tion sy	stem a	and de	velop F	PLC lade	der log	ic for sy	vstems.	
Prer	equisite	s:												
СО,	PO AN	D PSO	D MA	PPIN	Ĵ									
~~~~	DO 1	РО	РО	РО	РО	РО	РО	РО	PO-	PO-	PO-	PO-	PSO	PSO
0	PO-1	-2	-3	-4	-5	-6	-7	-8	9	10	11	12	-1	-2
со	3	3	3	2	2	_	_	_	_	_	1	1	2	2
-1														
со	3	3 3 2 2 1 1 1											2	2
-2														
CO	3	3 3 2 2 1 1 1												2
-3														
	1: Weakly related, 2: Moderately related and 3: Strongly related													
MODULE 1 – INTRODUCTION													(9L)	
Intro	duction	to aut	omati	on toc	ols – PL	.C. SCA	ADA. D	CS. Hv	brid D(	CS-PLC			CO-1	
													BTL	1,2
MO	DULE 2 –	PROG	GRAMI	MABL	E LOGI	C CON	TROLL	ERS					(9)	L)
Hard	ware, se	electio	n, I/O	device	es and	progra	ammin	g						
Sugg	ested re	eading	:										CO-2 BTL-1-2	
Stud	y of dat:		icition	ems dovic	26								BIL-1,2	
MO						ΛΤΙΟΝ	IC						 /Q	1)
Func	tional (	design	snec	ificatio	ons fo		omatic	on to	ים וי	elonm	ent of	usor	(9)	-)
requi	irement	specif	icatior	nication NS.	5113 10	n aut	omatic		<i>, D</i> C	/ciopin		usei		
Sugg	ested re	eading	:										CC	)-2
Stud	y of key	comp	onents	s of au	tomati	ion sys	stems						BTL	3,4
Stud	y of vari	ous ty	pes of	auton	nation	syster	ns							
MOL	DULE 4 –	DIST	RIBUTE	D CO	NTROL	SYSTE	M							(9L)
Arch	itecture	, speci	ficatio	ns, sei	nsor in	terfac	ing							
Sugg	ested re	eading	:										cc	)-3
Stud	y of key	comp	onents	s of dis	stribute	ed con	itrol sy	stems					BTL	4,5
Stud	y of data	a inter	facing	and co	ommu	nicatic	on from	n field	device	S				
MO	DULE 5 -	APPL	ICATIC	ONS								(9)	L)	
Case	Study –	Indus	trial p	rocess	monit	oring	and au	itomat	ion				_	
Sugg	ested re	eading	:										CC	)-3
Stud	y of red	undan	t syste	ms an	d histo	ory ser	vers						ВТ	L-5
Stud	y of DCS	imple	ementa	ation f	or indu	ustries								

LAB /	MINI PROJECT / FIELD WORK
1.	Study of automation systems
2.	PLC programming for motor control
3.	Study of DCS for industrial process applications
TEXT	BOOKS
1	William C Dunn. (2005). Fundamentals of Industrial Instrumentation and Process Control,
1.	McGraw Hill, 2005.
r	Donald P. Eckman. (2009). Industrial Instrumentation, CBS Publishers & Distributors,
2	second edition
REFE	RENCE BOOKS
1	Chennakesava R. Alavala, (2011). Principles of Industrial Instrumentation and Control Systems, CENGAGE Learning Asia.
2	S K Singh. (2010). Industrial Instrumentation & Control, Tata McGraw Hill Education.
3	C. R. Venkataramana. (2010). <i>Mechatronics</i> , Sapna Book house, Bangalore.
MOC	DC
1	https://ocw.mit.edu/courses/chemical-engineering/10-450-process-dynamics-operations-
Т	andcontrol-spring-2006/
2	http://www.eit.edu.au/cms/courses/industrial-automation-instrumentation-processcontr
2	ol/professional-certificate/in-instrumentation-automation-and-process-control

## **DEPARTMENTAL ELECTIVES – SEMESTER VI**

COURSE TITLE	O	PERATIONS RESEARCH		CREDITS	3						
COURSE CODE	MHC4371	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1						
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	BTL-3						
ASSESSMEN											
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendanc e	ESE						
15%	15%	10%	5%	5%	50%						
Course Description	15%10%5%50%Operations Research nowadays are widely used in the area of decision making for the real life problems. Managers and decision makers get idea for optimizing and approximating industrial problems. They not only strive to devise appropriate measures for problem solving but also apply scientific techniques to monitor the organizations ongoing activities such as production mix, transportation, queuing, assignment, dynamic, Integer, goal and game										

		The (	course	will e	nable	the st	udent	s to:						
		1. F	amilia	rize w	ith deo	cision	makin	g conc	epts a	nd tool	s.			
Course		2. Practice various Transportation models.												
Objecti	ve	3. Master CPM and PERT techniques and to adopt them suitably for									or the			
		projects.												
		4. Assign the resources in an optimum manner.												
		5. Familiarize with inventory controls.												
		Upo	Jpon completion of this course, the students will be able to											
		1.	Differe	entiate	e the	types	of de	cision	makin	g envir	onmer	ntal and	d appro	priate
Course			decisi	on ma	king a	pproa	ches a	nd too	ols to b	e used	in each	n type.		
Outcon	ne	2.	Build	and sc	olve Tra	anspo	rtatior	mode	els and	assign	ment n	nodels.		
		3.	Desigr	n simp	le mo	dels lil	ke CPN	/I and	PERT to	o impro	ove dec	cision m	naking	
	4. Develop critical thinking and objective analysis decision making.													
		5.	Deter	mine I	EOQ in	facto	ry live	situat	ions ar	nd the i	nvento	ries eff	ectively	<i>'</i> .
Prereq	Prerequisites:													
CO, PO AND PSO MAPPING														
6	РО	РО	РО	РО	РО	РО	РО	РО	PO-	PO-	PO-	PO-	PSO	PSO
0	-1	-2	-3	-4	-5	-6	-7	-8	9	10	12	12	-1	-2
CO-1	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-2	3	2	3	3	1	1	1	1	2	1	-	1	3	2
CO-3	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-4	3	2	3	2	1	1	1	1	2	1	-	1	3	2
CO-5	3	2	3	2	1	1	1	1	2	1	I	1	3	2
1: Wea	kly re	lated,	2: Mo	derate	ely rela	ated a	nd 3:	Strong	gly rela	ted				
MODU	LE 1: F	PROGE	RAMM	ING P	ROBL	M		(9L)						
Graphi	cal So	lution	– Bou	inded	and	Unbo	ounde	d Solu	tions –	Simple	ex Met	hod –	CC	)-1
Big M n	netho	d-Dual	ity - T	wo ph	ase M	ethod	– Dua	al Simp	olex me	ethod.			BT	L-2
MODU	LE	2	:			SEQUI	ENCIN	G	AN	ID	GA	ME	TH	IEORY
(9L)														
Algorit	hm –	Two	Mach	ine aı	nd thr	ee Ma	achine	prob	lem –	Game	theory	/ with		
saddle	point	and	witho	ut sa	ddle p	oint -	- Don	ninanc	e prop	perties	– Gra	phical		12
Solutio	ns. Dy	namic	Progra	ammir	ng								ВТ	1 2
Sugges	ted Re	eading	s:										DI	L-2
Advanc	es in S	Seque	ncing /	And G	ame T	heory								
MODU	LE 3: /	ASSIG	MEN		TRAN	SPOR	ΤΑΤΙΟΙ	NPRO	BLEM	9	L			

Purchase Model with and without Shortages – Manufacturing Model with and												
without Shor		CO-3										
Suggested Re		BTL-3										
Next-generati												
MODULE	4:	PERT	-	СРМ	-DECI	SIONTHEORY						
9L												
Concepts of	f feedback -	- Classification	of feedback	amplifiers –	General							
characteristic	s of negative	feedback amplifie	ers – Effect o	f Feedback on Ai	mplifier							
characteristic	s. Condition	for oscillations	. RC and	LC type Oscilla	ators –	CO-4						
Generalized a	inalysis					BTL-2						
Suggested Re	eadings:											
Schmitt Trigg	er											
MODULE	5:	DETERMINATIO	NOFEOQ	&INVENTO	RY	CONTROL						
9L												
Class A Pow	er Amplifier,	Push Pull and Co	mplimentary	Symmetry Class	s B and							
Class AB Pov	ver Amplifiers	s – Principle of o	peration of o	class C and D Ar	nplifier,	CO-5						
Transistor Pov	wer Dissipatio	n, Heat Sinks, Tun	ed Amplifiers	5		BTL-2						
Suggested Re	eadings:											
Tuned Amplif	fiers											
TEXT BOOKS	-											
1	H.A. Taha.	(2003). Operation	ns Research	- An Introduct	<i>ion</i> , Prer	ntice Hall of						
1.	India./Pears	on Education										
<b>REFERENCE B</b>	OOKS											
1	F S Hiller an	d G J Leiberman.(2	2000), Introd	uction to Operati	ions Rese	arch						
2	Gupta Prem K	Cumar and Hira D S	5.(2010). <i>Ope</i> l	rations Research								
моос												
1	https://onlin	necourses.nptel.ad	c.in/noc17_m	ng10/preview								

COURSE TITLE	AN	ALOG ELECTRONICS		CREDITS	3							
COURSE CODE	MHC4370	COURSE CATEGORY	DE	L-T-P-S	3-0-0 -1							
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BTL-3							
ASSESSMENT S	ASSESSMENT SCHEME											
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE							

1	L <b>5</b> %		1	5%			10%			5%		59	%	50%
Co Desc	ourse riptio	n	Analog in radio derived	electro and au from ent sto	udio e analog	leals we quipm g sens	vith a one of the one	continu long w efore t	uously ith oth peing c	variable er app convert	e sign licatic ed in	al and ons wh to dig	is widel iere sign ital signa	y used als are als for
<ol> <li>To introduce circuit realizations with components such as diodes, BJTs transistors studied earlier.</li> <li>To give understanding of various types of amplifier circuits such as sr signal, cascaded, large signal and tuned amplifiers.</li> <li>To familiarize the Concept of feedback in amplifiers so as to different between negative and positive feedback.</li> </ol>												Ts and s small entiate		
Course       Upon completion of this course, the students will be able to         1. Comprehend the small signal amplifier circuits applying the techniques.         2. Describe the transistor models at high frequencies         3. Design FET and MOSFET amplifier circuits         4. Design and realize different classes of Power Amplifiers and tuned am useable for audio and Radio applications.         5. Utilize the Concepts of negative feedback to improve the stabi amplifiers and positive feedback to generate sustained oscillations.         Prerequisites:										plifiers lity of				
CO, P(		PSO		NG					50					
со	-1	2 2	- PO -3	РО -4	РО -5	-6	-7	РО -8	РО- 9	РО- 10	РО -11	-12	PSO-1	-2
CO- 1	3	3	-	-	-	-	-	2	2	-	-	2	2	2
CO- 2	3	3	3	3	3	-	-	2	2	-	-	2	2	2
CO- 3	3	3	-	-	-	2	-	-	2	2	2			
со- 4	3	3	3 2 2								-	2	2	2
CO- 5	3	3	-		-	-	-	2	2	-	-	2	2	2
		1	: Weakl	y relate	ed, 2:	Mode	rately	related	d and 3	: Stron	gly re	lated		
MOD	ULE 1:	INTR	ODUCTI	ON TO	ELEC	TRONI	C DEV	CES &	CIRCUI	TS		(6	6L+6P)	

	'7									
Rectifiers, Amplifiers, Oscillators.	CO-1									
Suggested Readings:	BTL-2									
Semiconductors Theory										
MODULE 2: BJT A	<b>1PLIFIERS</b>									
(6L+6P)										
Review of transistor biasing, Classification of Amplifiers – Distortion in amplifier	,									
Frequency response of BJT Amplifiers, effect of coupling and bypass capacitors, Design	f									
single stage RC coupled amplifier, Cascode amplifier, Darlington pair.										
Suggested Readings:										
Hybrid- pi ( $\pi$	_									
Embedded Systems - Design challenges, optimization of design metrics. Processo Technology: General purpose Processor, Single-purpose processor, Application specif processor.	CO-2 BTL-2									
Introduction to microprocessor & microcontroller-8085 Architecture- 805 Architecture										
8085 Instruction Set: Addressing modes; Data transfer, arithmetic, logical, branch, stack and machine control groups of instruction set, 8051 Instruction set, Addressing modes – Assembly language programming.										
