

DEPARTMNET OF MECAHANICAL ENGINEERING CURRICULUM AND SYLLABUS UNDER CBCS

for

M.Tech. Degree Programme

Robotics & Mechatronics

(Applicable for Students admitted from Academic Year 2018-19)

Centre for Automation and Robotics School of Mechanical Sciences Hindustan Institute of Technology and Science

VISION STATEMENT OF THE INSTITUTE

TO MAKE EVERY MAN A SUCCESS AND NO MAN A FAILURE

MISSION STATEMENT OF THE INSTITUTE

To provide every individual with a conducive environment suitable to achieve his/her career goals, with a strong emphasis on personality development, and to offer the academically inclined the resources to gain quality education in all spheres of Engineering, Applied Sciences and Management, without compromising on the quality and code of ethics

SCHOOL OF MECHANICAL SCIENCES CENTRE FOR AUTOMATION & ROBOTICS

VISION

A research team with synergetic strengths emphasizes on robotics and automation related research, product development, teaching, training and consultancy with a goal to innovate and disseminate new knowledge to meet the needs of industries and society

MISSION

To engage in multidisciplinary research in the fields of robotics and automation, condition monitoring, vision system and artificial intelligence. Centre strives to provide solutions which will support industrial automation systems. It also focuses on providing the students with a varied academic and research experience on industrial automation and robotics, and helps the University in educating the future work force in meeting the oncoming technical challenges and advancements in the field of automation and robotics.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO):

The Program Educational Objectives (PEOs) describe the professional accomplishments of our graduates about three-five years after having completed the under-graduate program in Electronics and communication Engineering.

- 1. Be able to attain knowledge in multi-disciplinary engineering domain and be able to evaluate, interpret and apply this knowledge.
- 2. Be able to solve complex problems independently by improving abilities on analysis, synthesis and criticism.
- 3. Be able to define, analyse and develop solution methods for robotics, control and automation problems belonging to various disciplines.
- 4. Be able to develop novel and original ideas and methods; be able to develop innovative solutions in system, process and algorithm designs.
- 5. Be able to design and implement analytical, model-based and experimental research; be able to analyse and interpret complex situations encountered in the process.
- 6. Be able to convey the processes and results of the studies in both national and international written or oral media.
- 7. Be able to combine the information from different areas and develop solution methods for different areas by taking part in multi-disciplinary teams.
- 8. Having proficiency in preserving social, scientific and ethical values in all academic and professional activities.
- 9. Having awareness of new and emerging applications about the profession; be able to examine and learn them in case of necessity.
- 10. Having comprehensive knowledge on the modern techniques, methods and their boundaries in engineering.
- 11. Be able to construct scientific problems with novel and original ideas and methods, and be able to solve these problems using conventional methods or developing innovative methods.
- 12. Be able to have continuous self-improvement by tracking scientific developments.

IMPORTANT ABBREVIATIONS

AY	Academic Year
ААТ	Alternate Assessment Tools
CGPA	Cumulative Grade Point Average
CIE	Continuous Internal Evaluation
СО	Course Outcome
РС	Professional Core Course
PE	Professional Elective
CF	Core Foundation
EE	Engineering Elective
OE	Open Elective
LTPS	Lecture-Tutorial-Practical-Self-Study
СС	Core Course
PEO	Program Educational Objective
РО	Program Outcome
ESE	End Semester Examination
SGPA	Semester Grade Point Average
RM	Robotics & Mechatronics

STRUCTURE OF THE CURRICULUM

Sl. No.	Type of Course	L	Т	Р	ТСН	CREDITS
1	Theory without tutorials	2	0	0	2	2
2	Theory with tutorial	2	1	0	3	3
3	Theory with Practical	2	0	2	4	3
4	Lab	0	0	4	4	2

CREDITS SPLIT UP

SEMESTER	CREDITS
1	21
2	19
3	13
4	12
TOTAL	65

SEMESTER I

SI. No	Course Code	Course L		Т	Р	С	ТСН	
THEORY	THEORY							
1	MEE3701	Sensors & Data Acquisition	Sensors & Data Acquisition 2		2	3	4	
2	MEE3702	Computer Programming for Microcontroller2		0	2	3	4	
3	MEE3703	Virtual Instrumentation 2		0	2	3	4	
4	MEE37XX	Departmental Elective I 2		0	2	3	4	
5	MEE37XX	Departmental Elective II 2		0	2	3	4	
6	ZZZ3715	Research Methodology & IPR	Research Methodology & IPR 2		0	2	2	
PRACTICA	AL							
7	MEE3751	Mechatronics Lab	0	0	4	2	4	
8	MEE3796	Seminar				2		
	TOTAL						26	

• Research Methodology & IPR is a compulsory Course.

SEMESTER II

SI. No	Course Code	Course L		Т	Р	С	тсн		
THEORY	THEORY								
1	MEE3704	Industrial Robots	Industrial Robots 2		2	3	4		
2	MEE3705	Artificial Intelligence		1	0	3	4		
3	MEE3706	Kinematics & Dynamics of Robots		0	2	3	4		
4	MEE37XX	Departmental Elective III		0	2	3	4		
5		Open Elective 2		0	2	3	4		
PRACTICA	PRACTICAL								
6	MEE3752	Artificial Intelligence Lab	0	4	0	2	4		
7	MEE3781	Mini-project				2			
	TOTAL						24		

• One of the core course shall be a MOOC. (same course to all students)

SEMESTER III

Sl. No	Course Code	Course L T P		Р	С	ТСН		
THEORY								
1	MEE37XX	Departmental Elective IV	2	0	2	3	4	
PRACTICA	PRACTICAL							
2	MEE3897	Internship *				2		
3	MEE3898	Project Phase –I				8		
				то	TAL	13	4	

*Internship to be undergone during vacation between $2^{\ensuremath{nd}}$ and 3rd semesters

SEMESTER IV

SI. No	Course Code	Course L T				C	тсн	
PRACTICA	PRACTICAL							
1	MEE3899	Project Phase –II				12		
TOTAL						12		

Course SI. L Т Р С TCH Course Code No Concepts in Mechanisms and MEE3721 Machines **CNC** Technology MEE3722 **Condition Monitoring** MEE3723 MEE3724 **Building Automation** MEE3725 **Machine Vision Robotic Operating System** MEE3726 MEE3727 **Field Robots** Industrial Automation MEE3728 MEE3729 Actuators & Drives

LIST OF DEPARTMENTAL ELECTIVES

LIST OF OPEN ELECTIVES

SI. No	Course Code	Course		Т	Р	С	тсн
1	MEE3741	Product Development		0	2	3	4

Course	Course Title SENSORS AND DATA ACQUISITION								
Course	Code MI	EE3701	Credits	3	L-T-P-S	2-0-2-1			
CIE			50%		ESE	50%			
MODULE	1 – CLASSIF	ICATIO	N OF SENSO	RS					
Classification of transducers, sensor characteristics, statistical approach to measurements.									
Lab:									
	miliarization	of vario	us sensors						
-				SURE & S	TRAIN APP	PLICATIONS			
						ain Sensors.			
rypes, en		und upp	incutions i	0100,1100.	Sure und Su				
Lab:				_					
	asurement o		•						
						ATURE APPLICATIONS			
Types, ch	aracteristics	and app	lications – P	osition, Ve	elocity & Te	mperature Sensors.			
Lab:									
	asurement c	of positio	on, velocity a	and temper	rature				
	E 4 – DATAA	^		1					
Introduct	ion to Data A	cquisitio	on Systems.	Signal con	ditioning fo	r real time applications.			
Lab:	miliorization	of winter	alinatruma	station for	Data Acqui	sition			
	miliarization				•				
	E 5 – DATA A				ONIC APPL	ICATIONS			
Case Stud	y of real time	e mechat	ronic system	ns.					
Lab:									
• Me	asurement c	of positio	on, velocity a	and temper	rature using	y virtual instrumentation			
• Me	asurement o	of force, p	pressure and	d strain us	ing virtual i	nstrumentation			
• Clo	sed loop cor	ntrol syst	tem design f	or temper	ature contr	ol applications			
REFEREN	CE								
1.			ument Transo	ducers Oxfo	ord Herman l	Jniversity Press Eighth			
n	Impression 2		nd Johan C.	Nobeter "C		mal Conditioning" Islam MI			
2.	New York 19	-	ana Johan G.	webster Se	ensor And Si	gnal Conditioning" John Wiley,			
3.			ior "Transd	ucer Interf	acing Hand	book", Analog Devices Inc			
	1980	,			0	, , ,			
4.		etly , "Tra	insducers In	Mechanical	And Electro	nic Design", Marcel Dekker Inc			
	1986.								
	a								
5.	• •	hnson, L	abVIEW Gra	aphical Pro	ogramming,	Tata McGraw-Hill, Edition,			
	1996			•					
6.	1996 Lisa.K.Wills	, LabVIE	W for Every	vone Prent	ice Hall of I	ndia, 1996.			
	1996 Lisa.K.Wills Labview Ba	, LabVIE sics I an	W for Every d II Manual,	one Prent National I	ice Hall of In nstruments	ndia, 1996.			

