

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CURRICULUM AND SYLLABUS

Under CBCS

(Applicable for Students admitted from Academic Year 2020-2021)

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SCHOOL OF ELECTRICAL SCIENCES

HINDUSTAN INSTITUTE OF TECHNOLOGY & SCIENCE VISION AND MISSION

Motto

To Make Every Man A Success And No Man A Failure

Vision

To be an International Institute of Excellence, providing a conducive environment for education with a strong emphasis on innovation, quality, research and strategic partnership blended with values and commitment to society.

Mission

- To create an ecosystem for learning and world class research.
- To nurture a sense of creativity and innovation.
- To instill highest ethical standards and values with a sense of professionalism.
- To take up activities for the development of Society.
- To develop national and international collaboration and strategic partnership with industry and institutes of excellence.
- To enable graduates to become future leaders and innovators.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING VISION AND MISSION

Vision of the Department

To educate the students in the recent developments of emerging fields in Electrical and Electronics Engineering, to encourage research activities, innovative techniques and to develop managerial abilities so as to make them excel globally with ethical values.

Mission of the Department

M1: To empower students with state-of-art Knowledge and Technological skills in Electrical and Electronics Engineering.

M2: To upgrade curriculum continuously to meet the Emerging Industrial Requirement.

M3: To mould students for Research, Innovation and Entrepreneurship.

M4: To inculcate Managerial and Professional capabilities with Ethics and Human values.

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The program is expected to enable the students to

- **PEO I** Design and develop innovative products and services in the field of Smartgrid and Electric Vehicles.
- **PEO II** keeps abreast with the latest technology and toolset.

PEO III Communicate effectively to propagate ideas and promote teamwork

PEO IV Attain intellectual leadership skills to cater to the changing needs of power industry, academia, society and environment

PROGRAM OUTCOMES (PO)

At the end of this program, graduates will be able to

1. A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.

2. **Problem analysis:** An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions 3. **Investigation:** An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.

4. **Design:** An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.

5. Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.

6. **Individual and teamwork:** An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.

7. **Communication skills:** An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and

listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.

8.Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.
9. Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.

10. Ethics and equity: An ability to apply professional ethics, accountability, and equity.

11. Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.

12. **Life-long learning:** An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

PROGRAM SPECIFIC OUTCOMES (PSO)

÷

- PSO1: An ability to design and develop environmental friendly electrical Vehicle
- **PSO2:** To introduce application of smart grid and electric vehicle for conversion, control and automation.
- **PSO3:** Apply appropriate techniques and modern Engineering hardware and software tools in electric vehicle to engage in life- long learning and to successfully adapt in multi-disciplinary environments.
- **PSO4:** Understand the impact of Professional Engineering solutions in societal and environmental context, commit to professional ethics and communicate effectively.

	M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle											
	(65 CREDIT)											
SEMESTER - I												
1	1PCMAA3705Advanced Mathematics for Electrical Engineers300313											
2	PC	EEC1701	Smart Grid	3	0	0	3	1	3			
3	PC	EEC1702	Renewable Power Generation Technologies	3	0	0	3	1	3			
4	DE		Department Elective – I	3	0	0	3	1	3			
5	DE		Department Elective- II	3	0	0	3	1	3			
6	PC	ZZZ3715	Research Methodology & IPR	2	0	0	2	1	2			
PRAC	CTICAL											
7	PC	EEC3791	Modelling and simulation of smart grid lab	0	0	3	2	0	3			
8	PC	EEC3780	Mini Project	0	0	3	2	2	3			
			19	0	3	21	6	20				

	SEMESTER - II										
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн		
THEORY											
1	PC	EEC1705	Intelligence and Communication in smart grid	3	0	0	3	1	3		
2	PC	EEC1703	Electric Vehicle Technology	3	0	0	3	1	3		
3	PC	EEC1704	Power Electronic Converters for Smart grids and Electric Vehicles	3	0	0	3	1	3		
4	DE		Department Elective - III	3	0	0	3	1	3		

CURRICULUM AND SYLLABUS

US M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

5	NE		Non Department Elective	3	0	0	3	1	3		
PRAC	PRACTICAL										
6	PC	EEC3792	Modelling and Simulation of Electric Vehicle lab	0	0	3	2	0	3		
7	PC	EEA3780	Seminar	0	0	3	2	2	3		
		15	0	6	19	5	27				

	SEMESTER - III											
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн			
PRACT	PRACTICAL											
1	DE		Department Elective - IV	3	0	0	3	1	3			
2	PC	EEC3797	Internship	0	0	3	2		3			
3	PC	EEC3798	0	0	16	8		16				
		3	0	19	13	1	19					

	SEMESTER - IV											
SL. NO	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн			
1	PC	EEC3799	Project Phase –II	0	0	24	12		24			
		Tot	al	0	0	24	12	0	24			

	I	LIST OF D	EPARTMENTAL ELECTIV	ES - SEI	MESTEI	R WISH	C				
SL. NO	COURSE CATEGOR Y	COURS E CODE	NAME OF THE COURSE	L	Т	Р	С	S	тсн		
	Department Elective - I										
1	DE	EEC3721	Modelling and Simulation of EHV	3	0	0	3	1	3		
2	DE	EEC3722	Electric Vehicle In Smart Grid	3	0	0	3	1	3		
3	DE	EEC3723	Testing and Certification Of Electric and Hybrid Vehicles	3	0	0	3	1	3		
4	DE	EEC3724	In-Vehicle Networking	3	0	0	3	1	3		
	Department Elective - II										
5	DE	EEC3725	EV Batteries & Charging System	3	0	0	3	1	3		
6	DE	EEC3726	Micro Electro Mechanical Systems	3	0	0	3	1	3		
7	DE	EEC3727	Electric and Hybrid Vehicles	3	0	0	3	1	3		
8	DE	EEC3728	Electric Motors & Control	3	0	0	3	1	3		
			Department Elective	- III					•		
9	DE	EEC3729	Computer Aided Design of Electric Machines	3	0	0	3	1	3		
10	DE	EEC3730	Optimization Techniques	3	0	0	3	1	3		
11	DE	EEC3731	Vehicular networks in communication	3	0	0	3	1	3		
12	DE	EEC3732	Energy Storage Systems and Control	3	0	0	3	1	3		
	Department Elective - IV										
1	DE	EEC3733	Power System Planning And Reliability	3	0	0	3	1	3		

CURRICULUM AND SYLLABUS M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

	DE	EEC3734							[
2			Power System Automation	3	0	0	3	1	3
3	DE	EEC3735	Energy Auditing And Management	3	0	0	3	1	3
4	DE	EEC3736	Distributed Generation And Micro-Grids	3	0	0	3	1	3

LIS	LIST OF NON DEPARTMENTAL ELECTIVES OFFERED BY ELECTRICAL DEPARTMENT WITH GROUPING - SEMESTER WISE											
SEM	COURSE CATEGORY	COURSE CODE	NAME OF THE COURSE	L	Τ	Р	С	S	TC H			
2	NE	EEC3741	Photovoltaic and fuel cell systems	3	0	0	3	1	3			
2	NE	EEC3742	Wind and hydro energy systems	3	0	0	3	1	3			
2	NE	EEC3743	Biomass energy systems	3	0	0	3	1	3			
2	NE	EEC3744	Artificial Neural Network & Fuzzy Logic Applications	3	0	0	3	1	3			

SEMESTER – I

CO	URSE TITLE	ADV. E	ANCED MATHEMA LECTRICAL ENGIN	TICS FOR IEERS	CREDITS	3		
Cou	rse Code	MAA3705	Course Category	PC	L-T-P-S	3-0-0-1		
CIA			50%		ESE	50%		
LEA	RNING			PTI 2	· · · · · ·			
LEV	'EL			DIL-3				
CC			COURSE OUTCON	MES		РО		
1	Getting ide	a about basic fu	ndamentals of probabilit	У		1,2,4		
2	Getting ide	a about optimiza	ation techniques			1,2,5		
3	Getting ide	a about different	tial calculus			1,2,12		
Prerequisites : Nil								
MO	DULE 1 – AD	VANCED MA	TRIX THEORY		(9	L)		
Matr	ix norms – Joi	rdan canonical	form - Generalized ei	genvectors - Singu	lar value deco	mposition –		
Pseu	do inverse – Le	east square appr	oximations – QR algor	ithm				
MO	DULE $2 - N$	UMERICAL S	OLUTION OF ALG	EBRAIC EQUATI	ONS (9L)		
Solu	tions of large s	systems of equa	tions using Gauss Elim	ination method; pri	nciple behind	sparsity and		
optir	nal ordering; re	elevance of the	solution technique for e	engineering applica	tions.			
MO	DULE 3 – NUI	MERICAL SO	LUTION OF ORDIN	ARY DIFFEREN	TIAL EQUAT	ΓIONS		
(9L)								
Sing	le and multi –	step methods -	– explicit and implicit	methods - advanta	ges of implicit	t methods –		
solut	ion of differen	tial algebraic m	ethods encountered in	power engineering.				
MO	DULE 4 – LIN	NEAR PROGE	RAMMING			(9L)		
Basi	c concepts – G	raphical and Si	mplex methods – Trans	portation problem -	- Assignment p	oroblem.		
MO	$\mathbf{DULE} \ 5 - \mathbf{I}$	DYNAMIC PR	OGRAMMING			(9L)		
Eler	nents of the	dynamic progr	amming model – op	timality principle	– Examples of	of dynamic		
prog	ramming mode	els and their sol	utions.					
REF	ERENCE BO	OKS						
1	Lewis.D.W., '	'Matrix Theory	", Allied Publishers, Ch	ennai 1995.				
2	Bronson,R, "N	Matrix Operatio	ns", Schaums outline S	Series ,McGraw Hil	l ,Newyork. 19	89.		
3	L.O.Chua, P.M Cliffs, New Je	M.Lin, "Compu ersey, 1978.	ter-Aided Analsis of E	lectronic Circuits",	Prentice Hall,	Englewood		
4	Taha, H.A., "	Operations rese	arch - An Introduction	", Mac Millan publ	lishing Co., (19	982).		
5	Gupta, P.K.an	d Hira, D.S., "O	Operations Research", S	S.Chand & Co., Nev	w Delhi,1999.			

M. Tech. Electrical and Electronics Engineering

Specialization in Smart Grid and Electric Vehicle

COU	JRSE		SMART GRID		CREDITS	3				
			COUDGE	DD	LTDC	2.0.0.1				
	JKSE	EEC170	COURSE	DE	L-1-P-S	3-0-0-1				
	E	1	CATEGORY		ESE	509/				
	DNINC	50%0		рті /		50%				
	TI			DIL-	•					
			COURSE OUTCOME	S		PO				
ŏ				20		10				
1	Get acquain	ted with dif	ferent smart devices and s	mart m	eters	1,2,3,4,5,11				
2	Describe ho	w modern p	ower distribution system f	unctior	18	1,2,3,4,5,11				
3	Identify sui	table commu	inication networks for Sma	art Grid	l applications	1,2,3,4,5,11				
Prer	Prerequisites : Fundamentals of Power Distribution System, Transmission and Distribution, Power									
system Operation and Control										
MODULE 1 – INTRODUCTION TO SMART GRID										
(9L))									
Inti	roduction - Ev	volution of E	lectric Grid, Smart Grid C	oncept	- Definitions and Need	l for Smart				
Gric	I – Functions	- Opportunit	ties – Benefits and challen	ges, Di	fference between conv	entional &				
MODULE 2 ENERGY MANACEMENT SYSTEM										
MODULE 2 – ENERGY MANAGEMENT SYSTEM (91.)										
Ene	, rav Manager	nent System	(FMS) - Smart substati	one - (Substation Automation	n - Feeder				
Auto	omation SCA	ADA – Rem	ote Terminal Unit – Inte	lligent	Electronic Devices –	Protocols				
Phas	sor Measurem	ent Unit – V	Vide area monitoring prot	ection	and control. Smart inte	egration of				
ener	gy resources	– Renewable	e, intermittent power sourc	es – Er	nergy Storage.	8-0000000				
MO	DULE 3 –	DISTRIBU	TION MANAGEMENT	SYST	EM					
(9L))									
Dist	tribution Man	agement Sys	stem (DMS) – Volt / VAR	contro	l – Fault Detection, Iso	olation and				
Serv	vice Restorat	ion, Netwo	rk Reconfiguration, Out	tage n	nanagement System,	Customer				
Info	rmation Syst	em, Geogra	phical Information Syste	m, Eff	ect of Plug in Hybri	d Electric				
Veh	icles	~ ~ ~ ~ ~ ~ ~ ~								
MC (9L))))	SMART M	ETERS							
Intr	oduction to S	Smart Meters	s – Advanced Metering i	nfrastr	ucture (AMI), AMI r	protocols –				
Stan	dards and ini	tiatives, Der	nand side management an	d dem	and response program	s, Demand				
pric	ing and Time	of Use, Real	Time Pricing, Peak Time	Pricing	g.					
MO	$\overline{\mathbf{DULE} 5} - \mathbf{C}$	COMMUNI	CATION NETWORKS	& IOT						
(9L)										
Elements of communication and networking – architectures, standards, PLC, Zigbee, GSM, BPL,										
Loc	al Area Netw	ork (LAN)	- House Area Network (I	HAN)	- Wide Area Network	(WAN) -				
Broa	adband over I	Power line (l	BPL) - IP based Protocols	- Basi	ics of Web Service an	d CLOUD				
Con	nputing, Cybe	r Security fo	r Smart Grid.							
	D WODY	OJEC1/FIE								
FIEL										
	I BOOKS	(G	1. L. C		Quinting CDCD	2012				
	Stuart Borlase	Smart Grid	1: Intrastructure, Technolo	gy and	Solutions', CRC Press	5 2012.				