) – Common Emitter transistor model										
MODULE 3: FEI A	IPLIFIERS									
(OL+OP)										
Cascode and Folded Cascode Amplitier	,									
Cascode and Folded Cascode Amplifier.	, CO-3									
Cascode and Folded Cascode Amplifier. Suggested Readings: Common source amplifier with resistive. Diode connected and Current source load	, CO-3 BTL-3									
Cascode and Folded Cascode Amplifier. Suggested Readings: Common source amplifier with resistive, Diode connected and Current source load Source follower	, CO-3 BTL-3									
Cascode and Folded Cascode Amplifier. Suggested Readings: Common source amplifier with resistive, Diode connected and Current source load Source follower. MODULE 4: FEEDBACK AND OSCILLATOR	CO-3 BTL-3									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)	CO-3 BTL-3 CIRCUITS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:         FEEDBACK       AND         OSCILLATOR         (6L+6P)         Concepts of feedback – Classification of feedback amplifiers – General characteristics	CO-3 BTL-3 CIRCUITS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)       Concepts of feedback – Classification of feedback amplifiers – General characteristics         negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition	CO-3 BTL-3 CIRCUITS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)       Concepts of feedback – Classification of feedback amplifiers – General characteristics         negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition         for oscillations. RC and LC type Oscillators – Generalized analysis	, CO-3 BTL-3 CIRCUITS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)         Concepts of feedback – Classification of feedback amplifiers – General characteristics negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition for oscillations. RC and LC type Oscillators – Generalized analysis       Suggested Readings:	f CCO-3 BTL-3 f CCIRCUITS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)       -         Concepts of feedback – Classification of feedback amplifiers – General characteristics         negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition         for oscillations. RC and LC type Oscillators – Generalized analysis         Suggested Readings:         Schmitt Trigger	CIRCUITS f CCO-4 BTL-2									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)         Concepts of feedback – Classification of feedback amplifiers – General characteristics negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition for oscillations. RC and LC type Oscillators – Generalized analysis       Suggested Readings:         Schmitt Trigger       5:       LARGE       SIGNAL       AM	CIRCUITS f CO-4 BTL-2 PLIFIERS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)       -       -       -       -         Concepts of feedback – Classification of feedback amplifiers – General characteristics negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition for oscillations. RC and LC type Oscillators – Generalized analysis       Suggested Readings:         Suggested Readings:       -       -       SIGNAL       AN         MODULE       5:       LARGE       SIGNAL       AN	CO-3 BTL-3 CIRCUITS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)       -       -       -       -         Concepts of feedback – Classification of feedback amplifiers – General characteristics       negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition         for oscillations. RC and LC type Oscillators – Generalized analysis       Suggested Readings:       -       -         Schmitt Trigger       MODULE       5:       LARGE       SIGNAL       AM         (6L+6P)       Class A Power Amplifier, Push Pull and Complimentary Symmetry Class B and Class A       -       -       -	CIRCUITS f CCIRCUITS f CCO-4 BTL-2 PLIFIERS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load         Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)       -       -       -       -       -       -         Concepts of feedback – Classification of feedback amplifiers – General characteristics       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	CO-3 BTL-3 CIRCUITS f CO-4 BTL-2 PLIFIERS									
Cascode and Folded Cascode Amplifier. Suggested Readings: Common source amplifier with resistive, Diode connected and Current source load Source follower. MODULE 4: FEEDBACK AND OSCILLATOR (6L+6P) Concepts of feedback – Classification of feedback amplifiers – General characteristics negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition for oscillations. RC and LC type Oscillators – Generalized analysis Suggested Readings: Schmitt Trigger MODULE 5: LARGE SIGNAL AN (6L+6P) Class A Power Amplifier, Push Pull and Complimentary Symmetry Class B and Class A Power Amplifiers – Principle of operation of class C and D Amplifier, Transistor Powe Dissipation, Heat Sinks, Tuned Amplifiers	CO-3 BTL-3 CIRCUITS f CO-4 BTL-2 PLIFIERS									
Cascode and Folded Cascode Amplifier.         Suggested Readings:         Common source amplifier with resistive, Diode connected and Current source load Source follower.         MODULE       4:       FEEDBACK       AND       OSCILLATOR         (6L+6P)         Concepts of feedback – Classification of feedback amplifiers – General characteristics negative feedback amplifiers – Effect of Feedback on Amplifier characteristics. Condition for oscillations. RC and LC type Oscillators – Generalized analysis         Suggested Readings:         Schmitt Trigger         MODULE       5:       LARGE       SIGNAL       AM         Class A Power Amplifier, Push Pull and Complimentary Symmetry Class B and Class A Power Amplifiers – Principle of operation of class C and D Amplifier, Transistor Power Dissipation, Heat Sinks, Tuned Amplifiers       Suggested Readings:         Suggested Readings:       Suggested Readings:       Suggested Readings:	CO-3 BTL-3 CIRCUITS f CO-4 BTL-2 PLIFIERS									

TEXT BOOKS	
1.	David A. Bell. (2010). <i>Electronic Devices and Circuits</i> , 5th Edition, Oxford.
REFERENCE BO	DOKS
1	Jacob Millman, Christos C Halkias. (2017). <i>Integrated Electronics</i> , McGraw Hill Education.
2	Thomas L. Floyd. (2015). <i>Electronic Devices Conventional and current version,</i> Pearson.
моос	
1	https://www.coursera.org/learn/electronics

COURSE TITLE	ROBOT	IC OPERATING SYSTE	CREDITS	3								
COURSE CODE	MHC4372	COURSE CATEGORY	DE	L-T-P-S	3-0 -0- 1							
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BT L- 4							
ASSESSMENT	T SCHEME											
First Periodical Assessment	Second Periodical Assessment	Attendance	ES E									
15%	15%	10%	5%	5%								
Course Description	The Robot Operating Sy through access to a lar ROS has become the ex ROS and there has development of these different ROS tools to working with their own and mobile robots on Students will learn to pick-and-place objects,	ystem (ROS) enables ge set of open-source ssential tool for robo been extensive in e tools. In this cou create a complete n standalone Ubuntu the physics-based o program and cor and navigate throug	to quickly be the software an oticists. A larg oput from in rse, the stud robotic appli -Linux installa simulation e ofigure basic h obstacles.	uild robotic applicand tools. Over the se community surroundustrial users in dents will learn tration. Students wation and with industrian of the second sec	ations years, ounds ounds ouse ouse vill be ustrial abots. ch as							

			The c	ourse	shoul	d enab	le the	stude	nt to					
		1.	Use	ROS	comm	unicat	ion to	ols (t	opics,	servi	ces, ac	tions)	to ex	change
Cours	e e		infor	matior	n betw	een fu	nction	al mo	dules					
Obiec	tive	2.	Visua	lizatio	n and	creatio	on of a	custo	m env	ironme	ent with	a rob	ot	
- Chijee		3.	Map	oing of	the ro	obot ei	nvironi	ment a	and na	vigatio	n with a	n mob	ile robo	ot
	4. How to implement a pick-and-place function with industrial robot a										bot arn	าร		
		5.	Design of a complete robotic application with state machines											
			Upon completion of this course, the students will be able to											
		1.	Comprehend the ROS architecture											
Cours	se	2.	Mod	el a rol	bot in	ROS								
Outco	ome	3.	Simu	late a	mobile	e robot								
		4.	Plan	mover	nent o	of a rob	ot by a	avoidii	ng colli	isions				
_		5.	Interface sensors and actuators with ROS											
Prere	quisite	es: NII	-											
СО, Р	O AND	) PSO	MAPP	ING										
	ΡO	ΡO	PO	PO	PO	PO	PO	PO	ΡO	PO	PO-1	Р	PSO	PSO-
СО	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	1	0-	-1	2
	_											12	_	
CO-	3	1	1	1	2	1	-	-	-	-	-	-	2	3
1														
CO-	3	3	3	1	3	1	-	-	2	1	-	1	2	3
2														
CO-	3	3	3	1	3	1	-	-	2	1	-	1	2	3
3														
CO-	3	3	2	1	3	1	-	-	2	1	-	1	2	3
4														
5	3	2	2	1	3	1	-	-	2	1	1	1	2	3
1: We	eakly re	elated	, 2: Mo	oderat	ely rel	ated a	nd 3: S	trongl	y relat	ed				
MOD	ULE 1:	INTR	ODUC [.]	ΓΙΟΝ		(9L)								
Introc	luctior	n to R	OS - I	ROS fi	e syst	em le	vel - F	ROS co	mputa	ation g	graph le	vel -	ROS	
comm	nunity	level												<b>60</b> 4
Pract	Practical component: CO-1													
Work	ing wit	th ROS	o packa	ages, n	odes &	s mess	sages							BIL-2
Sugge	estear	veault	igs:											

Applications of ROS

MODULE 2: 3D ROBOT MODELING IN ROS (9L)

ROS Visu Pra Cre Sug UR	5 packages for robot modelling - Creating ROS package for robot description - ualizing robot in 3D model ctical component: ating URDF model, using RVIZ for visualizing 3 D model & robot description gested Readings: DF	CO -2 BT L- 3
	derstanding Gazebo - Robotic arm simulation - Simulating joints - Interfacing with ROS	
con	trollers	со
Pra	ctical component:	-3
Sim	nulating robotic arm, moving joints using Gazebo & moving mobile robot	BT
Sug	ggested Readings:	L-4
MC	DULE 4: MOTION PLAN	NING
(9L)		
Со	nfiguration Space - Collision matrix - Motion planning methods - Motion planning	
usir	ng ROS - ROS Controllers	СО
Pra	ctical component:	-4
Mo	velt configuration package setup & motion planning	BT
For	gested Readings:	L-4
MC	DULE 5: INTERFACING I/O BOARDS, SENSORS & ACTUATORS (9L)	
RO	S Serial package – ROS and Microcontroller - Interfacing Sensors & Actuators	со
Pra	ctical component:	-5
RO	S serial package – ROS and microcontroller – Interfacing sensors and actuators	ВТ
Sug	gested Readings:	L-4
TFX		
1.	Lentin Joseph. (2015). <i>Mastering ROS for Robotic Programming</i> , Packt Publishing.	
2.	Morgan Quigley, Brian Gerkey, William D. Smart. (2015). Programming Robots with Re Practical Introduction to the Robot. O'Reilly.	OS: A