<i>COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO FOR 1 UNIT.)</i>	РО
Able to understand the specifications of sensors	1,2,7,12
Perform measurements of force, pressure and strain	1,2,3,7,8,9,10,11,12
Perform measurements of force, pressure and strain	1,2,3,7,8,9,10,11,12
Able to interface DAQ with sensors	1,2,3,7,8,9,10,11,12
Understand the programming of virtual instrumentation & to apply the skills for mechatronic systems	1,2,3,7,8,9,10,11,12

CIE.	
(18."	
ULL.	

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE	
Remembering and understanding the course contents	20%	
Applying the knowledge acquired from the course	60%	
Designing and analysing various engineering problems	10%	
Understanding of various system models	10%	

Course Title	ourse Title COMPUTER PROGRAMMING FOR MICROCONTROLLER						
Course Code	MEE3702	Credits	3	L-T-P-S	2-0-2-1		
CIE 50% ESE 50%							
MODULE 1 -INTRODUCTION TO PROGRAMMING							
Variables – Datatype – String	g handling – s	cope – Operators	s – Type r	nanipulation –	Conditions		
- Looping	, C			•			
Lab Exercises:							
1. Variables and its scope							
2. Type manipulation							
3. Decision making							
4. Iterative processing							
MODULE 2 - ARRAYS & POIN	ΓERS						
Arrays: Defining – Array han	dling – Multi-	dimensional arr	ays – Intr	oduction to Po	inters –		
Using pointers effectively	-		-				
Lab Exercises:							
1. Single and multi-dimen	sional arrays						
2. Pointers	-						
MODULE 3 – MODULAR PROG	RAMMING						
Functions – Mathematical fu	nctions – Tim	e measure – Sto	rage class	and scope			
Lab Exercises:			U	•			
1. Handling built-in functi	ons						
2. Writing functions							
3. Storage class							
MODULE 4 - STRUCTURES, U	NIONS & DAT.	A STORAGE					
Declaring and Defining a Stru	ucture – Acce	ssing structure n	nembers	– Returning a s	tructure		
from a functional call – Union	ns – Array of	structures					
Lab Exercises:							
1. Structures							
2. Unions							
MODULE 5 - MICROCONTROL	LER LIBRARI	ES					
Using core libraries – Writin	g own library	– library header	file – lib	rary code file			
Lab Exercises:							
1. Accessing Core libraries	5						
2. Creating library files							
REFERENCE							
1. Julian Bayle, "C P	rogramming fo	or Arduino", Packt	Publishin	g, 2013			
	<u> </u>	ning for Embedde		•	or		
International Me	dia, 2008						
3. Jack Purdum, "Be	ginning C for A	Arduino", Second H	Edition, Ap	oress, 2015			
4. Stephen G Kocha	n, "Programmi	ng in C", Fourth E	dition, Ado	dison Wesley, 20	14		
5. Day Kashi Nath, "	C Programmin	g Essentials", Pea	rson, 201()			
5. Day Kashi Nath, "C Programming Essentials", Pearson, 2010							

COURSE OUTCOMES	PO MAPPING
Ability to perform decision	
making and iterative	1,2,7,12
programming	
Understand and handle array	1,2,3,7,8,9,10,11,12
data structure	
Ability to create and access	1,2,3,7,8,9,10,11,12
functions	
Understand structure and	1,2,3,7,8,9,10,11,12
union data structures	
Ability to create and access	1,2,3,7,8,9,10,11,12
libraries	

<u>CIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Cours	se Title VIRTUAL INSTRUMENTATION					
Course	e Code	MEE 37 03	Credits	3	L-T-P-S	2-0-2-1
CI	Е		50%		ESE	50%
MODULI	E 1 – INTI	RODUCTION	I			
instrume instrume Lab:	entation, A entation.		of virtual ins	strument	al instrumentat ation, Hardware	ion with virtual and software in virtual
		IC FUNCTIO				
palettes a structure Lab:	and tools, e, Formula raphical p	Function an a nodes, Arra programming	d Libraries, ays and Clust g using LabV	FOR Looj ers, Grap IEW/MA	os, WHILE loops ohs and charts, F	raphical programming , Shift Registers, CASE File I/O.
Installing Buffered	DAQ Har g drivers,	dware and S	oftware, Cor Configuring	cepts of	•	n, Installing Hardware, d Analog I/O function,
Installing Buffered Lab: • Da MODULI	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN	dware and S Hardware - time Data A sition demor	oftware, Cor Configuring cquisition. hstration.	acepts of & addres	ssing, Digital and	
Installing Buffered Lab: • Da MODULI Signal ge Signal Pr Measure	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration ocessing	dware and S Hardware - time Data A sition demor NAL PROCES – Normalised – DFT, FFT, F	oftware, Cor Configuring cquisition. hstration. SING d frequency, Frequency Sp	Wave & pacing, P	pattern VI's. ower Spectrum.	
Installing Buffered Lab: • D: MODULI Signal ge Signal Pr Measure: Lab:	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration ocessing ment - Th	dware and S Hardware - time Data Ad sition demor NAL PROCES – Normalised – DFT, FFT, F e Measurem	oftware, Cor Configuring cquisition. <u>nstration.</u> SSING d frequency, Frequency Sp ent VI's, Calo	Wave & culating t	pattern VI's. ower Spectrum. he frequency sp	d Analog I/O function,
Installing Buffered Lab: • Di MODULI Signal ge Signal Pr Measure: Lab: • Si	DAQ Har g drivers, I/O, Real ata Acqui a ta Acqui b b b b b c c c s s i g n a ta Acqui b b c c s s i g n a ta Acqui b b c c s s i g n a ta Acqui b b c c s s i g n e s i f f f f f f f f f f	dware and S Hardware - time Data A sition demor NAL PROCES – Normalised – DFT, FFT, F	oftware, Cor Configuring cquisition. hstration. SING d frequency Sp ent VI's, Calo alog sensor i	Wave & Dacing, Polycelong to the second state of the second state	pattern VI's. pattern Spectrum. he frequency sp	d Analog I/O function,
Installing Buffered Lab: • Di MODULH Signal ge Signal Pr Measure: Lab: • Si MODUL	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration ocessing ment - Th gnal anal LE 5 – AD	dware and S Hardware - time Data A sition demor AL PROCES - Normalised - DFT, FFT, F e Measurem ysis of an ana VANCED CO	oftware, Cor Configuring cquisition. Stration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A	Wave & Spacing, Po culating t APPLICA	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. TIONS	d Analog I/O function,
Installing Buffered Lab: • D: MODULH Signal ge Signal Pr Measure: Lab: • Si MODUI LabVIEW LabVIEW	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration tocessing ment - Th gnal anal <u>LE 5 – AD</u> / commur	dware and S Hardware - time Data A sition demor AL PROCES - Normalised - DFT, FFT, F e Measurem ysis of an ana VANCED CO nication term	oftware, Cor Configuring cquisition. Instration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A hinologies, A	Wave & bacing, Pe culating t <u>APPLICA</u> utomotiv	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. TIONS	d Analog I/O function, ectrum of the signal.
Installing Buffered Lab: • Di MODULH Signal ge Signal Pr Measure: Lab: • Si MODUI LabVIEW LabVIEW	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration ocessing ment - Th gnal anal E 5 – AD / commur	dware and S Hardware - time Data Ad sition demor VAL PROCES – Normalised – DFT, FFT, F e Measurem ysis of an ana VANCED CO nication term	oftware, Cor Configuring cquisition. Instration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A ninologies, A	Wave & Wave & Dacing, Po culating t <u>APPLICA</u> utomotiv	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. <u>TIONS</u> re applications, I in industries.	d Analog I/O function, ectrum of the signal. ndustrial applications.
Installing Buffered Lab: • Di MODULI Signal ge Signal Pr Measure: Lab: • Si MODUI LabVIEW Lab: • Ca	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration ocessing ment - Th gnal anal E 5 – AD / commur	dware and S Hardware - time Data Ad sition demor VAL PROCES – Normalised – DFT, FFT, F e Measurem ysis of an ana VANCED CO nication term	oftware, Cor Configuring cquisition. Instration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A ninologies, A	Wave & Wave & Dacing, Po culating t <u>APPLICA</u> utomotiv	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. <u>TIONS</u> re applications, I in industries.	d Analog I/O function, ectrum of the signal.
Installing Buffered Lab: • Di MODULH Signal ge Signal Pr Measure: Lab: • Si MODUI LabVIEW LabVIEW Lab: • Ca REFEH	DAQ Har g drivers, I/O, Real ata Acqui E 4 – SIGN neration ocessing ment - Th gnal anal E 5 – AD / commur ase studie RENCE Jovitha	dware and S Hardware - time Data Ad sition demor VAL PROCES – Normalised – DFT, FFT, H e Measurem ysis of an ana VANCED CO nication term	oftware, Cor Configuring cquisition. Instration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A ninologies, A time implem	Wave & address Wave & address Descing, Percent of the second seco	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. TIONS re applications, I in industries. LabVIEW, PHI Lea	d Analog I/O function, ectrum of the signal. ndustrial applications.
Installing Buffered Lab: • D: MODULH Signal ge Signal Pr Measure: Lab: • Si MODUI LabVIEW LabVIEW Lab: • Ca REFEH 1.	DAQ Har g drivers, I/O, Real ata Acquia E 4 – SIGN neration ocessing ment - Th gnal anal E 5 – AD / commur ase studie RENCE Jovitha Garry M 1996.	dware and S Hardware - time Data Ad sition demor VAL PROCES – Normalised – DFT, FFT, F de Measurem ysis of an ana VANCED CO nication term es using real f Jerome, Virtu	oftware, Cor Configuring cquisition. Instration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A ninologies, A time implem al Instrumer abVIEW Gra	Wave & address Wave & bacing, Percent of the second	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. TIONS re applications, I in industries. LabVIEW, PHI Lea	d Analog I/O function, ectrum of the signal. ndustrial applications. arning Private Ltd, 2010. a McGraw-Hill, Edition,
Installing Buffered Lab: • D: MODULH Signal ge Signal Pr Measure: Lab: • Si MODUI LabVIEW LabVIEW Lab: • Ca REFEH 1. 2.	DAQ Har g drivers, I/O, Real ata Acquia E 4 – SIGN neration ocessing ment - Th gnal anal E 5 – AD / commun ase studie RENCE Jovitha Garry M 1996. Lisa.K.V	dware and S Hardware - time Data Ad sition demor JAL PROCES – Normalised – DFT, FFT, F de Measurem ysis of an ana VANCED CO nication term es using real f Jerome, Virtu 1. Johnson, La Vills, LabVIE	oftware, Cor Configuring cquisition. Instration. SING d frequency, Frequency Sp ent VI's, Calo alog sensor i NCEPTS & A ninologies, A time implem al Instrumer abVIEW Gra	Wave & address Wave & bacing, Person and the second	pattern VI's. pattern VI's. ower Spectrum. he frequency sp ng DAQ. TIONS re applications, I in industries. LabVIEW, PHI Lea ogramming, Tata	d Analog I/O function, ectrum of the signal. ndustrial applications. arning Private Ltd, 2010. a McGraw-Hill, Edition, a, 1996.