CURRICULUM AND SYLLABUS

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

2	JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart
	Grid: Technology and Applications', Wiley, 2012
RI	EFERENCE BOOKS
1	Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press, 2015
2	Kenneth C.Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for Smart
	Grids', Springer, 2014.

CC	URSE TITLE	RE	NEWABLE POWER		CREDITS		3	
		GENERA	ATION TECHNOLOG	IES				
CC	OURSE CODE	EEC1702	COURSE	DE	L-T-P-S		3-0-0-1	
			CATEGORY					
	CIA		50%		ESE		50%	
	LEARNING			BTL-4	1			
0				FC			DO	
			COURSE OUTCOM	ES			PO	
1	Appraise the n	eed and poss	ibility of extracting sola	r energ	v and converting into	1	234512	
1	electrical energ	v using PV ce	ell.	ir energ.	y and converting into	1,	2,3,1,3,12	
2	Design and ana	alyze stand-al	one and grid connected	PV syste	em.	1,	2,3,4,5,12	
3 Describe the dynamics of wind turbine and electrical generator						1,	,2,3,4,5,12	
4 Select and design suitable configuration of the wind energy conversion system						1,	, 2,3,4,5,12	
based on application.								
5 Suggest, design and analyze hybrid energy systems.							2,3,4,5,12	
Prerequisites : Basic Electrical Engineering								
M	DDULE 1 – SO	LAR ENER	GY					
(9L	<u>,)</u>		~ ~		· · ·			
De	finition, Energy a	vailable from	Sun, Solar radiation dat	a, solar	energy conversion into	hea	it, Flat	
pla DV	te and Concentrat	ing collectors	s, Principle of natural an	d Iorcec	l convection. power ge	nera	ation.	
P V bat	Systems - Desig	connected D	A systems Maximum Po	with DC	nt Tracking	a w	Ithout	
M	DILE 2 – WIN	ID ENERGY	7 Systems-waximum 1 0					
(9L	$\mathbf{\mathcal{J}}$							
Ŵ	ind energy – energy	rgy in the wi	nd – aerodynamics - rot	or types	s – forces developed by	y bl	ades -	
Aeı	odynamic mode	ls – braking	systems – tower - co	ntrol ar	nd monitoring system	- (design	
con	siderations powe	r curve - pow	er speed characteristics-	choice of	of electrical generators			
M	$\mathbf{DDULE 3} - \mathbf{W}$	IND TURBE	NE GENERATOR SY	STEMS	5			
(9L	<i>.</i>)							
Fixed speed induction generator-performance analysis- semi variable speed induction generator-								
var	variable speed induction generators with full and partial rated power converter topologies -isolated							
Sys	tems-self excited	induction gei	nerator- permanent magi	net alter	nator - performance an	aly	318	
(9L	(9L)							
De	finition and class	ification of re	sources, Utilization for e	electrici	ty generation and direc	et he	eating,	
We	llhead power ger	nerating units.	. Basic features: Atmosp	oheric e	xhaust and condensing	, E2	khaust	
typ	es of conventiona	al steam turbi	nes. Pyrolysis of Bioma	ass to pi	oduce solid, liquid and	d ga	iseous	

fuels. Biomass gasification, Constructional details of gasifier, Usage of biogas for chullas, various types of chullas for rural energy needs.

MODULE 5 – HYBRID ENERGY SYSTEMS (9L)

wind-diesel system, wind - PV system ,micro hydro-PV system ,biomass - PV-diesel system, geothermal-tidal and OTEC systems

LAB / MINI PROJECT/FIELD WORK Mini Project: Prototype modelling of Renewable power Generation **TEXT BOOKS** Rai, G.D., Non-Conventional Energy Sources, Khanna Publishers 2005 1 2 Ashok Desai V, Non-Conventional Energy, Wiley Eastern Ltd, 2003 3 Mittal K.M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, 2003. Ramesh R, Kurnar K.U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 4 reprint 2003. **REFERENCE BOOKS** Chetan Singh Solanki, 'Solar Photovoltaics -Fundamentals, Technologies and Applications', PHI 1 Learning Pvt. Ltd., New Delhi, 2011 Van Overstraeton and Mertens R.P., 'Physics, Technology and use of Photovoltaics', Adam 2 Hilger, Bristol, 1996. 3 John F.Walker& Jenkins. N, 'Wind energy Technology', John Wiley and sons, Chichester, UK, 1997. Freries LL, 'Wind Energy Conversion Systems', Prentice Hall, U.K., 1990 4

COURSE TITLE		RESEARCH METHODOLOGY & IPR CREDI					IT 2
COU	JRSE CODE	ZZZ371 5	COURSE CATEGORY	PC	L-T-P-S	2-0-0-0	
CIA			50%		ESE		50%
LEA	RNING				BTL-5		
LEV	EL						
CO			COURSE OU	TCOM	IES		PO
1.	Understand	stand research problem formulation.					
2.	Understand	nderstand that today's world is controlled by Computer, Information Technology,					1,2,3
but tomorrow world v			id will be ruled by ideas, concept, and creativity.				
	Understanding that when IPR would take such important place in growth of						1,2,3,5
3.	individuals & nation, it is needless to emphasis the need of information about						
	Intellectual Property Right to be promoted among students in general & engineering					gineering	
	in particular.						1025
4	Understand	that IPK pro	tection provides an i	ncenti	e to inventors for further	research	1,2,3,5
4.	work and investment in R & D, which leads to creation of new and better products,						
	and in turn brings about, economic growth and social benefits.						
5.	Analyze rese	earch relate	d information and to	follow	research ethics		1,2,3,12
Prer	equisites: Nil						

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

MO	DULE 1 – RESEARCH PROBLEM FORMULATION (9L)
Mean	ning of research problem, Sources of research problem, Criteria Characteristics of a good research
probl	em, Errors in selecting a research problem, Scope and objectives of research problem. Approaches
of in	vestigation of solutions for research problem, data collection, analysis, interpretation, Necessary
instru	imentations (01)
MO	DULE 2 - RESEARCH PROPOSAL AND ETHICS (9L) time literature studies annuashes, analysis Plasiarism, Descende ethics, Effective technical writing
how	to write report. Paper Developing a Research Proposal Format of research proposal, a presentation
and a	ssessment by a review committee
MO	DULE 3 - DATA ANALYSIS AND INTERPRETATION (9L)
Clas	sification of Data. Methods of Data Collection, Sampling, Sampling techniques procedure and
meth	ods, Ethical considerations in research Data analysis, Statistical techniques and choosing an
appro	ppriate statistical technique, Hypothesis, Hypothesis testing, Data processing software (e.g. SPSS
etc.),	statistical inference, Interpretation of results.
MO	DULE 4 - NATURE OF INTELLECTUAL PROPERTY
	(9L)
Pater	its, Designs, Trade and Copyright. Process of Patenting and Development: technological research,
1nnov Drop	vation, patenting, development. International Scenario: International cooperation on Intellectual
MO	DILE 5 – PATENT RIGHTS AND NEW DEVELOPMENTS IN IPR (91.)
Scon	e of Patent Rights Licensing and transfer of technology Patent information and databases
Geog	raphical Indications. Administration of Patent System. New developments in IPR; IPR of Biological
Syste	ms, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.
REF	ERENCE BOOKS
1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
	engineering students',
2	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
4	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
5	Mayall, "Industrial Design", McGraw Hill, 1992.
6	Niebel, "Product Design", McGraw Hill, 1974.
7	Asimov, "Introduction to Design", Prentice Hall, 1962.
8	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological
	Age", 2016.
9	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008
10	C.R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques, New Age International publishers, Third Edition
11	Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners, 2nd Edition, SAGE, 2005
12	Business Research Methods - Donald Cooper & Pamela Schindler, TMGH, 9th edition
13	Creswell, John W. Research design: Qualitative, quantitative, and mixed methods, approaches. Sage publications, 2013.

Course	Title	Modelling and simulation of smart grid lab					
Course Code		EEC3791	Course Category	PC	L-T-P-S	0-03-0	
CIA		60%	, O	ESE	40%		
LEARNING				BTL-4			
LEVEL	,						
СО	COURS	SE OUTCOMES	COUTCOMES PO				
1	Construc	et and simulate smar	t distribution sy	stem	1,3,4,5		
2	Construc	ct and simulate MPF	T controller		1,3,4,5,1	2	
3	Construc	uct and simulate grid integration 1,3,4,5,12					
Prerequisites: -: Basic Power Electronics							
Practica	1:				(45)		

- 1. Micro Grid Operation in Smart Distribution System
- 2. Micro grid Integration of Hybrid PV/ Wind / Battery Management System Using Fuzzy Logic Controller
- 3. Design of Hybrid Electric Power System Utility.
- 4. Design of solar MPPT controller
- 5. Fuzzy logic control based MPPT for Wind Power System
- 6. ANFIS Based Grid integration of Photovoltaic Power System using multilevel inverter

COURSE TITLE		Intelligence and Communication in smart grid			CREDITS	3
COURSE CODE		EEC1705 Course Category		PC	L-T-P-S	3-0-0-1
	CIA	50%		ESE	50%	
LEARNING LEVEL BTL-4					BTL-4	
S.No		С	OURSE OUTCOM	ES		PO
1	To know	about basics of com	munication in smart g	grid		1,2,3,4,5,6,11
2	To under	stand about advance	d metering infrastruct	ure pro	otocols	1,2,3,4,5,6,11
3	To analyse about sensor communications					1,2,3,4,5,6,11
4	4 To analyse about big data					
5	To know	1,2,3,4,5,6,11				

Prerequisi	tes : Basic Electrical Engineering					
MODULE	I – Introduction	9				
Need of inte Toward the	elligence and communication in Smart Grid, Case Study on Postmortem Analysis of Smart Grid; NETWORK layered ARCHITECTURE, Protocols and standards for inf	f Blackouts Drivers formation exchange				
MODULE	II – Protocols	9				
Advanced IEEE 802.1 LIN Bus p Bluetooth,	Metering Infrastructure Protocols aiding AMI IEEE 802.15.4, 6LoWPAN, 1 255, Modbus, DNP3, IEC 61850, Ethernet, Power line carrier communicatio rotocol, Modbus protocol structure; Profibus protocol stack, Profibus comm ZigBee, IEEE 801.11-a,b,g,n, Z-Wave, Cellular networks, WiMAX	ROLL, and RPL, on, CAN Bus, I2C, nunication model,				
MODULE	III– Sensor Communications	9				
Techniques for sensing: Phasor measurement units, Compressive sensing, Decentralized and cooperative sensing; Techniques for sensor communications: Machine-to-machine communications, Cooperative communications, Cognitive radio (CR); Medium access control, routing, and transport protocols for sensor data communications; Networked control systems- Time driven, Event driven feedback schemes.						
MODULE	IV- Big data analysis	9				
Smart Grid platform an Smart Grid	Data Analytics : Event Analytics, State Analytics, Customer Analytics, data and Operational Analytics ; Big Data Architecture and Platforms ; Application s	analytics of Big Data in				
MODULE	V- Intelligent sensing	9				
Intelligent a Identification regression a weather pre	Sensing : missing sensor restoration (MSR), Monitoring and Identification : on and state estimation, Power System Operation Support : Forecasting - tin analysis and other statistical methods; ANN short-term load forecaster, Physics ediction (NWP), Scheduling : deterministic optimization methods.	PMU for system ne series analysis, s-based numerical				
REFEREN	ICE BOOKS					
1	Stephen F. Bush, "Smart Grid: Communication-Enabled Intelligence for the Power Grid" ISBN: 978-1-119-97580-9 March 2014 Wiley-IEEE Press	Electric				
2	Fadlullah, Zubair& Fouda, Mostafa& Kato, Nei& Takeuchi, Akira & Iwasa Nozaki, Yousuke,2011	ki, Noboru &				
3	Toward Intelligent Machine-to-Machine Communications in Smart Grid. Co Magazine, IEEE. 49. 60 - 65. 10.1109/MCOM.2011.5741147,2011	ommunications				
4	Kaveth Pahlavan. K. and Prashanth Krishnamurthy, "Principles of Wireless Networks", Prentice Hall of India, 2006.					
5	Bart Baesens"Analytics in a Big data world" Wiley Publications,2004					