REF	ERENCE BOOKS	
1.	Anis Koubaa. (2016).Robot Operating System (ROS): The Complete Reference – Volur	ne 1.
	R. Patrick Goebel. (2012). ROS by Example: A Do-It-Yourself Guide to the Robot Oper	atina
2.	System. Lulu.	uting
МС	DOC	
1.	https://www.udemy.com/course/ros-for-beginners/	
2.	https://robocademy.com/2021/01/19/advanced-ros-programming-live-course-by-lent	in-jo

CO TI	URSE		VIRTUAL REALITY CREDITS 3											3
CO CO	URSE ODE		MHC4	373	С	DURSE	CATE	GORY		DE	L-	T-P-S	3-0	-0-1
Ve	rsion		1.0		4	pprov	al Det	ails	24 th 30.0	ACM, 5.201 8	LEAI	RNING EVEL	BT	rL-6
ASSE	SSMEN	т ѕсн	EME		-								_	
F Peri Asses	irst odical ssment	F	Secor Periodi ssessm	nd Ical nent	Ass	Sen ignme	ninar/ nts/ P	roject	Sui Test	rprise / Quiz	Atte	ndance	E	SE
1	5%		15%	•		1	.0%			5%	!	5%	5	0%
Cour Desc	se ription	This prin is to to c an tech	This course is designed to provide students with an overview of the basic principles of virtual reality, scripting and rendering virtual environments. The goal is to learn enough about the strengths and limitations of VR technology to be able to construct simple immersive environments. Students in the course will be given an opportunity to interact directly with immersive virtual environment technology and will gain experience by developing a VR-based application											
Cour Obje	se ctive	1. 2. 3.	<ol> <li>To provide an understanding on the fundamental concepts relating to Virtual Reality such as presence, immersion, and engagement</li> <li>To introduce students to the field of virtual reality (VR) and provide students with hands-on experience developing applications for modern virtual</li> <li>To enable students to explore libraries and tools for creating VR experiences such as Unity</li> </ol>											
Cour Outc	se ome	1. 2. 3. 4.	Upon Discus Develo Move Run Ui	comple s Virtu op VR a arounc nity 3D	etion d al real applica d the 3 ) appli	of this ity cor itions of D wor cation	course ncepts using l Id in VR	e, the s Jnity3I on a sr	tudent D nart pł	s will b none.	e able	to		
Prere	equisite	s: Nil												
CO, F	PO AND	PSO N	MAPPI	NG										
со	PO -1	PO -2	PO -3	PO -4	PO -5	PO -6	PO -7	PO -8	РО- 9	PO -10	PO- 11	PO- 12	PSO -1	PSO -2
CO -1	2	3	3	1	3	2	2	1	2	2	2	2	-	-
CO -2	2	3	3	1	3	1	1	1	1	1	1	1	-	-
CO -3	2	3	3	1	3	1	1	1	1	1	1	1	-	-
CO -4	2	3	3	1	3	1	1	1	1	1	1	1	-	-
1: W	eakly re	lated,	2: Mo	derate	ly rela	ted an	d 3: St	trongly	relate	d				
MOD	DULE 1:	INTRC	DUCT	ION TO	) VIRT	UAL R	EALIT	(					(9	L)

Virtual	Reality – Types – Virtual Reality Vs Augmented Reality – Applications –	
Technica	l skills required	CO-1
Suggest	ed Readings:	BTL-2
Immersi	ve technologies: VR, AR, MR and XR	
MODUL	E 2: BUILDING SIMPLE SCENES	(9L)
Introduc	tion to Unity IDE – Objects and Scale – Creating a simple diorama – VR	
Device II	itegration	<b>CO D</b>
Morking	component:	
Suggost	and Boodings:	DIL-2
Comput	er Graphics and Virtual Reality	
		CONTROL
(9L)		CONTROL
First per	son Controller – Third person controller – Navigation in VR application –	
World sp	ace User Interface	
Practica	component:	CO-3
Create a	n application where user can navigate around the scene	BTL-6
Suggest	ed Readings:	
Augmer	ted reality navigation systems	
MODUL	E 4: PHYSICS & ENV	IRONMENT
(9L)		
Physics	component – physics materials – Raycast – particle effects	
Practica	component:	
Create a	n application	
1. \	where the user can interact with the objects in the scene using a raycast	CO-4
2. (	lemonstrate particle effects upon interaction	BIT-0
3. (	reate physics materials and apply the same to objects	
Develop	eu reduiligs. ment of Hantic virtual reality systems	
	F S. WALK-1	HROUGHS
(9L)		
Assemb	ing scenes – Adding photos – Animated walkthrough – optimizing for	
perform	ance – Using all 360 degrees	
Practica	component:	CO-4
Create a	virtual reality application for a walkthrough	BTL-6
Suggest	ed Readings:	
Game e	ngines and VR in film making	
TEXT BO	OKS	
1.	Tony Parisi. (2016). Learning Virtual Reality, O'Reilly Media	
REFEREN	CE BOOKS	
1.	Jason Jerald. (2015). The VR Book – Human Centered Design for Virt	ual Reality,
		,
2.	Jonn Williamson, Charles Palmer. (2018). Virtual Reality Blueprints: Create	compelling
MOOC	vk experiences jor mobile and desktop, Packt Publishing	
INIOOC		

1.	https://in.udacity.com/course/introduction-to-virtual-realityud1012
2.	https://www.edx.org/course/creating-virtual-reality-vr-apps-uc-san-diegox-cse190x

# **DEPARTMENTAL ELECTIVES – SEMESTER VII**

COL TI	JRSE TLE		F	ROBOT	IC PRO	DCESS	ON		CRE	DITS	3	3			
COL CO	JRSE DDE	N	/HC44	59	со	URSE	CATEG	ORY	D	E	L-T	-P-S	3-0-	0-1	
Ver	sion		1.0		Aj	oprova	al Deta	iils	24 th 30.05	ACM, 5.201 3	LEAF G LE	RNIN EVEL	BT	L-6	
ASSE	SSMEN	T SCHE	ME												
Fi Peric Asses	rst odical ssmen t	Pe Ass	Secon eriodic sessmo	d :al ent	Assi	Sem gnmen	inar/ its/ Pr	oject Test / Quiz Attendance				nce	ESE		
1!	5%		15%			10	)%		5	%	5% 50%				
Coi Descr	urse iption	Robotic Process Automation (RPA) can transform business processes by eliminating the mundane, time-consuming, manual tasks that professionals complete; enabling them more time to focus on critical thinking. This course will help students to understand the characteristics, benefits, risks, and challenges of RPA. This course will also enable students to develop RPA solutions for simple applications.													
Cou Obje	urse ective	1. T 2. T 0 3. T	o intro o imp wn RP o crea	oduce i art bas A solu te bots	robotio sic pro tions s to au	cs proc oficient tomat	cess au cy in F ce com	itomat RPA to <u>mon v</u>	tion to ols so vork pr	particij that th ocesse	pants Ney are s	e able	to write	e their	
Cor Outo	urse come	l. r 2. c 3. c 4. p 5. P	Jpon c ecogni reate c reate c erforn erforn	omple ze rob differe contro n scrap n imag	tion o otic pr nt type I flow a ping e and	f this o rocess es of w and re text au	course, autom vorkflc cord e utoma	, the st nation ws vents tion	tudents	s will b	e able	to			
Prere	quisites	s: Nil													
CO, P	O AND	PSO M	IAPPIN	IG											
со	PO -1	PO -2	PO -3	PO -4	PO -5	PO -6	PO -7	PO -8	РО- 9	PO -10	PO -11	PO -12	PSO -1	PSO -2	
CO- 1	1	2	-	-	-	-	-	-	-	-	2	1	-	-	
CO- 2	3	3	3	-	3	-	-	-	3	3	-	-	-	-	
CO- 3	3	3	3	-	3	-	-	-	3	3	-	-	-	-	

CO- 4	3	3	3	3	3	-	-	3	3	3	3	3	3	3
CO- 5	3	3	3	3	3	-	-	3	3	3	3	3	3	3
1: Weakly related, 2: Moderately related and 3: Strongly related													1	
MOD	ULE 1:	INTRO	DUCTI	ON TO	ROB(	OTIC P	ROCES	SS AUT	OMAT	ION		(9	€L)	
Intro	duction	to Bu	siness	proce	ss auto	omatic	on – Ro	obotic	proces	s auto	matior	ı — RPA	Tools	
and														
Technology												1		
Practical component: Working with LUPath Studio and Studio Y												BTL-		
Working with UlPath Studio and StudioX												2		
Suggested Readings:														
Trends in RPA														
MODULE 2: ROBOTIC PROCESS AUTOMATION WORKFLOW (9L)														
- Nam	s or wo	s	– seq	uence		wchai	15 - 51		aciiiie	s – vai	anies.	- Aigu	ments	
Pract	ical con	npone	nt:											2
Creat	e RPA w	vorkflo	w usir	ig UIPa	ath									BTL-
Suggested Readings:											3			
Workflow automation Vs RPA														
MODULE 3: CONTROL FLOW & RECOR												RDING		
(9L)														
Contr	ol flow	– Con	trol flo	w acti	vities.	Recor	ding: T	ypes -	- Auton	natic R	ecordi	ng		со-
Inter	ace													3
Pract	Ical con	npone	nt:		n nrah	lom u	ing or		iata ca	ntral fl	<b></b>			BTL-
Myth	s in RDA		dor 101	a give	n prop	iem u	sing ap	propr	late co	ntrol II	ows			6
MOD			gested	Read	ings:									
ELEM	IENTS 8	SCR/	APING	(9L)										
ام ۱۱	omonte	_       ə	ctivitio	s nror	ortios	– Inni	it Mot	hods	Scranin	σ· Data	Scran	ing _ 9	Screen	
Scrap	ing – Re	lative	Scrapi	s prop ng		mpt		nous.	Scraph	ig. Data	a Scrap	, ing s		
Pract	ical con	npone	nt:											4
Scrap	data fr	om va	rious L	JI elen	nents-	Perfor	m scre	een sci	raping					BTL-
Sugge	ested R	eading	s:											6
Scrap	ing, Dat	ta Extr	action	and A	utoma	ntion ir	n Help	syster	ns					
MOD	ULE	5	:			IMAG	E	AN	ID	TE	хт	A	JTOMA	
(9L)														-
Intro	duction	– Mo	use ar	nd key	board	activit	ies – T	Text ac	tivities	– OCF	activi	ties –	Image	
activi	ties													CO-
Pract	ical con	npone	nt:											5
Perfo	rm ima	ge and	text a	utoma	ation									BTL-
Sugge	ested R	eading	<b>s:</b>											6
RPA a	ind inte	iligent	auton	nation										
	BOOKS													

1	Tom Taulli. (2020). The Robotic Process Automation Handbook: A Guide to Implementing
1.	RPA Systems, Apress
REFER	ENCE BOOKS
	Nandan Mullakara, Arun Kumar Asokan. (2020). Robotic Process Automation Projects:
1	Build real-world RPA solutions using UiPath and Automation Anywhere, Packt Publishing
	Ltd.
MOO	C
1	https://www.udemy.com/robotic-process-automation/
2	https://academy.uipath.com/landing

COURSE TITLE	IND	USTRIAL ENGINEERING		CREDITS	3
COURSE CODE	MHC4460	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	BTL-4
ASSESSMEN	T SCHEME				
First Periodical Assessmen t	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendanc e	ESE
15%	15%	10%	5%	5%	50%
Course Descriptio n	Industrial Engine control, manufac occupational safe design with a stro	ering covers a broad spe cturing systems and pro ety, quality control, systeo ong emphasis on advance	ctrum includi cesses, facilit ems reliability ed computing.	ng production ies design, hu , and systems	planning and Iman factors, analysis and
Course Objective	The objective 1. Contribute to 2. Design, deve people, mate 3. Achieving Ma 4. Increasing the	s of the industrial engine the success of companie lop, implement, and in rials, information, equipr ximum results with minin e Efficiency of factors of F	ering are to p s through effe nprove integr ment, and env mum efforts. Production.	roduce gradua ective problem ated systems ironments.	ates who: n solving. that include

		Upon completion of this course, the students will be able to
	1.	Conduct market research, demand forecasting and costing
Course	2.	Demonstrate the knowledge of designing plants and controlling production
Outcome	3.	Optimize the resources of an organization and improve productivity.
	4.	An understanding of the impact of industrial engineering solutions
	5.	Evaluate the production planning and control

**Prerequisites: Nil** 

CO, P	CO, PO AND PSO MAPPING													
	PO-	PO	PO	PO	PO	PO	PO	РО	PO-	PO-	PO-	PO-	PSO	PSO
00	1	-2	-3	-4	-5	-6	-7	-8	9	10	11	12	-1	-2
CO-	3	2	2	3	2	3	3	2	2	3	3	3	3	3
CO- 2	3	2	2	3	2	2	2	3	3	3	3	2	3	3
CO- 3	3	2	2	3	2	3	3	3	3	3	3	2	3	3
CO- 4	3	2	2	3	2	3	3	3	3	3	3	2	3	3
CO- 5	3	2	3	3	2	3	3	3	3	3	3	2	3	3
		1:	Weak	ly relat	ted, 2:	Mode	rately	relate	d and 3	3: Stror	igly rela	ated	-	
MOD	ULE 1:	DEMA	ND FO	RECAS	STING	AND E	LEME	NTS O	F COST		(9L	.)		
Dema	and For	ecastir	ng and	Elem	ents o	f Cost	Macro	and r	nicro e	conom	ics - De	emand		
and	supply	– Fac	tors ir	nfluen	cing d	eman	d – E	lasticit	ty of o	deman	d – De	mand		
forec	asting –	• Time	series	- Expo	onenti	al smo	othing	g casua	al forec	ast - De	elphi m	ethod		
	rrelatio	n and	Regre	ession	- Bar	ometri	c met	nod -	- Long	run ar	nd Sho	rt run	co	D-1
Torec	ast. Ele	ments	OT C	ost –	Deter	minat	ion of	Mate	erial co	DST - La	abour	cost -	ВТ	L-2
Exper	ises – I	ypes o	T COST.											