<i>COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO FOR 1 UNIT.)</i>	РО
Appreciate Virtual Instrumentation Concepts	1,2,7,12
Build graphical programming for measurements	1,2,3,7,8,9,10,11,12
Able to select data acquisition systems and parameters	1,2,3,7,8,9,10,11,12

<u>CIE:</u>

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	2	20%
6.	Tutorials	4	40%
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	1	10%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course	urse Title RESEARCH METHODOLOGY AND IPR						
Course (Code	ZZZ 3715	Credits	2	L-T-P-S	2-0-0-0	
CIE			50%		ESE	50%	
MODULE	1						
research p problem.	roblem, Approac	Errors in se hes of inves	electing a res	earch pro olutions f	blem, Scope an or research pro	a Characteristics of a good d objectives of research blem, data collection,	
analysis, ii MODULE		ation, Neces	sary instrun	nentation	S		
Effective li technical v research p	terature vriting, l roposal,	how to write , a presentat	e report, Pap	er Develo essment b	ping a Research by a review com	ch ethics, Effective h Proposal, Format of mittee.	
	-				-	, . , ,	
and metho choosing a	ods, Ethi in appro	cal consider priate statis	ations in res tical techniq	earch Dat Jue, Hypo	a analysis, Stati	ng techniques procedure istical techniques and sis testing, Data tion of results	
MODULE	4						
Scenario: I Patenting MODULE	nternat under P 5 – PA	ional cooper CT. FENT RIGH	ration on Inte	ellectual I	Property. Proce	evelopment. International dure for grants of patents,	
		phical Indica			00		
MODULE	6 - NEW	DEVELOPN	MENTS IN IP	'R			
					s in IPR; IPR of Studies, IPR an	Biological Systems, Id IITs	
REFEREN	CE						
1.		lelville and W ring students		d, "Resear	ch methodology:	an introduction for science &	
2.	Wayne (Goddard and S	Stuart Melvill	e, "Resear	ch Methodology:	An Introduction"	
3.	Ranjit K	umar, 2 nd Ec	dition, "Resea	rch Metho	dology: A Step by	V Step Guide for beginners"	
4.	Halbert,	"Resisting In	tellectual Pro	perty", Ta	ylor & Francis Lte	d ,2007.	
5.	Mayall,	"Industrial D	esign", McGra	w Hill, 199	92.		
6.	Niebel , '	"Product Des	ign", McGraw	Hill, 1974			
7.	Asimov,	"Introduction	n to Design", I	Prentice H	all, 1962.		
8.	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.						
	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008						
9.		<u> </u>	016.				

11.	International publishers, Third Edition. Ranjit Kumar, Research Meth	odology: A Step-by-				
	Step Guide for Beginners, 2nd Edition, SAGE, 2005					
12.	Business Research Methods – Donald Cooper & Pamela Schindler, TMGH, 9th edition					
	Creswell, John W. Research design: Qualitative, quantitative, and mixed methods,					
	approaches. Sage publications, 2013					
COURSE (DUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO	PO				
FOR 1 UN	IT.)					
• U	nderstand research problem formulation.					
• A	nalyze research related information					
• Fe	ollow research ethics					
• U	nderstand that today's world is controlled by Computer, Information					
Technolo	gy, but tomorrow world will be ruled by ideas, concept, and					
creativity	Υ.					
• U	Understanding that when IPR would take such important place in					
growth of	f individuals & nation, it is needless to emphasis the need of					
informati	on about Intellectual Property Right to be promoted among students					
in genera	l & engineering in particular.					
• U	nderstand that IPR protection provides an incentive to inventors for					

• Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Course Title	MECHATRONICS LAB					
Course Code	MEE3791 Credits 2 L-T-P-S 0-0-4-0					
CIE	50%			ESE	50%	

MODULE 1 – SENSORS

- Sensors characteristics, signal processing
- Virtual instrumentation.

MODULE 2 -ACTUATORS

- Various types of actuators Electrical, Mechanical Stepper, Servo actuators
- Characteristics and Selection

MODULE 3 – DATA ACQUISITION SYSTEMS

- Measurement of Temperature, Force, Vibration, Strain etc
- Data Acquisition

MODULE 4 – SIGNAL PROCESSING

Signal generation – Signal Processing – DFT, FFT, Frequency Spacing, Power Spectrum. Measurement - The Measurement VI's, Calculating the frequency spectrum of the signal. Signal analysis of an analog sensor input using DAQ.

MODULE 5 – ADVANCED CONCEPTS & APPLICATIONS

• Case studies using real time implementation in industrial applications.

_

FOR 1 UNIT.)FOR 1 UNIT.)Appreciate Virtual Instrumentation Concepts1,2,7,12Build graphical programming for measurements1,2,3,7,8,9,10,11,12Able to select data acquisition systems and parameters1,2,3,7,8,9,10,11,12

<u>CIE:</u>

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	2	20%
6.	Tutorials	4	10%
7.	Mini project	-	30%
8.	Field work	1	20%
9.	Seminar	1	
10.	Case study	1	10%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course Titl	e		INDUS	TRIAL ROBO	ГS		
Course Cod	e MEE 3704	Credits	3	L-T-P-S		2-0-2-1	
CIE		50%		ESE		50%	
MODULE 1 – ROBOT ANATOMY							
Classification	and parts of robo	ots, configur	ation, wor	k volume.			
Lab:							
	arization of indus						
			atora ari	nnor docign			
	and classification	i oi manipula	ators – gri	pper design.			
Lab:							
Design	of grippers for in	ndustrial rol	oots				
MODULE 3 –	ROBOT SYSTEM	PROGRAM	MING				
Types of robo	t programming a	nd virtual ro	obotics.				
Lab:		1		C · · · · ·	. .		
	arize virtual robo		gramming	g of industrial	robots		
	- ROBOT SAFET	_	_				
Robot safety,	training, mainter	ance and qu	ality impr	ovement.			
Lab:							
	rial Visit						
	- APPLICATIONS						
	lications – weldi		ig. assemb	ling, palletizi	ng.		
			.6, 40001110	iiiig, puiletin			
Lab:							
0	mming for vario	us applicatio	ons				
	rial Visit						
REFERENC			_				
	kell P. Groover, R	0 0					
	chnology, Program mpanies, 2012.	mming, and	Applicatio	ons" McGraw-	HIII		
	. DEB, S. DEB, Ro	hotics Tachr	nology and	Flevible			
	tomation, Mc-Gra		0.				
	bert J. Schilling, F				and		
	ntrol, PHI Learnii						
	COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO PO						
Understand rol	oot anatomy					1,2,7,12	
Develop kinem	atic models of rob	ot configurati	ions			1,2,3,7,8,9,10,11,12	
	trial robot for han			olications		1,2,3,7,8,9,10,11,12	
	d apply knowledge				training	1,2,3,7,8,9,10,11,12	
Understand and	d apply knowledge	e on robot apj	plications			1,2,3,7,8,9,10,11,12	

CIE:

			1
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	20%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Со	urse Title		ARTIFICIAL IN	TELLIGEN	NCE				
Со	urse Code	MEE3705	CREDITS	3	L-T-P-S	2-1-0-1			
	CIE	50%	ESE		50%				
MODU	MODULE 1 – INTRODUCTION								
Introd	action to AI: Int	elligent agents -	Informed & Uninfo	ormed se	arch strategie	es.			
		DGE AND REASC							
Heuris	tic search - A* a	llgorithm - Adver	sarial search Cons	straint sa	tisfaction pro	blems.			
MODU									
	LE 3 - MACHINI		IZ	: . l. l	_				
Basic c	oncepts - Linea	r models - Percej	ptron - K nearest i	heighbors	5				
MODU	E 4 - SUPERVI	SED LEARNING							
			- Neural networks	s - Suppor	rt Vector Mac	hines			
11a Valle				buppor					
MODU	LE 5 - AI IN ROI	BOTICS							
Applica	ations of Artific	ial intelligence in	Robotics						
		_							
REFER	ENCE								
1.		Peter Norvig, "Arti	ficial Intelligence: A	Modern A	Approach", Glo	bal			
	Edition, 2016	A		1.5.11.1					
2.			ce with Python", Pa						
3.			h, "Artificial Intellig ge University Press,		ndations of				
4.			ine Learning", Pack		ng. 2015				
5.			.ce", Oxford Univers		-				
COURS	SE OUTCOMES	0	PO MAI						
Unders	stand the		1,2,7	,12					
concep	ts in AI and								
search	techniques								
Unders	stand the		1,2,3,7,8,9,	10,11,12					
differe	nt reasoning								
concep	ts								
0	planning and		1,2,3,7,8,9,	10,11,12					
learnin	0								
	nment for AI								
Unders			1,2,3,7,8,9,	10,11,12					
-	rised learning								
technic	*			10.44.10					
	AI techniques		1,2,3,7,8,9,	10,11,12					
	l-world								
proble	ms								

CIE:

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

	e Title	KINEMATI	CS AND DYN	AMICS OF I	ROBOTS		
Course	e Code	MEE3706	Credits	3	L-T-P-S	2-0-2-1	
CI	E		50%		ESE	50%	
MODULE 1 – ROBOT TRANSFORMATIONS							
Robot tra angles.	ansformat	tions, positic	on and orien	tation, con	nbined transf	formations, Euler and RPY	
-							
Lab:	orform bo	sic transforr	nations of r	obot			
		WARD KINI		0000			
Direct kii	nematics	for various r	obots, DH r	epresentat	tion, arm equ	ation.	
T - I-							
Lab:	orward ki	nematics for	· various roł	oot configu	rations		
		ERSE KINEM					
Inverse k	inematic	s for various	robots, gen	eral prope	rties of solut	ion.	
Lab:							
	verse kin	ematics prog	gramming				
Inverse kinematics programming MODULE 4 – WORKSPACE ANLYSIS AND TRAJECTORY PLANNING							
MODUL		DRKSPACE A	NLYSIS AN	D TRAJEC	IUKI FLANI	NING	
		is, joint space				NING	
Workspa						NING	
Workspa Lab:	ce analys		e and cartes			NING	
Workspa Lab: • M	ce analys otion ana	is, joint spac	e and cartes th planning	sian space		NING	
Workspa Lab: • M MODUI	ice analys otion ana .E 5 – MA	is, joint spac lysis and pa	e and cartes th planning R DYNAMIC	sian space	techniques.		
Workspa Lab: • M MODUI Kinetic a	ice analys otion ana .E 5 – MA	is, joint spac lysis and par NIPULATOI	e and cartes th planning R DYNAMIC	sian space	techniques.	NING	
Workspa Lab: • M MODUI Kinetic a Lab:	ice analys otion ana JE 5 – MA nd potent	is, joint spac lysis and par NIPULATOI	e and cartes th planning R DYNAMIC inertia, dyn	sian space	techniques.	NING	
Workspa Lab: • M MODUI Kinetic a Lab: • Dy	ice analys otion ana JE 5 – MA nd potent ynamic ar	is, joint spac lysis and pat NIPULATOI tial energy –	e and cartes th planning R DYNAMIC inertia, dyn	sian space	techniques.	NING	
Workspa Lab: MODUI Kinetic a Lab: Dy REFEF	ice analys otion ana JE 5 – MA nd potent ynamic ar RENCE	is, joint spac lysis and pat NIPULATOI tial energy – nalysis of rob	e and cartes th planning R DYNAMIC inertia, dyn oot manipul	sian space	techniques. els of robot.		
Workspa Lab: • M MODUI Kinetic a Lab: • Dy	ice analys otion ana LE 5 – MA nd potent ynamic ar RENCE Mikell H	is, joint spac lysis and pat NIPULATOI tial energy – nalysis of rob	e and cartes th planning R DYNAMIC inertia, dyn oot manipula	sian space S amic mode ator el, Industr	techniques.	Technology, Programming	
Workspa Lab: MODUI Kinetic a Lab: Dy REFEF	otion ana E 5 – MA nd potent ynamic ar RENCE Mikell F and Apj	is, joint spac lysis and par NIPULATOI tial energy – nalysis of rok P. Groover, R plications" M	e and cartes th planning R DYNAMIC inertia, dyn oot manipul oot manipul	sian space S amic mode ator el, Industr Companie	techniques. els of robot. ial Robotics: ' s, 2012.		
Workspa Lab: MODUI Kinetic a Lab: Dy REFEH 1. 2.	otion ana JE 5 – MA nd potent ynamic ar RENCE Mikell H and Apj Fu. K. S. intellige	is, joint space lysis and pare NIPULATOI tial energy – nalysis of rob P. Groover, R plications" M J. Gonzalez, F	e and cartes th planning R DYNAMIC inertia, dyn oot manipul oot manipul Coger N. Nag IcGraw-Hill R. C. & Lee C.	sian space S amic mode ator el, Industr Companie S.G., "Robo c co, 1987	techniques. els of robot. ial Robotics: ' s, 2012. otics control, s	Technology, Programming sensing, vision and	
Workspa Lab: MODUI Kinetic a Lab: Dy REFEH 1.	otion ana JE 5 – MA nd potent ynamic ar RENCE Mikell H and Apj Fu. K. S. intellige	is, joint space lysis and pare NIPULATOI tial energy – nalysis of rob P. Groover, R plications" M J. Gonzalez, F	e and cartes th planning R DYNAMIC inertia, dyn oot manipul oot manipul Coger N. Nag IcGraw-Hill R. C. & Lee C.	sian space S amic mode ator el, Industr Companie S.G., "Robo c co, 1987	techniques. els of robot. ial Robotics: ' s, 2012. otics control, s	Technology, Programming	
Workspa Lab: MODUI Kinetic a Lab: Dy REFEH 1. 2.	ce analys otion ana JE 5 – MA nd potent ynamic ar RENCE Mikell H and Apj Fu. K. S. intellige Robert 2009.	is, joint space lysis and pare NIPULATOL tial energy – nalysis of rob P. Groover, R plications" M , Gonzalez. F ence", McGra J. Schilling, F B, S. DEB, Ro	e and cartes th planning R DYNAMIC inertia, dyn oot manipul oot manipul CGraw-Hill R. C. & Lee C. aw Hill Book Fundamenta	sian space S amic mode ator el, Industr Companie S.G., "Robo c co, 1987 ls of Robot	techniques. els of robot. ial Robotics: ' s, 2012. otics control, s tics Analysis a	Technology, Programming sensing, vision and	
Workspa Lab: • M MODUI Kinetic a Lab: • Dy REFEH 1. 2. 3.	ce analys otion ana <u>LE 5 – MA</u> nd potent ynamic ar RENCE Mikell H and Apj Fu. K. S. intellige Robert 2009. S.R. DEl Edition	is, joint space lysis and pare NIPULATOL cial energy – nalysis of rob plications" M donzalez. F ence", McGra J. Schilling, F B, S. DEB, Ro don 2011. Craig, Introd	e and cartes th planning R DYNAMIC inertia, dyn oot manipul oot manipul coger N. Nag <u>IcGraw-Hill</u> R. C. & Lee C. w Hill Book Fundamenta	sian space S amic mode ator el, Industr <u>Companie</u> S.G., "Robo c co, 1987 ls of Robot nology and	techniques. els of robot. ial Robotics: ' s, 2012. otics control, s cics Analysis a l Flexible Aut	Technology, Programming sensing, vision and and Control, PHI Learning.	

COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO FOR 1 UNIT.)	РО
Perform robot transformations	1,2,7,12
Apply forward & inverse kinematics	1,2,3,7,8,9,10,11,12
Calculate work volume	1,2,3,7,8,9,10,11,12
Perform trajectory planning	1,2,3,7,8,9,10,11,12
Understand and apply knowledge on robot dynamics	1,2,3,7,8,9,10,11,12
ASSESSMENT	

CIE

<u>LIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course Ti	tle	ARTIFICIAL	INTELLIGENCE LA	B		
Course Co	de	MEE3752	CREDITS	2	L-T-P-S	0-0-4-0
CIE		50%	ESE		50%	
EXPERIME	ENTS			•		
Search Str	ategies:					
1. Dep	th/ Breadth first s	earch				
2. A* a	llgorithm					
3. Heu	ristic search					
4. Adv	ersarial search					
5. CSP						
Classificat	ion:					
1. Linea	ar classification					
2. Perce	eptron learning					
3. Clust	ering					
Machine L	earning:					
1. Artifi	cal Neural Networ	k				
2. Supp	ort Vector Machine	e				
Case Studi	ies					
REFEREN	СЕ					
1. St	tuart Russel, Peter N	orvig, "Artificia	l Intelligence: A M	odern Aj	pproach", Gl	obal
	dition, 2016					
	rateekJoshi,"Artificia	•			-	
	avid L. Poole, Alan K	-	0		dations of	
	omputational Agents					
	ebastian Raschka, "P					
	erry Kaplan, "Artificia	al Intelligence",			016	
	SE OUTCOMES		PO MA			
	nd the concepts in		1,2,7	,12		
	rch techniques					
	nd the different		1,2,3,7,8,9	,10,11,1	2	
reasoning	reasoning concepts					
01	anning and		1,2,3,7,8,9	,10,11,1	2	
learning e	nvironment for					
AI						
Understar	nd Supervised		1,2,3,7,8,9	,10,11,1	2	
learning to	echniques					
Apply AI t	Apply AI techniques for 1,2,3,7,8,9,10,11,12					
real-world	l problems					