COU	RSE TITLE	ELECTRIC	VEHICLE TECHNO	LOGY	CREDITS	3	
COURSE CODE		EEC1703	Course Category	PC	L-T-P-S	3-0-0-1	
	CIA		50%	ESE		50%	
		LEARNING LEV	EL		BTL-5		
S.No		COL	URSE OUTCOMES			РО	
1	To understa	nd about basics of hy	ybrid electric vehicle			1,2,3,4,5,6,11	
2	To understa	nd about drives and	control.			1,2,3,4,5,6,11	
3	3 Select battery, battery indication system for EV applications						
4	Design batte	ery charger for an EV	/			1,2,3,4,5,6,11	
Prere	quisites : Bas	sic Electrical and Ele	ectronics Engineering				
MOD	ULE I – Intr	oduction to Hybrid	l Electric Vehicle			0	
Reviev Hybrid	w of Convent d Electric Dri	ional Vehicle: Introc ve-train, Tractive ef	luction to Hybrid Electr fort in normal driving,	ic Vehicles:	Types of EV	s,	
MOD	ULE II – Ele	ectric Drives				9	
MOD Introd	MODULE III – Energy Storage 9 Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles:- Battery based energy						
storag storag	e and its anal e devices. Siz	ysis, Fuel Cell based zing the drive system	energy storage and its h, Design of Hybrid Elec	analysis, Hy ctric Vehicle	bridization of and Plug-in I	different energy Electric Vehicle,	
MOD	ULE IV- En	ergy Management S	System			9	
Energy Management Strategies, Automotive networking and communication, EV charging standards, V2G, G2V, V2B, V2H. Business: E-mobility business, electrification challenges, Business- E-mobility business, electrification challenges,							
MOD	MODULE V – Mobility and Connectors 9						
Connected Mobility and Autonomous Mobility- case study Emobility Indian Roadmap Perspective. Policy: EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs.							
Connectors- Types of EV charging connector, North American EV Plug Standards, DC Fast Charge EV Plug Standards in North America, CCS (Combined Charging System), CHAdeMO, Tesla, European EV Plug Standards,							
REFE	REFERENCE BOOKS						

M. Tech. Electrical and Electronics Engineering **CURRICULUM AND SYLLABUS Specialization in Smart Grid and Electric Vehicle**

1	Emadi, A. (Ed.), Miller, J., Ehsani, M., "Vehicular Electric Power Systems" Boca Raton, CRC Press, 2003
2	Husain, I. "Electric and Hybrid Vehicles" Boca Raton, CRC Press, 2010.
3	Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012
4	Tariq Muneer and Irene IllescasGarcía, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017
5	Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013

COURSE TITLE			Power Electronic Converters for Smart grids and Electric Vehicles					CREDITS			3
COURSE CODE		EEC1704 Course Category		PC	I	2-T-P-	S	3-0-0-1			
(CIA		50%			ESE			50%		
	LEARNING LEVEL BTL-4										
S.No	.No COURSE OUTCOMES						РО				
1	Discuss	about	the differen	it type	es of energ	gy storage	system	n.			1,2,3,4,5,6,11
2	2 Describe about the battery characteristic & parameters.						1,2,3,4,5,6,11				
3	3 Analyse different types of batteries.						1,2,3,4,5,6,11				
Δ	Apply	the	concepts	of	battery	manager	nent	system	and	design	1,2,3,4,5,6,11
⁴ the battery pack.											
5	5 Explain about the battery testing, disposal and recycling.								1,2,3,4,5,6,11		

Prerequisites : Basic Electrical and Electronics Engineering

MODULE I – ENERGY STORAGE SYSTEM

Batteries: Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium based batteries - Li-ion & Li-poly, Metal Air Battery, Zine Chloride battery; Ultra capacitors; Flywheel Energy Storage System; Hydraulic Energy Storage System; Comparison of different Energy Storage System Suggested reading: Study of different types of batteries

MODULE II – BATTERY CHARACTERISTICS & PARAMETERS

9

9

Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parameters Heat generation- Battery design-Performance criteria for Electric vehicles batteries- Vehicle propulsion factors- Power and energy requirements of batteries- Meeting battery performance criteria- setting new targets for battery performance. 9

MODULE III- BATTERY MODELLING

General approach to modelling batteries, simulation model of a rechargeable Li-ion battery, simulation model of a rechargeable NiCd battery, Parameterization of the NiCd battery model, Simulation examples.

MODULE IV- BATTERY PACK AND BATTERY MANAGEMENT SYSTEM

9

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery
Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal
control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal
management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC
Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.MODULE V- BATTERY TESTING, DISPOSAL & RECYCLING9

Chemical & structure material properties for cell safety and battery design, battery testing, limitations for transport and storage of cells and batteries, Recycling, disposal and second use of batteries. Battery Leakage: gas generation in batteries, leakage path, leakage rates. Ruptures: Mechanical stress and pressure tolerance of cells, safety vents, Explosions: Causes of battery explosions, explosive process, Thermal Runway: High discharge rates, Short circuits, charging and discharging. Environment and Human Health impact assessments of batteries, General recycling issues and drivers, methods of recycling of EV batteries.

1	Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017. (ISBN: 978-1-1193-2185-9)
2	Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec Way", Springer, 2018. (ISBN: 978-3-319-70571-2)
3	Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.
4	Chris Mi, Abul Masrur& David Wenzhong Gao, "Hybrid electric Vehicle- Principles & Applications with Practical Properties", Wiley, 2011.
5	G. Pistoia, J.P. Wiaux, S.P. Wolsky, "Used Battery Collection and Recycling", Elsevier, 2001. (ISBN: 0-444-50562-8)"
6	T R Crompton, "Battery Reference Book-3 rd Edition", Newnes- Reed Educational and Professional Publishing Ltd., 2000.
7	James Larminie, John Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd, 2003.
8	G. Pistoia, J.P. Wiaux, S.P. Wolsky, "Used Battery Collection and Recycling", Elsevier, 2001. (ISBN: 0-444-50562-8)"

Course Title	Modelling and Simulation of Electric Vehicle lab						
Course Code	EEA3792	Course Category	РС	L-T-P-S	0-03-0		
CIA	60%)	ESE	40%			

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

LEARNING LEVEL		BTL-4	
CO	COURS	E OUTCOMES	PO
1	Simulation of GUI for small transformer 1,3,4,		
2	Simulati	1,3,4,5,12	

Prerequisites: -: Basic Power Electronics

Practi	cal:	(45)
1.	Prepare a flow chart and computer program for optimum design of a small tran	nsformer with given
	specifications and constraints. Use of GUI (Graphical User Interface) may be	a better choice.
2.	Prepare a flow chart and computer program for optimum design of a DC m	notor to be used for
	industrial applications with given specifications and constraints. Use of G	UI may be a better
	choice.	
3.	Prepare a flow chart and computer program for optimum design of a small D	C motor to be used

for a lab with given specifications and constraints. Use of GUI may be a better choice.4. Find leakage inductance of transformer using FEM software. Find force on plunger using FEM software.

5. Design of Electric hybrid vehicle.

COURSE TITLE		Modelling	and Simulation of EH	IV	CREDITS	3
COURSE CODE		EEC3721 Course Category PC L-		L-T-P-S	3-0-0-1	
CIA		50	50% ESE			50%
	LEARNING LEVEL BTL-6					
S.No	COURSE OUTCOMES PO					
1	1Elaborate various technical parameters of batteries.1,2,3,4,5,11,12					
2	Distinguish between various types of batteries used for EV applications.1,2,3,4,5,11,12					
3	Develop battery charger for an EV1,2,3,4,5,11,12					
4	Interpret the applications of super capacitors for appropriate storage systems. 1,2,3,4,5,11,12					
5	5 Understand and differentiate different types of fuel cells. 1,2,3,4,5,11,12					
Prerequisites : Basics of Modeling and Simulation (MATLAB / SIMULINK)						
MODULE I - MODELLING OF VEHICLE PERFORMANCE PARAMETER 9						

Modelling Vehicle Acceleration - Acceleration performance parameters, modelling the acceleration of an electric scooter, modelling the acceleration of a small car.

MODULE II – MODELLING OF BATTERY ELECTRIC VEHICLES

9

Electric Vehicle Modelling - Tractive Effort, Rolling resistance force, Aerodynamic of climbing force, Acceleration force, Total tractive effort, Modelling Electric Vehicle Driving cycles, Range modelling of battery electric vehicles, Constant velocity ran Range modelling of fuel cell vehicles, Range modelling of hybrid electric vehicles	lrag, Hill e Range - ige modelling,
MODULE III- DRIVETRAIN CHARACTERISTICS	9
Modelling and Characteristics of EV/HEV Powertrains Components- ICE Performa Characteristics, Electric Motor Performance Characteristics - Battery Performance C Transmission and Drivetrain Characteristics-Regenerative Braking Characteristics-Dri Modelling and Analysis of Electric and Hybrid Electric Vehicles Propulsion and Brakin Longitudinal Dynamics Equation of Motion - Vehicle Propulsion Modelling and Analysis Braking Modelling and Analysis	nce Tharacteristics- tving Cycles 1g - alysis - Vehicle
MODULE IV- ENERGY MANAGEMENT	9
Handling Analysis of Electric and Hybrid Electric Vehicles - Simplified Handling Mode Allocation and Management - Power/Energy Management Controllers - RuleBased Co Optimization-Based Control Strategies	ls Energy/Power ontrol Strategies -
MODULE V– Fuel cells	9
Control of Electric and Hybrid Electric Vehicle Dynamics - Fundamentals of Vehicle D (VDC) Systems, VDC Implementation on Electric and Hybrid Vehicles – Case Studies Battery vehicles, Hybrid Vehicles, Fuel Cell Powered Bus	ynamic Control , Rechargeable
REFERENCE BOOKS	
Amir Khajapour Sabar Fallah and AvastaGoodarzi "Elastri	and Hybrid

	Amir Khajepour, Saber Fallah and AvestaGoodarzi, "Electric and Hybrid
1	VehiclesTechnologies, Modelling and Control: A Mechatronic Approach", John Wiley &
	Sons Ltd, 2014.
2	Antoni Szumanowski, "Hybrid Electric Power Train Engineering and Technology: Modelling, Control, and Simulation", IGI Global, 2013.
3	Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles_ Fundamentals, Theory, and Design, Second Edition", CRC Press, 2010.
4	James Larminie, John Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd, 2003.

|--|

CC	OURSE	EEC3722	Course Category	DE	L-T-P-S	3-0-0-1
	CIA 50% ESE			50%		
	LEARNING LEVEL BTL-6					
S.No		С	OURSE OUTCOM	ES		РО
1	Describe about vehicle electrification and impact of charging strategies. 1,2,3,4,5,11,12					
2	Describe	e the influence of EV	/s on power system			1,2,3,4,5,11,12
3	Describe the frequency control and voltage reserve from EVs. 1,2,3,4,5,11,12					
4	Describe	Describe the frequency control and voltage reserve from EVs. 1,2,3,4,5,11,12				
5	Describe the frequency control and voltage reserve from EVs. 1,2,3,4,5,11,12					
Prere	Prerequisites : : Basics of Electrical Engineering, Automobile engineering and Mechanical engineering					
MOD	MODULE I – Introduction 9					
econo EV ch invest	economic and environmental considerations, Impact of EV charging options and initialitation of EV charging on generation and load profile, Smart charging technologies, Impact on investment					
MOD	MODULE II – INFLUENCE OF EVS ON POWER SYSTEM 9					
Introd classif multip	Introduction, identification of EV demand, EV penetration level for different scenarios, classification based on penetration level, EV impacts on system demand: dumb charging, multiple tariff charging, smart charging, case studies					
MOD SUPP	MODULE III– FREQUENCY CONTROL RESERVES & VOLTAGE 9					9
Introduction, power system ancillary services, electric vehicles to support wind power integration, electric vehicle as frequency control reserves and tertiary reserves, voltage support and electric vehicle integration, properties of frequency regulation reserves, control strategies for EVs to support frequency regulation.						
MOD	MODULE IV– ICT SOLUTIONS TO SUPPORT EV DEPLOYMENT 9					
Introd meteriand sc	Introduction, Architecture and model for smart grid & EV, ICT players in smart grid, smart metering, information & communication models, functional and logical models, technology and solution for smart grid: interoperability, communication technologies.					
MOI	ODULE V-EV CHARGING FACILITY PLANNING9					
Energ chargi Desig	Energy generation scheduling, different power sources, fluctuant electricity, centralized charging schemes, decentralized charging schemes, energy storage integration into Microgrid, Design of V2G Aggregator.					

REFEREN	NCE BOOKS
1	Energy generation scheduling, different power sources, fluctuant electricity, centralized charging schemes, decentralized charging schemes, energy storage integration into Microgrid, Design of V2G Aggregator.
2	Crouse W.H, Anglin D.L, "Automotive Transmission and Power Train construction", McGraw Hill, 1976.
3	Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, Wolfgang Novak "Automotive Transmission: Fundamentals, Selection, Design and Application", 2nd Edition, Springer, 2011.

COURSE TITLE		TESTIN ELECTI	NG AND CERTIFIC RIC AND HYBRID	ATION OF VEHICLES	CREDITS	3
COURSE CODE		EEC3723	3723 Course Category DE		L-T-P-S	3-0-0-1
ſ	CIA 50% ESE		50%			
	LEARNING LEVEL BTL-6					
S.No		CO	OURSE OUTCOME	S		PO
1	To understand about the testing of electric vehicle 1,2,3,4,5,11,12			1,2,3,4,5,11,12		
2	To know about the dynamics testing of vehicle			1,2,3,4,5,11,12		
3	To understand about retro-fitment and charging station1,2,3,4,5,11,12					
	ł					

Prerequisites : : Basics of Electrical Engineering, Automobile engineering and Mechanical engineering

MODULE I - INTRODUCTION

Specification & Classification of Vehicles (including M, N and O layout), Homologation & its Types, Regulations overview (EEC, ECE, FMVSS, AIS, CMVR), Type approval Scheme, Homologation for export, Conformity of Production, various Parameters, Instruments and Types of test tracks, Hardware in The Loop (HIL) concepts for EV/HEVs.