Sugg	estea K	eading	<b>;;</b>					• • • • •						
Kead	on nov	v the l	Jeiphi	meth	od nel	ps in i	mprov	ing th	e taste	quality	/ of Do	minos		
	andoor	Panee	er Pizz	a.										
MOD	ULE			2:				INDUS	TRIAL			OR	GANIS	ATION
(9L)														

Introc	luction to Industria	Engineering – Concep	ots - History and D	evelopment of	
Indus	trial engineering – R	oles of Industrial Engine	eer – Applications -	– Productivity –	
Facto	rs affecting produc	tivity – Increasing prod	ductivity of resour	ces – Kinds of	<b>CO 3</b>
produ	ictivity measures.				
Sugge	sted Reading:				DIL-2
Read	on how the iPhone	e's elasticity of deman	d creates a huge	impact on the	
mobi	e market				
MOD	ULE	3:	WORK		DESIGN
(9L)					
Intro	duction to work stud	ly – Method study – Tin	ne study – stopwat	ch time study –	
Stand	ard data - Metho	od Time Measuremen	t (M-T-M) – Wo	rk sampling –	
Ergon	iomics.				CO-3
Sugg	ested Reading:				BTL-3
Read	on the factors that a	affect the productivity o	of the tyre industry		
MOD	ULE 4: PLANT LAYO	UT AND GROUP TECHN	OLOGY		(9L)
Plant	location - Factor	s - Plant layout - Ty	pes - Layout des	sign process –	
Comp	outerized Layout P	lanning – Constructio	n and Improvem	ent algorithms	
-ALDE	P - CORELAP and C	RAFT. Group technolog	gyProblem definition	on - Production	
flow	analysis - Heuristic	methods of grouping	by machine mat	rices – Flexible	CO-4
Manu	Ifacturing System	- FMS work stations	Material handling	g and Storage	BTL-3
syste	n-Cellular Manufact	uring System.			
Su	ggested Reading:				
Rea	ad on the concept of	a flexible manufacturir	ng system with an a	application	
MOD	ULE 5:	PRODUCTION	PLANNING	AND	CONTROL
(9L)					
Types	s of productions, P	roduction cycle-Proces	s planning, Foreca	sting, Loading,	
Scheo	luling,				
Dispa	tching, Routing- Si	mple problems. Mate	rials Planning – /	ABC analysis –	
Incon	ning materials contro	ol – Kanban system – Ji	ust in time. MRP s	ystems- Master	CO-5
Produ	iction Schedule – Bil	l of Materials – MRP ca	lculations		BTL-4
Sugg	ested Reading:				
Read	on how the therma	I power plant layout p	rocess was carried	out along with	
its de	sign process.				
TEXT	BOOKS				
1	Buffa E.S. (2009).	Modern Production /	Operational Mana	agement, John V	Viley & Sons,
1.	2009				
REFER	RENCE BOOKS				
1	Nigel Slack Stuart				
		Chambers, Robert Joh	nston., (2010). Ope	eration Managem	nent, Pearson

2	R.Danreid& Sanders., (2009). Operations Management, John Wiley & Sons, 2009
MOO	DC
1	http://engineering.nyu.edu/academics/online/masters/industrial-engineering
2	https://online.engineering.arizona.edu/online-programs/industrial-engineering/master-o
2	fscience-in-industrial-engineering/

COURSE TITLE	τοται	. QUALITY MANAGEMEN	т	CREDITS	3						
COURSE CODE	MHC4461	COURSE CATEGORY	PC	L-T-P-S	3-0-0-0						
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNING LEVEL	BTL-2						
ASSESSMENT	Г ЅСНЕМЕ										
First Periodical Assessmen t	Second Periodical AssessmentSeminar/ Seminar/ Assignments/ ProjectSurprise Test / QuizAttendanc e										
15%	15%	10%	5%	5%	50%						
Course Description Course Objective	<ul> <li>Total quality mareducing or eliner</li> <li>management, im</li> <li>1. To diagnose p</li> <li>2. To identify et</li> <li>3. To Utilize State</li> <li>and eliminate</li> <li>4. To perform p</li> <li>5. To propose h strategies to business aren</li> </ul>	<ul> <li>Total quality management (TQM) is the continual process of detecting and reducing or eliminating errors in manufacturing, streamlining supply chain management, improving the customer experience</li> <li>1. To diagnose problems in the quality improvement process.</li> <li>2. To identify ethical and unethical behavior in Quality Management.</li> <li>3. To Utilize Statistical Process Control techniques as a means to diagnose, reduce and eliminate causes of variation</li> <li>4. To perform process capability and specification studies.</li> <li>5. To propose how business leaders might plan and execute quality management strategies to gain and sustain a competitive advantage in today's global</li> </ul>									
Course Outcome	Upon comple 1. Discuss th 2. Comprehe continuou 3. Describe like Six sig 4. Describe quality co 5. Discuss va	tion of this course, the st e overview of quality and end customer Focus, En is process improvement a the basic and new seve ma, Failure mode effect a industrial applications of ncepts and TPM prious quality systems like	udents will be TQM mployee Focu and Supply ch n manageme analysis. of Quality fur e ISO and its st	e able to us and their ain Managemo ent tools, Qua nction deploye tandards	involvement, ent. lity concepts ment Taguchi						

Prer	Prerequisites: NIL													
CO, F	O AND	PSO N	IAPPI	NG										
со	PO -1	РО	РО	РО	РО	РО	РО	РО	PO-	РО	РО	PO-1	PSO	PSO
<u> </u>		-2	-3	-4	-5	-6	-7	-8	9	-10	-11	2	-1	-2
1	1	2	-	2	1	-	-	-	-	-	2	1	-	-
CO- 2	1	-	2	-	2	-	-	-	2	2	1	1	-	-
CO- 3	2	1	2	1	-	1	-	-	3	3	-	1	-	-
CO- 4	2	2	-	2	-	1	2	2	-	-	-	1	-	-
CO- 5	1	2	3	1	-	3	3	2	1	-	-	2	-	-
1: Weakly related, 2: Moderately related and 3: Strongly related														
MOD	OULE 1: I	NTRO	DUCTI	ON					(9L)					
Intro	duction	- Nee	d for	qualit	y - Ev	olutio	n of q	uality	- Defir	nitions	of qu	ality -		
Dime	ensions	of pro	oduct	and s	ervice	qual	ity - E	Basic o	concep	ts of 7	IQM -	TQM		
Fram	ework -	- Cont	ributio	ons of	Demi	ing, Jι	uran a	nd Cr	osby -	Barrie	rs to T	QM -	СС	)-1
Quali	ity stat	ement	ts -	Custor	ner f	ocus	- Cus	stome	r oriei	ntation	, Cus	tomer	BT	L-1
satist	action, (	Custon	ner co	mplair	nts, Cu	stome	r reter	ntion -	Costs	of qual	ity.			
Drod			s: Suglity	( Man	aomo	nt								
MO					ageme	111.			10	ור				
	JULE 2.			FLES					(; _	, .				
Lead	ership -	Strate	gic qu	ality p	lannin <del>-</del>	ig, Qua	ality C	ouncil	s - Emp	loyee i	nvolve	ment		
- IVIO	Develop	, Emp	owern	nent,	leam	and le	eamwo	orк, Q	uality (	circies	Recog	nition		
	Rewaru,		unalio	e app r parti	alsal aarchii		muous		ess imp	Jioven	ient -	PDCA	РТ	)-2
Suga	, 55, Kai.	eading	uppne	граги	lersin	J <b>–</b> Pai	them	g.					DI	L-1
Qual	ity Man	ageme	nt, Or	ganiza	tional	struct	ure							
MOE	OULE 3: "	ТQМ Т	OOLS	AND 1	ECHN	IQUES	51		(9	)L)				
The	seven t	traditio	onal t	ools c	of qua	lity -	New I	manag	ement	tools	- Six	sigma:		
Conc	epts, M	ethodo	ology,	applic	ations	to ma	nufact	turing,	servic	e secto	r inclu	ding IT		
- Ber	ich marl	king - I	Reasor	n to be	ench n	nark, B	Bench i	markir	ig proc	ess - FN	VIEA - S	Stages,	CC	)-3
Туре	S.												BT	L-2
Sugg	ested R	eading	s:											
Strat	egic and	l syste	matic	approa	ach, Fa	ict-bas	ed de	cision	making	•				
MOE	DULE 4:	TQM T	OOLS	AND 1	TECHN	IQUES							(9L)	

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) - Taguchi quality loss function - TPM - Concepts, improvement						
needs - Performance measures.						
Suggested Readings:						
Management commitment, Continuous improvement						
MODULE 5: QUALITY SYSTEMS						
Need	d for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation,					
Quality Auditing - QS 9000 - ISO 14000 - Concepts, Requirements and Benefits -						
TQM Implementation in manufacturing and service sectors.						
Suggested Readings:						
Quality Management Standards, Business Process.						
TEXT BOOKS						
1.	1. Dale H. Besterfiled, et al. (2016). <i>Total quality Management</i> , Pearson Education Asia.					
REFERENCE BOOKS						
1	Oakland J. (2003). TQM – Text with Cases, A Butterworth-Heinemann Title.					
E BOOKS						
1.	http://psbm.org/Ebooks/Total%20Quality.pdf					
MOOC						
1	https://onlinecourses.nptel.ac.in/noc17_mg18/preview					

COURSE TITLE	FINITE ELEMENT ANALYSIS			CREDITS	3									
COURSE CODE	MHC4462	COURSE CATEGORY	DE	L-T-P-S	3-0-0-1									
Version	1.0	Approval Details	24 th ACM, 30.05.201 8	LEARNIN G LEVEL	BTL-3									
ASSESSMENT SCHEME														
First Periodical Assessmen t	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance		ESE								
15%	15%	10%	5%	5%		50%								
Co Desc	urse riptio n	phenomenon using the numerical technique called Finite Element Method (FEM). Engineers use FEA software to reduce the number of physical prototypes and experiments and optimize components in their design phase to develop better products, faster while saving on expenses. It is necessary to use mathematics to comprehensively understand and quantify any physical phenomena such as structural or fluid behavior, thermal transport, wave propagation, the growth of biological cells, etc. Most of these processes are												
---------------------------------------------------------------------	---------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------	---------	--------------------	-----------------	------------------	---------	-----------	---------------------	-------------------	----------	----------	---------
described using Partial Differential Equations (PDEs). However, for									er, for a	a compu r the la	iter to st few			
		deca	decades and one of the prominent ones, today, is the Finite Element Analysis.											
		1. To understand the Mathematical Modeling of field problems i										ns in		
			Eng	ineerir	וg									
		2	. To s	olve tł	ן 1D ו י	proble	ms					_		~~
		3.	. To (	discus	s aboi	ut the	e vario	ous Ga	alarkin	appro	ach, T	emper	ature e	effects
Cours	se	л	stre	ss stra	in reia Avi svr	tions, nmotr	plane ic forn	propie	ems of (	elastici	ty and stiffno	eleme	nt equa	forco
		4	vert	tor G	alarkin	appro	ach ai	nd Pro	blems		sume	ss iiidi	מות מווע	IUICE
		5. To discuss about Numerical integration and application to plane stress												
		problems, Matrix solution techniques Solutions Techniques to Dynamic												
			prol	blems,	Introd	ductior	n to Ar	nalysis	Softwa	are				
		1. Comprehend the Mathematical Modeling of field problems in Engineering												
		2	2. Solve the One Dimensional Second Order Equations											
		3	. Des	cribe (	Galark	in app	broach	, Tem	peratur	re effe	cts str	ess str	ain rela	ations,
Cours	se		plar	ne prol	olems	of elas	former	and el	ement	equation	ons		بالمعربة	fores
	ome	4	. Solv	e Axi	-symm alarkin		tormu	lation	, Elen	nent s	times	s mat	rix and	force
		5	Solv	e Nur	nerica	l integ	pration	nu Pro	annlica	ation t	o plar	ne stre	ess prot	olems
			Mat	rix sol	ution	techni	ques S	olutio	ns Tech	niques	to Dy	namic	problen	ns.