Course Title	CONCEPTS	CONCEPTS IN MECHANISMS AND MACHINES			
Course Code	MEE3721	MEE3721 Credits 3			2-0-2-1
CIE	50%			ESE	50%

MODULE 1 – MECHANISMS

Definition – Machine and Structure – Kinematic link, pair and chain – classification of Kinametic pairs – Constraint& motion - Degrees of freedom – Slider crank – Single and double – Crank rocker mechanisms – Inversions – applications. Kinematic analysis and synthesis of simple mechanisms – Determination of velocity and acceleration of simple mechanisms. Lab:

- Familiarization of mechanisms
- Simple simulation exercises

MODULE 2 – FRICTION

Types of friction – friction in screw and nuts – pivot and collar – thrust bearings – collar bearing – plate and disc clutches – belt (flat &vee) and rope drives – creep in belts – Jockey pulley – open and crossed belt drives – Ratio of tensions – Effect of centrifugal and initial tension – condition for maximum power transmission – basics of brakes, journal and rolling element bearings hydrostatic and aerostatic bearings – recirculating ball screw and nut assembly.

Lab:

• Determination of co-efficient of friction.

MODULE 3 – GEARING AND CAMS

Gear profile and geometry-nomenclature of spur and helical gears – law of gearing – interference requirement of minimum number of teeth in gears-gear trains-simple and compound gear trains determination of speed and torque in Epicyclic gear trains-Cam profile-different types of followers.

Lab:

• Measurement of gear profile

MODULE 4 – VIBRATION

Free, forced and damped vibrations of single degree of freedom systems – force transmitted to supports – vibration Isolation – vibration absorption – torsional vibration of shafts – single and multirotor systems – geared shafts – critical speed of shafts.

Lab:

Vibration measurement

MODULE 5 – MACHINE TOOLS

Machine tool construction-features – operations of lathe, milling machine, drilling machine – Drive system for machine tools – mechanical, hydraulic and electric stepped and variable speeds – spindle speeds and feed drives-linear and reciprocation motion generation. **Lab:**

• Machining exercises.

REFER	REFERENCE				
1.	Bansal.R.K."Theory of Machines" Laxmi Publications (P) ltd., New	Bansal.R.K."Theory of Machines" Laxmi Publications (P) ltd., New Delhi. 2011.			
2.	G.C.Sen . and A. Bhattacharya, "Principles of machine tools" , Ne Agency, 1999	ew Central book			
3.					
4.	R.S.Khurmi and Gupta . " Theory of Machines" Eurasia Publishing House Pvt Ltd. 2012				
	COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO FOR 1 UNIT.)				
Understar	Understand the mechanisms 1,2,7,12				
Understand the concept of friction1,2,3,7,8,9,10,11,12					
Understand the design aspects of gears and cams1,2,3,7,8,9,10,11,12					
Understar	Understand the basics of vibration1,2,3,7,8,9,10,11,12				
Know abo	ut the manufacturing processes	1,2,3,7,8,9,10,11,12			

<u>CIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course	Title	CNC TECHN	OLOGY	1			
Course		MEE3722	Credits	3	L-T-P-S		2-0-2-1
CII	Ξ		50%		ESE		50%
MODULE	1 – INTF	RODUCTON					
CNC – typ	es and ap	oplications.					
MODULE	2 – CNC	HARDWAR	E				
CNC mack	nines – m	echanical st	ructure, mea	chanisms,	electrical m	otors.	
		CONTROL					
Control sy	/stems, fe	edback dev	ices, drives,	tooling.			
Lab:							
	miliariza	tion of CNC	machines				
• As	sembly a	nd disassem	nbly				
MODUL	E 4 – PR(OGRAMMIN	G				
CNC part	program	ming and co	mputer assi	sted part p	orogrammir	ıg.	
Lab:							
	ercises o	n CNC mach	ininσ				
			ND MAINTA	NANCE			
			itenance, tro	-	ing.		
,	- F		,		0-		
Lab:	_	_	_				
		n preventive	e maintenan	ce			
		Zonon Comm	utor Contro	lofManuf	o aturina Cu	atoma Dit	man London 1007
1.		-					man, London, 1987
2.	Radhakr 1992.	rishnan P., Co	omputer Nun	nerical Cor	trol Machin	les, New C	entral Book Agency
3.	Berry Le	eatham – Jon	es, Compute	r Numerica	l Control, P	'itman, Lor	ndon, 1987.
4.		rar and Arth ng Company		Technolog	gy and Progr	amming, N	McGraw–Hill
5.			nd T.Fred	erick W	aters, Co	mputer	Numerical Contr
21		an/McGraw-		,,		T	20114
6.			,	l Control	of Machine	e Tools. S	Second Edition, B/
	Newnes						······································
7.	Groover	_	Automation,	Productio	n Systems	s and C	Computer Integrate
-			tice Hall, 199		J		1
8.		0	Programmin		Learning. 2	2003.	
-	. –	,	0		6, -	-	
COURSE O	UTCOMES	(NEED NOT I	BE RESTRICT	ED TO 5 AN	D NEED NOT	" BE 1 CO	РО
FOR 1 UNI							
11 1 .	nd mnadua						
		t developmer	nt je on basics of				1,2,7,12 1,2,3,7,8,9,10,11,1

Understand and apply knowledge on product designing	1,2,3,7,8,9,10,11,12
Understand and apply knowledge on prototyping	1,2,3,7,8,9,10,11,12
Understand and apply knowledge on testing and financial modelling	1,2,3,7,8,9,10,11,12

CIE:

<u></u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	2	20%
6.	Tutorials	-	
7.	Mini project	1	30%
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	2	20%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course Title	CONDITION MONITORING				
Course Code	MEE3723 Credits 3			L-T-P-S	2-0-2-1
CIE	50%			ESE	50%

MODULE 1 – INTRODUCTON

Maintenance and condition monitoring.

MODULE 2 – CONDITION MONITORING OF ROTATIING ELEMENTS

Need for monitoring, failure modes of electrical machines, effects of monitoring, cause for failure.

MODULE 3 – TEMPERATURE MONITORING

Instrumentation for monitoring temperature, Local temperature measurement, Bulk measurement.

MODULE 4 - VIBRATION MONITORING

Instrumentation for vibration monitoring, level monitoring, frequency spectrum monitoring.

MODULE 5 – CASE STUDIES

Case studies – vibration, temperature monitoring.

Lab:

• Exercises on condition monitoring of rotary elements

REFER	ENCE
1.	Kulkarni S. V. and Khaparde S. A., "Transformer Engineering – Design, Technology and Diagnostics" Second Edition, CRC Press, New York
2.	T. S. Ramu and H N Nagamani, "Partial Discharge Based Condition Monitoring of High Voltage Equipment" New Age International, New Delhi
3.	W. H. Tang and Q. H. Wu, "Condition Monitoring and Assessment of Power Transformers Using computation Intelligence", Springer, London 2010
4.	Peter Tavner, Li Ran, Jim Penmanand Howard Sedding, "Condition Monitoring of Rotating Electrical Machines", Published by The Institution of Engineering and Technology, London, United Kingdom, 2008
5.	Hamid A Toliyat, Subhasis Nandi, Seungdeog Choi, HomayounMeshgin-Kelk, " Electric Machines: Modeling, Condition Monitoring and Fault Diagnostics, CRC Press
6.	Chakravorti Sivaji, DeyDebangshu, Chatterjee Biswendu, "Recent Trends in the Condition Monitoring of Transformers- Theory, Implementation and Analysis" Springer, 2013
7.	Greg C. Stone, Edward A. Boulter, Ian Culbert, Hussein Dhirani, "Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair", IEEE Press Series on Power Engineering, A John Wiley & Sons, Inc., Publication, 2004
8.	R.E. James and Q. Su, "Condition Assessment of High Voltage Insulation in Power System Equipment", Published by The Institution of Engineering and Technology, London, United Kingdom, 2008

<i>COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO FOR 1 UNIT.)</i>	РО
Understand product development	1,2,7,12
Understand and apply knowledge on basics of product development	1,2,3,7,8,9,10,11,12
Understand and apply knowledge on product designing	1,2,3,7,8,9,10,11,12
Understand and apply knowledge on prototyping	1,2,3,7,8,9,10,11,12
Understand and apply knowledge on testing and financial modelling	1,2,3,7,8,9,10,11,12

<u>CIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	2	20%
6.	Tutorials	-	
7.	Mini project	1	30%
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	2	20%

BT LEVEL	WEIGHTAGE			
Remembering and understanding the course contents	20%			
Applying the knowledge acquired from the course	60%			
Designing and analysing various engineering problems	10%			
Understanding of various system models	10%			

Course Title	BUILDING AUTOMATION					
Course Code	MEE3724	Credits	3	L-T-P-S	2-0-2-1	
CIE	50%			ESE	50%	

MODULE 1 – INTRODUCTON

Building Automation System-Features, characteristics, Systems in Building Automation.