MODULE II – STATIC TESTING OF VEHICLE

Photographs, CMVR physical verification, Tyre Tread Depth Test, Vehicle Weightment, Horn installation, Rear view mirror installation, Tell Tales, External Projection, Wheel Guard, Arrangement of Foot Controls for M1 Vehicle, Angle & Dimensions Measurement of Vehicle, The Requirement of Temporary Cabin For Drive– Away – Chassis, Electric vehicle – Safety Norms, Energy consumption and Power test.

MODULE III- DYNAMICS TESTING OF VEHICLE

9

6

9

Hood Latch, Gradeability, Pass-by Noise, Interior Noise, Turning Circle Diameter & Turning Clearance Circle Diameter, Steering Effort, Constant Speed Fuel Consumption, Cooling Performance, Speedo-meter Calibration, Range Test, Maximum Speed, Acceleration Test, Coast-down test, Brakes Performance ABS Test, Broad band / Narrow band EMI Test, Electric vehicle – Range Test.

MODULE IV- VEHICLE COMPONENT TESTING

Horn Testing, Safety Glasses Test: Windscreen laminated and toughened safety glass, Rear View Mirror Test, Hydraulic Brakes Hoses Fuel Tank Test: Metallic & Plastic, Hinges and Latches Test, Tyre & Wheel Rim Test, Bumper Impact Test, Side Door Intrusion, Crash test with dummies, Demist test, Defrost Test, Interior Fittings, Steering Impact test (GVW<1500 kg), Body block test, Head form test, Driver Field Of Vision, Safety belt assemblies, Safety belt anchorages, Seat anchorages & head restraints test, Airbag Test, Accelerator Control System, Motor power, Safety Requirements of Traction Batteries, EMI-EMC (CI, BCI, RE,RI and CTE).

MODULE V- TESTS FOR HYBRID ELECTRIC VEHICLES, RETRO-

FITMENT AND CHARGING STATION

12

9

Hybrid Electric Vehicles Tests (M and N category), Tests for Hybrid Electric System Intended for Retrofitment on Vehicles of M and N Category (GVW < 3500 kg), Test for Electric Propulsion kit intended for Conversion, Test for Electric Vehicle Conductive AC Charging System, and Test for Electric vehicle conductive DC charging system.

1	"Vehicle Inspection Handbook", American Association of Motor Vehicle Administrators
2	Michael Plint& Anthony Martyr, "Engine Testing & Practice", Butterworth Heinmenn, 3rd ed, 2007
3	Proceedings- Automotive Testing & Certification held on 20th to 24th July 2010 at ARAI PUNE
4	Bosch Automotive Handbook, Robert Bosch, 7th Edition, 2007

COURSE TITLE	IN-	VEHICLE NETWO	RKING	CREDITS	3
COURSE CODE	EEC3724 Course Category		DE	L-T-P-S	3-0-0-1
CIA	50%		ESE		50%
LEARNING LEVEL				BTL-6	

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

S.No	COURSE OUTCOMES	РО
1	Describe about in -vehicle networking	1,2,3,4,5,11,12
2	Explain the different network and communication protocol.	1,2,3,4,5,11,12
3	Explain the different network and communication protocol.	1,2,3,4,5,11,12
4	Describe the flexray protocol	1,2,3,4,5,11,12
5	Describe the latest trends in in-vehicle networking.	1,2,3,4,5,11,12

Prerequisites : : Basics of Electrical Engineering, Automobile engineering and Mechanical engineering

MODULE I - BASICS OF IN-VEHICLE NETWORKING

6

9

9

9

12

Overview of Data communication and networking –need for In-Vehicle networking – layers of OSI reference model –multiplexing and de-multiplexing concepts –vehicle buses.

MODULE II – NETWORKS AND PROTOCOLS

Overview of general-purpose networks and protocols -Ethernet, TCP, UDP, IP,ARP,RARP - LIN standard overview –workflow concept-applications –LIN protocol specification –signals - Frame transfer –Frame types –Schedule tables –Task behaviour model –Network management –status management - overview of CAN –fundamentals –Message transfer – frame types-Error handling –fault confinement-Bit time requirements.

MODULE III- HIGHER LAYER PROTOCOL

Introduction to CAN open –TTCAN –Device net -SAE J1939 - overview of data channels –Control channel-synchronous channel – asynchronous channel –Logical device model – functions-methods-properties-protocol basics- Network section-data transport –Blocks – frames –Preamble-boundary descriptor

MODULE IV– FLEXRAY PROTOCOL

Introduction –network topology –ECUs and bus interfaces –controller host interface and protocol operation controls –media access control and frame and symbol processing – coding/decoding unit – FlexRay scheduling

MODULE V- LATEST TRENDS

Car networking protocols – Networking future trends –Roadmaps –Competitive advantage

1	J.Gabrielleen,"Automotive In-Vehicle Networks", John Wiley & Sons, Limited, 2008
2	Robert Bosch," Bosch Automotive Networking", Bentley publishers, 2007
3	Society of Automotive Engineers, "In-Vehicle Networks", 2002

CURRICULUM AND SYLLABUS M. Tech. Electrical and Electronics Engineering **Specialization in Smart Grid and Electric Vehicle**

4	Ronald K Jurgen, "Automotive Electronics Handbook", McGraw-Hill Inc. 1999
5	Indra Widjaja, Alberto Leon-Garcia, "Communication Networks: Fundamental Concepts and Key Architectures", McGraw-Hill College; 1st edition, 2000
6	Konrad Etschberger, "Controller Area Network, IXXAT Automation", August 22, 2001
7	Olaf Pfeiffer, Andrew Ayre, Christian Keydel, "Embedded Networking with CAN and CANopen", Annabooks/Rtc Books, 2003

COURSE TITLE		EV Batteries & Charging System			CREDITS	3
COURSE CODE		EEC3725	EEC3725 Course Category DE		L-T-P-S	3-0-0-1
	CIA	50%		ESE		50%
LEARNING LEVEL			BTL-6			
S.No		CO	DURSE OUTCOME	2S		РО
1	Elaborate various technical parameters of batteries.					1,2,3,4,5,11,12
2	Distinguish between various types of batteries used for EV applications. 1,2,3,4,5,11					1,2,3,4,5,11,12
3	To develop battery charger for an EV1,2,3,					1,2,3,4,5,11,12
Prerequisites : Basics of Electrical Engineering (or equivalent subject)						
MOD	MODULE I - Battery parameters 6					6

MODULE I - Battery parameters

Cell and battery voltages, Charge (or Amphour) capacity, Energy stored, Energy density, Specific power, Amphour (or charge) efficiency, Energy efficiency, Self-discharge rates, Battery geometry, Battery temperature, heating and cooling needs, Battery life and number of deep cycles

MODULE II – EV Batteries

Lead Acid Batteries					
Lead acid battery basics, Special characteristics of lead acid batteries, Battery life and maintenan					
Battery charging, Summary					
Nickel-based Batteries					
Introduction, Nickel cadmium, Nickel metal hydride batteries					
MODULE III- Sodium, Lithium and Metal air batteries	9				
Sodium-based Batteries					
Introduction, Sodium sulphur batteries, Sodium metal chloride (Zebra) batteries					
Lithium Batteries					
Introduction, The lithium polymer battery, The lithium ion battery					
Metal Air Batteries					

Introduction, The aluminium air battery, The zinc air battery

9

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

MODULE	IV– Charging Infrastructure	9					
Domestic C	Domestic Charging Infrastructure, Public Charging Infrastructure, Normal Charging Station, Occasional						
Charging S	tation, Fast Charging Station, Battery Swapping Station, Move-and-charge z	zone.					
MODULE	E V- EV Charging	12					
Battery Ch	argers: Charge equalisation, Conductive (Basic charger circuits, Microproces	ssor based charger					
circuit. Arr	angement of an off-board conductive charger, Standard power levels of cor	nductive chargers,					
Inductive	(Principle of inductive charging, Soft-switching power converter for ind	luctive charging),					
Battery ind	lication methods						
REFEREN	ICE BOOKS						
1	James Larminie Oxford Brookes University, Oxford, UK John Lowry Ace UK, Electric Vehicle Technology Explained	nti Designs Ltd.,					
2	C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.						
3	3 Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.						
4	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 20	c, Hybrid Electric 04.					
5	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wil	ley, 2003.					

COURSE TITLE		MICRO ELECTRO MECHANICAL SYSTEMS			CREDITS	3
COURSE CODE		EEC3726	EEC3726 Course Category DE		L-T-P-S	3-0-0-1
	CIA	5	0%	ESE		50%
		LEARNING LEVEL			BTL-6	
S.No		С	OURSE OUTCOME	S		РО
1	Attain a broad range of the knowledge required to grow in the evolving field of MEMS and microsystem					1,2,3,4,5,11,12
2	Familiar with the principle and operation of microsensor and microactuator. 1,2,3,4,5,11,1					
3	Select and assess suitable materials for manufacturing MEMS and microsystem. 1,2,3,4,5,11,1					1,2,3,4,5,11,12
4	Describe the different microfabrication and micromachining process. 1,2,3,4,5,11,12					1,2,3,4,5,11,12
5	Describe the different stages of microsystems packaging and packaging 1 materials.					1,2,3,4,5,11,12

Prerequisites : Basics of Electrical Engineering (or equivalent subject)							
MODULE	MODULE I - OVERVIEW OF MEMS AND MICROSYSTEMS 6						
MEMS an Microsyste of Microsy miniaturiza	MEMS and Microsystems–MEMS as micro sensors and micro actuators- MEMS and Microsystem products– Evolution of Microfabrication, Microsystems and MicroelectronicsComparison of Microsystems and microelectronics-Multidisciplinary nature of MicrosystemsMicrosystems and miniaturization- Applications of Microsystems in various industries						
MODULE	II –MICRO SENSORS AND ACTUATORS	9					
Micro ser sensors – motors-Mie	nsors- Bio sensors, Chemical sensors, Optical sensors, Pressure s thermopiles, thermistors. Microactuator - Micro actuation principles-Mi cro valves-Micro pumps- Micro accelerometers-Micro fluidics0020	ensors, Thermal cro gripperMicro					
MODULE	III- MATERIALS FOR MEMS AND MICROSYSTEMS	9					
Substrates crystal Sili Gallium ar	Substrates and wafers – Silicon as a substrate material, ideal substrates for MEMS – single crystal Silicon and wafers crystal structure – mechanical properties of Si –Silicon compounds – Gallium arsenide- quartz – piezoelectric crystals – polymers.						
MODULE	IV-MICROFABRICATION AND MICRO MACHINING	9					
Photolithog Physical Machining	graphy-Ion Implantation-Diffusion-Chemical vapour deposition (CVD)- vapours deposition (Sputtering)-Etching-chemical etching, plasma etch -Surface Micro Machining -LIGA process.	Enhanced CVD- hing-Bulk Micro					
MODULI	E V– MICROSYSTEM PACKAGING	12					
General co system lev sealing - T	General considerations in packaging - Levels of Microsystem packaging – die level, device level and system level – Essential packaging technologies – die preparation, surface bonding, wire bonding and sealing - Three-dimensional packaging, assembly of Microsystems – selection of packaging materials.						
REFEREN	NCE BOOKS						
1	1 Tai-Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata McGraw Hill, New Delhi, 2017.						
2	Mahalik, N. P, MEMS, Tata McGraw Hill, New Delhi, 2007						
3	Julian W. Gardner, Florin Udrea, Microsensors: Principles and Applications, Wiley, 2015.						
4	Michael Kraft and Neil M. White, MEMS for automotive and aerospace applications, Woodhead Publishing Limited, 2013.						
5	Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006						
6	Marc F Madou, Fundamentals of Micro Fabrication, CRC Press, 2nd Edition, 2002						

COURSE TITLE Electric and Hybrid Vehicles CREDITS						3	
COURSE CODE FEC3727 Course Category		РС	L-T-P-S	3-0-0-1			
CIA 50%			ESE 50%				
LEARNING LEVEL BTL-6							
S.No	S.No COURSE OUTCOMES						
1	1 Design electric vehicle & HEV for various applications						
2	Select appro	priate motor and con	verter for EV applicati	ons		1,2,3,4,5,6,11	
3	Select batter	y, battery indication	system for EV applicat	tions		1,2,3,4,5,6,11	
4	Design batte	ery charger for an EV				1,2,3,4,5,6,11	
Prere	quisites : Bas	tic Electrical and Elec	ctronics Engineering				
MOD	ULE I – Intr	oduction to EV & H	IEV			15	
Past, F Techn EV Sy EV Pa	Past, Present & Feature of EV, Current Major Issues, Recent Development Trends, EV Concept, Key EV Technology, State-of-the Art EVs & HEVs, Comparison of EV Vs IC Engine. EV System: EV Configuration: Fixed & variable gearing, single & multiple motor drive, In-wheel drives EV Parameters: Weight, size, force, energy & performance parameters.						
MOD	ULE II – EV	Motor Drive				15	
DC M DC Cł	otor: Type of topper, two qu	wound-field DC Mot uadrant zero voltage t	or, Torque speed chara transition converter-fed	cteristics, D l dc motor dı	C-DC Convertive, speed cor	ter, Two quadrant atrol of DC Motor	
Auxili Speed Sliding	Induction Motor Drive: Three Phase Inverter Based Induction Motor Drive, Equal Area PWM, Three Phase Auxiliary resonant snubber (ARS) Inverter Type (ZVC & ZCS), Single Phase ARS Inverter Topology, Speed Control of Induction Motor, FOC, Adaptive Control, Model Reference Adaptive Control (MARS), Sliding mode Control						
MODULE III– HEV, Energy Sources & Charging						15	
HEV: Configuration of HEV (Series, Parallel, Series-parallel &Complex), Power Flow control, Examples. Power flow control in all HEV configurations, Examples of HEV system performance Energy Sources: Different Batteries , Battery characteristics (Discharging &Charging) Battery Chargers: Conductive (Basic charger circuits, Microprocessor based charger circuit. Arrangement of an off-board conductive charger, Standard power levels of conductive chargers, Inductive (Principle of inductive charging, Soft-switching power converter for inductive charging), Battery indication methods Charging Infrastructure: Domestic Charging Infrastructure, Public Charging Infrastructure, Normal Charging Station, Occasional Charging Station, Fast Charging Station, Battery Swapping Station, Move- and-charge zone.							