Prere	quisites	s: Nil												
<b>CO</b> , 1	PO AN	D PSC	) MAI	PPINC	r J									
	PO-	РО	РО	РО	РО	РО	РО	РО	PO-	PO-	РО	РО	PSO	PSO
	1	-2	-3	-4	-5	-6	-7	-8	9	10	-11	-12	-1	-2
CO-	_	3	2	2	1	_	_	_	-	1	_	1	_	_
1			-		<u> </u>									
CO-	-	3	2	-	1	-	-	-	1	1	-	-	-	-
<u> </u>														
2	-	-	2	-	2	-	-	- 1	1	1	-	- 1	-	l _
J														

CO- 5	2	2	3	-	2	-	-	-	-	-	-	-	-	-
		1: '	Weakly	y relate	ed, 2:	Moder	rately i	related	d and 3	: Stron	gly rela	ted		
MOD	ULE 1:I	NTROI	DUCTIO	ON						9	L			
Histo	rical Ba	ckgrou	und –	Math	ematio	al Mo	dellin	g of fi	eld pro	oblems	in En	gineer	ing –	
Gove	rning Ec	quatio	ns – D	iscrete	e and	contin	uous	model	s – Bo	undary	, Initia	I and I	Eigen	co-
Value	Value problems- Weighted Residual Methods - Variational Formulation of Boundary								1					
Value	Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.							BTL-						
Sugg	ested R	eading	gs:											3
Appli	cation t	o bar	elemer	nt, App	olicatio	on to t	he con	tinuu	n.					
MOD	OULE 2: (	ONE D	IMENS	SIONA	L PRO	BLEMS	5						9L	
One	Dimensi	ional S	Second	Orde	r Equa	tions -	- Deri	vation	of Sha	pe funo	ctions	and St	iffness	
matri	ces and	force	vecto	rs- G	alarkir	appr	oach -	Asser	nbly of	stiffne	ss mat	trix an	d load	CO-
vecto	r - Solu	ition d	of prot	olems	from	solid	mecha	inics a	ind hea	at trans	sfer-Fir	nite el	ement	2
equat	tions - L	ongitu	idinal v	vibratio	on frec	quenci	es and	l mode	2.					BTL-
Sugg	ested R	eading	gs:	_										3
Appli	cations	to pla	ne trus	sses, C	luadra	tic sha	ipe fur	nctions	5.					
MOD	OULE 3: "	TWO E		SIONA		ITINU	UM	<u> </u>					9L	1
Intro	duction	- Fini	te ele	ment	model	ling -	Scalar	value	ed prot	olem -	Poisso	n equ	ation	
-Lapia	ace equ	ation	- Iria	ingula	r elem	ients -	- Elem	ent st	liffness	matrix	< - ⊦or	ce ve	ctor -	
Galar	кіп арр	roach	- Iem	peratu	ire ette	ects -	stress	strain	relatio	ons – p	nane p	robier	ns of	20-
elasti	city —	eleme	ent ec	luation	15 — rd:rat	assem	idiy —	need	a TOr	quadra	ture 1	ormul	ae –	3 DTI
ransi	ormatio	ons to	natur			es – G	Abaa	in qua	arature	e – exa	mpie p	propiei	ns in	BIL-
Sugar	ested P	piane	Strain	using		ND allu	Араці	us.						5
Struc	tural m	echani	<b>;s.</b> ics ann	licatio	ns									
MOD						JUM						C	)	
Axisv	mmetri	c forr	nulatio	on - F	lemer	nt stif	fness	matri	x and	force	vector	- Ga	alarkin	
appro	bach -	Body	forces	and	temp	eratur	e effe	cts -	Stress	calcula	ations	- Bou	undarv	
condi	tions -	Applic	ations	to cv	linder	s und	er inte	ernal o	or exte	rnal pr	essure	es - Ro	otating	4
discs	- Plate a	and sh	ell eler	, nents.						•			0	BTL-
Sugg	ested R	eading	gs:											3
Axisy	mmetri	c appli	ication	s.										
MOD	ULE 5:	SOPA	RAME		ORMU	LATIO	N					9	L	<u> </u>
Natu	ral co-o	rdinat	e syste	ems –	Isopa	ramet	ric ele	ement	s with	mat la	b codi	ng – S	hape	
functions for iso parametric elements – One and two dimensions– Numerical							CO-							
integ	ration a	nd ap	plicati	on to	plane	stress	s prob	lems	- Matri	ix solut	tion te	chniqu	Jes –	5
Soluti	ions Tec	hniqu	es to D	ynami	ic prot	olems -	– Intro	ductic	on to Ar	nalysis	Softwa	ire.		BTL-
Sugg	ested R	eading	gs:											3
Appli	cation c	of four	node	quadri	latera	l								

TEXT BOOKS										
1	C Krishnamoorthy. (2017). Finite Element Analysis: Theory and Programming,									
1.	McGraw Hill Education.									
2.	Anand V. Kulkarni. (2017). A Primer On Finite Element Analysis, Laxmi									
	Publications.									
REFERENCE B	OOKS									
1	Randy Shih. (2016). Introduction to Finite Element Analysis Using SOLIDWORKS									
	Simulation, SDC Publications.									
2	Daryl L. Logan. (2016). A First Course in the Finite Element Method CL									
-	Engineering; Oxford, 6th edition, 2016.									
моос										
1	https://www.coursera.org/learn/finite-element-method									
	http://www.open.edu/openlearn/science-maths-technology/introduction-finite-									
2	elementanalysis/content-section-0									

## **NON-DEPARTMENTAL ELECTIVES – SEMESTER III**

	BUILDING OF MOBILE ROBOTS CREDITS 2										
IIILE											
COURSE	MHD4281	COURSE CATEGORY	NE	L-T-P-S	2-0-0-1						
CODE											
Version	1.0	Approval Details	24 th ACM, 30.05.2018	LEARNING LEVEL	BTL- 4						
ASSESSMENT S	ASSESSMENT SCHEME										
First	Second	Seminar/	Surpriso								
Periodical	Periodical	Assignments/	Tost / Quiz	Attendance	ESE						
Assessment	Assessment	Project									
15%	15%	10%	5%	5%	50%						
	Robots are rapidl	y evolving from facto	ory workhorse	s, which are	physically						
	bound to their v	vork- cells, to increas	singly comple	x machines c	apable of						
	performing challer	nging tasks in our dai	ly environme	nt. The object	ive of this						
	course is to provi	de the basic concepts	and algorith	ms required t	o develop						
Course	mobile robots that	at act autonomously	in complex e	nvironments.	The main						
Description	emphasis is put o	on mobile robot locor	motion and k	inematics, en	vironment						
-	perception, proba	bilistic map based lo	calization and	l mapping, ar	nd motion						
	planning. The lect	ures and exercises of	this course in	troduce severa	al types of						
	robots such as whe	eeled robots, legged ro	bots.								
	*This course is offe	ered as Project Based L	earning and A	ssessment							

			The	course	shoul	ld ena	ble the	e stude	ent to,						
		1.	Rem	ember	; Reca	ll and I	dentif	y basio	c mech	nanism	s of Mo	obile Ro	obots		
•	_	2.	Com	prehei	nd var	ious s	ensor	s and	actuat	ors us	ed in t	he des	ign of r	nobile	
Cours	e		robo	ts.											
Object	tive	3.	Desi	gn a si	mple c	ontrol	ler / p	rogran	n for t	he con	trol of	mobile	robot		
		4.	Desi	gn an	d Dev	velop	a mo	bile ro	obot i	integra	iting s	ensor ·	– actua	ator –	
			controller for simple applications												
							•				••••••				
			Upo	n com	ριετιοι	n or th	IS COU	rse, th	e stua	ents w	/iii be a		<i>c</i>		
			1. A	Appiy k 	nowle	edge a	bout s	ensors	s and a	actuato	ors fors	electio	n for a t	typical	
Cours	е		а	ipplica	tion.	_									
Outco	me		2. l	Jse vis	ion sys	stem fo	or navi	gation	of the	e mobi	le robo	t.			
			3. V	Vrite p	rograr	n for v	various	appli	cations	s of mo	bile ro	bots.			
			4. C	Design	mobil	e robo	t for si	mple	applica	ations.					
Prere	quisite	s: NIL													
CO, F	PO AN	D PS	O MA	PPIN	Ĵ	-					_	_			
	PO	РО	PO	РО	РО	РО	РО	РО	PO	PO	PO-	PO-	PSO	PSO	
CO	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	11	12	-1	-2	
CO-	3	3	_	_	_	_	_	_	_	_	2	2	1	_	
1		5	_	_	_	_	_	_	_	_	-	-	1	_	
CO-	3	3	2	2	1	1	1	1	1	2	2	2	1		
2		5	<u> </u>	-	1	1	1	1	1	-	4	2	1	-	
CO-	2	2	2	2	2	1	1	2	2	2	2	n	1		
3	5	5	5	2	5	1	1	2	5	5	2	2	1	-	
CO-	2	2	2	2	2	1	1		2	2					
4	3	3	3	3	3	1	1	2	3	3	2	2	3	-	
		1:	Weakl	y relat	ed, 2:	Mode	rately	relate	d and 3	3: Stro	ngly re	ated			
MOD	JLE 1:	INTRC	DUCT	ION					(9	ƏL)					
									•	•					

Suggested Readings:     Mobile robots applications     Suggested Readings:	MODULE		SENSORS
Introduction to mobile Robots – Laws of Robots – Robot Anatomy – Basic Mechanics of Robots – Basic Electronics for Robots, Robot Applications - Companion Robots – Robots for Agriculture Applications - Space Robots – Defense Robots	<ul> <li>Introduction to mobile Robots – Laws of Robots of Robots – Basic Electronics for Robots, Robot Robots for Agriculture Applications – Space Rob Suggested Readings:</li> <li>Mobile robots applications</li> </ul>	Robot Anatomy – Basic Mechanics pplications - Companion Robots – ; – Defense Robots.	CO-1 BTL-2

(9L)

<ul> <li>Sensors for mobile robots – Need – Types &amp; Classification of Sensors- Sensor Characteristics – Sensors for Navigation, Motion, Position, Force, Range, Tactile and Vision – Selection of Sensors</li> <li>Suggested Readings: <ul> <li>Sensors interfacing with mobile robot controllers</li> </ul> </li> </ul>	CO-2 BTL- 3				
MODULE 3: AC	TUATORS				
(9L)					
Actuation mechanism for robots – Mechanical Actuators and drive trains, Electric Actuators – DC Motors – Servo motor, stepper motor – Linear Actuators – Grippers – Motor drives. Suggested Readings: • Actuators interfacing with mobile robot controllers	CO-3 BTL-3				
MODULE 4: CONTROLLERS (9L)					
<ul> <li>Analog Controller –design of simple controller by basic electronic devices – Digital controller – design of simple controller using logic gates – Introduction to Microcontroller – Arduino – simple program for Obstacle Detection and Avoidance – Localization</li> <li>Suggested Readings: <ul> <li>Arduino interfacing with motor drive</li> </ul> </li> </ul>	CO-4 BTL-4				
MODULE 5: BUILDING OFMOBILE ROBOTS (Project)(9L)					
Building of simple mobile robot – Use of various Sensing methods - Interfacing Sensors and Actuators with Robot Controller – Design of simple programs for Interfacing. CO-5 PROJECT: Build simple mobile robot BTL-4					