MODULE 2 – BUILDING MANAGEMENT SYSTEM

Qualitative study, sensors and actuators, controllers.

MODULE 3 – ENERGY MANAGEMENT SYSTEM

Concept, Energy meters-types, analysis of power quality, energy consumption, energy saving.

MODULE 4 – SAFETY SYSTEMS

Introduction, fire safety, fire alarm systems-components, controllers, features.

Lab:

Industrial Visit

MODULE 5 – INTEGRATED SYSTEMS

Integration-Energy management system, building management system, challenges, future aspects.

Lab:

Industrial Visit

REFERENCE						
1.	Reinhold A. Carlson Robert A. Di Giandomenico, Understanding Building Automation					
	Systems: Direct Digital Control, Energy Management, Life Safety,	2				
	Control, Lighting, Building, 1 st edition, R.S. Means Company Ltd	l), 1991.				
2.	Geoff Levermore, Building Energy Management Systems: An App	olication to Heating,				
	Natural Ventilation, Lighting and Occupant Satisfaction, Routledge	e,2nd Edition, 2000.				
3.	Nancy G. Leveson, Engineering a Safer World: Systems Thinking	Applied to Safety				
	(Engineering Systems)1st Edition, The MIT Press, 2011.					
COURSE O	UTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO	PO				
FOR 1 UNI	Т.)					
Understa	nd building automation	1,2,7,12				
Understa	Understand and apply knowledge on building management system1,2,3,7,8,9,10,11,12					
Understand and apply knowledge on energy management system1,2,3,7,8,9,10,11,12						
Understa	nd and apply knowledge on safety system	1,2,3,7,8,9,10,11,12				
Understa	nd and apply knowledge on integrated systems	1,2,3,7,8,9,10,11,12				

CIE:

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	2	20%
6.	Tutorials	-	
7.	Mini project	1	30%
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	2	20%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course Title	MACHINE VISION	1				
Course Code	MEE3725	CREDITS	3	L-T-P-S	2-0-2-1	
CIE		50%		ESE	50%	
MODULE 1 – Introduction to Machine Vision						
Introduction – Fundamen		processing – Image	formatio	n – Image pł	iysics –	
Binary image analysis – T	hresholding					
Lab Exercises:						
1. Image Handling						
2. Thresholding						
3. Binary image ana	-					
MODULE 2 – Image Enha						
Histogram processing – 2	D Convolution – Filt	tering – Enhancing in	nages – Il	lumination	correction –	
Denoising						
Lab Exercises:						
1. Histogram based	enhancement					
2. Image filtering						
3. Illumination Corre						
MODULE 3 – Feature Ex					-	
Color – Edge - Texture de			cal image	e processing	– Content	
based image retrieval – Pa	attern recognition –	• Matching in 2D				
Lab Exercises:						
1. Connected compo	-					
2. Morphology base						
3. Texture based pat	=					
MODULE 4 – Segmentati			1.16			
Motion in 2D sequence –		n: Region based – Me	an shift –	Clustering -	Supervised	
Classification - Unsuperv	ised classification					
Lab Exercises:	on					
 Image segmentati Object classification 						
MODULE 5 – Depth Estin		amana viava				
Perceiving 3D from 2D in			ion 2D	onging and	Object page	
computation – Models in	0 0 0			sensing and	object pose	
Lab Exercises:	5D - Integration of	machine vision syste	111			
1. Background subtr	raction					
2. Object Tracking	uction					
, ,	from 2D images					
3. Depth estimation from 2D images REFERENCE						
	"Computer Vision	Algorithms and App	lications'	' Springer V	[orlog	
London Limited	-	Algorithms and App	lications	, springer-v	eriag	
		ísion: A Modern App	roach" I	Pearson Edu	ration	
2. D. A. Forsyur, J. 2003.	i once, computer v	ision. A mouern App	i Jacii , I		cation,	
	and Andrew Tisser	man, "Multiple View	Geometr	v in Comput	er Vision"	
		ity Press, March 200		y in comput	CI VISIUII ,	
		tal Image Processing		n- Weelow 1	992	
		tur innage i i Occosilig	, 1100150	11 VVC31Cy, 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

5.	E. R. Davies, "Computer and Machine Vision: Theory, Algorithms, Practicalities", Fourth					
	Edition, Elsevier, 2012					
	COURSE OUTCOMES	PO MAPPING				
Possess	knowledge on representation of digital images, light and	1,2,7,12				
color						
Apply fu	ndamental concepts of image processing for machine	1,2,3,7,8,9,10,11,12				
vision ap	oplications					
Write pr	ograms for analyzing images for various machine vision	1,2,3,7,8,9,10,11,12				
tasks						
Ability to perform object classification from digital images1,2,3,7,8,9,10,11,12						
Ability to	o perform depth calculation from multi-camera views	1,2,3,7,8,9,10,11,12				

<u>CIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE			
Remembering and understanding the course contents	20%			
Applying the knowledge acquired from the course	60%			
Designing and analysing various engineering problems	10%			
Understanding of various system models	10%			

Course Tit	le ROBOT	OPERA	TING SYSTE	M					
Course Co	de MEE37	726	CREDITS	3	L-T	-P-S		2-0-	2-1
CIE			50%				ESE		50%
MODULE 1 -	MODULE 1 – INTRODUCTION								
Introduction	to ROS - ROS fi	le syste	m level - RO	S comput	ation gra	iph le	evel - R	OS	
community l	evel								
Lab Exercise	s:								
1. ROS packa	ges								
2. ROS nodes	5								
3. ROS messa	ages								
MODULE 2 - 2	BD ROBOT MO	DELINO	G IN ROS						
ROS package	s for robot mod	leling -	Creating RO	S package	for robo	ot des	criptio	on -	
Visualizing r	obot in 3D mod	el	-				-		
Lab Exercise									
1. Creating U	RDF model								
2. Using Rviz	for visualizing	3D mod	del						
3. Robot des	cription								
MODULE 3 -	SIMULATING R	OBOTS	5						
Understandi	ng Gazebo - Roł	ootic ar	m simulatio	ı - Simula	ting join	ts - Ir	nterfac	ing w	ith ROS
controllers	0				0,			0	
Lab Exercise	S:								
1. Simulating	g robotic arm								
	nts using Gazeb	00							
3. Moving m									
	MOTION PLAN	NING							
Configuratio	n Space - Collisi	ion mat	rix - Motion	planning	methods	: - Mo	tion p	lannir	ng using
ROS - ROS Co	-						•		0 0
Lab Exercise	S:								
1. Movelt co	nfiguration pacl	kage set	up & motior	n planning	Ę				
MODULE 5 - 1	INTERFACING	I/O BO	ARDS, SENS	ORS & AC	TUATO	RS			
ROS Serial p	ackage – ROS ar	nd Micro	ocontroller -	Interfaci	ng Senso	rs &	Actuat	ors	
Lab Exercise	S:				C				
1. Integrated	system								
REFERENCE									
	in Joseph, "Maste	ering RO	S for Robotic	Programm	ning", Pac	kt Pu	blishin	g, 201	5
	gan Quigley, Bria	_		_				-	
	tical Introduction				-	-			
	on Martinez, Enri				or Roboti	ics Pro	ogram	ning",	Packt
	ishing, 2013								
	Koubaa, "Robot (nger, 2016	Operatin	g System (RC	S): The Co	mplete R	eferei	nce – V	olume	e 1",
5. R. Pa	atrick Goebel, "R(em", Lulu, 2012	OS by Ex	ample: A Do-	t-Yourself	Guide to	the R	obot O	perati	ng
	SE OUTCOMES			F	PO MAPP	ING			

Understand ROS architecture	1,2,7,12
Ability to model a robot in ROS	1,2,3,7,8,9,10,11,12
Ability to Simulate a mobile robot	1,2,3,7,8,9,10,11,12
Ability to plan movement of a robot by avoiding collisions	1,2,3,7,8,9,10,11,12
Ability to interface sensors and actuators with ROS	1,2,3,7,8,9,10,11,12

<u>CIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	_	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course	Title	FIELD ROB	OTS			
Course	Code	MEE3727	Credits	3	L-T-P-S	2-0-2-1
CI	E		50%		ESE	50%
MODULE	1 – INTR	ODUCTION	J		· · ·	
History, r	leed and s	specification	n of service a	and field ro	obots.	
Lab:	miliovizo	tion of filed	roboto			
			S AND HUM			
					Application	d docign acroate
CONSION	avoluance	e, wheeled a	ina ieggea n	umanoius	. Application an	d design aspects.
Lab:						
• De	esign and	simulation.				
MODULE	3 – SPAC	CE AND DE	ENCE ROB	OTS		
Classifica	tion, App	lication and	Design aspe	ects – spac	e and defence r	obots.
Lab:		-:l-+:				
	<u> </u>	simulation TEM INTE(
				, ,		
Program	ning and	system inte	rfacing for r	obot appli	cations.	
Lab:						
	nsors and	l actuators i	ntegration			
MODUL	E 5 – DES	SIGN AND F	ABRICATIO	N OF FIEI	D ROBOTS	
Design, si	mulation	and fabrica	tion of field	robots.		
Lab:		ulation and	fabrication			
• De		ulation and	Tabrication			
1.	1	ehmzow M	ohile Robots	- A nracti	cal introduction	n, Springer, 2003
	_			-		
2.			loger N. Nag IcGraw-Hill			chnology, Programming,
3.				-		nsing, vision and
5.			aw Hill Book			lisilig, visioli allu
4.					tics Analysis an	d Control, PHI Learning.,
	2009.					a control, i ili hearning
	2007.				cres mary sis an	a control, i ili Learning.,
5.		0	botics Tech	nology and	-	nation, Mc-GrawHill, 2nd
5.		3, S. DEB, Ro	botics Tech	nology and	-	
5.	S.R. DEE Edition,	3, S. DEB, Ro 2011.			l Flexible Auton	