1	C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc.,
1	New York 2001

CURRICULUM AND SYLLABUS M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

2	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
3	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
4	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

COURSE TITLE		E	Electric Motors & Control			3
COURSE CODE		EEC3728	EEC3728Course CategoryDEL-T-P-S		L-T-P-S	3-0-0-1
	CIA	5	0%	ESE		50%
		LEARNING LEV	EL		BTL-6	
S.No		C	OURSE OUTCOME	ES		PO
1	Understand requirement of EV motors 1,2,3,4,5,1					1,2,3,4,5,11,12
2	Understand suitability of electric motor & their control1,2,3,4,5,11,					1,2,3,4,5,11,12
3	Understand speed control of Induction motor1,2,3,4,5,1				1,2,3,4,5,11,12	
4	Understand PWM techniques of Inverter for Induction motor1,2,3,4,5,11,1					1,2,3,4,5,11,12
5	Understand different sensors and sensorless operation of motor1,2,3,4,5,11,1					1,2,3,4,5,11,12

Prerequisites : Basics of Electrical Engineering (or equivalent subject)

MODULE I - EV Motors Characteristics and DC motor

Requirement of EV motors, Comparison of EV motors, Basics of DC Motor, Torque speed characteristics, DC Motor dynamics, Field Weakening Control, Four quadrant operation

MODULE II – DC Motor Dynamics & Control

9

9

9

6

Current Loop Control, Speed Control Loop Dynamical System Control: Gain & Phase Margins, PD Controller, PI Controller, Selecting PI Gain for Speed Controller, PI Controller Design, PI Controller with Reference model, Comparison of conventional PI Controller with PI controller with Reference Model, 2 DOF Controller with Internal Model Control, Load Torque Observer, Feedback Linearization, Simplified Modeling of Practical Current Loop

MODULE III- Induction Motor

Rotating Magnetic Field, Basics of Induction motor, Speed-Torque Curve Leakage inductance, circle diagram, current displacement (double cage rotor), line starting, Dynamic modelling of Induction motor

MODULE IV– Induction Motor Speed Control

Rotating Magnetic Field, Basics of Induction motor, Speed-Torque Curve Leakage inductance, circle diagram, current displacement (double cage rotor), line starting, Dynamic modelling of Induction motor, Rotor Field oriented control, Stator Field Oriented Control, Field Weakening Control, Variable Voltage Variable Frequency Control,

MODULE V– PWM and Inverter

12

Sinusoidal PWM, Injection of third order harmonics, Space Vector Modulation, Dead time & compensation, Encoders, Resolvers, R/D Converters, Hall current sensors and current sampling, Voltage Model Estimator, Current Model Estimator, Closed-loop MRAS observer, Sliding Mode Observer.

1	K Wang Hee Nam: AC Motor Control & Electrical Vehicle Application, CR Press, Taylor & Francis Group, 2019
2	C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001
3	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
4	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

COURSE TITLE		Computer Aided	CREDITS	3		
C	OURSE CODE	EEC3729	Course Category	PC	L-T-P-S	3-0-0-1
	CIA	50	%	ESE	5	0%
		LEARNING LEV	EL		BTL-6	
S.No		COU	RSE OUTCOMES			РО
1	Understand	d the importance of com	nputer aided design met	hod.		1,2,3,4,5,11,1 2
2	Create soft Motor	tware-based design of]	DC Motor, Induction M	Aotor & S	pecial Electric	1,2,3,4,5,11,1 2
3	select appr		1,2,3,4,5,11,1 2			
4	Analysis o		1,2,3,4,5,11,1 2			
5	Prepare GU	1,2,3,4,5,11,1 2				
Prerequisites : Basic Electrical and Electronics Engineering						
MOI OPT	MODULE I – CONCEPT OF COMPUTER-AIDED DESIGN AND OPTIMIZATION 12					

Introduction; Computer Aided Design; Explanation of details of flow chart; Input data to be fed into the program; Applicable constraints Max or Minimum permissible limits; Output data to be printed after execution of program; Various objective parameters for optimization in an electrical machine; Selection of optimal design; Explanation of lowest cost and significance of "Kg/KVA"; Flowcharts.

MODULE II – BASIC CONCEPTS OF DESIGN

12

Introduction; Specification; Output coefficient; Importance of specific loadings; Electrical Materials: Conducting Materials, Insulating Materials and Magnetic Materials; Magnetic circuit calculations; General procedure for calculation of Amp-Turns; Heating and Cooling; Modes of heat dissipation; Standard ratings of Electrical machines; Ventilation in rotating machines; Quantity of cooling medium; Types of enclosures; General design procedure; Steps to get optimal design. Application of finite element method in design.

MODULE III- COMPUTER AIDED DESIGN OF DC MACHINES

Introduction; Flowcharts and programs for computer aided design of DC machines. 2D FEM open source software-based DC machine part design

MODULE VI – COMPUTER AIDED DESIGN OF INDUCTION MOTOR AND SPECIAL MACHINES

9

9

COMPUTER AIDED DESIGN OF INDUCTION MOTOR: Introduction; Flowcharts and programs for computer aided design of Induction motor, 2D FEM open source software-based Induction motor part desig COMPUTER AIDED DESIGN OF BLDC, SRM and PMSM motors

1	K M Vishnu Murthy, Computer aided design of electrical machines. B S Publications
2	Dr. M. Ramamoorthy. Computer- Aided Design of Electrical Equipment. Affiliated East-West press Pvt. Ltd. New Delhi.
3	S.K. Sen, Principles of Electrical Machine Design with Computer Programmes. Oxford & IBH Publishing Co.
4	C.G. Veinott, Computer aided design of FHP motors, McGraw Hill Pub. Co.
5	Maurya, Jallan, Shukla, Computer aided design of electrical machines. Kataria publication
6	Ramu Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press.
7	R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and applications, CRC Press
8	K. T. Chau, Electric Vehicle Machines and Drives: Design, Analysis and Application, Wiley Publication.
9	J Reddy, An Introduction to the Finite Element Method. TMH Publication
10	S.J Salon, 'Finite Element Analysis of Electrical Machines', Springer, YesDEE publishers, Indian reprint, 2007.
11	Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor & Francis, 2005.

C	OURSE	Optir	nization Techniques		CREDI TS	3
COURSE		EEC3730	Course Category	РС	L-T-P-S	3-0-0-1
	CIA	50)%	ESE		50%
LEARNING LEVEL BTL-5						
S.No	No COURSE OUTCOMES			РО		
1	Understand	d the importance Optim	ization Techniques			1,2,3,4,5,11,1 2
2	Understand	ding about linear progra	mming in power system	n		1,2,3,4,5,11,1 2
3	To know a	bout genetic algorithm				1,2,3,4,5,11,1 2
4	Analysis o	f particle swarm optimi	zation			1,2,3,4,5,11,1 2
5 To understand about differential evolution						1,2,3,4,5,11,1
Prere	equisites : E	Basic Electrical and Elec	ctronics Engineering			
MOD	ULE I – Fi	undamentals of optimi	ization techniques			12
Definition-Classification of optimization problems-Unconstrained and Constrained optimization- Optimality conditions-Classical Optimization techniques (Lamda Iteration method, Linear programming, Quadratic programming). Brief introduction to lamda iteration method, formulate the Lagrange function, Lamda iteration method to solve Optimal dispatch problem. Introduction to quadratic programming, Working principle, sequential programming, Linear constrained optimization problem, Karush-Kuhn- Tucker conditions and its application to solve various problems. Interior point method, lagrangian duality						
MOD	ULE II – I	Linear programming				12
Examples of linear programming problem, The Simplex Method I, Fundamental theorem of linear programming, Weak and strong duality theorems, Integer programming, Network flow, develop a linear programming model from problem description.						
MOD	ULE III-	Genetic Algorithm				9
Introc Strate	luction to \overline{g}	enetic Algorithm, worki olutionary Programmin	ing principle, Principles g-Genetic Operators-Se	of Genetic A election, Cros	lgorithm- E sover and N	volutionary Autation fitness

function. GA operators; Similarities and differences between GA and traditional methods; Unconstrained and constrained optimization using Genetic Algorithm.

MODULE	VI – Particle Swarm Optimization	9
Fundament	al principle-Velocity Updating-Advanced operators-Parameter selection- Hy	brid approaches
(Hybrid of	GA and PSO, Hybrid of EP and PSO) -Binary, discrete and combinatorial	
MODULE	V- Differential Evolution	
Fundament	al principle, developing DE based solution techniques for OPF problems with	single and
multiple ob	pjectives and comparing the performance and computational effectiveness of	DE with other
evolutionar	y and conventional techniques.	
Application	n of population based optimization techniques in power systems: Algor	rithms and flow
chart of var	ious optimization techniques for solving economic load dispatch and hydro-the	rmal scheduling
problem		
REFEREN	ICE BOOKS	
1	S.S.Rao, Engineering Optimization, 3rd Edition, New Age International (P)	Ltd.
2	Genetic Algorithm – D.E.Goldberg	
3	Principle of soft computing by S.N.Sivanandam & S.N. Deepa	
4	Soft computing Technique and its application in electrical Engineering by C	haturvedi,
5	Optimization on Power System Operation by Jizhong Zhu Wiley-IEEE Press	5.
6	An Introduction to Optimization, 3rd Edition by K.P. Chong, Stanislaw H. Z	ak.

COURSE	VEHICULAR NETWORKS AND	CREDI	3
TITLE	COMMUNICATION	TS	5

C	OURSE CODE	EEC3731	Course Category	PC	L-T-P-S	3-0-0-1		
	CIA	50)%	ESE 50%				
		LEARNING LEV	EL		BTL-5			
S.No		COU	RSE OUTCOMES			РО		
1	1 Understand the importance of Vehicular Networks							
2	2 Understanding about Bus system in vehicular communication							
3	To know a	bout Intelligent Transpo	ortation Systems			1,2,3,4,5,11,1 2		
Prere	Prerequisites : Basic Electrical and Electronics Engineering							
ΜΟΙ	DULE I – V	ehicular Networks				12		
Vehic Bus S Vehic	cular Netwo Systems, Ap cles	rks: Cross-System Func plication In The Vehicle	ctions, Requirements Fo e, Coupling of Network	or Bus Systems s, Examples o	s, Classifica f Networke	ation of ed		
ΜΟΙ	DULE II – I	Bus System				12		
Bus S Diagr	Systems: CA nostic Interf	AN Bus , CAN-FD, LIN aces: Implementation of	Bus, MOST Bus Bluet f Body Electronics Fund	ooth, Flex Ray ctionalities Us	7, ing Contro	llers.		
MOI	DULE III-	Vehicular Communica	ition			12		
Vehic Com Regin Tech	cular Comm nunications ne.V2V, V2 nologies-Me	nunications: Intelligent - Mobile Wireless Com 2I-VANET-WAVE;DSF edium Access For Vehic	Transportation System munications And Netwo RC. Information In The cular Communications-	s: IEEE 802.1 orks- Architect Vehicle Netwo SecurityAppli	1p-ITS-IV ture Layers orkRouting cations An	C: InterVehicle Communication g-Physical Layer d Case Studies.		
REF	ERENCE F	BOOKS						
	1 Dom Safe	ninique Paret, "Multiple -by-Wire", Wiley,2007.	xed Networks for Embe	edded Systems	: CAN, LI	N, FlexRay,		
	2 Dom Seco	ninique Paret, "FlexRay and Edition, Wiley,2012	and its Applications: R	eal Time Mult	iplexed Ne	etworks",		
	3 Pope Sprin	escu-Zeletin R, Radusch nger,2010.	I and Rigani M.A, "Ve	ehicular-2-X C	communica	tion",		
2	4 Xiang W, "Wireless Access in Vehicular Environments Technology", Springer, 2015							
	5 Laur Vehi	n T.H, Shen X.(Sherman icular AdHoc Networks	n) and Bai F, "Enabling ", Springer, 2014	Content Distr	ibution in			

CC C	OURSE CODE	EEC3732	Course Category	PC	I	2-T-P-	S	3-0-0-1
	CIA	5	0%	ESE			50%	
	LEARNING LEVEL BTL-4							
S.No		(COURSE OUTCOM	ES				PO
1	Discuss about the different types of energy storage system.						1,2,3,4,5,6,11	
2	Describe	about the battery ch	aracteristic & parame	eters.				1,2,3,4,5,6,11
3	Analyse	different types of ba	tteries.					1,2,3,4,5,6,11
4	4 Apply the concepts of battery management system and design 1,2,3,4,5,6,11 the battery pack.							
5 Explain about the battery testing, disposal and recycling.						1,2,3,4,5,6,11		
Prerequisites : Basic Electrical and Electronics Engineering								

MODULE I – ENERGY STORAGE SYSTEM

9

Batteries: Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium based batteries – Li-ion & Li-poly, Metal Air Battery, Zine Chloride battery; Ultra capacitors; Flywheel Energy Storage System; Hydraulic Energy Storage System; Comparison of different Energy Storage System **Suggested reading**: Study of different types of batteries

MODULE II – BATTERY CHARACTERISTICS & PARAMETERS

9

Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parametersHeat generation- Battery design-Performance criteria for Electric vehicles batteries- Vehicle propulsion factors- Power and energy requirements of batteries- Meeting battery performance criteria- setting new targets for battery performance.