TEXTBOOKS					
1. Ulrich Nehmzow. (2003). <i>Mobile Robots - A practical introduction,</i> Springer.					
REFERENCE BOOKS					
1. S.R. DEB, S. DEB. (2011). <i>Robotics Technology and Flexible Automation</i> , McGraw-	Hill.				
E BOOKS					
1. http://www.robotshop.com/blog/en/how-to-make-a-robot-lesson-1-3707					
моос					
1. http://www.nptelvideos.in/2012/12/robotics.html					
2. <u>http://nptel.ac.in/courses/112108093/</u>					

## NON-DEPARTMENTAL ELECTIVES – SEMESTER IV

COURSE TITLE		AI IN ROBOTICS		CREDITS	2							
COURSE CODE	MHD4292	COURSE CATEGORY	NE	L-T-P-S	2-0-0-1							
Version	1.0	Approval Details 06.02		LEARNING LEVEL	BTL - 4							
ASSESSMEN	ESSMENT SCHEME											
First Periodical Assessme nt	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendanc e	ESE							
15%	15%	10%	5%	5%	50%							
Course Descriptio n	Robotics is a p and finds app defense secto platforms with to actions in becoming pop Farmers use n collecting crop driven by grow users. Decreas mobile robot robotics mark where the out robot applicat based on evalu- carried out at "This course is	programmable system lications in industries, rs. Mobile robots are n suitable software too the environment of it oular in various sectors nobile robots to perfo p data, and weeding. ving application sectors sing cost of sensors, an systems is one of the et. This course is design toome is to develop co tions in Webots simu uation of the outcome the end of each unit. s offered as Project Bas	able to perfor surveillance, o robots that a l with tight cou interest. Mobil s such agricultu rm different ta The mobile r s and increasing ctuators and si e key factors d gned as a proje ntrollers incorp lation environ s of the exercise ed Learning an	m multipurpo disaster mana re designed o pling betwee le robotics te iral, medical a obotics mark g in popularity implicity in fu riving the gro ect-based lear porating the A ment. The as ses that are p	ose activities agement and on hardware n perception echnology is and defense. g harvesting, ket is mainly y among end unctioning of owth mobile rning course, AI for mobile ssessment is lanned to be							
Course Objective	<ol> <li>The objective</li> <li>Physical structure</li> <li>an intelligent</li> <li>Comprehend behaviours in</li> <li>Capability of techniques and</li> <li>By considering systems devent</li> </ol>	of this course is to enal cture, sensing/actuatio robot. the sensory technique robot system Identifying and Applyi ppropriate for a range on g case studies they eloped by others.	ble the student in and program les that are us ng suitable rob of different rob will be able to	s to understa iming require sed to produc oot navigation otic application critically ap	nd d to develop ce intelligent a and control ons praise robot							

Course Outcome	<ol> <li>Upon completion of this course, the students will be able to</li> <li>Acquire the fundamental concepts behind Intelligent Robotic systems and differentiate various intelligent control techniques.</li> <li>Identify and Apply Intelligent algorithms, navigation and control techniques appropriate for a range of different robotic applications</li> <li>Comprehend the sensory techniques that are used to produce intelligent behaviours in robot system</li> <li>Design, Develop and Program an artificially intelligent robot for applications involving the basic modalities of sensing, path planning and navigation.</li> </ol>
-------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

## Prerequisites: NIL

CO, PC	) AND P	SON	/IAPPI	NG										
	PO-	Р	Р	Р	Р	Р	Р	Р		PO	PO-	Р	ΡS	PS
со	1	0	0-	0-	0-	0-	0-	0-	PO-9	-10	11	0-	0-1	0-2
		-2	3	4	5	6	7	8				12	• -	
CO-1	3	3	1	1	1	-	-	-	-	-	-	2	-	-
CO-2	3	3	2	2	2	1	1	2	2	2	-	2	-	-
CO-3	3	3	2	2	1	-	-	-	-	-	-	2	-	-
CO-4	3	3	3	3	3	1	1	2	2	2	-	2	-	-
	1: Weakly related, 2: Moderately related and 3: Strongly related													
MODULE 1: INTRODUCTION (6L)														
Artificial	Intellige	ence	– Int	roduc	tion -	- Hist	ory –	State	of the	Art –	Agents	and		
Environm	nents	– R	ole	and	Appli	icatior	ns ir	n Ro	botics,	Auton	nation	and		
Manufac	turing.	Rob	ot Pa	radigr	ns –	Histo	ry –	Need	l of Inte	lligen	ce – S	ocial		
Implicatio	ons – Te	elepr	esenc	e and	Semi	-Auto	nomo	us co	ntrol – Se	even A	reas of	AI –		
classifica	tions													)-1
Practica	l comp	onei	nt:										BI	L-3
• St	udy of V	Webo	ots – E	nviro	nment	t, Phys	sical N	/lodel,	Nodes a	nd Co	ntroller	s		
Suggested Readings:														
Webots Curriculum and Technical Manual														
MODULE	Ξ			2:	:			C	ONTROL				METI	HODS
(9L)														

Hierarchical, Deliberative and Reactive Paradigms – Attributes - Closed world	
assumptions – advantages & disadvantages – Reactive Paradigms – Biological	
Foundations – Behaviours – reflexive, coordination and perception in behaviours-	
Schema Theory – Transferring Insights to robots. Attributes of Reactive Paradigm -	CO - 2
Subsumption Architecture - Potential Field Methodologies - Implementation of	BTL - 4
reactive systems - Designing a Reactive Implementation – Case studies	
Suggested Readings:	
<ul> <li>Study of kinematic model for Differential drive mobile robots</li> </ul>	
MODULE 3: SENSORS AND SENSING TECHNIQUES FOR ROBOTS	
(6L)	
Overview- Sensors – Transducers – Attributes - Sensors for Motion, Force,	
Position, Light, Vision - Tactile sensing – Advanced Sensors – Applications;	CO - 3
Hybrid Control Paradigms and its architectural attributes	BTI - 3
Suggested Readings:	DIL-J
Various Actuators used for design of robotic configurations.	
MODULE 4: PATH PLANNING AND NAVIGATION	
(9L)	
Introduction to Path planning and Navigation – Landmarks – Relational and	
associative methods; Metric Path planning – Configuration Space – Graph based	
path planners. Localization – continuous localization – feature based localization –	CO-4
exploration.	BTI_2
Suggested Readings:	DIL-3
<ul> <li>Study of Braitenberg controller model for mobile robots and its</li> </ul>	
behaviors	
MODULE 5: Design of Robotic Applications using AI in Webots (15L)	
Webots – Introduction – design of differential drive mobile robot – Teleoperation	
<ul> <li>Braitenberg control - Path Planning and Navigation</li> </ul>	
Practical component: -	
Build simple tele-operative differential drive mobile robots in "Webots"	
environment. Tele-operation can be performed using Keyboard control.	
<ul> <li>Integrate sensors in the previously build model and make the robot to</li> </ul>	CO 1-4
navigate the environment using braitenberg control.	
<ul> <li>Modify the controller designed by implementing behaviours for a robot to</li> </ul>	BTL-3
navigate the environment by avoiding obstacles	
<ul> <li>Modify the controller designed by making the robot to plan its path using</li> </ul>	
any navigational methods to reach the goal by avoiding the obstacle.	
Suggested Readings:	
Study of Robot Behaviors	
TEXTBOOKS	
1. Robert R Murphy. (2001). Introduction to AI Robotics, MIT Press, 2nd edition.	

2.	Roland Siegwart and I. Nourbaksh. (2011). Introduction to Mobile Robots, MIT Press, 2nd edition.							
REFE	RENCE BOOKS							
1.	Igor Skrjanc, Andrej Zdesar, SasoBlazic and Gregor Klancar. (2017). Wheeled Mobile Robotics From Fundamentals Towards Autonomous Systems, ELSEVIER.							
M	моос							
1.	https://www.coursera.org/specializations/modernrobotics							
SOF	TWARE							
WEI	BOTS (OPEN SOURCE)							
	https://cyberbotics.com/#download							
	https://cyberbotics.com/doc/guide/tutorials							
	https://en.wikibooks.org/wiki/Category:Book:Cyberbotics%27_Robot_Curriculum							

• <u>https://en.wikibooks.org/wiki/Cyberbotics%27_Robot_Curriculum</u>

COURSE TITLE	ROBOTICS AND IO	CREDITS	2						
COURSE CODE	MHD4293	COURSE CATEGORY	NE	L-T-P-S	3-0-0-1				
Version	1.0Approval Details23 ACM, 06.02.2021		LEARNING LEVEL	BTL-3					
ASSESSMENT SCHEME									
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project / Practical	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	Robotics systems in modern era have penetrated in to aspects of commercial and societal scenario. The basic analogy to human systems is described through anatomy and configuration. Various types of sensors and actuators for efficient functioning of robots are essential. Mathematical modeling of Robots – transformations, rotation matrix through forward and inverse kinematic analysis. The programming languages used in operation of various Robots. Internet of Things has been exploited in the area of Robotics and interfacing real time systems to cloud servers. The efficient function of autonomous vehicles require a fusion of sensors to function in an orderly fashion to help in navigation and path planning.								

	The course should enable the students to								
	1. Understand the basic concepts of a Robotic System.								
Course	2. Comprehend the mathematical modeling and transformation in representing								
Course	the position of manipulators.								
Objective	3. Understand and Perform basic programming of Robot functions with Robot								
	software.								
	4. Program Internet of Things for communication and control of Robots.								
	5. List a variety of sensors for autonomous vehicles.								
	Upon completion of this course, the students will be able to								
	1. Recognize and associate basic structure and components of robots								
Course	2. Describe the Robot movements and mathematical models in position control.								
Outcome	3. Write and interpret the basic programming sequences used in Robot systems.								
	4. Implement IoT application for robotic and various real-time applications.								
	5. Select sensors and construct sensor interface for various Robotic								
	applications.								
Prerequisites:									
CO, PO AND PS	O MAPPING								

CO - PO	P O -1	РО -2	РО -3	РО -4	РО -5	РО -6	РО -7	PO -8	РО- 9	PO -10	PO-1 1	PO- 12	PSO- 1	PSO -2
CO-1	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO-2	3	3	3	-	-	-	-	-	-	-	-	2	2	-
CO-3	3	3	3	-	-	-	-	-	-	-	-	2	2	-
CO-4	3	3	-	-	-	-	-	-	-	-	-	2	2	-
CO-5	3	3	3	3	-	3	-	-	-	-		2	2	-
								-						

1: Weakly related, 2: Moderately related and 3: Strongly related

# MODULE 1: INTRODUCTION (9 L)

History of Robots – Robot Anatomy – Robot Configurations – Work Volume – Robot Safety-Sensors and Actuators.

Practical component:					
Case study Robot system     Suggested Readings:					
Evolution of Robots					
MODULE 2: KINEMATICS					

(9 L)								
Robot Repres	Transformations – Rotation Matrix – Forward and Inverse Kinematics – DH							
	Pohot transformations							
Sugge	sted Readings:	BTL-2						
•	Mathematical modeling of Robot							
MODI								
(9 L)								
Robot Softwa	anguages – Classification of Languages –Motosim, Computer Control and Robot re.							
Practi	cal component:	CO-3						
•	Moto Sim simulation and programming on Robot software	BTL-2,3						
Sugge	sted Readings:							
•	Robot Programming languages.							
MODU	MODULE 4: INTERNET OF THINGS PROGRAMMING AND INTERFACING (9 L)							
Robot Interfa	Robot Programming– Basic Embedded C Programming for Robots – Data Acquisition – Interfacing Sensors and Actuators with Robot Controller – Program for Interfacing.							
	<b>Programming</b> basic programming for concertant actuator interface	CO-4						
•	loT programming basics.	BTL-2, 3						
Sugge	sted Readings:							
•	<b>Programming for Sensor Interfacing,</b> Reading Analog Value, Converting an Analog Value to Digital Value and vice versa, communication to cloud servers.							
MODU	ILE 5:SENSOR FOR AUTMONOMOUS SYSTEMS (9 L)							
SENSO their in	RS- Various sensor for autonomous systems like sonar, ultrasonic, infra-red, lidar and terface to robots.							
Practi	cal component:	CO-5						
• Sugges	Case study of autonomous systems. ted Readings:	BTL-1,2						
•	<ul> <li>How to connect and work with different sensors, such as Humidity, Proximity, IR Motion, Accelerometer, Sound, Light Distance, Pressure, Temperature.</li> </ul>							
TEXT E	TEXT BOOKS							
1	Mikell P. Groover, Roger N. Nagel, Industrial Robotics: Technology, Programming, and McGraw-Hill Companies, 2020.	Applications						
2	S.R. DEB, S. DEB, Robotics Technology and Flexible Automation, Mc-GrawHill, 2nd Edit	tion, 2011.						

3	Edquist, Flexible Automation: The Global Diffusion of New Technology, Wiley-Blackwell, 1988.						
REFERENCE BOOKS							
1	G.K. Dubey, Fundamental Electrical Drives, second edition 2002, Narosa Publications, Second edition, 2002.						
2	Pillai, S.K., A Seish course on Electrical Drives, Wilay Eastern Ltd., New Delhi, 2014						
E BOO	KS						
1	https://mitpress.mit.edu/books/introduction-autonomous-mobile-robots						
MOO	C						
1	http://www.rsl.ethz.ch/education-students/lectures/ros.html						
2	https://www.coursera.org/specializations/robotics						

# NON-DEPARTMENTAL ELECTIVES – SEMESTER V

COURSE TITLE	1	CREDITS	2							
COURSE CODE	MHD4382	COURSE DE CATEGORY		L-T-P-S	1-1-0-0					
Version	1.0	Approval Details 23 ACM, 06.02.2021		LEARNING LEVEL	BTL-5					
ASSESSMENT SCHE	ASSESSMENT SCHEME									
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Attendance	ESE						
15%	15%	10%	5%	5%	50%					
Course Description	This course helps to gain a basic understanding of machine vision and image analysis for 2D machine vision. The course will focus on problem solving based on this technology and industrial applications. Students will use Matlab to implement machine vision algorithms to solve industrial problems.									