7.	John J. Craig, Introduction to Robotics Mechanics and Control, 7 Pearson, 2008.	Fhird Edition,
8.	Tsuneo Yohikwa, Foundations of Robotics Analysis and Contro	l, MIT Press., 2003.
COURSE O FOR 1 UNI	UTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO T.)	РО
Understa	nd history of field robots	1,2,7,12
Understa	nd and apply knowledge on aerial robot and humanoids	1,2,3,7,8,9,10,11,12
Understa	nd and apply knowledge on space and defence robots	1,2,3,7,8,9,10,11,12
Understa	nd and apply knowledge on system integration	1,2,3,7,8,9,10,11,12
Understa	nd and apply knowledge on fabrication of robots	1,2,3,7,8,9,10,11,12

<u>CIE :</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz		
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	1	50%
8.	Field work	1	10%
9.	Seminar		
10.	Case study	2	20%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course T	itle INDU	STRIAL AUTOMA	TION		
Course Co	de MEE3	728 Credits	3	L-T-P-S	2-0-2-1
CIE		50%		ESE	50%
MODULE 1	– INTRODUC	TION			
Introduction	n to automatio	on tools – PLC, S	CADA, DCS,	Hybrid DC	S-PLC.
Lab:	liarization of	automation syst	ome		
		MABLE LOGIC C		FRS	
		devices and prog			
fiaruware, s		devices and prog	anning		
Lab:					
Prog	ramming of P	LC			
MODULE 3	- AUTOMAT	ION SPECIFICAT	TIONS)		
		cations for auton	nation tool,	Developm	ent of user requirement
specification	15.				
MODULE 4	- DISTRIBU	TED CONTROL	SYSTEM		
Architecture	e, specificatio	ns, sensor interfa	acing.		
Lab:					
	for automatio	n applications			
		••			
	5 – CASE STU of automation				
Case Study (systems.			
Lab:					
Case	study of indu	strial automation	n systems		
REFERENCI	Ξ				
1. G	ary Dunning,	Introduction to	Programma	able logic	
		iomson / Delmai			
		ogrammable logi		rs: princip	les and
		rentice Hall of In			
-	0	noli, Ahmet Palaz	0		process
		ylor and Francis			
		d, Statistical Pro	cess Contro	ol, Butterwo	orth –
	einemann, 20		r'a Uandha	olz . Drococ	
	· ·	trument Enginee otimization, Chilt			
6. II	nstallation an	d user manuals o	of different	DCS, PLC V	Vendors
COURSE OUT	COMES (NEED	NOT BE RESTRICT	ED TO 5 AN	D NEED NOT	Г <i>ВЕ 1 СО</i> РО
FOR 1 UNIT.)					

Understand the application of tools like PLC, DCS, and SCADA in automation.	1,2,7,12
Design the DCS for their application.	1,2,3,7,8,9,10,11,12
Configure of PLC and DCS.	1,2,3,7,8,9,10,11,12
Interface sensors, actuators and PLC systems.	1,2,3,7,8,9,10,11,12
Understand advanced design methodologies and design different controller for different types of processes.	1,2,3,7,8,9,10,11,12