MODULE III- BATTERY MODELLING

General approach to modelling batteries, simulation model of a rechargeable Li-ion battery, simulation model of a rechargeable NiCd battery, Parameterization of the NiCd battery model, Simulation examples.

MODULE IV- BATTERY PACK AND BATTERY MANAGEMENT SYSTEM

9

9

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.

MODULE V– BATTERY TESTING, DISPOSAL & RECYCLING

9

Chemical & structure material properties for cell safety and battery design, battery testing, limitations for transport and storage of cells and batteries, Recycling, disposal and second use of batteries. Battery Leakage: gas generation in batteries, leakage path, leakage rates. Ruptures: Mechanical stress and pressure tolerance of cells, safety vents, Explosions: Causes of battery explosions, explosive process, Thermal Runway: High discharge rates, Short circuits, charging and discharging. Environment and Human Health impact assessments of batteries, General recycling issues and drivers, methods of recycling of EV batteries.

1	Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017. (ISBN: 978-1-1193-2185-9)
2	Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec Way", Springer, 2018. (ISBN: 978-3-319-70571-2)
3	Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.
4	Chris Mi, Abul Masrur& David Wenzhong Gao, "Hybrid electric Vehicle- Principles & Applications with Practical Properties", Wiley, 2011.
5	G. Pistoia, J.P. Wiaux, S.P. Wolsky, "Used Battery Collection and Recycling", Elsevier, 2001. (ISBN: 0-444-50562-8)"
6	T R Crompton, "Battery Reference Book-3 rd Edition", Newnes- Reed Educational and Professional Publishing Ltd., 2000.
7	James Larminie, John Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd, 2003.
8	G. Pistoia, J.P. Wiaux, S.P. Wolsky, "Used Battery Collection and Recycling", Elsevier, 2001. (ISBN: 0-444-50562-8)"

COURSE		POWER SYSTEM PLANNING AND			CREDITS	3	
TIT	LE		RELIABILITY				
CO	URSE	EEC373	COURSE	DE	L-T-P-S	3-0-0-1	
COI	DE	3	CATEGORY				
CIA	L		50%		ESE	50%	
LEA	ARNING]	BTL-5			
LEV	'EL						
С	COURSE OUTCOMES					PO	
0							
1	Able to anal	yse and eval	uate Planning and forecastir	ıg.		2,3,4,5	
2	Able to eval	uate the relia	ability in Generation.			2,3,4,5	
3	Able to eval	uate the relia	ability in Transmission.			2,3,4,5	
4	Able to anal	yse and eval	uate interconnected and Dis	tribution	n system.	2,3,4,5,12	
5	Able to anal	yse and eval	uate expansion Planning.			2,3,4,5,12	
Prei	Prerequisites : Power system analysis, Power system transmission and distribution, Matrices,						
Probability and Calculus.							
MO	MODULE 1 – PLANNING AND FORECASTING						
(9L	(9L)						

Objectives of planning – Long and short term planning - Load forecasting – characteristics of loads – methodology of forecasting – energy forecasting – peak demand forecasting – total forecasting – annual and monthly peak demand forecasting.

Suggested Reading: Use of AI in load forecasting.

Applications: Load forecasting using NN

MODULE2–CONCEPTS OF RELIABILITY AND RELIABILITY IN GENERATION (9L)

Reliability concepts – exponential distributions – meantime to failure – series and parallel system – MARKOV process – recursive technique. Generator system reliability analysis – probability models for generators unit and loads – reliability analysis of isolated and interconnected system – generator system cost analysis.

Suggested Reading: – corporate model – energy transfer and off peak loading.

MODULE 3- TRANSMISSION SYSTEM AND RELIABILITY ANALYSIS

(9L)

Transmission system reliability model analysis – average interruption rate - LOLP method - frequency and duration method - Sub transmission lines and distribution substations- -Design primary and secondary systems

Suggested Reading: Fuzzy load flow probabilistic transmission system reliability analysis.

MODULE 4– INTERCONNECTED SYSTEMS

(9L)

Two plant single load system - two plant two load system - load forecasting uncertainty - Interconnections benefits- Introduction to system modes of failure – the loss of load approach – frequency & duration approach.

Suggested Reading: spare value assessment – multiple bridge equivalents

MODULE 5– EXPANSION PLANNING

(9L)

Basic concepts on expansion planning-procedure followed for integrate transmission system planning, current practice in India-Capacitor placer problem in transmission system and radial distributions system

Suggested Reading: distribution system protection and coordination of protective devices.

Т	EVT DAAKS
1	EATBOOKS
1	Sullivan, R.L., 'Power System Planning', Heber Hill, 1987.Digitized 5 August 2011
2	Roy Billington, Ronald L Allan, 'Reliability Evaluation of Power System', Springer USA, 1996
3	Eodrenyi, J., 'Reliability Modelling in Electric Power System' John Wiley, 1980.
REI	FERENCE BOOKS
1	Knight, U.G., Power System Engineering and Mathematics, Pergamum Press (1972), Reprint 2011
2	X. Wang & J.R. McDonald, "Modern Power System Planning", McGraw Hill Book
	Company,1994.
3	Hossein Seifi, Mohammad Sadegh Sepasian Electric,' Power System Planning Issues, Algorithms
	and Solutions', Springer, 2011
4	Roy Billington, 'Power System Reliability Evaluation', Gordan & Breach Scain Publishers, 1990
5	Pabla, A.S., Electric Power Distribution, Tata McGraw-Hill (2008)
ΕB	OOKS
1	Hossein Seifi, Mohammad Sadegh Sepasian Electric,' Power System Planning Issues, Algorithms
	and Solutions', Springer, 2011

2	Roy Billington, Ronald L Allan, 'Reliability Evaluation of Power System', PLENUM PRESS •
	NEW YORK AND LONDON,
MO	OC
1	PDH online Course E485 (2 PDH) Basic Reliability Analysis of Electrical Power Systems Velimir
	Lackovic, MSc EE, P.E.
2	NTNU ET8207 - Power System Reliability
3	Gerorgia Tech SECE ECE6322Power System Planning and Reliability.

CO	URSE TITLE	POWER	SYSTEM AUTOMAT	ION	CREDITS	3
CO	URSE CODE	EEC3734	COURSE	DE	L-T-P-S	3-0-0-0
			CATEGORY			
CIA	L		50%		ESE	50%
LEA	ARNING			BTL-4	•	
LEV	EL					
C O	COURSE OUTCOMES					РО
1	To understand the concepts of power system automation.					2,3,4,5
2	To understand	d the compone	ents of SCADA systems.			2,3,4,5
3	To comprehe	nd the RTU, I	ED and other component	ts of aut	omation systems	2,3,4,5
4	To understand	d the transfer	of signals from the field	to an op	erator control terminal.	2,3,4,5
5	To design an	interoperable	powers automation syste	m.		2,3,4,5,12
Pre	requisites : Bas	sic Knowledge	e of Transmission & Dist	ribution	systems and Measuring	Instruments
MO (9L)	DULE 1-INTR	RODUCTION	N TO SCADA			
Evo	lution of Autom	nation systems	History of Power system	n Autor	nation Supervisory Cont	rol And Data
Aca	uisition(SCADA	A) Systems. (Components of SCADA	system	s. SCADA Applications	SCADA in
pow	er systems. SCA	DA basic fun	ctions, SCADA applicati	on func	tions in Generation. Tran	smission and
Dist	ribution.		rr		· · · · · · · · · · · · · · · · · · ·	
Sug	gested Reading	g: SCADA ba	sed protection system			
App	lications: Com	prehensive or	perational planning and c	ontrol, l	Network security, Econor	mic dispatch
MC	DULE 2-SCA	DA SYSTEM	I COMPONENTS		•	•
(9L)						
Adv	antages of SCA	ADA in Powe	r Systems, The Power s	ystem '	Field', Types of data &s	ignals in the
Pow	er system, Flow	v of Data from	n the field to the SCADA	A Contro	ol center. Building block	s of SCADA
syste	ems, Classificat	ion of SCADA	A systems.			
Sug	gested Reading	g: Operation a	nd control of interconnec	cted pov	ver system	
MO	DULE 3-FEAT	FURES OF R	RTU			
(9L)						
Ren	note Terminal	Unit (RTU),	Evolution of RTUs, Co	mponer	nts of RTU, Communica	ation, Logic,
Tern	Termination and Test/HMI Subsystems, Power supplies, Advanced RTU Functionalities.					
Sug	Suggested Reading: Microcontroller based RTU for distribution automation system					
App	lications: RTU	for Distribut	ion Automation and Subs	station I	Monitoring applications	
MO	DULE 4-COM	IMUNICATI	ON SYSTEM STANDA	ARDS F	FOR SCADA	
(9L)						

Intelligent Electronic Devices (IEDs), Evolution of IEDs, IED functional block diagram, The hardware and software architecture of IED, IED Communication subsystem, IED advanced functionalities, Typical IEDs, Data Concentrators and Merging Units, SCADA Communication Systems.

N	10	DULE 5-FEAT	TURES OF	HMI				
(9	PL)							
Ν	Master Station, Master station software and hardware configurations, Server systems in the master							
st	atio	on, Small, med	ium and larg	ge master station con	figuration	s, Global Positioning Syst	ems, Master	
st	atio	on performance	, Human M	achine Interface (HI	MI), HMI	components, Software fur	nctionalities,	
Si	itua	tional awarenes	ss, Case stud	ies in SCADA.				
S	ug	gested Reading	SCADA S	imulation of a distrib	uted generation	ation system		
A	pp	lications: Utilit	ty application	1 <u>S</u>				
L	Αŀ	B / MINI PRO	JECT/FIEL	D WORK				
Ir	ntro	duction to elect	trical Superv	isory Control & Data	Acquisitio	on (eSCADA) using ETAP		
		EXT BOOKS			~ ~			
]	L	Mini S. Thom	as, John D M	IcDonald, Power Sys	tems SCA	DA and Smart Grid, CRC I	Press, Taylor	
		and Francis, 2	015.					
2	2	Electric Powe	r Substation	Engineering John D.	Mc Donal	d CRC Press, Taylor and F	rancis, 2012.	
R	EF	ERENCE BO	OKS					
]	l	Control and A	utomation of	f Electrical Power Di	stribution s	systems, James North cote-	Green, R	
		Wilson, CRC	Press, Taylo	r and Francis, 2006.				
2	2	Electric Powe	r Distributio	n, Automation, Protec	ction and C	Control, James Momoh, CR	C press,	
		Taylor and Fra	ancis, 2008.					
3	3	Biswarup Das	, Power Dist	ribution Automation,	IET, 2016).		
E	B	OOKS						
]	l	https://epdf.tips	/queue/electri	c-power-distribution-a	utomation-p	protection-and-		
		controla630f51	c023e86aff60	3a2bad92c5f6e35450.h	ıtml			
2	2	https://epdf.tips	/queue/contro	ol-and-automation-of-el	lectrical-pov	wer-distribution-systems.html		
3	3	https://epdf.tips	/queue/autom	ation-in-electrical-pow	ver-systems.	html		
N	10	OC						
]	l	https://nptel.ac.	in/courses/10	8106022/11				
2	2	https://www.u	demy.com/to	opic/scada/				
3	3	https://www.tru	1.ca/distance/c	courses/wttp2311.html		F		
	CC	DURSE	ENE	RGY AUDITING A	ND	CREDITS	3	
	ΓΓ	TLE		MANAGEMENT				
	CC	DURSE	EEC373	COURSE	D	L-T-P-S	3- 0- 0-	
	CO	DE	5	CATEGORY	E		1	
	CL	A		50%		ESE	50%	
	LE	ARNING			BTL	- 4		
]	LE	VEL						
	C			COURSE OUTC	OMES		PO	
	0							
	1	Assess the end	ergy manage	ment on various elect	trical equip	oment and metering	2,3,4,5,12	
	2	Adopt Conser	vation metho	ods in various system	s.		2,3,4,5,12	
	3	Learn various	technically	proven ways to conse	erve Energy	y and then prioritize them	2,3,4,5,12	
		based on the c	ost benefit a	nalysis				
	4	Illustrate the concept of lighting systems and cogeneration. 2,3,4,5,12						