Course Objective	To introduce the student to machine vision algorithms, methods and concepts which will enable the student to implement computer vision systems with emphasis on applications and problem solving.									

Course Outcome       2. Perform image segmentation to extract information from digital image         3. Perform filtering operations in the time and frequency domains to achieve desired image enhancement         4. Apply morphological operations for shape recognition and template matching	Course Outcome
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------

#### Prerequisites:

#### CO, PO AND PSO MAPPING

	PO-	DO 2	PO-	PO-	PO-	PO-	PO-	PO-		PO-	PO-	PO-	PSO-	PSO-	
0	1	P0-2	3	4	5	6	7	8	PO-9	10	11	12	1	2	
CO-1	3	3	3	3	3								-	-	
CO-2	3	3	3	3	3				3	2	2	3	-	-	
CO-3	3	3	3	3	3				3	2	2	3	-	-	
CO-4	3	3	3	3	3				3	2	2	3	-	-	

1: Weakly related, 2: Moderately related and 3: Strongly related

MODULE 1: IMAGE FORMATION PROCESS	(6L)				
Introduction – Elements of machine vision system – Image model: perspective geometry, image	CO-1				
function – Radiometrical model	BTL-2				
MODULE 2: SEGMENTATION	(6L)				
Gray level thresholding – locally adaptive thresholding – edge detection – Connected component					
labelling – Crack and border following – Region based segmentation – Morphological Image					
processing: Binary erosion – dilation – opening – closing operations – hit or miss transform – Gray	BTL-3				
scale morphology					
MODULE 3: ENHANCEMENT	(6L)				
Gray scale modification – Histogram modification – convolution - Image filtering: Smoothing –	CO-3				
Sharpening – average - median					
MODULE 4: RECOGNITION					
Blob analysis – Hough transform techniques – Geometric constraints – Texture - matching -	CO-4				
classification	BTL-2				
MODULE 5: CASE STUDY					
Inspection – Gauging – Guidance – Identification, Dimensional Checking, Color Sorting, Shape	<b>CO</b> _1				
Recognition applications	0-1				
Suggested Readings:	BTL-5				
Industrial case studies using machine vision					
TEXT BOOKS					
González, Rafael C. and Woods, Richard Eugene, Digital Image Processing, 3rd I Hall. 2008	dition, Prentice				
REFERENCE BOOKS					

1	Davies, E.R., Machine Vision: Theory, Algorithms, Practicalities, Academic Press, London, 1990					
2	Haralick, R.M. and Shapiro, L.G., <i>Computer and Robot Vision (Volumes I and II)</i> , Addison-Wesley, Reading Massachusetts, 1990					
E BOOKS						
1.	http://freecomputerbooks.com/Programming-Computer-Vision-with-Python.html					
моос						
1	https://www.mooc-list.com/course/robotic-vision-processing-images-futurelearn					

# NON-DEPARTMENTAL ELECTIVES – SEMESTER VI

COURSE TITLE	IMME	CREDITS	2						
COURSE CODE	MHD4392	COURSE CATEGORY	DE	L-T-P-S	1-1-0-0				
Version	1.0	1.0Approval Details23 ACM,06.02.2021		LEARNING LEVEL	BTL-5				
ASSESSMENT SCHEME									
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project	Surprise Test / Quiz	Attendance	ESE				
15%	15%	10%	5%	5%	50%				
Course Description	Due to its potential be mixed reality and 360 technologies can prov enjoyment, and expen and its capabilities. Al technologies.	enefits, immersive techr VR are increasingly inco vide a platform for increa rience. This course aims so, this course will enab	nologies such as an orporated in vario ased engagement to provide an unc ole to develop con	ugmented reality us applications. ⁻ , immersion, inte lerstanding of th tent using imme	η, virtual reality, These eraction, is technology rsive				
Course Objective	<ol> <li>To establish a broad and comprehensive understanding immersive applications</li> <li>To work in collaborative group projects and develop working prototypes</li> <li>To experiences different immersive technologies that can be used in various applications,</li> </ol>								
Course Outcome	<ul> <li>Upon completion of this course, the students will be able to</li> <li>Distinguish between the various immersive technologies and available resources</li> <li>Reflect on the experience with immersive technologies</li> <li>Identify a suitable immersive technology for a given application</li> <li>Evaluate a use case and identify the important considerations when designing an application using immersive technology.</li> </ul>								

CO, PO	CO, PO AND PSO MAPPING														
со	PO-	PO-2	PO-	PO-	PO-	PO-	PO-	PO-	PO-9	PO-	PO-	PO-	PSO-	PSO-	
<u> </u>	1 2	3	<b>3</b> 3	<b>4</b> 1	<b>5</b> 3	<b>6</b> 2	7 2	<b>8</b> 1	2	<b>10</b> 2	11 2	<b>12</b> 2	1	2	
CO 2	2	3	3	1	3	1	1	1	1	1	1	1	2	-	
CO-2	2	3	3	1	3	1	1	1	1	1	1	1	2	-	
0-3	2	3	3	1	3	1	1	1	1	1	1	1	2	-	
CO-4	2	5	5		5	-			-	1			2	-	
1: Weakly related, 2: Moderately related and 3: Strongly related										( )					
MODUL	E 1: IN	TRODU	CTION		IMERS	SIVE TE	CHNC	DLOGIE	S					(4L)	
Introduction to Immersive Technologies – History – Types - Interactions Suggested Readings: Immersive Technology: What is it and How can we Use it Today?									CO- BTL	-1 -2					
MODUL	E 2: BL	JILDING	6 IMM	ERSIVE	ENVI	RONM	IENTS							(7L)	
Working with Unity 3D, Objects and Scale – Creating a simple diorama – VR Device integration -       Experiencing virtual reality       CO-         Suggested Readings:       BTL         Creating Immersive Virtual Environments with Unity       CO-								-2 -3							
MODUL	E 3: US	SER INT	ERACT	IONS									(	(7L)	
Interaction Suggeste Gesture I	ons wit <b>d Read</b> nteract	h virtual l <b>ings:</b> tion in V	enviro irtual R	nment eality	s – Con	trollers	s – Rayo	cast – P	article e	effects				CO- BTL	-2 -3
MODUL	E 4: Al	JGEMN	TED R	EALITY	AND	MIXED	REAL	ΙΤΥ					(	7L)	
Introduct <b>Suggeste</b> Virtual Re	tion to d <b>d Read</b> eality V	Augmen l <b>ings:</b> 's Augen	ited Re	ality , N Reality	/lixed r	eality – xed Rea	AR Too	olkit						CO- BTL	-3 -2
MODUL	E 5: CA	SE STU	DY										(5	5L)	
A case study on design of an application using immersive technologies Suggested Readings: Industrial case studies using immersive technologies									co. BTL	-4 5					
TEXT BO	OKS												I		
1.		Lawr pp.21	ence, C 13432	. (2016	). Cybe	r secur	ity for	Dummi	es,John	Wiley	& Sons	Inc., 2r	nd Editio	on,	

REFERENCE BOOI	REFERENCE BOOKS							
1	Jason Jerald. (2015), The VR Book – Human Centered Design for Virtual Reality, Morgan & Claypool							
2	Tony Parisi. (2016), Learning Virtual Reality, O'Reilly Media, 2016							
E BOOKS	E BOOKS							
1.	https://profs.info.uaic.ro/~avitcu/FII%202015-2016/Animatie%203D_Documentatie/ VR.pdf							
моос								
1	https://in.udacity.com/course/introduction-to-virtual-realityud1012							
2	https://www.edx.org/course/creating-virtual-reality-vr-apps-uc-san-diegox-cse190x							

COURSE TITLE	DESIGN T	HINKING AND PROI DEVELOPMENT	DUCT	CREDITS	2						
COURSE CODE	MHD4393	COURSE CATEGORY	NE	L-T-P-S	3-0-0-2						
Version	1.0	Approval Details	Approval Details 23 ACM, 06.02.2021		BTL-3						
ASSESSMENT SCI	ASSESSMENT SCHEME										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project / Practical		Attendance	ESE						
15%	15%	10%	5%	5%	50%						
Course Description	CourseDesign thinking is a process for solving problems by prioritizing the consumer's needs It relies on observing, with empathy, how people interact with their environments, and employs an iterative, hands-on approach to creating innovative solutions. Product development is the complete process of taking an idea from concept to delivery and beyond. Whether you are delivering a brand-new offering or enhancing an existing product, the product development cycle begins long before anything gets built.										
	The course should	d enable the studen	ts to								
Course	1. Understar	nd the concepts of d	esign thinking _l	process							
Objective	2. Recall the	process of product	development								
	3. Apply the 4. Analyze th	various concepts of ne different types of	Additive Manu	n facturing Proc	cess.						

	5. Analyze the concepts of design thinking and product development.
	Upon completion of this course, the students will be able to
	1. Illustrate the steps involved design thinking process.
	2. Organizing the process of product development in an organization.
Course	3. Describe the concepts of 3D modeling, Product Architecture and Industrial
Outcome	design.
	4. Examine the concepts of Additive Manufacturing for Manufacturing new
	prototypes
	5. Select the suitable product development process for various Applications.
Prerequisites:	

CO, PO AND PSO MAPPING															
CO –	РО	РО	РО	РО	РО	РО	РО	РО	PO-	РО	РО	PO-	PSO	PSO	PSO
РО	-1	-2	-3	-4	-5	-6	-7	-8	9	-10	-11	12	-1	-2	-3
CO-1	3	3	1	-	-	-	-	2	2	-	-	2	2	-	
CO-2	3	3	3	3	3	-	-	2	2	-	-	2	2	-	
CO-3	3	3	1	-	-	-	-	2	2	-	-	2	2	-	
CO-4	3	3	1	-	-	-	-	2	2	-	-	2	2	-	
CO-5	3	3	3	2	2	-	-	2	2	-		2	2	-	
	1: Weakly related, 2: Moderately related and 3: Strongly related														

### MODULE 1: I DESIGN THINKING

(9L)

Introduction, the process - Explore, Empathize, Experiment, Engage, prototyping, testing, Evolve.	CO-1BT L-3
MODULE 2: BASICS OF PRODUCT DEVELOPMENT	(9L)
Development processes and organization, Product planning, Identifying Customer needs, Product Specifications, concept – Generation, selection & testing.	CO-2 BTL - 3
MODULE 3: PRODUCT DESIGN	(9L)
Product architecture, Industrial design, Design for manufacturing, 3D CAD Modeling	CO – 3BTL - 3
MODULE 4: PROTOTYPING	(9 L)
Understanding prototypes, Principles of prototyping, Planning of prototypes, Rapid prototyping technologies - SLA, SLS & FDM.	CO-4BT L - 4

MODU	JLE 5: CASE STUDIES	(9L)					
Review of success and failure models, Activities							
TEXT B	OOKS						
1.	Thomke, Stefan H., and Ashok Nimgade. "IDEO Product Development." Harvard Business Case 600-143, June 2000.	School					
2.	. Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, 2009						
REFER	ERENCE BOOKS						
1.	Thomas Lockwood and Edgar Papke, Innovation by Design: How Any Organization Can Le Design Thinking to Produce Change, Drive New Ideas, and Deliver Meaningful Solutions	verage					
2.	Ulrich, Karl, and Steven Eppinger. Product Design and Development. 3rd Edition. McGraw 2003.	v-Hill,					
3.	Groover, CAD/CAM: Computer-Aided Design and Manufacturing, Pearson Education India	a, 1984.					
4.	Chee Kai Chua, Kah Fai Leong, Chu Sing Lim. Rapid Prototyping: Principles and Application Scientific 2003.	ns, World					
5.	A. K. Chitale, R. C. Gupta. Product Design And Manufacturing. PHI India Publications, 201	.3.					

COURSE TITLE		INDUSTRY 4.0		CREDITS	2
COURSE CODE	MHD4394	COURSE CATEGORY	PC	L-T-P-S	2-0-0-2
Version	1.0	Approval Details	Approval Details 23 ACM, LE 06.02.2021		BTL- 4
ASSESSMENT SCH	EME				
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project / Practical	Surprise Test / Quiz	Attendance	ESE
15%	15%	10%	5%	5%	50%
Course Description	Fourth Industrial re- making and process through the integra computational proc of Things (IoT), Clou to be the differen- technology has res nearly all electroni increasingly netwo	evolution is very much ses. Industry 4.0 conce ation of modern techn cessing. Technologies ad Computing, Machin at drivers necessary sulted in immense in ic devices and enhan rked society. Industria	n driven by the s erns the transfor hologies such as such as Cyber P ne Learning, and for the transfor nprovements in need capabilities al Internet of Th	marts in auton mation of indus sensors, comm hysical Systems Data Analytics ormation. Ad computational in connecting ings (IIOT) is ar	nating decision strial processes nunication, and (CPS), Internet are considered vancements in power across the dots in an application of

		lo [:] au	IoT in industries to modify the various existing industrial systems. IIoT links the automation system with enterprise, planning and product lifecycle.												