<u>CIE:</u>			
SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

	Title		RS AND DRIV			
Course	Code	MEE3729	Credits	3	L-T-P-S	2-0-2-1
CIE			50%		ESE	50%
MODULE	1 - CLA	SSIFICATIO	N OF ACTUA	ATORS		
Classificat	tion of ac	ctuators – Hy	draulic, Pne	eumatic &	Electric.	
Lab:						
• Far	miliariza	tion of vario	ous actuators	S		
MODULE	2 – HYD	RAULIC SYS	STEMS			
Types – Li	inear, Ro	otary, Flow c	ontrol valve	, Applicatio	ons – Design	aspects.
Lab:						
	sign and	simulation of	of hydraulic	circuits		
		UMATIC SYS				
Types – Li	inear, Ro	tary, Flow c	ontrol valve	, Applicatio	ons – Design	aspects.
T 1						
Lab:	cian and	cimulation (of nnoumati	c circuite		
	<u> </u>	simulation of ECTRIC SYS	•			
MUDULI	2 4 - ELI	LUTRIC SYS	I EMS			
					l'autione D	
Trunca I;	noon Do	tom Como (Ctonnorm			and a constants
Types – Li	inear, Ro	tary, Servo 8	& Stepper m	otors, App	lications – D	esign aspects.
	inear, Ro	tary, Servo 8	& Stepper m	otors, App	lications – D	esign aspects.
Lab:						esign aspects.
Lab: • Cor	nstruct e	electric actua	ation for spe			esign aspects.
Lab: • Con MODULI	nstruct e E 5 – DR	electric actua	ntion for spe ONTROLS	cific applic	cations	
Lab: • Con MODULI	nstruct e E 5 – DR	electric actua	ntion for spe ONTROLS	cific applic	cations	nission systems.
Lab: • Con MODULE Servos, Po	nstruct e E 5 – DR	electric actua	ntion for spe ONTROLS	cific applic	cations	
Lab: • Con <u>MODULI</u> Servos, Po Lab:	nstruct e E 5 – DR ower trai	electric actua	ntion for spe ONTROLS rstems – Bel	cific applic	ations d gear transn	
Lab: • Con <u>MODULI</u> Servos, Po Lab:	nstruct e E 5 – DR ower trai miliariza	electric actua IVES AND Constraints ISMISSION SY	ntion for spe ONTROLS rstems – Bel	cific applic	ations d gear transn	
Lab: Con MODULH Servos, Po Lab: Far	nstruct e E 5 – DR ower trai miliariza ENCE	electric actua IVES AND Consmission sy Ition of powe	ation for spe ONTROLS rstems – Bel er systems a	cific applic t, chain and nd its appl	ations d gear transn ications	
Lab: • Con MODULI Servos, Po Lab: • Far REFER	nstruct e E 5 – DR ower trai miliariza ENCE Anthon	electric actua IVES AND Consmission sy Ition of power y Esposito, Fla	ation for spe ONTROLS rstems – Bel er systems a uid Power wi	cific applic t, chain and nd its appl ith Applicat	ations d gear transn ications	nission systems. Education 2000.
Lab: • Con MODULI Servos, Po Lab: • Far REFER 1.	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo	electric actua IVES AND Consmission sy ation of power y Esposito, Flu darS.R., Oil H	ation for spe ONTROLS ystems – Bel er systems a uid Power wi	cific applic t, chain and nd its appl ith Applicat	cations d gear transn ications ions, Pearson w-Hill, New I	nission systems. Education 2000.
Lab: • Con MODULI Servos, Po Lab: • Fai REFER 1. 2.	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo	electric actua IVES AND Consmission sy ation of power y Esposito, Flu darS.R., Oil H	ation for spe ONTROLS rstems – Bel er systems a uid Power wi lydraulics,Ta umatic syste	cific applic t, chain and nd its appl ith Applicat	cations d gear transn ications ions, Pearson w-Hill, New I	nission systems. Education 2000.
Lab: • Con MODULI Servos, Po Lab: • Fai REFER 1. 2.	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo Hill, Ne	electric actua IVES AND Consmission synthesis and a smission synthesis and a tion of power y Esposito, Flu dar S.R., Oil H dar S.R., Pner w Delhi 2009	ation for spe ONTROLS rstems – Bel er systems a uid Power wi lydraulics,Ta umatic syste 5	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma	nission systems. Education 2000.
Lab: • Con MODULH Servos, Po Lab: • Far REFER 1. 2. 3. 4.	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo Hill, Ne Anthon	electric actua IVES AND Consmission synthesis and a smission synthesis and a y Esposito, Fludar S.R., Oil H dar S.R., Pneu w Delhi 2009 y Lal, Oil hyd	ation for spe ONTROLS rstems – Bel er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ ne service o	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A	nission systems. Education 2000. Delhi 2009 nintenance, Tata McGraw Illied publishers, 1982
Lab: • Con MODULH Servos, Po Lab: • Fan REFER 1. 2. 3.	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo Hill, Ne Anthon M.P. Gro	electric actua IVES AND Consmission synthesis and a smission synthesis and a y Esposito, Fludar S.R., Oil H dar S.R., Pneu w Delhi 2009 y Lal, Oil hyd	ation for spe ONTROLS rstems – Bel er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotio	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ ne service o	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A	nission systems. Education 2000. Delhi 2009 hintenance, Tata McGraw
Lab: • Con MODULI Servos, Po Lab: • Far REFER 1. 2. 3. 4. 5.	nstruct e E 5 – DR ower trai miliariza ENCE Anthon Majumo Hill, Ne Anthon M.P. Gro	electric actua IVES AND Constraints Insmission synthematical tion of power y Esposito, Flindar S.R., Oil H dar S.R., Oil H dar S.R., Pner w Delhi 2009 y Lal, Oil hyco oover, Indus v- Hill, USA,	ation for spe ONTROLS rstems – Belf er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotio 1986	cific applic t, chain and nd its appl ith Applicat ata McGray ems – Princ ne service o cs – Techno	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A ology, Progra	nission systems. Education 2000. Delhi 2009 nintenance, Tata McGraw Illied publishers, 1982 mming and Applications,
Lab: • Con MODULH Servos, Po Lab: • Far REFER 1. 2. 3. 4. 5. COURSE OU	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majume Hill, Ne Anthon M.P. Gre McGrav	electric actua IVES AND Constraints Insmission synthematical tion of power y Esposito, Flindar S.R., Oil H dar S.R., Oil H dar S.R., Pner w Delhi 2009 y Lal, Oil hyco oover, Indus v- Hill, USA,	ation for spe ONTROLS rstems – Belf er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotio 1986	cific applic t, chain and nd its appl ith Applicat ata McGray ems – Princ ne service o cs – Techno	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A	nission systems. Education 2000. Delhi 2009 nintenance, Tata McGraw Illied publishers, 1982 mming and Applications,
Lab: • Con MODULH Servos, Po Lab: • Fan REFER 1. 2. 3. 4. 5. COURSE OU FOR 1 UNIT	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo Hill, Ne Anthon M.P. Gro McGrav	electric actua IVES AND Constraints Insmission synthematical tion of power y Esposito, Flindar S.R., Oil H dar S.R., Oil H dar S.R., Pner w Delhi 2009 y Lal, Oil hyco oover, Indus v- Hill, USA,	ation for spe ONTROLS Testems – Belf er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotio 1986 BE RESTRICT	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ ne service o cs – Techno ED TO 5 AN	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A ology, Progra	nission systems. Education 2000. Delhi 2009 nintenance, Tata McGraw Illied publishers, 1982 mming and Applications,
Lab: • Con MODULH Servos, Po Lab: • Far REFER 1. 2. 3. 4. 5. <i>COURSE OU</i> <i>FOR 1 UNIT</i> Understan	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majume Hill, Ne Anthon M.P. Great McGrav <i>JTCOMES</i> <i>T.</i>) d the class	electric actua IVES AND Consmission synthesis and a smission synthesis and a y Esposito, Flit dar S.R., Oil H dar S.R., Oil H dar S.R., Pnet w Delhi 2001 y Lal, Oil hyd oover, Indus v- Hill, USA, f <i>(NEED NOT I</i>)	ation for spe ONTROLS rstems – Belf er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotic 1986 BE RESTRICT d selection of	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ ne service o cs – Techno ED TO 5 AN	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A ology, Progra	nission systems. Education 2000. Delhi 2009 Aintenance, Tata McGraw Illied publishers, 1982 Amming and Applications, BE 1 CO PO
Lab: • Con MODULH Servos, Po Lab: • Fan REFER 1. 2. 3. 4. 5. <i>COURSE OU</i> <i>FOR 1 UNIT</i> Understan Perform sin	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majumo Hill, Ne Anthon M.P. Grov <i>JTCOMES</i> <i>C.</i>) d the clas mulation	electric actua IVES AND Constraints Insmission synthematic tion of power y Esposito, Flit dar S.R., Oil H dar S.R., Oil H dar S.R., Pner w Delhi 2009 y Lal, Oil hyco oover, Indus v- Hill, USA, <i>Constraints</i> (<i>NEED NOT I</i> ssification and	ation for spe ONTROLS Testems – Beli er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotio 1986 BE RESTRICT d selection of circuits	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ ne service o cs – Techno ED TO 5 AN	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A ology, Progra	hission systems. Education 2000. Delhi 2009 Aintenance, Tata McGraw Allied publishers, 1982 Amming and Applications, BE 1 CO PO 1,2,7,12
Lab: • Con MODULH Servos, Po Lab: • Far REFER 1. 2. 3. 4. 5. <i>COURSE OU</i> <i>FOR 1 UNIT</i> Understan Perform sin Perform sin	nstruct e E 5 – DR ower tran miliariza ENCE Anthon Majume Hill, Ne Anthon M.P. Gre McGrav <i>JTCOMES</i> <i>T.</i>) d the clas mulation	electric actua IVES AND Consmission synthesis and construction of power y Esposito, Flucture dar S.R., Oil H dar S.R., Oil H dar S.R., Pnet w Delhi 2001 y Lal, Oil hydro oover, Indus v- Hill, USA, f <i>(NEED NOT I</i> ssification and of hydraulic of	ation for spe ONTROLS rstems – Belf er systems a uid Power wi lydraulics,Ta umatic syste 5 draulics in th trial Robotic 1986 BE RESTRICT d selection of circuits circuits	cific applic t, chain and nd its appl ith Applicat ata McGrav ems – Princ ne service o cs – Techno ED TO 5 AN factuators	cations d gear transm ications ions, Pearson w-Hill, New E ciples and ma of industry, A ology, Progra	nission systems. Education 2000. Delhi 2009 Aintenance, Tata McGraw Illied publishers, 1982 Amming and Applications, BE 1 CO PO 1,2,7,12 1,2,3,7,8,9,10,11,

<u>CIE:</u>

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	2	10%
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	1	10%
6.	Tutorials	-	
7.	Mini project	-	
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	5	50%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

Course	fitle PRODUCT	DEVELOPME	NT			
Course (Code MEE3741	Credits	3	L-T-P-S	2-0-2-1	
CIE		50%		ESE	50%	
	L – INTRODUCTON					
	velopment – Chara	acteristics, Du	iration, Co	st, Challenges,	IDEO Product	
developme	nt.					
Lab:						
	ustrial Case Studies	s, Organisatio	nal Realit	ies, IDEO (Case	Studies)	
MODULE 2	2 – BASICS OF PRO	DUCT DEVE	LOPMEN	Γ	,	
Developme	ent processes and c	organisation,	Product p	lanning, Identif	ying Customer needs,	
•	ecifications, Conce	0	-	•		
Lab:	nocal for a now pro	duct dovalar	mont (Da	cod on field at	dv)	
	posal for a new pro B – PRODUCT DES		ment (ba	seu on neiù stu	uyj.	
	chitecture, Industr		cian for m	anufacturing	2D CAD Modelling	
i i ouuci di	intecture, muusu	iai uesigii, De		ianuiactui iiig,	D GAD MOUEIIIIg	
Lab:						
	design of new prod	0	0			
	hitecture layout of	•	luct.			
MODULE	4 – PROTOTYPIN	G				
Understan	ding prototypes, Pr	rinciples of pi	ototyping	, Planning of pi	ototypes, Rapid	
prototypin	g technologies - SL	A, SLS & FDM	Ι.			
Lah						
Lab:	Printing of the deve	olopod dosigr	,			
	5 – BUSINESS ASF	· · ·		FVFLOPMENT		
	sign, Product devel					
		• • • • • • • • • • • • • • • • • • • •				
Lab:						
	oust design analysis					
	e-case financial mo	odel of the dev	veloped p	roduct.		
REFEREN		Ei	Due due	t Deciment		
	1. Ulrich, Karl, and Steven Eppinger. Product Design and Development 3rd Edition McGraw-Hill 2003					
Development. 3rd Edition. McGraw-Hill, 2003.2.Thomke, Stefan H., and Ashok Nimgade. "IDEO Product Development." Harvard Business School Case 600-143, June						
			une			
	2000.					
3. Groover, CAD/CAM: Computer-Aided Design and				ign and		
3.	Manufacturing, Pearson Education India, 1984.					
	Manufacturing, Pea	arson Baacaa				
4.	Chee Kai Chua, Kał	n Fai Leong, C	hu Sing Li	m. Rapid		
4.	0	n Fai Leong, C	hu Sing Li	m. Rapid	с	

5.	5. A. K. Chitale, R. C. Gupta. Product Design And Manufacturing. PHI India Publications, 2013.			
COURSE OUTCOMES (NEED NOT BE RESTRICTED TO 5 AND NEED NOT BE 1 CO FOR 1 UNIT.)				
Understa	1,2,7,12			
Perform 3	1,2,3,7,8,9,10,11,12			
Perform 3	1,2,3,7,8,9,10,11,12			
Create 3D print of prototypes 1,2,3,7,8				
Understar	Understand and apply knowledge on testing and business model1,2,3,7,8,9,10,11,12			

OID	
(1 H ·	
<u>ur</u>	

SL. NO.	METHODOLOGY	NO. OF ASSESSMENTS	WEIGHTAGE
1.	Written test	2	10%
2.	Quiz	-	
3.	Surprise test	-	
4.	Online test	-	
5.	Assignments	2	20%
6.	Tutorials	-	
7.	Mini project	2	30%
8.	Field work	1	10%
9.	Seminar	1	10%
10.	Case study	2	20%

BT LEVEL	WEIGHTAGE
Remembering and understanding the course contents	20%
Applying the knowledge acquired from the course	60%
Designing and analysing various engineering problems	10%
Understanding of various system models	10%