Prerequisites : Nil
MODULE 1 INTRODUCTION (9L)
Need for energy management - energy basics- designing and starting an energy management program
- energy accounting -energy monitoring, targeting and reporting-energy audit process.
Suggested Reading: Study of energy audit report
MODULE 2 ENERGY COST AND LOAD MANAGEMENT (9L)
Important concepts in an economic analysis - Economic models-Time value of money- Utility rate
structures- cost of electricity-Loss evaluation- Load management: Demand control techniques-Utility
monitoring and control system-HVAC and energy management-Economic justification.
Suggested Reading: Analysis of different economic models
MODULE 3 ENERGY MANAGEMENT FOR MOTORS, SYSTEMS, AND ELECTRICAL
EQUIPMENT (L9)
Energy efficient motors, factors affecting efficiency, loss distribution, constructional details,
characteristics - variable speed, variable duty cycle systems, RMS hp- voltage variation-voltage
unbalance- over motoring- motor energy audit. Transformer Loading/Efficiency analysis, Feeder/cable
loss evaluation, case study. Reactive Power management-Capacitor
Sizing-Degree of Compensation-Capacitor losses-Location-Placement-Maintenance.
Suggested Deading: Sovings calculation often implementing the above methods
Suggested Reading: Savings calculation after implementing the above methods (01)
Relationships between parameters Units of measure Typical cost factors Utility meters. Timing of
meter dise for kilowett measurement. Demend meters. Derelleling of current transformers. Instrument
meter disc for knowau measurement - Demand meters - Paranening of current transformers - instrument
transformer burdens-Multitasking solid-state meters – Metering location vs. requirements
Suggested Reading: Metering techniques and practical examples
MODULE 5 LIGHTING SYSTEMS & COCENEDATION (0L)
Concept of lighting systems - The task and the working space - Light sources - Ballasts Luminaries -
Lighting controls-Ontimizing lighting energy - Power factor and effect of harmonics on power quality
- Cost analysis techniques-Lighting and energy standards
Concentration. Former, of accompanyion fossibility of accompanyion Electrical
interconnection
Suggested Reading: Electrical Design of Buildings
TEXT BOOKS
1 Amit K. Tyagi, Handbook on Energy Audits and Management, TERI, 2003.
2 Barney L. Capehart, Wayne C. Turner, and William J. Kennedy.
Guide Energy Management, Fifth Edition, The Fairmont Press, Inc., 2006
3 Energy management by W.R. Murphy & G. Mckay Butter worth, Heinemann publications. 2016
REFERENCE BOOKS
 Energy efficient electric motors by John .C. Andreas, Marcel Dekker Inc Ltd-2nd edition, 1995
2 Energy management by Paul o' Callaghan, Mc-graw Hill Book company-1st edition, 1998
E BOOKS
1 Wayne C. Turner, "Energy Management Handbook" The Fairmont Press, 2001

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

2	http://www.em-ea.org/guide%20books/book-				
	/1.3%20energy%20management%20&%20audit.pdf				
Μ	MOOC				
1	https://www.coursera.org/learn/energy-101				
2	https://www.coursera.org/learn/future-of-energy				

COU	U RSE	DISTRIB	UTED GENERATION	AND	CREDITS	3		
	IDSE	FEC373		DF	ΙΤΡς	3001		
CODE		6 EEC575	CATEGORY	DE	L-1-1-5	5-0-0-1		
CIA		0	50%		ESE	50%		
	RNING		0070	BTL-4	4	2070		
LEV	EL				-			
С			COURSE OUTCOM	ES		РО		
0								
1	Understand	the current	scenario of Distributed	Gener	ration and the need to	2,3,4		
2	Investigate	the different	types of RES as DGs			234		
3	Appraise th	e grid integ	ration interfaces and te	chnica	l impacts of DGs upon	2,3,4,5		
5	transmission	and distribu	ition systems	, ennieu	i impacts of 2 cs upon	2,0,1,0		
4	Analyze the	aspects of P	ower Quality and Reliabil	lity.		3,4,5,12		
5	To understa	nd comprehe	ensively about different ty	pes of S	Storage systems.	3,4,5,12		
Prer	requisites : Th	ne students a	re preferred to have a bas	ic knov	vledge in Power System .	Analysis and		
Distr	ibutionSysten	ns						
MO	DULE 1 – IN	TRODUCT	ION, PLACING AND S	SIZING	THE DISTRIBUTED	ENERGY		
RES	OURCES (9	PL)						
Nee	ed for Distribu	ted generation	on, renewable sources in d	istribut	ed generation, current			
scer	ario in Distrit	outed Genera	tion, Planning of DGs – S	iting a	nd sizing of DGs –			
opti	mal placemen	t of DG sour	ces in distribution system	s.				
Sug	gested Read	ng: Detailed	study of Renewable Ener	rgy Sou	rces			
Ap	plications: 51	ing and Sizi	ng of DGs using ETAP					
(9L)	DULE 2 –KE		ENERGI SUURCES					
Win	nd Power-Pho	tovoltaic and	Thermo-solar power-Bio	mass P	ower, Fuel cells types,			
type	es of Tidal pov	ver generatio	on schemes, mini and micr	o hydro	power schemes.			
Sug	gested Readir	ng: Micro tur	bines for DG, bulb and tu	bular tu	urbines-			
MO	DULE 3 –GR	ID INTEGI	RATION, INTERFACE	ES AN	D IMPACTS OF DGS			
(9L)								
Gri	d integration of	of DGs – Dif	ferent types of interfaces -	Invert	er based DGs -			
Agg	Aggregation of multiple DG units. – Transmission systems, Distribution systems, De-							
regu	regulation – Impact of DGs upon protective relaying							
Sug	Suggested Reading: Rotating machine based interfaces							
MO	DULE 4 – PC	OWER QUA	LITY AND RELIABIL	ITY IN	DER			
(9L)								
Vol	tage control to	echniques, R	eactive power control, Ha	rmonic	s, Power quality issues.			
Reli	ability of DG	based system	ns - Steady-state and Dyn	amic a	nalysis.			
Sug	Suggested Reading: Various aspects of Operations							

N	10DULE 5 –ENERGY STORAGE AND CONTROL TECHNIQUES							
(9	PL)							
E	nergy Storage for use with Distributed Generation-Battery Storage, Capacitor Storage,							
ul	ultra-capacitors and Mechanical Storage: Flywheels, Pumped and Compressed Fluids.							
C	ontrol Techniques for DER integration systems- Standards and codes for							
in	terconnection- future structure of grid.							
S	uggested Reading: Various aspects such as Market Management Retailing, Trading							
ar	nd Ancillary Services							
LA	AB / MINI PROJECT/FIELD WORK							
Si	mulation in ETAP/HOMER							
TE	XT BOOKS							
1	"Distributed Power Generation, Planning & Evaluation" by H. Lee Willis & Walter G. Scott,							
	2000 Edition, CRC Press Taylor & Francis Group.							
2	"Renewable energy power for a sustainable future" by Godfrey Boyle ,2004 Oxford University							
	Press in association with the Open university.							
3	Godoy Simoes, Felix A.Farret, 'Renewable Energy Systems – Design and Analysis with Induction							
	Generators', CRC press.							
4	Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.							
R	EFERENCE BOOKS							
1	Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson 'Facility Microgrids', Subcontract report, May							
	2005,							
2	Mohammad Shahid ehpour, M. Alomoush, Restructured Electrical Power Systems: Operation:							
	Trading, and Volatility, CRC Press, 2001							
3	N. Jenkins, J.B. Ekanayake and G. Strbac, Distributed Generation, The Institution of Engineering							
	and Technology,2010							
4	S. Chowdhury, S.P. Chowdhury and P. Crossley,' Microgrids and Active Distribution Networks',							
	The Institution of Engineering and Technology							
E	BOOKS							
1	N. Jenkins, J.B. Ekanayake and G. Strbac, Distributed Generation, The Institution of Engineering							
	and Technology,2010							
2	S. Chowdhury, S.P. Chowdhury and P. Crossley,'Microgrids and ActiveDistribution Networks',							
	The Institution of Engineering and Technology							
Μ	00C							
1	Micro grid, Course era .							
2	Introduction to Smart Grid, NPTEL online							
3	Solar Energy: Integration of Photovoltaic Systems in Microgrids, EDX							
4	Distributed Energy - Smart Grid Resources for the Future, EDX							

COURSE	PHOTOVOLTAIC AND FUEL	CREDITS	3
TITLE	CELL SYSTEMS		

CO	URSE CODE	EEC374	COURSE	OE	L-T-P-S	3-0-0-1			
СІА		1	50%		FSF	50%			
T	EARNING		5070	BTL	-5	5070			
	LEVEL								
С	C COURSE OUTCOMES								
0)								
1	1 Understand and analyse the fundamental concepts of solar PV systems								
2	Design a solar	r PV power p	plants and its component	S		2,3,4,5,12			
3	Understand an	nd analyse th	e fundamental concepts	of fuel	cells	2,3,4,5,12			
Pre	requisites : Nil								
MO	DULE 1 - SOL	LAR PV SYS	STEMS						
(L12	2)								
Fun	damentals of sol	lar cell, semic	conductors as basis for sc	lar cells	s materials and properties, P	-N junction,			
sour	ces of losses and	d prevention,	estimating power and en	ergy de	mand, site selection, land re	equirements,			
choi	ce of modules,	, economic	comparison, balance o	f syste	ms, off grid systems, gri	d interface,			
Sup	porting structure	es, mounting	g and installation, batter	y stora	ge, power condition unit,	selection of			
cabl	es and balance	of systems,	planning with software,	mainte	nance and schedule, Moni	toring, Data			
Mar	agement, Perfor	rmance Anal	ysis and Financial Analy	vsis					
M	DDULE 2 - SOI	LAR PV PO	WER PLANTS						
(L12	2)								
Arra	ay design, inve	rter types a	nd characteristics, Pow	er conc	litioning system: working	algorithms,			
perf	ormance analysi	is; design of	standalone, hybrid and g	grid inte	eractive plants, commission	ing of solar			
	plant					(1.10)			
	DULE 3 - FUE		2 1			(L12)			
The	rmodynamics o	of fuel cells;	free energy change an	d cell	potentials; effects of temp	berature and			
pres	sure on cell p	otential; ene	rgy conversion efficier	ncy; fac	ctors affecting conversion	efficiency;			
pola	rization losses; i	important typ	bes of fuel cells (hydroge	n-oxyg	en, organic compounds-oxy	/gen, carbon			
or (carbon monoxi	de-air, nitro	gen compounds-air); e	electroa	e types; electrolytes for	ruel cells;			
1 E.	Choton Singh	Solonki Sol	ar Photovoltaia Tachnol	ogy An	d Systems: A Manual For 7	Fachnicians			
1	Trainers And	Fngineers DL	III earning Dut I the Na	ogy All w Dolh	a systems. A manual FOL a a 110092 2013	i connotans,			
2	A K Mukerie	e Nivedita'	Thakur Photovoltaic Sve	stems. 4	Analysis And Design Phi I	earning Put			
-	Ltd. New Del	hi 110001 2	011	,	1111 1000 1111 10001 2011, <u>1 111 1</u>	<u>vanni<u>s</u> i vi.</u>			
3	Shrinad T Re	vankar. Prad	in Majumdar, Fuel Cells	Princip	oles. Design And Analysis	CRC Press			
	2014	, unitar, 1 1uu			2100, 2001Gil, 1 ma 1 mary 510,	<u></u> ,			
4	N.K. Bansal	Non-Conven	tional Energy Resources	. Vikas	Publishing House Pvt Ltd	. New Delhi			
.	2014								
RE	REFERENCE BOOKS								
1	1 Roger A. Messenger, Amir Abtahi, Photovoltaic Systems Engineering .4th Edition. CRC Press.								
	2017 (ISBN 9781498772778 - CAT# K29524)								
2	Michael Boxy	well , Solar E	lectricity Handbook - 2	015 Edi	tion: A simple, practical g	uide to solar			
	energy - des	signing and	installing solar PV	system	s.Green Stream Publishi	ng, United			
	Kingdom,201	5	2	-		-			
3	B. Viswanatha	an, <u>M. Aulic</u>	e Scibioh, Fuel Cells: P	rinciple	es and Applications, Taylo	or & Francis			
	Group, 2007			-	*				

CURRICULUM AND SYLLABUS

ΕB	E BOOKS						
1	https://courses.edx.org/c4x/DelftX/ET.3034TU/asset/solar_energy_v1.1.pdf						
2	http://unesdoc.unesco.org/images/0013/001332/133249e.pdf						
MO	MOOC						
1	https://online.stanford.edu/courses/matsci256-solar-cells-fuel-cells-and-batteries-materials-						
	energy-solution						
2	https://www.mooc-list.com/course/solar-energy-photovoltaic-pv-systems-edx						
3	https://www.coursera.org/lecture/energy-environment-life/fuel-cells-and-hydrogen-economy-						
	c0VKy						