		The course should enable the students to													
<ol> <li>Explore various sensors, peripheral de industries.</li> <li>Realize the challenges faced for the e industrial applications.</li> <li>Gain good depth of fundamental knowle various application.</li> <li>Identify the underlying principle of vario problems by using Industrial IoT .</li> <li>Develop solution for Real time problems with IoT capability.</li> </ol>								vices a ffective edge in us syste using ac	nd ne imple design ems an equired	tworkin mentati ing Ind d mode skills o	g proto ion of I ustrial I els to sol f Industr	ocol app ndustry OT Syste Ive engir	lied in 4.0 in ms for eering cations		
		U	pon co	mplet	ion of	this co	ourse,	the st	udents	will be	ablet	to			
			<ol> <li>Infer knowledge in the basics of sensors, communication and networks commercialized in industries.</li> <li>Analyze the challenges and enpertupities brought about by industry 4.0 and</li> </ol>												
Course				apprec	iate th	ie smai	rtness	in Sma	rt Facto	ries, Sn	nart cit	ies, sm	art prod	ucts and	smart
Outcom	е		services. 3. Comprehend the fundamentals of Industrial processes. Business model and												
			architecture deploying industrial IoT.												
			4.	Outline	e the v	the various systems and models used in a Industries and their role in an									
			5.	Illustra	te the	applica	tions o	f Indus	try 4.0 v	vith rea	l-time	case stu	idies.		
Prerequi	isites :	Basic k	nowled	dge of c	comput	er netv	work ar	nd inter	rnet						
CO, PO	AND P	PSO M	APPII	NG											
CO -	РО	РО	РО	РО	РО	РО	РО	РО	PO-	РО	РО	PO-	PSO	PSO	PSO
РО	-1	-2	-3	-4	-5	-6	-7	-8	9	-10	-11	12	-1	-2	-3
CO-1	3	3	3	3	2	-	1	-	2	3	3	-	-	-	
CO-2	3	3	3	3	2	-	1	-	2	3	3	2	-	-	
CO-3	3	3	3	3	2	-	1	-	2	3	3	-	-	-	
CO-4	3	3	3	3	2	-	1	-	2	3	3	-	-	-	
CO-5	3	3	3	3	2	-	1	-	2	3	3	2	-	-	
		1	L: Wea	kly re	ated,	2: Mo	derate	ly rela	ted and	d 3: Str	ongly	related	1		
MODUL	E 1:	INTR	ODU	CTION										(9L	)
Introduc	tion – S	Sensin	g and	Actuat	ion – (	Comm	unicat	ion – N	Vetwor	king – (	Globali	zation	and		
Emergin	g Issue	s – The	e Four	th Rev	olutio	n – LE	AN Pro	ductio	on Syste	ems				CO	-1
Suggeste	ed Rea	dings:												BTL	-2
• (	Comparison of Industry 4.0 Factory and Today's Factory														

MODULE 2: SMART INDUSTRY		(9L)				
Smart and Connected Business Perspective – Sm and Next Generation Sensors – Collaborative Platt – Cyber security	art Factories – Cyber Physical Systems orm and Product Lifecycle Management	CO-2				
Suggested Readings:	BTL-3					
<ul> <li>Augmented Reality and Virtual Reality, Art</li> </ul>						
MODULE 3: INDUSTRIAL IOT	(9L)					
Introduction –Industrial Sensing and Actuation – Industrial IoT Layers - Community of Architecture - - Community of Architectur	ndustrial Processes – Business Model cation - Networking – Processing	CO-3				
Suggested Readings:		BTL-3				
Industrial Internet Systems						
MODULE 4: IIOT ANALYTICS AND DATA MA	NAGEMENT	(9L)				
Introduction – Machine Learning and Data Science - Cloud and Fog Computing - Programming -Data Management with Hadoop -Data center Networks – SDN - Security						
• K and Julia Programming MODULE 5: APPLICATIONS AND CASE STUDIES						
Application Domains : Factories and Assembly Line - Food Industry - Inventory Management & Quality Control-Plant Safety and Security-Facility Management- Oil, chemical and pharmaceutical industry-Applications of UAVs in Industries Case Studies : Milk Processing and Packaging Industries – Manufacturing Industries –						
Suggested Readings:						
<ul> <li>Smart home Applications</li> </ul>						
TEXT BOOKS						
1 Alasdair Gilchrist (2016). Industry 4.0: Th	e Industrial Internet of Things, Apress					
2 Sabina Jeschke, Christian Brecher, Houbir <i>Things: Cyber manufacturing Systems</i> , Sp	g Song, Danda B. Rawat (2017). <i>Industrial</i> ringer	Internet of				
REFERENCE BOOKS						
Ovidiu Vermesan, Peter Friess (2013). Inte Environments and Integrated Ecosystems Networking	<ul> <li>Ovidiu Vermesan, Peter Friess (2013). Internet of Things: Converging Technologies for Smart</li> <li>Environments and Integrated Ecosystems, River Publishers Series in Communications and</li> <li>Networking</li> </ul>					
2 Christoph Jan Bartodziej (2017). The Conc and Applications in Production Logistics,	cept Industry 4.0: An Empirical Analysis of Springer Gabler	Technologies				
E BOOKS						

1	https://link.springer.com/book/10.1007/978-1-4842-2047-4?noAccess=true
2	https://link.springer.com/book/10.1007/978-3-319-57870-5?noAccess=true
моос	
1	https://nptel.ac.in/courses/106105195
2	https://www.edx.org/course/industry-40-how-to-revolutionize-your-business

COURSE TITLE	PRO	DUCT PROTOTYPING		CREDITS	2					
COURSE CODE	MHD4481	COURSE CATEGORY	NE	L-T-P-S	2-0-2-1					
Version	1.0	Approval Details 23 ACM, 06.02.2021		LEARNING LEVEL	BTL- 4					
ASSESSMENT SCHEME (Everything is based on Projects)										
First Periodical Assessment	Second Periodical Assessment	Seminar/ Assignments/ Project / Practical	Attendance	ESE						
15%*	15% [*]	20%*			50%*					
Course Description	Course is Project based learning (PBL).3D Printing uses software that slices the 3D model into layers (0.01mm thick or less in most cases). Each layer is then traced onto the build plate by the printer, once the pattern is completed, the build plate is lowered and the next layer is added on top of the previous one. Typical manufacturing techniques are known as 'Subtractive Manufacturing' because the process is one of removing material from a preformed block. Processes such as Milling and Cutting are subtractive manufacturing techniques. This type of process creates a lot of waste since; the material that is cut off generally cannot be used for anything else and is simply sent out as scrap. 3D Printing eliminates such waste since the material is placed in the location that it is needed only, the rest will be left out as empty space.									
Course Objective	<ul> <li>The course should enable the students to</li> <li>1. Apply the concept of design and process optimization.</li> <li>2. Select suitable materials for 3D Printing.</li> <li>3. Explain the concept of photo polymerization and extrusion process system.</li> <li>4. Explain the concept of Powder bed fusion and direct energy system.</li> <li>5. Apply the architecture of IoT in 3D Printing.</li> </ul>									

Course Outcome			<ol> <li>Upon completion of this course, the students will be able to</li> <li>Apply the concept of design and process optimization for 3D printing.</li> <li>Select suitable materials in additive manufacturing for various applications.</li> <li>Explain the concept of photo polymerization and extrusion process system</li> <li>Explain the concept of Powder bed fusion and direct energy system.</li> <li>Apply the architecture of IoT in various 3D Printing process and application</li> </ol>												
Prerequisites:															
CO, PO	CO, PO AND PSO MAPPING														
CO - PO	РО -1	РО- 2	РО- 3	РО- 4	РО- 5	РО- 6	РО- 7	РО- 8	PO-9	PO -10	PO- 11	PO- 12	PSO- 1	PSO- 2	PSO- 3
CO-1	1	1	1	1	1	-	-	2	1	2	-	1	-	-	
CO-2	1	1	1	1	1	-	-	2	1	2	-	1	-	-	
CO-3	1	1	1	1	1	-	-	2	1	2	-	1	-	-	
CO-4	1	1	1	1	1	-	-	2	1	2	-	1	-	-	
CO-5	1	1	1	1	1	-	-	2	1	2	-	1	-	-	
1: Weakly related, 2: Moderately related and 3: Strongly related															
MODULE 1: DESIGN FOR 3D PRINTING (9L)															
Introduction of AM – Basic Principle-Generic 3D Printing process – DFAM concepts and objectives-3D printing unique capabilities –Exploring design freedoms – Design tools for 3D Printing- Guidelines for process selection.								and or 3D	CO-1 BTL-3						
MODULE	MODULE 2: MATERIALS FOR 3D PPRINTING (9L)														
Classification of polymer and metallic materials –Properties of AM materials – Application of AM material – Atomic structure and bonding-ceramics – polymer- powdered materials- composites- Multiple materials in AM – Multiple – discrete – porous – blended.							of AM sites-	CO-2 BTL-3							
MODULE	MODULE 3:PHOTOPOLYMERIZATION PROCESSES AND EXTRUSION BASED SYSTEM (9L)														
Photopolymerization materials – Reaction Rates – Vector scan SL - SL Resin Curing Process - SL Scan Patterns - Vector Scan Microstereolithography - Mask Projection Photopolymerization Technologies and Processes - Two-Photon SL - Extrusion-Based Systems – Basic Principles - Plotting and Path Control - Fused Deposition Modeling – Materials – Limitation – Bio extrusion - FDM of Ceramics								s - SL ation bles - sion -	CO-3 BTL-3						
MODULE	MODULE 4: POWDER BED FUSION AND DIRECT ENERGY SYSTEM (9L)														

SLS proo Applicat Process applicati	CO-4 BTL-3						
MODUL	(9L)						
Overvie Printing- process Artificial	CO-5 BTL-4						
TEXT BOOKS							
1	Ian Gibson, David W.Rosen, Brent Stucker, "Additive Manufacturing Technologies", Springer, 3rd edition, 2020.						
2	Patri.K.Venuvinod and Weiyin Ma. "Rapid Prototyping" Springer science+ business Media, LLC, 2004.						
REFERENCE BOOKS							
1	Andreas Gebhardt, Hanser "Rapid Prototyping", Gardener Publications, 2003						
2	.LiouW.Liou, Frank W.Liou, "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.						
3	. Chua C.K. Leong K.F., and Lim C.S., "Rapid prototyping: Principles and application", Second edition, World Scientific Publishers, 2010						
MOOC							
1	https://nptel.ac.in/courses/112/104/112104265/						
2	https://www.coursera.org/specializations/3d-printing-additive-manufacturing						