COURSE		WIND AND HYDRO ENERGY CREDITS		3		
TITLE			SYSTEMS			
COURSE CODE		EEC374	COURSE	OE	L-T-P-S	3-0-0-1
		2	CATEGORY			
	CIA		50%		ESE	50%
L	EARNING			BTL	-4	
	LEVEL					
С	COURSE O	UTCOMES				PO
0						
1	Understand an	nd analyse th	e fundamental concepts	wind en	nergy power generation	2,3,4,5,12
2	Understand an	nd analyse th	e operation and control	of wind	energy converter	2,3,4,5,12
3	Understand an	nd analyse th	e concepts and compone	ents of h	ydro power generation	2,3,4,5,12
Pre	requisites : Nil					
MC	DULE 1 - WIN	ND ENERGY	Y			(12L)
Bas	ics :Status, Adv	antages and	disadvantages of wind e	nergy sy	ystems, Advantages and di	sadvantages,
Тур	es of wind ener	gy converter	s, local Effects on wind	, site se	election: roughness length,	wind shear,
Win	d Speed Variabi	ility, Obstacl	es to wind flow,			
Wo	rking principles	of wind ene	ergy: Energy content in	wind, H	Energy Conversion at the	Blade, Wind
vari	ations: Weibull	distribution.				
M	DDULE 2 - CO	MPONENT	S , OPERATION AND	CONT	FROL OF A WIND ENE	RGY
CO	NVERTER (12	2L)				
Cor	nponents of a v	wind energy	converter: Rotor Blade	s, Gear	boxes, Synchronous or A	synchronous
Gen	erators, Towers,	, Miscellaneo	ous components, Turbine	e Selecti	ion	
Ope	ration and Cont	trol of Wind	Energy Converters: grid	l require	ements, Issue of Noise and	l Its Control,
Pow	er Curve and Ca	apacity Facto	or, Pitch control, Stall Co	ontrol, Y	aw Control	
MODULE 3 - HYDRO POWER (12L)						
Hyc	lropower basics:	Water Cycle	e in Nature, Classificatio	n of Hy	dropower Plants, Status of	Hydropower
Wor	Worldwide, Advantages and Disadvantages of Hydropower, Operational Terminology, Legal					
Requirements						
Wo	rking principles	: Locating a	Hydropower Plant, Basi	cs of Fl	uid Mechanics for hydro p	ower, single
and	multiple reserve	oir system, ca	scaded power plants			_

Important Parts of Hydropower Station: Turbine, Electric Generator, Transformer and Power House, Structural parts: Dam and Spillway, Surge Chambers, Stilling Basins, Penstock and Spiral Casing, Tailrace, Pressure Pipes, Caverns, auxilliary parts.

Hydraulic turbines: Classification of Hydraulic Turbines, Theory of Hydro Turbines: Francis, Kaplan, Pelton turbines, efficiency and selection of turbine

TE	XT BOOKS							
1	Nag P K. Power Plant Engineering, 3rd Edition, Tata McGraw Hill, 2008							
2	Jain P. Wind Energy Engineering. McGraw-Hill 2011							
3	Wagner H. Mathur J. Introduction to Hydro energy Systems : Basics, Technology and							
	Operation, Springer, 2011							
4	Bansal RK. A textbook of fluid mechanics and hydraulic machines. Laxmi Publications, 20							
	05, New Delhi							
RE	FERENCE BOOKS							
1	Johnson GL. Wind Energy Systems, (Electronic Edition), Prentice Hall Inc, 2006							
2	Mathew S. Wind Energy: Fundamentals, Resource Analysis and Economics. Springer, 2006							
3	Hussian Z. Abdullah MZ. Alimuddin Z. Basic Fluid Mechanics and Hydraulic							
	Machines. CRC Press, 2009.							
EB	OOKS							
1	https://nptel.ac.in/courses/108105058/24							
2	https://nptel.ac.in/courses/108108078/6							
3	https://www.nrel.gov/docs/fy13osti/54909.pdf							
4	https://www.usbr.gov/power/edu/pamphlet.pdf							
5	https://ieeexplore.ieee.org/document/6533416							
MO	OC							
1	http://www1.rmit.edu.au/courses/045838							
2	https://www.coursera.org/lecture/electric-utilities/1-7-renewables-hydroelectric-and-wind-							
	B3YMk							

COURSE TITLE		BIOMA	SS ENERGY SYSTE	MS	CREDITS	3
COURSE CODE		EEC3743	COURSE	OE	L-T-P-S	3-0-0-1
			CATEGORY			
	CIA		50%		ESE	50%
Ι	EARNING			BTI	4	
	LEVEL					
С	COURSE OU	TCOMES				PO
0						
1	Understand the	fundamental	concepts of Biomass			1,2,3,4,5,12
2	analyse the ope	ration and co	ontrol of biomass and b	oiogas		1,2,3,4,5,12
3	Understand and	analyse the	industrial and power g	eneratio	on aspects of biomass	1,2,3,4,5,12
Prei	equisites : Nil					
MODULE 1 - BIOMASS RESOURCE (L12)						
Characteristics of Biomass fuel, technologies for using biomass, comparison of direct combustion with						
other technologies						
MODULE 2 - BIOMASS CASIFIERS AND INDUSTRIAL USE OF BIOMASS						

MODULE 2 - BIOMASS GASIFIERS AND INDUSTRIAL USE OF BIOMASS (L12)

Bio	mass Gasifiers: Basics of Gasification and types of Gasifiers, Thermodynamic Analysis Biogas								
Tech	echnology, Sizing/Selection and design of Gasifiers,								
Indu	Industrial use of biomass: Industrial Boilers, biomass as fuel, co-firing and co-generation,								
Eco	nomic analysis, Testing and Performance Evaluation of Gasifiers, Use of biomass for liquid fuel,								
Bior	nass policy								
MO	DULE 3 - BIOGAS (L12)								
Тур	es of biogas plants, design and performance analysis, application of biomass								
TE	XT BOOKS								
1	Biomass Assessment Handbook - Bioenergy for a sustainable environment, Edited by Frank								
	Rosillo-Calle, Sarah Hemstock, Peter de Groot and Jeremy Woods, Earthscan November 2006								
2	Success & Visions for Bioenergy: Thermal processing of biomass for bioenergy, biofuels and								
	bioproducts, Edited by A V Bridgwater, CPL Press September 2007.								
REI	FERENCE BOOKS								
1	Alternate Energy: Assessment & Implementation Reference Book, James J Winebrake, Springer								
	January 2007.								
2	Biofuels - Securing the Planet's Future Energy Needs, Edited by A Demirbas Springer 2009.								
3	Energy Technology and Directions for the Future, John R. Fanchi, Elsevier Science February 2004								
ΕB	OOKS								
1	https://nptel.ac.in/courses/108108078/7								
2	https://nptel.ac.in/downloads/108108078/								
3	http://www.cigr.org/documents/CIGRHandbookVol5.pdf								
4	https://www.crcpress.com/Principles-of-Sustainable-Energy-Systems-Third-Edition/Kutscher-								
	Milford-Kreith/p/book/9781498788922								
5	https://link.springer.com/referencework/10.1007/978-1-4614-5820-3								
MO	OC								
1	https://www.edx.org/course/sustainable-energy-design-a-renewable-future								

COURSE TITLE		Artificial Net	tificial Neural Network & Fuzzy Logic Applications		CREDITS	3
COURSE CODE		EEC3744	EEC3744 Course Category DE		L-T-P-S	3-0-0-1
(CIA	50)%	ESE	50%	
		LEARNING LEV	EL		BTL-6	
S.No	O COURSE OUTCOMES				PO	
1	Understand how the soft computing techniques can be used for solving the problems of power electronics and motor drives essential for electrical or hybrid vehicle.					
2	Apply A vector dr	1,2,3,4,5,11,12				
3	Apply the identification of the identificati	1,2,3,4,5,11,12				
4	Design o	1,2,3,4,5,11,12				

M. Tech. Electrical and Electronics Engineering Specialization in Smart Grid and Electric Vehicle

5 De ele	velop and evaluate control systems required in operations of power ctronics equipment.	1,2,3,4,5,11,12				
Prerequisites : Basics Mathematics with computer language programming.						
MODULE I - Introduction 6						
The AI Problems, The Underlying Assumption, AI Techniques, Difference between soft computing techniques and hard computing systems, Expert systems brief history of ANN and Fuzzy Logic.						
MODULI	E II – Artificial Neural Network	9				
Introduction, History of neural network research, Basic concepts of Neural Networks, Human brain, Model of Artificial Neuron, Neural Network architectures, Perceptron, Single layer feed forward Network, Multi layer feed forward network, Recurrent networks (RNN), Feedback networks and Radial Basis Function Networks, Characteristics of NN, Learning Methods, LMS and Back Propagation Algorithm, training Examples of models. Advances in Neural networks						
MODULI	E III– Deep Learning	9				
Convolution Neural Network (CNN): Neuron in human vision, Shortcoming of feature selection, Filters and feature maps, Full Description of Convolution neural network (CNN), Max pooling. Principal component analysis, Autoencoder: Architecture, Sparsity. Long short term memory units in RNN						
MODULE IV– Fuzzy Logic 9						
Introduction, Comparison between Fuzzy and crisp logic, Fuzzy sets, Membership function, Basic fuzzy set operations, Properties of Fuzzy set, fuzzy relations, Fuzzy interference system, Mamdani, Sugeno, Fuzzy rule based system, Defuzzification methods, Fuzzy Neural Networks						
MODULI	E V– Real time Applications	12				
ANN in space vector PWM wave synthesis for 2-level and multi-level converters. Static feedback signals estimation for a vector drive, space vector PWM for a two-level voltage-fed inverter and voltage model flux vector estimation. Model referencing adaptive control (MRAC) of ac drives, drift-free flux estimation of drives. Fuzzy logic based control replacing PID controller Neuro-fuzzy control of drives.						
REFERENCE BOOKS						
1	Neural Networks, Fuzzy logic and Genetic algorithms By S. Rajasekaran, G. A. Vijayalakshmi Pai PHI publication					
2	Principles of Soft computing, Wiley, 2nd Edition, S. N. Deepa and S. Sivanandam.					
3	Introduction to Neural Networks using MATLAB 6.0, McGraw Hill Education, S. Sivanandam, S. Sumathi, S. N. Deepa.					
4	Neural Network: A Comprehensive Foundation, second edition, Pearson Prentice Hall, Simon Haykin.					
5	Deep learning with python: A Hands-on Introduction, Apress, Nikhil Ketkar					
6	Fundamentals of Deep Learning, O' Reilly, Nikhil Baduma Nicholas Locasio.					

7	Artificial intelligence techniques in power systems by KEVIN WARWICK, ARTHUR
/	EKWUE RAJ AGRAWA

COURSE TITLE		SEMINAR				2
COURSE		EEC379 6	COURSE CATEGORY	PC	L-T-P- S	0-0-3-0
CIA			60%	ESE	40%	
LEARNING		BTL-6				
LEVEL						
CO	COUF	RSE OUTO	SE OUTOMES PO			PO
1	Able to	le to develop simple electric vehicle and electronic models based			1,3,4,5,12	
	on the knowledge gained.					
2	Able to	propose a project and defend its advantages. 1,3,4,5			1,3,4,5,12	2
3	Able to	o implement a real time system as proposed. 1,3,4,5,12			2	
Prerequisites: - Basic Electrical and Electronics Engineering subjects.						
SEMINAR						
Seminar should be taken on state of the art topic of student's own choice based on relevant specialization						
approved by an Department incharge. The student shall submit the duly certified seminar report in						
standard format, for satisfactory completion of the work by the concerned Guide and head of the						

department/institute.

COURSE TITLE		MINI PROJECT				2	
COURSE		EEC378	COURSE	PC	L-T-P-	0-0-3-0	
CODE		0	CATEGORY	10	S	0-0-3-0	
CIA		60% ESE		40%			
LEARNING LEVEL		BTL-6					
CO		COURSE OUTOMES				РО	
1	Able to	Able to develop simple electrical and electronic models based on			1,3,4,5,12		
	the kno	the knowledge gained.					
2	Able to	propose a project and defend its advantages.			1,3,4,5,12		
3	Able to	o implement	implement a real time system as proposed.			1,3,4,5,12	
Prerequisites: - Basic Electrical and Electronics Engineering subjects.							
MINI PR	OJECT						
To carry out a mini project and simple prototype in the area of interest based on the knowledge gained in							
Electrical and Electronics Engineering from undergraduate and first semester							
The students will carry out a project in one of the following Electrical and Electronics Engineering areas							
but with substantial multidisciplinary components:							

- Power Electronics, Control system
- Energy storage devices.
- Electrical Machines, Solid State Drives etc. . .

Every individual student will be assigned a faculty to guide them. There will be three major reviews which will be carried out as listed below.

Boviow #	Bogwinement	Mark Weightage	
	Keyuntement	Internal	External
0	Area / Title selection	-	-
1	Literature review / Proposal for the Project	10%	-
2	Mathematical modelling/Circuit Design	20%	-
3	Final simulation / Hardware presentation	20%	-
End			
Semester	Final Viva-Voce and project demonstration	-	50%
Exam			